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Abstract

Recent advancements in multimodal Large Lan-001

guage Models (LLMs) have significantly en-002

hanced the automation of medical image analy-003

sis, particularly in generating radiology reports004

from chest X-rays (CXR). However, these mod-005

els still suffer from hallucinations and clini-006

cally significant errors, limiting their reliabil-007

ity in real-world applications. In this study,008

we propose Look & Mark (L&M), a novel009

grounding fixation strategy that integrates radi-010

ologist eye fixations (Look) and bounding box011

annotations (Mark) into the LLM prompting012

framework. Unlike conventional fine-tuning,013

L&M leverages in-context learning to achieve014

substantial performance gains without retrain-015

ing. When evaluated across multiple domain-016

specific and general-purpose models, L&M017

demonstrates significant gains, including a018

1.2% improvement in overall metrics (A.AVG)019

for CXR-LLaVA compared to baseline prompt-020

ing and a remarkable 9.2% boost for LLaVA-021

Med. General-purpose models also benefit022

from L&M combined with in-context learn-023

ing, with LLaVA-OV achieving an 87.3% clini-024

cal average performance (C.AVG)—the high-025

est among all models, even surpassing those026

explicitly trained for CXR report generation.027

Expert evaluations further confirm that L&M028

reduces clinically significant errors (by 0.43029

average errors per report), such as false predic-030

tions and omissions, enhancing both accuracy031

and reliability. These findings highlight L&M’s032

potential as a scalable and efficient solution for033

AI-assisted radiology, paving the way for im-034

proved diagnostic workflows in low-resource035

clinical settings.036

1 Introduction037

Recently, the advent of multimodal Large Lan-038

guage Models (LLMs), in which vision encoders039

are integrated with powerful language generation040

models, has significantly advanced the automa-041

tion of medical image analysis (Li et al., 2023,042

2024b; Wu et al., 2023a; Yildirim et al., 2024; Saab 043

et al., 2024). Chest X-ray (CXR) interpretation, in 044

particular, has benefited greatly from these devel- 045

opments: by ingesting both image and text data, 046

modern LLMs can generate radiology reports, per- 047

form visual question answering, and even conduct 048

error-checking in clinical documents (Hyland et al., 049

2023; Chen et al., 2024b; Lee et al., 2023; Wu et al., 050

2023b, 2024). 051

Despite these advances, hallucinations, outputs 052

diverging from actual image content, remain a ma- 053

jor obstacle for real-world applications of these 054

models, reducing the trust and clinical userability. 055

(Xiao et al., 2024; AlSaad et al., 2024; Chen et al., 056

2024a; Wu et al.). One promising way to overcome 057

these hallucinatory behavior is by incorporating 058

expert insights directly into the model pipelines. 059

Several studies have shown that integrating human 060

input with AI models can substantially boost both 061

accuracy and reliability, sometimes surpassing the 062

performance of either clinicians or AI models alone 063

(Calisto et al., 2022; Patel et al., 2019). Two rele- 064

vant sources of expert knowledge in radiology are 065

(1) bounding boxes, which are rectangular mark- 066

ers that radiologists draw to highlight suspicious 067

regions in medical images, and (2) radiologist eye 068

fixations, which reveal the natural diagnostic pro- 069

cess by tracking where doctors look and how long 070

they spend examining different areas of a chest 071

X-ray.. 072

Bounding box annotations help localize the 073

language output in well-defined spatial coordi- 074

nates, reducing the risk of free-form hallucinations 075

and improving multimodal large language model’s 076

“grounded” report generation ability (?). Mean- 077

while, eye-tracking data offers insights into the con- 078

textual logic clinicians apply, indicating not only 079

the spatial information but also the order of saliency 080

for the spatial information. This additional informa- 081

tion enhanced the capabilities of multimodal LLMs 082

in CXR interpretations including report generation 083
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(Kim et al., 2024a,b). Each approach brings a com-084

plementary perspective: bounding boxes offer ex-085

plicit “marks” of suspicious regions, whereas fix-086

ation data conveys their relative significance with087

the duration of "looking".088

In this work, we propose “Look & Mark”: a089

grounding fixation strategy for CXR report gen-090

eration that merges radiologist eye fixations with091

bounding box annotations in multimodal LLMs.092

Crucially, we avoid large-scale model retraining093

by employing in-context learning or prompt engi-094

neering. Through bounding box coordinates, we095

provide precise “marks” that ground suspicious096

regions, while eye fixations encode how expert ra-097

diologists spatially and temporally navigate those098

regions. This grounding fixation can significantly099

reduce hallucinations and clinically significant er-100

rors by generating more coherent, clinically rele-101

vant CXR reports.102

The contributions of our work are as follows:103

• Novel Integration Framework - Performance104

improvement Without Re-Training: We pro-105

pose a systematic approach for combining spatial106

(bounding boxes) and temporal (eye fixations)107

expert knowledge in a single unified framework,108

enabling more comprehensive image understand-109

ing that mirrors expert diagnostic processes with-110

out re-training for domain adaptation or task spe-111

cific fine-tuning.112

• Fewer Hallucinations and Errors: We show,113

through radiologist expert evaluations, that114

grounding fixation strengthens the alignment of115

generated text with the ground truth reports, mit-116

igating one of the most pressing drawbacks of117

large-scale LLM-based solutions for radiology.118

• Comprehensive Evaluation Across Multiple119

LLMs: We validate Look & Mark on several120

general-purpose and medical multimodal LLMs,121

demonstrating consistent gains in accuracy.122

2 Related Works123

2.1 MAIRA2: Grounded Radiology Report124

Generation125

MAIRA2 is a large multimodal radiology-specific126

model designed for grounded report generation127

(Bannur et al., 2024). The model incorporates128

bounding box annotations as spatial constraints,129

ensuring that each finding in the generated report130

is explicitly localized on the CXR image. By131

grounding language outputs in bounding boxes,132

MAIRA2 mitigates hallucinations and improves 133

alignment between generated text and image con- 134

tent. Additionally, the model integrates contex- 135

tual inputs, such as prior imaging studies and clini- 136

cal indications, to further enhance report accuracy 137

and completeness. Despite its strong performance, 138

MAIRA2 focuses solely on bounding box ground- 139

ing and does not incorporate the dynamic reasoning 140

patterns captured through radiologists’ eye fixa- 141

tions. 142

2.2 Chest X-ray Diagnosis with Eye Fixation 143

Kim et al.(Kim et al., 2024b) explored the role 144

of radiologists’ fixation data in guiding multi- 145

modal LLMs for CXR analysis. By incorporating 146

fixation-based textual prompts and aligning fixa- 147

tions with anatomical bounding boxes, the study 148

demonstrated improvements in classification tasks 149

such as diagnosis and report error-checking (pres- 150

ence or absence). However, the study primarily 151

focuses on diagnostic tasks and does not address 152

the report generation task directly. It also does not 153

leverage bounding boxes of abnormalities. Our 154

work addresses these gaps by combining gaze in- 155

formation with abnormalities’ bounding boxes to 156

guide multimodal LLMs more effectively in gener- 157

ating radiology reports. 158

2.3 FG-CXR: Fine-Grained Alignment of 159

Gaze and Text 160

FG-CXR is a dataset, which aligns radiologist gaze 161

Lmaps with anatomical segmentation masks and 162

corresponding diagnostic report text (Pham et al., 163

2024). This dataset was used to develop the Gen- 164

XAI framework, which generates CXR reports by 165

leveraging gaze attention Lmaps to ground textual 166

outputs in anatomical regions. 167

While FG-CXR advances interpretability in re- 168

port generation, it does not employ multimodal 169

large language models, instead relying on gaze- 170

linked text to train a specific vision and language 171

model. Furthermore, it lacks the use of bounding 172

box annotations to explicitly ground abnormalities 173

spatially. Our grounding fixation approach extends 174

this work by unifying gaze data within abnormali- 175

ties’ bounding boxes, improving the performance 176

of report generation tasks in multimodal LLMs 177

without requiring additional training. 178

3 Look & Mark 179

Figure 1 provides an overview of the workflow, 180

which includes preprocessing the input, construct- 181
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Eye Fixation 
(Look)

Grounding
(Mark)

Look & Mark

The chest radiograph 

reveals mild vascular 

congestion and a 

retrocardiac opacity, 

likely due to 

atelectasis. There is 

also evidence of mild 

cardiomegaly. No 

pneumothorax is 

observed.

Multimodal LLMs 

w/o Finetuning
(e.g. CXR-LLaVA,

LLaVA-Med,

LLaVA-OneVision)

Cardiomegaly

Abnormality: 

Cardiomegaly,

Fixation Time: 

5.6 seconds

Visual Prompt: Grounding

Textual Prompt: Gaze Duration

Generated 
CXR Report

Figure 1: Overview of the Look & Mark framework. Chest X-ray images are augmented with bounding box

annotations (Mark) and radiologist fixation heatmaps (Look). These are integrated into a multimodal prompt (Look

& Mark) processed by LLMs to generate clinically aligned reports. The fixation is turned into textual prompt. To

comply with the MIMIC-CXR data usage license, the CXR image is substituted with a Wikimedia image depicting

the same disease, and the text report is paraphrased.

ing multimodal prompts, and evaluating the output.182

3.1 Abnormalities Bounding box Integration183

Let the input image be I and the bounding boxes184

of abnormalities be B = {b1, b2, . . . , bn}, where185

each bounding box bi is defined as:186

bi = (xi1, yi1, xi2, yi2, li), (1)187

where (xi1, yi1) and (xi2, yi2) are the top-left188

and bottom-right coordinates, respectively, and189

li is the associated abnormality label (e.g., “Car-190

diomegaly”). For each bounding box, an abnormal-191

ity caption is assigned, as shown in Figure 1.192

3.2 Eye Fixation Integration193

Fixation data G = {g1, g2, . . . , gm} is represented194

as:195

gj = (xj , yj , tj), (2)196

where (xj , yj) denotes the coordinates of the fix-197

ation point, and tj is the duration of fixation at198

that location. Each fixation point is mapped to a199

corresponding bounding box bi in the set of bound-200

ing boxes B = {b1, b2, . . . , bn}, which represent201

regions of abnormalities in the chest X-ray.202

The mapping is defined as:203

M(gj , B) = bi if (xj , yj) ∈ bi, (3)204

where bi = (xi1, yi1, xi2, yi2) defines the coor-205

dinates of the bounding box. This mapping links206

each fixation point to the associated abnormality 207

label li of the bounding box bi. 208

For each bounding box bi, we compute the total 209

fixation time Ti, which represents the cumulative 210

duration of all fixations mapped to that bounding 211

box: 212

Ti =
∑

gj∈G,M(gj ,B)=bi

tj . (4) 213

The fixation data is formatted into textual 214

prompts following this template: Fixation Data: 215

[Abnormality bounding box: {label}, 216

Fixation Time: {time} seconds]. This for- 217

mat encodes the temporal patterns of radiologist 218

attention for each identified abnormality. 219

As Figure 1 demonstrates, the bounding box 220

annotations are used as a visual prompt, provid- 221

ing spatial guidance to the model by highlighting 222

abnormalities directly in the image. The fixation 223

data linked to abnormalities is provided as a tex- 224

tual prompt, encoding temporal significance and 225

prioritization. 226

4 Experiments 227

4.1 Dataset 228

For this study, we used two primary datasets: the 229

REFLACX dataset as the source of eye fixation 230

data and dictated reports, and the MS_CXR dataset 231

as the source of abnormalities bounding boxes 232

(Bigolin Lanfredi et al., 2022; Boecking et al., 233

2022). Both datasets are derived from the widely 234

3



used MIMIC_CXR dataset, which provides chest235

X-ray images alongside corresponding findings and236

impression sections of radiology reports (Johnson237

et al., 2019).238

The MIMIC_CXR dataset has served as a foun-239

dation for many radiology report generation mod-240

els, which often rely heavily on the findings and im-241

pression sections for training and evaluation. How-242

ever, several key challenges exist:243

• Incomplete Annotations: Some chest X-ray244

images in MIMIC_CXR lack findings or im-245

pression sections, reducing the reliability of246

these sections as a sole reference for report247

generation.248

• Low Inter-Rater Agreement: Interviews249

conducted during the design of this study re-250

vealed that even expert radiologists often dis-251

agree on chest X-ray interpretations. This vari-252

ability in interpretation further questions the253

validity of using a single ground-truth report254

per image.255

• Free-Form Terminology: Radiology reports256

are inherently free-form in style and terminol-257

ogy, making it challenging to evaluate models258

against a single predefined ground-truth re-259

port.260

To address these limitations, we chose to use261

the dictated reports from the REFLACX dataset262

rather than the standard MIMIC_CXR findings and263

impressions. REFLACX provides multiple dic-264

tated reports per image, which better capture the265

variability in radiologist interpretation and report266

terminology. This approach allows for a more ro-267

bust evaluation of our model’s ability to generalize268

across diverse reporting styles.269

Furthermore, to enhance the dataset, we in-270

tegrated bounding box annotations from the271

MS_CXR dataset, which offers precise localiza-272

tion of abnormalities. These bounding boxes are273

linked with textual prompts and fixation durations,274

providing additional multimodal data that can be275

leveraged to analyze the relationship between im-276

age regions of interest and the corresponding dic-277

tated text.278

Table 1 highlights the key statistics of the Look279

& Mark dataset, a combined dataset created for280

this study. It includes 560 chest X-ray images281

paired with 1,372 dictated reports, averaging 2.45282

reports per image. Notably, 210 images lack find-283

ings sections and 129 images lack impression sec-284

tions in the original MIMIC_CXR dataset, empha-285

Category Statistic

General Statistics

Number of Images 560

Number of Dictated Reports 1,372

Average Reports per Image 2.5

Missing MIMIC_CXR Reports

Images without Findings 210

Images without Impression 129

Average Text Lengths (Characters)

Findings Section 410.3

Impression Section 227.5

Dictated Reports 243.7

Table 1: Look & Mark Dataset Statistics.

sizing the gaps that the Look & Mark dataset helps 286

to fill. 287

The dictated reports from the dataset are shorter 288

(average length of 243.7 characters) than typical 289

findings (410.3 characters) but offer free-form de- 290

scriptions closely resembling real-world clinical re- 291

porting styles. Each report is also accompanied by 292

bounding box annotations for abnormalities, along 293

with fixation duration data, providing a unique mul- 294

timodal dataset that combines textual, visual, and 295

spatial information. 296

4.2 Models 297

Model Name Size Trained for

CXR-LLaVA(Lee et al., 2023) 8B RG
MAIRA2(Bannur et al., 2024) 7B Ground RG
LLaVA-Med(Li et al., 2024b) 8B Medical VQA

Llama3.2V(Dubey et al., 2024) 11B IU
LLaVA-OV(Li et al., 2024a) 8B VU
Qwen2.5VL(Team, 2025) 8B Grounding, VU

Table 2: Model descriptions. Models in bold are trained

with the MIMIC-CXR dataset. Acronym for the tasks

are as follows: Report Generation - RG, Visual Question

Answering - VQA, Image Understanding - IU, Vision

Understanding (Image, Video) - VU

Table 2 describes the models evaluated in this 298

study. The selection includes both models specif- 299

ically fine-tuned for the medical domain and 300

general-purpose multimodal models, enabling a 301

comprehensive comparison of their performance 302

under the Look & Mark (L&M) approach. 303

Two of the evaluated models, CXR-LLaVA and 304

MAIRA2, were fine-tuned on the MIMIC-CXR 305

dataset. These models are specifically designed for 306
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radiology tasks, making them well-suited for chest307

X-ray interpretation. CXR-LLaVA, with 8 bil-308

lion parameters, was trained for report generation309

(RG) and focuses on translating visual abnormal-310

ities into detailed radiology reports. On the other311

hand, MAIRA2, built on the Mistral 7B backbone,312

is uniquely trained for grounded report generation313

(Ground RG), linking textual reports to specific314

regions of interest in the chest X-ray.315

In contrast, LLaVA-Med was trained using an316

instruction tuning dataset derived from figures and317

legends in PubMed papers. This model, with 8318

billion parameters, was designed for medical visual319

question answering (VQA) tasks, demonstrating320

strong reasoning capabilities but lacking specific321

training on MIMIC-CXR data.322

To provide broader context, the study also in-323

cludes general-purpose multimodal models such324

as Llama3.2V, LLaVA-OV, and Qwen2.5VL.325

Llama3.2V, the largest model with 11 billion pa-326

rameters, is trained for image understanding (IU),327

providing insights into how parameter scaling im-328

pacts performance. LLaVA-OV and Qwen2.5VL,329

both with 8 billion parameters, focus on vision un-330

derstanding (VU), encompassing tasks involving331

image and video comprehension. Qwen2.5VL is332

the only model that is trained to do object ground-333

ing. While these models were not fine-tuned for the334

medical domain, they serve as baselines for eval-335

uating generalization capabilities on CXR report336

generation.337

4.3 Evaluation338

To evaluate the performance of the models on the339

Look & Mark dataset, we tested different input340

modalities and grounding strategies, including de-341

fault prompts (-), eye fixation data represented as342

heat maps (L), bounding box grounding (M), and343

our proposed grounding fixation approach combin-344

ing both heat maps and bounding boxes (L&M).345

For general-purpose large language models (LLMs)346

not fine-tuned on the dataset, in-context learning347

(I) was applied. This involved providing three ex-348

emplar reports, each with different style of writing349

and not included in the dataset but sourced from350

REFLACX dictated reports, as context to teach the351

model chest X-ray writing style.352

For hyperparameters, we used a batch size of353

1 and a temperature of 0 or 0.1 (where 0 is not354

accepted). The temperature was chosen to mini-355

mize the randomness in the generated report. The356

maximum length of new tokens was 512 tokens.357

We used both lexical and clinical relevance eval- 358

uation metrics: 359

• ROUGE-L (Lin, 2004): Measures the lex- 360

ical overlap between the generated and ref- 361

erence reports, emphasizing long matching 362

sequences. 363

• BERTScore (Zhang et al., 2019): Computes 364

semantic similarity between generated and ref- 365

erence reports by comparing token embed- 366

dings, offering a more nuanced view of report 367

coherence. 368

• RadGraph-XL (Delbrouck et al., 2024): 369

Evaluates the ability of models to extract clin- 370

ically relevant entities and relations, assessing 371

how well the generated reports align with an- 372

notated medical knowledge graphs. 373

• RaTEScore (Zhao et al., 2024): A metric 374

tailored for radiology report evaluation, em- 375

phasizing clinical entities, negations, and syn- 376

onym robustness to assess the quality of gen- 377

erated text. 378

• Clinical Metrics (C.AVG): This score is cal- 379

culated by normalizing each clinical relevance 380

metric (RadGraph-XL and RaTEScore) by the 381

highest scores, converting each to a percent- 382

age, and then averaging them. It provides a 383

unified percentage-based metric to assess clin- 384

ical utility. 385

• All Metrics (A.AVG): Similarly, this score 386

is calculated by normalizing all metrics 387

(ROUGE-L, BERTScore, RadGraph-XL, 388

RaTEScore, and others) by their respective 389

highest scores, converting them to percent- 390

ages, and then taking the average. It provides 391

a comprehensive, normalized view of model 392

performance across all evaluation dimensions. 393

5 Results and Discussion 394

5.1 Performance Comparison Across Models 395

and Methods 396

Table 3 presents a comprehensive evaluation of 397

model performance across key metrics: ROUGE- 398

L (RG-L), BERTScore, RadGraph-XL (RadG), 399

and RaTEScore (RaTE). These results demon- 400

strate the effectiveness of Grounding Fixation 401

Prompting (L&M) in improving report genera- 402

tion performance across both domain-specific and 403

general-purpose models. Furthermore, the exten- 404

sion of L&M with in-context learning, denoted as 405

I&L&M, significantly enhances general-purpose 406
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Model Method RG-L BERT RadG RaTE C.AVG (%) A.AVG (%)

CXR-LLaVA - 0.1653 0.8586 0.1107 0.4730 84.42 73.21

CXR-LLaVA L&M
0.1697 0.8602 0.1148 0.4752 86.01 74.40

(+0.0044) (+0.0016) (+0.0041) (+0.0022) (+1.59) (+1.19)

MAIRA2 - 0.1460 0.8492 0.0868 0.4507 74.35 66.70

MAIRA2 L&M
0.1469 0.8489 0.0810 0.4574 73.16 66.31

(+0.0009) (-0.0003) (-0.0058) (+0.0067) (-1.19) (-0.39)

LLaVA-Med - 0.0942 0.8392 0.0000 0.2445 24.99 40.62

LLaVA-Med L&M
0.0817 0.8253 0.0295 0.4191 52.46 49.81

(-0.0125) (-0.0139) (+0.0295) (+0.1746) (+27.47) (+9.19)

Llama3.2V - 0.0413 0.7652 0.1412 0.0027 46.34 41.32

Llama3.2V L&M
0.0393 0.7694 0.1494 0.0071 49.44 42.30

(-0.0020) (+0.0042) (+0.0082) (+0.0044) (+3.10) (+0.98)

Llama3.2V I&L&M
0.0402 0.7696 0.1533 0.0089 50.91 42.99

(-0.0011) (+0.0044) (+0.0121) (+0.0062) (+4.57) (+1.67)

LLaVA-OV - 0.0518 0.8085 0.0471 0.3936 55.58 47.14

LLaVA-OV L&M
0.0527 0.8107 0.0497 0.4531 62.51 50.07

(+0.0009) (+0.0022) (+0.0026) (+0.0595) (+6.93) (+2.93)

LLaVA-OV I&L&M
0.0959 0.8365 0.1145 0.4893 87.34 65.69

(+0.0441) (+0.0280) (+0.0674) (+0.0957) (+31.76) (+18.55)

Qwen2.5VL - 0.0576 0.8080 0.0534 0.4291 61.27 50.08

Qwen2.5VL L&M
0.0427 0.7933 0.0528 0.4488 63.08 48.71

(-0.0149) (-0.0147) (-0.0006) (+0.0197) (+1.81) (-1.37)

Qwen2.5VL I&L&M
0.0614 0.8045 0.0812 0.4730 74.83 55.88

(+0.0038) (-0.0035) (+0.0278) (+0.0439) (+13.56) (+5.80)

Table 3: Performance for all the models using L&M and I&L&M compared to baseline (-). Numbers in parentheses

on the second row for each method indicate the absolute difference from the baseline method for the same model.

RG-L: ROUGE-L, BERT: BERTScore, RadG: RadGraph-XL, RaTE: RaTEScore. The best scores for each metric

are bolded.

models’ adaptability.407

5.1.1 Domain-Specific Models.408

Among domain-specific models, CXR-LLaVA409

demonstrates the highest improvement when in-410

corporating the L&M strategy. For instance, RG-411

L increases from 0.1653 (default prompting) to412

0.1697, and BERTScore improves from 0.8586 to413

0.8602. Clinical average improves from 84.42%414

to 86.01%, indicating that L&M aligns better with415

clinical expectations as well. These improvements416

highlight the ability of grounding fixation to en-417

hance both the linguistic and clinical quality of418

generated reports.419

However, in the case of MAIRA2, the results re-420

veal a more nuanced outcome. While L&M slightly421

improves RG-L (0.1469 vs. 0.1460), there is a422

small decline in C.AVG (73.16% vs. 74.35%).423

This suggests that MAIRA2’s architecture may al-424

ready effectively integrate bounding box informa-425

tion, leaving limited room for further enhancement426

with gaze data. Additionally, the architectural com-427

plexity or pretraining objectives of MAIRA2 might428

not optimally benefit from the added eye fixation429

cues.430

For LLaVA-Med, we see a huge performance431

boost with L&M in clinical relevance evaluation432

metrics, while decreased performance in the lexi- 433

cal evaluation metrics. As the decresae in lexical 434

evaluation metrics was marginal when compared 435

to the performance boost in the clinical evaluation 436

metrics, the overal average score (A.AVG) resulted 437

in 9.19% increase. 438

5.1.2 General-Purpose Models 439

General-purpose models, Llama3.2V, LLaVA- 440

OV, and Qwen2.5VL, also experience in per- 441

formance improvement with L&M. LLaVA-OV 442

performance increased in all evaluation metrics. 443

Llama3.2V performance increased in all evaluation 444

metrics except ROUGE-L. However, Qwen2.5VL 445

model only increased in RaTEScore. The perfor- 446

mance increase in these general domain models, 447

which have not been specifically trained with chest 448

X-ray datasets, adds the generalizability of the 449

L&M prompting. 450

They also benefit significantly from the addition 451

of in-context learning (I) combined with L&M. For 452

LLaVA-OV, I&L&M achieves notable improve- 453

ments across all metrics, with BERTScore increas- 454

ing to 0.8365 and RaTEScore to 0.4893. C.AVG 455

improves dramatically from 55.58% (default) to 456

87.34%, showcasing the adaptability of I&L&M 457

to general-domain models. In fact, LLaVA-OV’s 458
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I&L&M resulted in the highest RaTEScore and459

C.AVG, higher than CXR-LLaVA’s L&M result.460

These improvements can be attributed to the incor-461

poration of clinical writing samples and grounding462

cues of L&M.463

For Qwen2.5VL, I&L&M yields significant464

gains, especially in RadGraph-XL (0.0812 vs.465

0.0534) and C.AVG (74.83% vs. 61.27%). Sim-466

ilarly, Llama3.2V sees marked improvements in467

RadGraph-XL (0.1533 vs. 0.1412) and A.AVG468

(42.99% vs. 41.32%). The RadGraph-XL score,469

0.1533, is actually highest among all the models470

and methods. These results highlight the poten-471

tial of I&L&M to bridge the gap between general-472

purpose models and domain-specific tasks, making473

them more clinically relevant and robust.474

5.2 Is Look & Mark really better than Look475

or Mark?476

CXR-L
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A

LLa
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-M
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MAIRA
2
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Figure 2: Performance increase/decrease in A.AVG of

L&M compared to L and M for domain-specific models.
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Figure 3: Performance increase/decrease in A.AVG of

I&L&M compared to I&L and I&M for general-purpose

models.

Figures 2 and 3 analyze the relative performance477

of Look & Mark (L&M) compared to using only478

Look (L) or Mark (M).479

5.2.1 Domain-Specific Models (Figure 2)480

For domain-specific models, the performance im-481

provements achieved by combining fixation cues482

(L) and bounding box grounding (M) in L&M483

consistently outperform using either method alone. 484

The CXR-LLaVA model demonstrates significant 485

gains with L&M. L&M achieves an A.AVG im- 486

provement of 1.5% compared to M and 2.8% com- 487

pared to L. LLaVA-Med demonstrates the high- 488

est improvements with L&M. L&M achieves an 489

A.AVG improvement of 3.8% compared to M 490

and 11.8% compared to L. The MAIRA2 model 491

shows no performance gain with having additional 492

fixation cues. This strengthens our finding that 493

MAIRA2’s performance depends too much on the 494

grounded visual prompt. Still, L&M performed bet- 495

ter than L in all models, although very small (0.8%) 496

for MAIRA2. This shows that grounding can be 497

more effective than fixation for report generation. 498

5.2.2 General-Purpose Models with 499

In-Context Learning (Figure 3) 500

For general-purpose models, in-context learning 501

combined with Look & Mark (I&L&M) leads to 502

significant performance gains over I&L in all mod- 503

els. This also strengthens the point that grounding 504

can be more effective than fixation for report gen- 505

eration. LLaVA-OV with I&L&M consistently 506

outperforms both I&L and I&M, with a substan- 507

tial increase of 6.2% compared to I&L and 1.9% 508

compared to I&M. While the improvements are 509

smaller for Llama3.2V, I&L&M still achieves a 510

positive increase of 2.3% compared to I&L, high- 511

lighting incremental gains. However, the increase 512

compared to I&M is minimal (0.3%), indicating 513

that the model may struggle to fully utilize fixation 514

cues alongside bounding boxes. Qwen2.5VL with 515

I&L&M outperforms I&L with a small incarse of 516

0.6% but underperforms when compared to I&M 517

(-10.82%). This result also confirms that models 518

trained for Grounding does not have capacity to 519

effectively use fixation cues. 520

5.3 Expert evaluation to confirm Look & 521

Mark reducing the errors or 522

hallucinations 523

To further validate the effectiveness of Look & 524

Mark (L&M) in reducing hallucinations and clin- 525

ically significant errors, we conducted an expert 526

evaluation involving three radiologists with var- 527

ied levels of experience. The goal of this evalua- 528

tion was to assess whether L&M-generated reports 529

demonstrated fewer errors compared to reports gen- 530

erated by other methods. 531

Three radiologists performed a blind evaluation 532

of generated reports and annotated the number of 533
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clinically significant errors based on predefined534

error categories adapted from the ReXVal dataset535

(Yu et al., 2023). The error categories were as536

follows:537

1. False prediction of finding538

2. Omission of finding539

3. Incorrect location/position of finding540

4. Incorrect severity of finding541

5. Mention of comparison that is not present542

To assess inter-annotator reliability, we calcu-543

lated Krippendorff’s Alpha for the radiologists’ an-544

notations, which resulted in a score of 0.647 (Krip-545

pendorff, 2011). This indicates a moderate level546

of agreement, reflecting consistency in identifying547

clinically significant errors across the evaluated re-548

ports. Minor variability in annotations may stem549

from subjective differences in error interpretation.550

Table 4 summarizes the results, presenting the551

average number of errors per generated report552

across methods and models.553

Models (Methods) Errors

CXR-LLaVA (L&M) 1.75

MAIRA2 (-) 1.75

LLaVA-OV (I&L&M) 1.88

Qwen2.5VL (I&L&M) 2.12

CXR-LLaVA (-) 2.18

Table 4: Expert evaluation of clinically significant errors

(average per generated report).

The results indicate that L&M reduces clini-554

cally significant errors as CXR-LLaVA (L&M)555

achieved the lowest average error count (1.75),556

while CXR-LLaVA baseline method had the high-557

est average error count (2.18). This highlights558

the effectiveness of grounding fixation in reduc-559

ing hallucinations and aligning reports with clini-560

cal standards. Similarly, LLaVA-OV (I&L&M)561

performed well, with an error count of 1.88, demon-562

strating the adaptability of L&M combined with563

in-context learning for general-purpose models. In564

fact, both LLaVA-OV (I&L&M) and Qwen2.5VL565

(I&L&M) surpassed the baseline methods of CXR566

report generation model such as CXR-LLaVA (-).567

These findings confirm that L&M enhances clini-568

cal accuracy while reducing hallucinations, making569

it a robust framework for CXR report generation570

across both domain-specific and general-purpose571

multimodal models.572

6 Conclusion 573

This study introduces Look & Mark (L&M), a 574

novel approach to radiology report generation that 575

integrates radiologist fixation cues (Look) with 576

bounding box annotations (Mark) to guide mul- 577

timodal Large Language Models (LLMs). By com- 578

bining these complementary grounding strategies, 579

L&M significantly improves the clinical relevance 580

of generated reports, reduces hallucinations, and en- 581

hances model alignment with real-world diagnostic 582

workflows. Importantly, L&M achieves these gains 583

without requiring extensive fine-tuning, leveraging 584

in-context learning to adapt both general-purpose 585

and domain-specific models alike. 586

Our experiments demonstrate that L&M signifi- 587

cantly boosts performance across both lexical and 588

clinical evaluation metrics, with the largest gains 589

observed in clinical metrics such as RaTEScore 590

and RadGraph-XL. For instance, CXR-LLaVA 591

achieved a 1.2% improvement in overall metrics 592

(A.AVG) compared to baseline prompting, while 593

LLaVA-Med demonstrated a remarkable 9.2% 594

boost. General-purpose models also benefited sig- 595

nificantly, with LLaVA-OV achieving an 87.3% 596

clinical average (C.AVG), the highest among all 597

tested models, even surpassing domain-specific 598

models trained explicitly for chest X-ray report 599

generation. Furthermore, expert radiologist eval- 600

uations confirmed the clinical reliability of L&M, 601

with fewer errors (by 0.43 average errors per report) 602

in categories such as false predictions, omissions, 603

and incorrect severity descriptions. These results 604

highlight that grounding multimodal LLMs with 605

both bounding boxes and fixation cues provides a 606

synergistic effect, improving performance across 607

diverse models and tasks. 608

By eliminating the need for retraining, L&M of- 609

fers a scalable and practical solution for deploying 610

advanced AI systems in low-resource clinical en- 611

vironments. This makes it particularly suited for 612

improving diagnostic workflows in settings with 613

limited computational resources, while still achiev- 614

ing state-of-the-art performance. 615

Future work will focus on extending L&M to 616

other medical imaging modalities, such as CT 617

and MRI, and exploring automated grounding for 618

the bounding boxes of abnormalities. These ad- 619

vancements will further enhance L&M’s potential 620

to become a foundational framework for reliable 621

and scalable AI-driven diagnostics in low-resource 622

healthcare settings. 623
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Limitations624

While Look & Mark (L&M) demonstrates signifi-625

cant improvements in radiology report generation,626

several limitations remain that warrant further in-627

vestigation.628

First, L&M, as implemented in this study, relies629

on single-view chest X-rays, whereas clinical prac-630

tice often incorporates multiple views (e.g., frontal631

and lateral). Multi-view integration could provide632

a more comprehensive understanding of anatomi-633

cal structures and pathologies, reducing the risk of634

missing findings that are evident only in specific635

views. Future work should extend L&M to support636

multi-view training and inference to align more637

closely with real-world diagnostic workflows.638

Second, the use of bounding box annotations639

and fixation data requires expert input for dataset640

creation. While L&M leverages these resources641

effectively, the scalability of this approach may642

be limited in settings where such annotations are643

unavailable. Exploring alternative strategies, such644

as weakly supervised learning or automatic fixa-645

tion prediction and bounding box grounding, could646

reduce the reliance on expert-labeled data.647

Lastly, this study focuses exclusively on chest X-648

rays, limiting its generalizability to other medical649

imaging modalities. Expanding L&M to support650

other modalities, such as CT, MRI, or ultrasound,651

would enhance its applicability across broader radi-652

ology and clinical domains.653

Broader Impacts and Ethics Statement654

The development of Look & Mark (L&M) has the655

potential to positively transform radiology work-656

flows by improving diagnostic accuracy and reduc-657

ing errors. All data used in this research adhered658

to strict ethical guidelines. MIMIC-CXR and re-659

lated datasets used are publicly available and con-660

tain de-identified patient information. To access661

MIMIC-CXR and related datasets, researchers have662

completed necessary training course and signed the663

data use agreement.664

While L&M demonstrates significant promise,665

we acknowledge the potential risks associated with666

the deployment of AI in healthcare. These in-667

clude the propagation of biases present in training668

datasets and the possibility of over-reliance on AI-669

generated reports, particularly in high-stakes clini-670

cal environments. To mitigate these risks, L&M is671

explicitly designed as an assistive tool to support,672

rather than replace, radiologist decision-making.673

Additionally, future work will involve rigorous eval- 674

uation of performance across diverse populations 675

and imaging settings to identify and mitigate bi- 676

ases, ensuring equity and fairness in diagnostic 677

outcomes. 678
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Appendix848

Table 5 presents the performance metrics for all849

models across various prompting methods, includ-850

ing default prompting (-), eye gaze as a heatmap851

(L), bounding box grounding (M), and the proposed852

Look Mark (LM) strategy. The evaluation also in-853

cludes in-context learning (I) and its combinations854

with Look and Mark (e.g., IL, IM, and ILM). Key855

metrics include ROUGE-L (RG-L), BERTScore,856

RadGraph-XL (RadG), RaTEScore, Clinical Aver-857

age (C.AVG), and All Metrics Average (A.AVG).858

Figure 4 visualizes the normalized clinical aver-859

age scores (C.AVG) across general-purpose models860

when using different prompting strategies, includ-861

ing in-context learning (I) and the proposed Look862

& Mark method combined with in-context learning863

(I&L&M). The evaluated models include LLaVA-864

OV, Llama3.2V, and Qwen2.5VL, with metrics865

such as ROUGE-L, BERTScore, RadGraph-XL,866

and RaTEScore contributing to the C.AVG calcula-867

tion. LLaVA-OV (I&L&M) achieves the highest868

overall C.AVG across all metrics, with normalized869

scores close to 1.0, showcasing the effectiveness of870

combining Look & Mark with in-context learning.871

Qwen2.5VL and Llama3.2V show varied improve-872

ments with I&L&M compared to the baseline I,873

particularly in clinical metrics such as RaTEScore874

and RadGraph-XL. The variability across models875

indicates that the integration of Look & Mark en-876

hances the adaptability of general-purpose models877

for clinical tasks, particularly when evaluated with878

clinical relevance metrics.879

This heatmap provides a clear comparative anal-880

ysis of model performance under different prompt-881

ing strategies, emphasizing the contributions of882

Look & Mark in reducing hallucinations and align-883

ing outputs with clinical standards.884

Figure 5 provides qualitative analysis of model885

outputs, comparing generated reports from differ-886

ent methods against ground truth reports. Three ex-887

amples are shown, with clinically significant errors888

marked in red, as identified by radiologists. The889

examples include cases of pneumothorax, pleural890

effusion, and atelectasis. This Figure shows the891

effect of L&M as CXR-LLaVA with our method892

significantly reduces the number of errors in the893

generated reports.894

Additionally, the three examples can be also re-895

garded as the three exemplar reports that are used896

for in-context learning.897
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Model Method RG-L BERT RadG RaTE C.AVG (%) A.AVG (%)

CXR-LLaVA - 0.1653 0.8586 0.1107 0.4730 84.42 73.21

CXR-LLaVA L 0.1652 0.8592 0.1048 0.4626 81.46 72.04

CXR-LLaVA M 0.1672 0.8579 0.1093 0.4687 83.55 73.07

CXR-LLaVA L&M 0.1697 0.8602 0.1148 0.4752 86.01 74.40

MAIRA2 - 0.1460 0.8492 0.0868 0.4507 74.35 66.70

MAIRA2 L 0.1419 0.8487 0.0824 0.4460 72.45 65.44

MAIRA2 M 0.1469 0.8489 0.0810 0.4574 73.16 66.31

MAIRA2 L&M 0.1469 0.8489 0.0810 0.4574 73.16 66.31

LLaVA-Med - 0.0942 0.8392 0.0000 0.2445 24.99 40.62

LLaVA-Med L 0.0818 0.8216 0.0011 0.2511 26.02 39.15

LLaVA-Med M 0.0900 0.8281 0.0270 0.3107 40.56 46.09

LLaVA-Med L&M 0.0817 0.8253 0.0295 0.4191 52.46 49.81

Llama3.2V - 0.0413 0.7652 0.1412 0.0027 46.34 41.32

Llama3.2V L 0.0370 0.7656 0.1155 0.0035 38.01 37.39

Llama3.2V M 0.0400 0.7697 0.1528 0.0078 50.64 42.89

Llama3.2V L&M 0.0393 0.7694 0.1494 0.0071 49.44 42.30

Llama3.2V I 0.0415 0.7652 0.1471 0.0039 48.38 42.13

Llama3.2V I&L 0.0374 0.7654 0.1269 0.0031 41.70 38.80

Llama3.2V I&M 0.0400 0.7694 0.1479 0.0074 49.00 42.23

Llama3.2V I&L&M 0.0402 0.7696 0.1533 0.0089 50.91 42.99

LLaVA-OV - 0.0518 0.8085 0.0471 0.3936 55.58 47.14

LLaVA-OV L 0.0484 0.8087 0.0485 0.4029 57.00 47.31

LLaVA-OV M 0.0565 0.8110 0.0518 0.4567 63.56 50.95

LLaVA-OV L&M 0.0527 0.8107 0.0497 0.4531 62.51 50.07

LLaVA-OV I 0.0920 0.8384 0.1101 0.4354 80.41 62.50

LLaVA-OV I&L 0.0738 0.8268 0.1068 0.4386 79.67 59.79

LLaVA-OV I&M 0.0966 0.8350 0.1081 0.4685 83.13 64.05

LLaVA-OV I&L&M 0.0959 0.8365 0.1145 0.4893 87.34 65.69

Qwen2.5VL - 0.0576 0.8080 0.0534 0.4291 61.27 50.08

Qwen2.5VL L 0.0530 0.7989 0.0461 0.3926 55.14 46.88

Qwen2.5VL M 0.0496 0.7980 0.0588 0.4545 65.63 50.65

Qwen2.5VL L&M 0.0427 0.7933 0.0528 0.4488 63.08 48.71

Qwen2.5VL I 0.0877 0.8104 0.1063 0.4416 79.80 61.10

Qwen2.5VL I&L 0.0650 0.8047 0.0812 0.4469 80.02 58.38

Qwen2.5VL I&M 0.0914 0.8201 0.1175 0.4914 88.53 65.26

Qwen2.5VL I&L&M 0.0614 0.8045 0.0812 0.4730 74.83 55.88

Table 5: Performance metrics for all models and methods. Methods include: default prompt (-), eye gaze as a heat

map (L), abnormalities bounding box (M), and our method (L&M). In-context learning, noted as I. RG-L is the

acronym for ROUGE-L, BERT is the acronym for BERTScore, RadG is the acronym for RadGraph-XL, and RaTE

is the acronym for RaTEScore. The best scores for each metric are bolded and the models with the scores are also

bolded.
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ROUGE-L BERTScore RadGraph-XL RaTEScore
Method

LLaVA-OV*I

LLaVA-OV*I&L&M

Llama3.2V*I

Llama3.2V*I&L&M

Qwen2.5VL*I

Qwen2.5VL*I&L&M

M
od

el

0.96 1.00 0.96 0.89

1.00 1.00 1.00 1.00

0.43 0.91 0.03 0.51

0.42 0.92 0.08 0.48

0.91 0.97 0.93 0.90

0.64 0.96 0.71 0.97

Heatmap of C.AVG Across Models and Methods

0.2

0.4

0.6

0.8

1.0

C.
AV

G

Figure 4: Heatmap of normalized scores across general-purpose models to compare in-context learning and our

method.

Methods Example 1 Example 2 Example 3

Ground Truth

no pneumothorax. support apparatus. me-

diastinum normal. effusions, atelecta-

sis, consolidation, or mass in the right

hemithorax.

support apparatus. no pneumothorax. me-

diastinum normal. bilateral pleural effu-

sions with superimposed atelectasis ver-

sus consolidation.

a large right pleural effusion is present.

right apical pneumothorax is present. the

heart is normal in size. pulmonary vessels

in the left lung are normal in caliber. no

acute osseous abnormality is present.

CXR-LLaVA (-)

The chest radiograph reveals a left-sided

pneumothorax. There is also some im-

proved aeration at the left base. No other

significant abnormalities are noted in the

lungs, mediastinum, heart, and thorax.

The radiologic report reveals a small left

apical pneumothorax. There is also evi-

dence of pneumomediastinum and subcu-

taneous emphysema in the left neck and

chest wall. A small left pleural effusion

is present. The left basal consolidation,

likely due to atelectasis, is noted.

The radiologic report reveals a persis-

tent moderate right-sided pleural effusion.

There is no evidence of pneumothorax.

The left lung appears clear. The cardio-

mediastinal silhouette shows no abnor-

malities. A moderate upper right-sided

pneumothorax is also present.

CXR-LLaVA (L&M)

The chest radiograph reveals a right lower

lobe consolidation and a right pleural ef-

fusion. The left lung appears clear. The

heart size is within normal limits. There

is no evidence of pneumothorax.

The chest radiograph reveals an opacity

in the left lower lobe, likely indicative of

a combination of atelectasis and a small

pleural effusion. The mediastinal and car-

diac contours appear normal. No pneu-

mothorax is observed.

The chest radiograph reveals a moderate

right pleural effusion. The left lung ap-

pears clear. There is evidence of right

basilar atelectasis, likely due to the pleu-

ral effusion. No focal consolidations are

observed. A right apical pneumothorax is

present. The cardiac silhouette is stable.

Figure 5: Expert analysis of model outputs. Red-colored text shows the clinically significant error marked by

radiologist.
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