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ABSTRACT

Temporally consistent video-to-video generation is critical for applications such
as style transfer and upsampling. In this paper, we provide a theoretical analysis
of warped noise—a recently proposed technique for training video diffusion mod-
els—and show that pairing it with the standard denoising objective implicitly trains
models to be equivariant to spatial transformations of the input noise. We term
such models EquiVDM. This equivariance enables motion in the input noise to
align naturally with motion in the generated video, yielding coherent, high-fidelity
outputs without the need for specialized modules or auxiliary losses. A further
advantage is sampling efficiency: EquiVDM achieves comparable or superior
quality in far fewer sampling steps. When distilled into one-step student models,
EquiVDM preserves equivariance and delivers stronger motion controllability and
fidelity than distilled non-equivariant baselines. Across benchmarks, EquiVDM
consistently outperforms prior methods in motion alignment, temporal consistency,
and perceptual quality, while substantially lowering sampling cost.

1 INTRODUCTION

Warped Noise 

Video 
Diffusion
Model

Generated Frames

Figure 1: EquiVDM: A video diffusion model
that is equivariant to input spatial transformations
generates videos with the same spatial transforma-
tion when provided with warped noise.

Video-to-video generative models power a broad
spectrum of applications, from sim-to-real trans-
fer and style adaptation to generative rendering
and video upsampling. Among these, diffusion-
based approaches have emerged as the de facto
standard for conditional video generation (Esser
et al., 2024; Brooks et al., 2024; Sharma et al.,
2024; Agarwal et al., 2025; Blattmann et al.,
2023a;b; Peebles & Xie, 2023). Following the
original formulations of image and video dif-
fusion models (Peebles & Xie, 2023; Ho et al.,
2020; Song et al., 2020; Ho et al., 2022), current
methods adopt independent Gaussian noise in
their forward process. To enforce temporal con-
sistency, they typically augment the architecture
with 3D convolutions (Blattmann et al., 2023a; Yang et al., 2024b) or spatiotemporal attention lay-
ers (Peebles & Xie, 2023), enabling stronger propagation of motion information across frames. While
these architectural enhancements improve coherence, they often demand large-scale, high-quality
video datasets (Agarwal et al., 2025; Chen et al., 2024c) to learn realistic appearance and motion
dynamics from unstructured noise.

An alternative line of research seeks to achieve temporal consistency by directly sampling from
temporally warped noise. This approach is particularly attractive for video-to-video tasks, where
an input video naturally provides the motion cues needed to drive the noise warping. In practice,
motion vectors (e.g., optical flow) are extracted from the input video and used to correlate Gaussian
noise along the motion trajectories. Several works (Chang et al., 2024; Daras et al., 2024; Deng
et al., 2024) exploit this idea by warping noise across frames while preserving its spatial Gaussianity,
and then applying a pretrained image diffusion model to denoise the warped noise, thereby inducing
temporally consistent transformations in the output frames. However, as noted by Daras et al. (2024),
standard image diffusion networks are not intrinsically equivariant to noise-warping transformations

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

because of their highly nonlinear layers. As a result, these methods often rely on sampling-time
guidance or regularization to approximate equivariance—introducing extra hyperparameters and
added complexity. More recently, Burgert et al. (2025b) showed that fine-tuning video diffusion
models (VDMs) with warped noise for video-to-video generation tasks can enhance motion control,
further underscoring the potential of this direction.

In an era dominated by large video diffusion models trained with independent Gaussian noise, we ask
two key questions: (1) What role does warped noise play in training video-to-video diffusion models?
and (2) What practical benefits does it provide? We show—both theoretically and empirically—that
training with warped noise induces equivariance to spatial warping transformations, a property
that emerges simply by replacing independent Gaussian noise with warped noise in the forward
process, without altering the conventional VDM objective (see Figure 1). Unlike prior approaches
that introduce specialized modules (Khachatryan et al., 2023; Chen et al., 2023a; Zhang et al.,
2023b; Lin et al., 2024; Wang et al., 2024; Wu et al., 2024; Karras et al., 2021), our findings
reveal that equivariance is an inherent consequence of noise warping. We refer to such models as
EquiVDMs. Beyond theory, we demonstrate that EquiVDMs generate temporally coherent videos in
fewer sampling steps without degrading visual quality. To further accelerate inference, we introduce
a distribution-matching distillation method that trains a one-step student EquiVDM with warped
noise. This distilled model achieves superior temporal coherence, motion control, and frame quality
compared to distilled state-of-the-art baselines trained with independent Gaussian noise. These results
are especially significant for real-world applications of video-to-video diffusion, such as sim-to-real
transfer, where real-time generation is essential.

In summary, our contributions are: (i) We introduce EquiVDM, a video diffusion model inherently
equivariant to spatial warping of the input noise, and show that it can be trained with warped noise
using the standard video denoising loss—without requiring any additional regularization. (ii) We
demonstrate that EquiVDM produces videos with superior motion fidelity and visual quality compared
to state-of-the-art methods. Notably, even the base EquiVDM outperforms existing models that rely
on extra modules to encode per-frame dense conditions. Incorporating such control modules (e.g.,
soft-edge conditions) further improves performance. (iii) We show that EquiVDM with warped noise
achieves high-quality video generation in very few sampling steps, enabling faster inference without
sacrificing fidelity. (iv) We propose a distribution-matching distillation method that leverages warped
noise to train a one-step student EquiVDM for video-to-video generation. We empirically validate
that the distilled model preserves equivariance to input warping and delivers stronger motion control
and frame quality than distilled state-of-the-art baselines trained with independent Gaussian noise.

2 RELATED WORKS

Controllable video generation Controllable video generation extends image-generation methods
by leveraging additional constraints to guide generation. Prior works incorporate dense frame-wise
signals such as depth or edge maps by adding modules to text-to-video backbones or by introducing
temporal blocks to capture motion (Chen et al., 2023b; Khachatryan et al., 2023; Lin et al., 2024;
Wang et al., 2024). For user-defined sparse trajectories (e.g., drag-and-drop), researchers encode
these trajectories through auxiliary modules or flow-completion strategies, then fuse them into the
diffusion model’s latent features (Li et al., 2024; Yin et al., 2023; Chen et al., 2023a; Wu et al., 2024).
Some approaches refine alignment with 2D Gaussian or bounding-box constraints, bypassing the
need for an initial frame or applying sampling-time guidance to precisely follow the specified motion
(Feng et al., 2025; Namekata et al., 2025).

Taming noise for rendering and generation Generating noise with specific properties such as
independence and temporal consistency is a crucial step for diffusion model based video generation,
as well as rendering in graphics. For example, Wolfe et al. (2021) improve the rendering efficiency
and stability by introducing a spatiotemporal noise generation pipeline for stochastic rendering. Kass
& Pesare (2011) propose a fast coherent noise generation method for non-photorealistic rendering.
Corsini et al. (2012); Goes et al. (2012) focus on 2D blue noise generation for more efficient ray-
tracing based rendering pipeline. Huang et al. (2024a) extend the blue noise generation to the diffusion
model based video generation given that the blue noise preserves more high-frequency information
than Gaussian noise. Ge et al. (2023) study the noise prior and introduce temporally correlated
noise in video diffusion without any spatial transformation. Luo et al. (2023); Zhang et al. (2024)
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explore the residual noise between frames for video generation with more temporal consistency. In
(Lu et al., 2024) the temporal correlation of the noise for video generation is modeled directly to
improve temporal consistency.

Getting consistent Gaussian noise for image sequence and video generation using diffusion models
has been getting more attention recently. Chang et al. (2024) introduce a warping-based Gaussian
noise generation method based on conditional upsampling for image sequence generation. The
warped noise theoretically preserves Gaussianity for each frame while being temporally consistent
across frames. Deng et al. (2024) improve the efficiency of the warping-based method by operating
directly in the continuous domain thus avoiding the need for conditional upsampling. Daras et al.
(2024) proposes a consistent Gaussian noise generation method alternatively based on Gaussian
process.

Recently, Yan et al. (2025) and Burgert et al. (2025a) utilize the consistent noise for 3D asset and
video generation. More specifically, Yan et al. (2025) propose a method for text-to-3D generation
by distilling from a pretrained image diffusion model using multi-view consistent noise. Burgert
et al. (2025a) finetune a pretrained video diffusion model using warped noise and empirically show
that it achieves better motion control. In this work, we theoretically and empirically show that the
equivariance to the warping transformation of the input noise can be learned by using the original
loss without any modification or new modules. In addition to improved motion controllability, we
show that the EquiVDM requires fewer sampling steps, and propose a distillation method using
warped noise to train a one-step student for video-to-video generation tasks with superior performance
compared to the distilled models without equivariance.

3 PRELIMINARY

Video Diffusion Model. We represent a video as a sequence of frames V = (V (0), V (1), . . . , V (K)),
where V (k) denotes the k-th frame. Input conditions such as text prompts or control frames are
denoted by c. A video diffusion model Dθ(Vt; c, t) is trained to recover the clean video V from its
noisy counterpart Vt =

(
V (0) + n(0), V (1) + n(1), . . . , V (K) + n(K)

)
, where n(k) ∼ N (0, tI) is

Gaussian noise added to the k-th frame. For brevity, we omit c and t in Dθ(Vt; c, t) in the following.
The model is optimized using the standard denoising loss:

L = Ep(t) p(V,Vt)

∥∥Dθ(Vt)−V
∥∥2
2
= Ep(t) p(V,Vt)

∑
k

∥∥D(k)
θ (Vt)− V (k)

∥∥2
2
, (1)

where p(t) is the noise distribution, and the right-hand side expands the loss across frames. After
training, a video can be generated by iteratively denoising samples from Gaussian noise following
the sampling schedule.

Noise Warping. Successive video frames exhibit temporal consistency, and in visible regions two
adjacent frames V and V ′ can be related by a linear warping operation V ′ = T ◦ V . Recent works
extend this idea to the Gaussian noise used in diffusion models. Daras et al. (2024) model noise as a
Gaussian process and apply the same warping transformation, n′

GP = T ◦ nGP. Chang et al. (2024)
propose an integral formulation that computes warped noise by aggregating deformed pixels from
an upsampled noise image. When frame transitions involve only shift or rotation, their noise can
similarly be expressed as a linear transformation n′

INT = T ◦nINT. In this work, we adopt the integral
noise formulation of Chang et al. (2024) for warping noise.

4 METHOD

In this section, we first introduce EquiVDM, a video diffusion model equivariant to the warping
transformations of the input noise. Then we show how to better train EquiVDM to account for the
inconsistency in the latent frames obtained from video encoders. Last, we propose a distribution-
matching distillation method using warped noise to train a one-step EquiVDM for video-to-video
generation tasks.

3
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4.1 VIDEO GENERATION WITH TEMPORALLY CONSISTENCY NOISE

Prior works (Chang et al., 2024; Daras et al., 2024) have introduced methods for producing warped
noise while preserving per-frame Gaussianity, enabling images to follow the motion patterns of the
warped input noise. However, image diffusion models (IDMs) are not inherently equivariant to noise
warping, since their generic network layers break this property. As a result, generated sequences
often suffer from inconsistencies and abrupt artifacts such as flickering. To mitigate this, Daras et al.
(2024) proposed a sampling-time guidance method that regularizes generated pixels using optical
flow.

To eliminate the need for such additional regularization or post-training guidance, two strategies are
possible: (1) redesign the network architecture to enforce equivariance to input transformations, or
(2) learn equivariance directly from training data via tailored losses or training schemes. The first
approach requires substantial retraining and and, moreover, constructing equivariant diffusion neural
network architectures remains challenging even for simple transformations such as spatial shifts. We
therefore adopt the second approach, which avoids architectural modifications and allows efficient
finetuning from pretrained models.

Our key result, stated in the following theorem, is that the standard denoising loss in Eq. 1 implicitly
trains VDMs to be equivariant, provided the input noise is temporally consistent. In other words, no
additional losses, hyperparameters, or regularization are required. Training with warped noise alone
is sufficient for VDMs to learn equivariance directly from data.

Theorem 4.1. Consider a temporally consistent video with K frames V = (V (0), V (1), . . . , V (K)),
where each frame is obtained by a warping transformation of the first frame V (0), i.e., V (k) = Tk ◦
V (0). Let the noisy video Vt be generated with consistent warped noise N = (n(0), n(1), . . . , n(K)),
where n(k) = Tk ◦ n(0). Then the minimizer of the denoising loss in Eq. 1 is a video diffusion model
Dθ that is equivariant to the transformation Tk, i.e., D(k)

θ (Vt) = Tk ◦D(0)
θ (Vt), where D

(k)
θ (Vt)

denotes the k-th frame of the optimal denoisers output.

Proof. As shown in Vincent (2011), minimizing Eq. 1 with respect to θ is equivalent to minimizing

L = Ep(t)p(Vt)

∑
k

∥∥∥D(k)
θ (Vt)− Ep(V|Vt)

[
V (k)

]∥∥∥2
2
. (2)

Using the warping relation V (k) = Tk ◦ V (0), we obtain

Ep(V|Vt)[V
(k)] = Ep(V|Vt)[Tk ◦ V (0)] = Tk ◦ Ep(V|Vt)[V

(0)], (3)

where the last equality follows from the linearity of both expectation and the warping operator.
Substituting this expression into Eq. 2 gives

L = Ep(t)p(Vt)

∑
k

∥∥∥D(k)
θ (Vt)− Tk ◦ Ep(V|Vt)

[
V (0)

]∥∥∥2
2
. (4)

This loss is minimized when D
(0)
θ (Vt) = Ep(V|Vt)

[
V (0)

]
for the first frame, and D

(k)
θ (Vt) =

Tk ◦D(0)
θ (Vt) for all subsequent frames, establishing equivariance.

The theorem has two key practical implications. First, it shows that when video diffusion models are
trained with warped noise, the optimal denoiser becomes equivariant to the warping transformations
present in the input noise and any additional video conditioning—without requiring any modification
to the training objective. Second, this equivariance implies that if the input noise is warped according
to the motion in a video, a VDM trained on such noise will transfer the same motion into its outputs,
thereby promoting motion alignment between input and output.

These insights lead to a simple recipe for training EquiVDM: we retain the standard denoising loss in
Eq. 1, but construct the noise by warping the first-frame noise along motion vectors extracted from a
driving video.

4
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4.2 INDEPENDENT NOISE ADDITION

Although the theory suggests that training VDMs with warped noise encourages equivariance to
spatial warping in the input, our experiments reveal that such models can still struggle to generate
high-quality videos in practice. We hypothesize that several factors break the theoretical assumptions:
(1) errors in optical flow lead to inaccuracies in the estimated warping transformations; (2) successive
frames in natural videos do not exhibit perfect one-to-one mappings, since camera motion can
introduce occlusions and newly visible regions; and (3) while optical flow is estimated in pixel space,
most VDMs operate in a latent space produced by encoders that are not guaranteed to be equivariant
(Kouzelis et al., 2025).

To better understand this issue, Figure 2 examines the effect of applying warped noise to a latent
encoding of a video. We track three pixels across frames and compare their values in the RGB,
latent, and corresponding noise spaces. By construction of the warped noise, the RGB and noise
values remain consistent across frames, but in the latent space (middle figure) we observe substantial
temporal variation. This suggests that latent embeddings of tracked pixels contain additional high-
frequency fluctuations that are not captured when simply adding constant warped noise. Since
diffusion models rely on a forward process that destroys information across all frequencies to enable
reconstruction in the reverse process Kreis et al. (2022); Rissanen et al. (2022), this mismatch
undermines the effectiveness of warped noise in latent space.

RGB NoiseLatent
0

1

-2

2

-2

2

Figure 2: The values of three tracked points in the
video frames in the pixel, latent and noise videos.
The variantion in the latent video is much larger
than the one in the pixel and noise videos due to
the compression in the latent space.

To address this issue, we propose adding a small
amount of independent noise to each frame in
addition to the temporally warped noise during
training. Formally, the injected noise is defined
as

n = βnwarp +
√
1− β2 nind, (5)

where β ∈ [0, 1] controls the relative strength of
the warped noise, and nind denotes independent
Gaussian noise.

From another perspective, the added indepen-
dent component expands the manifold of the
noise distribution, enabling it to better cover and
disrupt the latent encoding. In contrast, warped
noise alone spans a narrower manifold due to
strong temporal correlations. Unless otherwise
specified, we set β = 0.9 in all experiments, corresponding to injecting only a small fraction of
independent noise.

4.3 ONE-STEP DISTILLATION MADE EASY

Since EquiVDM enforces the input noise and the generated content to follow the same motion pattern,
the input noise and output video are naturally aligned in terms of motion. In Sec. 5.3, we further
show that this alignment yields smoother sampling trajectories that are easier to simulate numerically
in just a few steps. Building on this observation, we propose a distribution-matching distillation
(DMD) method to train a one-step EquiVDM for video-to-video generation tasks. Specifically, the
one-step generator (student) Gθ is trained by minimizing the expectation over t of the KL-divergence
between the diffused target distribution pteacher,t from the teacher genarator, and the diffused generated
distribution pstudent,t from the student generator. Gθ is trained using the gradient (Yin et al., 2024):

∇θLDMD = Et

(
∇θ KL

(
pteacher,t ∥ pstudent,t

))
= −Et,N

[
1

t2

∫
(Dteacher (Gθ(N) + tNs)−Dstudent (Gθ(N) + tNs))

dGθ(N)

dθ

]
,

where Dteacher and Dstudent are the teacher and student score functions, respectively. During training,
the teacher score function is the frozen pretrained EquiVDM finetuned with warped noise as described
in Sec. 4.1. For both the one-step student and the student score function, we initialize the networks
with the same pretrained EquiVDM as the teacher, and optimized their weights during training. The
one-step student Gθ takes warped noise N as input. The generated video is then diffused with noise
Ns warped using the same transformations as N . Using identical warping operations for both the
student generator and score function not only preserves the equivariance of the student model but
also simplifies score estimation for distribution matching.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

In this section, we first validate the effectiveness of the warped noise input and the learned noise
warping equivariance by comparing EquiVDM with other methods without warped noise input.
Then we show that EquiVDM generates temporally coherent videos in fewer sampling steps without
compromising the quality, and further demonstrate that it leads to one-step distilled model with
comparable performance to the multi-step baselines. Last, we perform ablation studies to investigate
the effects of the added noise amount and varying sampling steps.

5.1 EXPERIMENT SETUP

Datasets and Metrics We curate our dataset for training from the training set of RealEstate-
10k (Zhou et al., 2018), OpenVideo-1M (Nan et al., 2024) and VidGen-1M (Tan et al., 2024)
datasets. The RealEstate10K dataset contains about 80k videos of static real estate scenes, while
OpenVideo-1M and VidGen-1M each contains around 1M in-the-wild videos including both static
and dynamic scenes. For evaluation, we use Youtube-VIS 2021 (Yang et al., 2019) and MSRVTT
(Xu et al., 2016) datasets. We use LLaVA-NeXT (Liu et al., 2024a) for video captioning for datasets
without captions. For efficiency, we extract the video captions for every 10 frames assuming that the
videos are temporally consistent and the contents do not change too much.

We evaluate video quality using FID (Heusel et al., 2017) and FVD (Unterthiner et al., 2018), and
measure alignment with the driving video using the CLIP score (Radford et al., 2021). We also report
the UMT score (Liu et al., 2023), which assesses the alignment between the generated video and the
input text prompt, and is better at capturing temporal dynamics and motion described in text than the
CLIP score. In addition, we adopt the Image Quality (ImQ), Background Consistency (BgC), and
Subject Consistency (SubC) metrics from V-Bench++ (Huang et al., 2024b), which capture per-frame
quality (Ke et al., 2021) as well as temporal consistency across frames in the feature space (Radford
et al., 2021; Caron et al., 2021). To further assess temporal consistency and motion alignment with
ground-truth videos, we extract dense optical flow from the driving video, warp the generated frames
accordingly, and compute the cross-frame PSNR (cf-PSNR) between the warped frames and their
corresponding targets in the generated sequence.

Model and Training We train EquiVDM by finetuning from the pre-trained VideoCrafter2 (VC2)
(Chen et al., 2024b) and VACE-1.3B (Jiang et al., 2025) models with warped noise as the input as
describe in Section 4. To adapt VC2 for video-to-video generation, we add and finetune the additional
modules from CtrlAdapter (Lin et al., 2024). In particular, we use canny and soft-edge maps extracted
from driving videos using (Su et al., 2021) as the control frames for VC2, and depth maps (Yang et al.,
2024a) as the control frames for VACE. We use the AdamW optimizer (Loshchilov & Hutter, 2019)
with a learning rate of 10−4 for the finetuning the base model, and 2× 10−5 for the finetuning the
added control modules. The model is finetuned on 64 Nvidia A100 GPUs for around 200k iterations.

5.2 VIDEO GENERATION

We begin by evaluating whether EquiVDM, trained with warped noise alone in the text-to-video
setting—without any additional video conditioning—can outperform models trained with independent
noise. Specifically, we test whether warped noise helps the model better capture semantic content
and motion alignment. For this experiment, warped noise is generated by extracting optical flow
(Teed & Deng, 2020) from the training videos associated with each text prompt. We compare our
approach against VDMs with both U-Net and DiT backbones (Zhang et al., 2023a; Jin et al., 2024;
Zheng et al., 2024; Yang et al., 2024b; Chen et al., 2024b). The focus of this experiment is to
explore whether the noise-equivariance can benefit the video generation without additional modules
for input video conditioning. Quantitative results in Table 1 show that higher CLIP scores confirm
the noise-equivariant model can infer semantic information directly from warped noise, while cf-
PSNR improvements demonstrate that noise-equivariance emerges during training, leading to better
alignment between motions in the input noise and the generated videos. The better motion alignment
and video quality is a direct result of the learned model equivariance to the warping transformation.

We then evaluate our method on video-to-video generation task. We compare our method against
models with additional control modules (Chen et al., 2023b; Khachatryan et al., 2023; Lin et al., 2024;
Jiang et al., 2025). The qualitative results are shown in Figure 3. VC2-EquiVDM generates videos

6
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CtrlVid softedge T2V-Zero canny CtrlAdapter softedge VC2-EquiVDM VC2-EquiVDM softedge Ground truth
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Figure 3: Frames from the generated videos with different video-to-video generation models. VC2-
EquiVDM uses warped noise without dense video conditioning; CtrlVid (Chen et al., 2023b),
T2V-Zero (Khachatryan et al., 2023), CtrlAdapter (Lin et al., 2024) and VC2-EquiVDM-softedge use
either canny edge or softedge.

Table 1: Video generation performance in text-to-video setting without any input video conditioning.
Method FID↓ FVD↓ CLIP↑ UMT↑ cf-PSNR↑ ImQ↑ BgC↑ SubC↑
VC2 (Chen et al., 2024b) 41.23 4565 0.6500 2.6132 19.33 0.6214 0.9250 0.9492
Show-1 (Zhang et al., 2023a) 34.83 5422 0.6908 2.6858 20.59 0.5633 0.9264 0.9272
Pyramid-flow (Jin et al., 2024) 46.88 5726 0.6377 2.5341 21.86 0.6331 0.9446 0.9537
OpenSora-1.2 (Zheng et al., 2024) 39.14 5733 0.6898 2.9288 20.35 0.6312 0.9561 0.9740
CogVideoX-2B (Yang et al., 2024b) 36.76 5369 0.6540 3.0026 18.05 0.6002 0.9490 0.9534
VC2-EquiVDM 26.59 3193 0.6925 2.7487 25.65 0.6485 0.9438 0.9747

Table 2: Video generation performance in video-to-video setting with input video conditioning.
Method FID↓ FVD↓ CLIP↑ UMT↑ cf-PSNR↑ ImQ↑ BgC↑ SubC↑
IntegralNoise canny (Chang et al., 2024) 39.68 3238 0.7262 2.2782 14.09 0.5273 0.9221 0.9345
CtrlVid canny (Chen et al., 2023b) 38.45 2724 0.7154 1.7470 22.68 0.6459 0.8991 0.8622
CtrlVid softedge (Chen et al., 2023b) 59.80 2694 0.7129 1.3374 23.16 0.5480 0.9051 0.8668
T2V-Zero canny (Khachatryan et al., 2023) 29.98 3350 0.7146 2.5818 21.57 0.5652 0.8736 0.8761
CtrlAdapter softedge (Lin et al., 2024) 39.62 2789 0.7167 2.3857 21.52 0.6570 0.8829 0.8683
CtrlAdapter canny (Lin et al., 2024) 36.24 2496 0.7214 2.3681 23.09 0.6173 0.8773 0.8628
VACE depth (Jiang et al., 2025) 27.04 2989 0.7421 2.7754 28.14 0.6056 0.9448 0.9494
VC2-EquiVDM softedge 24.40 2122 0.7293 2.7267 26.86 0.5817 0.8880 0.8764
VC2-EquiVDM canny 22.24 1922 0.7551 2.7298 26.58 0.6244 0.8787 0.8688
VACE-EquiVDM depth 23.61 2329 0.7890 2.9437 29.55 0.6503 0.9394 0.9451

from warped noise without using dense conditioning, while other methods use either canny edges or
HED softedge Xie & Tu (2015). VC2-EquiVDM-softedge achieves the best temporal consistency for
textures (e.g. the the patterns of the cows, the grass texture), as well as the motion alignment (e.g. the
motion of legs of the cows, the orientation of rabbit’s head) with the ground truth video where the
warping optical flow is extracted from.

The quantitative results are listed in Table 2. Our method achieves the best performance on frame
quality, semantic and motion metrics. This manifests that EquiVDM can benefit video generation
by taking advantage of the temporal correlation from the warped noise input. It also indicates that
the temporal correlation in the warped noise can serve as a strong prior for both the motion pattern
and semantic information in addition to motions. We finetuned an image diffusion model (Chang
et al., 2024) (IDM) with warped noise to evaluate whether IDM can be trained to be equivariant. The
drastic decrease in the cf-PSNR score indicates that the finetuned IDM is not equivariant to the input
noise warping without introducing additional regularization or sampling-time guidance.

Another observation is that for our method, the performance of the video-to-video model is generally
better than the base model, indicating that the benefit of equivariance is complementary to the
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Table 3: Comparison for VACE and VACE-EquiVDM with different sampling steps.
Steps FID↓ FVD↓ CLIP↑ UMT↑ cf-PSNR↑ ImQ↑ BgC↑ SubC↑
10-step VACE (Jiang et al., 2025) 27.04 2989 0.7421 2.6801 28.14 0.6056 0.9448 0.9494
10-step VACE-EquiVDM 23.61 2329 0.7890 2.8582 29.55 0.6503 0.9394 0.9451

5-step VACE 31.63 3000 0.7214 2.5671 28.19 0.5576 0.9421 0.9446
5-step VACE-EquiVDM 23.95 2271 0.7894 2.6847 30.15 0.6514 0.9361 0.9456

3-step VACE 38.06 3037 0.6951 2.1759 28.64 0.5005 0.9364 0.9354
3-step VACE-EquiVDM 26.16 2274 0.7815 2.6166 30.63 0.6542 0.9317 0.9422

1-step distilled VACE 29.42 3004 0.7413 2.7487 28.94 0.6367 0.9204 0.9554
1-step distilled VACE-EquiVDM 25.94 2553 0.7828 2.8143 29.38 0.6520 0.9283 0.9427

additional conditioning modules. As a result, for video-to-video generation tasks, we can improve the
performance by making the full model noise-equivariant without any architecture modification to it.

5.3 FEW-STEP GENERATION FOR EQUIVDM
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Figure 4: Straightness of genera-
tion trajectories for VACE (Jiang
et al., 2025) with independent
noise and VACE-EquiVDM with
warped noise.

To study how the wapred noise input affects the generation, we
plot the generation trjaectory curvature for VACE (Jiang et al.,
2025) with independent noise and VACE-EquiVDM with warped
noise in Figure 4. As shown, the curvature for VACE-EquiVDM
is significantly lower compared to VACE with inpendent noise,
indicating that the warped noise input helps to make the gener-
ation trajectory more straight, hence we can use fewer sampling
steps to generate videos with similar or better quality.

To verify this, we compare the generation performance of VACE
and VACE-EquiVDM with different numbers of sampling steps
in Table 3. The degradation in quality and semantic alignment for
VACE-EquiVDM is much slower compared to VACE with fewer
sampling steps. In addition, we use the method described in
Section 4.3 to distill the VACE-EquiVDM model into a one-
step model, and compare the performance with the one-step
VACE-EquiVDM. The distilled one-step VACE-EquiVDM model
achieves better performance than the one-step VACE, and matches
the performance of the 10-step VACE with independent noise.

5.4 ABLATION STUDIES

Sampling steps Since the motion information about the video is already included in the warped noise,
one natural question is whether the number of sampling steps can be reduced compared to the one
using independent noise where both the motion and appearance have to be generated from scratch. To
answer this question, we first inspect how the warped noise changes the distance between the input
noise and corresponding latents of real videos during training. As shown in Figure 5 (a), with the
warped noise (β > 0), the noise-video distance is lower compared to the independent noise (β=0),
and the distance decreases as β becomes larger. This indicates that the warped noise is more aligned
with the target video, and similar to the observation in optimal transport flows (Pooladian et al., 2023;
Tong et al., 2023), this data-noise alignment can make sampling trajectories easy to integrate with
fewer steps.

We further evaluate our method on ScanNet++ with different numbers of sampling steps using
VC2-EquiVDM (Chen et al., 2024b) with soft-edge maps as the control frames (Lin et al., 2024).
As shown in Figure 5 (b), with warped noise input, our method can generate videos with similar
or better quality compared to the one using independent noise in much fewer sampling steps. In
addition, the metrics saturate quickly, indicating that the appearance of the video can be generated
from scratch with few sampling steps given the warped noise input. As shown in Figure 6, the detailed
appearance-like reflection on the table surface can be generated in as few as 5 sampling steps. These
results open up new venues for video diffusion acceleration with warped noise.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Distance vs. 𝛽 (b) Quality and temporal consistency vs. sampling steps

Figure 5: (a) The noise-to-video distance reduces with the warped noise. (b) Less sampling steps are
needed for EquiVDM to achieve similar or better quality compared to independent noise.
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Figure 6: Our method with warped noise generates videos with similar quality compared to the one
using independent noise, but with much fewer sampling steps.

Added noise amount We evaluate our method with different amounts of added independent noise by
adjusting the β value in Equation 5. A smaller β value indicates more noise added to the video hence
less warped noise, and vice versa. In particular, for β = 0.0 the input noise is independent for each
frame without any temporal consistency; while β = 1.0 indicates the input noise is fully determined
by the first frame and the warping operation without any variations.

Table 4: Ablations on added noise weight β.
β value FID FVD CLIP PSNR SSIM

0.0 39.92 2292 0.8126 20.81 0.6057
0.5 26.66 1765 0.8509 30.77 0.9258
0.9 25.12 1585 0.8575 31.91 0.9343
1.0 50.03 1910 0.9224 28.67 0.9224

We evaluate the performance on the test set of
RealEstate10K dataset. As shown in Table 4, us-
ing warped noise helps in generating better videos in
terms of quality, semantic alignment, and temporal
consistency. On the other hand, without any added
independent noise, the performance degrades since
the model fails to model the high-frequency temporal
variations of the corresponding pixels in the latent
space; while the added independent noise expands
the manifold of the input noise such that it covers the
latent space better, as discussed in Section 4.2. We found that adding a small amount of independent
noise with β = 0.9 achieves the best balance between quality and consistency.

6 LIMITATION AND CONCLUSION

In this work, we introduced EquiVDM, a video diffusion model inherently equivariant to spatial
warping of the input noise. We showed that EquiVDM can be trained with warped noise using the
standard denoising loss without additional regularization, and that it produces videos with superior
motion fidelity and visual quality compared to state-of-the-art methods. We further demonstrated that
EquiVDM achieves high-quality video generation in only a few sampling steps, enabling faster infer-
ence without sacrificing fidelity. In addition, we proposed a distribution-matching distillation method
that leverages warped noise to train a one-step student EquiVDM for video-to-video generation.

Our approach has two main limitations. First, it requires optical flow from the driving video to warp
the noise, which is not always available, e.g., in text-to-video generation. A potential remedy is to
generate optical flow directly from the text prompt and use it to warp the noise. Second, for long
video generation, warped noise input alone does not fully prevent drifting. Future directions include
incorporating auto-regressive video diffusion models trained with Diffusion/Self-Forcing (Chen et al.,
2024a; Huang et al., 2025) to address this issue.
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A CF-PSNR USED FOR EVALUATING TEMPORAL CONSISTENCY

The cf-PSNR metrics in our paper are used for evaluating the temporal consistency of the generated
frames, as well as how the motion pattern of the generated frames follows the optical flow of the
input noise. As shown in Figure 7, to compute the cf-PSNR metrics, we first extract the 2D optical
flow of the input driving video. Then given the correpsponding generated video, we warp the the
source frame (the frame t in the case shown in the illustration) towards the target frame (the frame
t+1) using the optical flow. Then we compute the cf-PSNR metrics between the warped source frame
and the target frame. As a result, if the generated video follows the same motion pattern as the ground
truth and maintains temporal consistency, it will yield a higher cf-PSNR score—and vice versa.

Compared with the metrics in Video Benchmark Liu et al. (2024b), our metric is similar to the
“Warping Error” for temporal consistency in the Sec.4.4 of that paper. The only difference is that the
optical flow used for warping is estimated from the ground truth video rather than generated video.

cf-PSNR

Figure 7: Illustration of the cf-PSNR metrics used for evaluating temporal consistency.

B MORE RESULTS ON FEW-STEP VIDEO GENERATION WITH EQUIVDM

Figure 8: FID scores for the few-step
video generation with both models.

In this section, we provide more results on the few-step
video generation using VACE-1.3B Jiang et al. (2025)
VACE-EquiVDM. Both models use the depth input video
conditioning. We first plot the FID scores for the few-
step video generation with both models in Figure 8. The
EquiVDM model generates better quality videos with
fewer steps. Even with 3 steps, the EquiVDM model can
generate videos with on-part quality to the VACE-1.3B
model at 10 steps.

In addition, the FID score degrages more gracefully for
the EquiVDM model. More qualitative results are shown
in Figure 9 and the accompanying html file.

C EQUIVDM FOR
DIFFUSION MODELS WITH TRANSFORMERS

For video diffusion models with transformer backbone Peebles & Xie (2023); Yang et al. (2024b);
Agarwal et al. (2025), the latent space of the video where the diffusion and sampling process are
performed is a set of video tokens from a video tokenizer. Unlike the VAEs in the UNet-based
video diffusion models, the video tokenizer not only compress the spatial dimension of the video,
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3-step 5-step 10-step 3-step 5-step 10-step

VACE-EquiVDMVACE

Figure 9: Qualitative results for the few-step video generation for VACE-1.3B and VACE-EquiVDM.

but also the temporal dimension. For example, in CogVideoX Yang et al. (2024b) and CosMos
Agarwal et al. (2025), the tokenizer processes a video with N frames by first encoding the initial
frame independently. It then encodes the subsequent N − 1 frames into a sequence of ⌈(N − 1)/k⌉
temporal tokens, where k represents the temporal compression factor.

We build the warped noise frames accordingly to account for the temporal compression in the video
tokenizer. For example, for the video tokenizer temporal compression scheme in CogVideoX Yang
et al. (2024b) and CosMos Agarwal et al. (2025), we first get the subsampled video by taking the first
frame and every k-th frame from the following frames. Then we build the warped noise frames from
the subsampled video. Another option is to build the warped noise frames directly from the original
video, then subsample the warped noise frames accordingly. The first apporach is more efficient
since it reduces the numbers of optical flow estimations. On the other hand, the second approach is
more robust to videos with large motions. In our experiment, we use the second apprach for more
robustness.

To add the control signal such as soft-edge maps, we use the same method as in the UNet-based
video diffusion models: we add the adapter layers Lin et al. (2024) between the frame encoder for
the controlling frames and the transformer blocks in the video diffusion model. We interlace the
adapter layers every 4 transformer blocks in the transformer backbone to avoid memory overflow.
The qualitative results of the EquiVDM with the CogVideoX Yang et al. (2024b) model are shown in
Figure 10–13.

D ADDITIONAL RESULTS FOR COMPARSIONS WITH OTHER METHODS

In Figure 14-19, we provide additional qualitative results for the comparison in Table 2 in Section 5.2.
Please refer to the accompanying html file for the video results.
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Figure 10: The generated and driving videos of DiT-based video diffusion models.
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Figure 11: The generated and driving videos of DiT-based video diffusion models.
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Figure 12: The generated and driving videos of DiT-based video diffusion models.
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Figure 13: The generated and driving videos of DiT-based video diffusion models.
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Figure 14: Comparison of EquiVDM with other methods. CtrlVid Chen et al. (2023b), T2V-
Zero Khachatryan et al. (2023), CtrlAdapter Lin et al. (2024) and EquiVDM-full used soft-edge map
as control signal for each frame along with the text prompt. EquiVDM-base generates videos from
warped noise without using dense conditioning.
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Figure 15: Comparison of EquiVDM with other methods. CtrlVid Chen et al. (2023b), T2V-
Zero Khachatryan et al. (2023), CtrlAdapter Lin et al. (2024) and EquiVDM-full used soft-edge map
as control signal for each frame along with the text prompt. EquiVDM-base generates videos from
warped noise without using dense conditioning.
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Figure 16: Comparison of EquiVDM with other methods. CtrlVid Chen et al. (2023b), T2V-
Zero Khachatryan et al. (2023), CtrlAdapter Lin et al. (2024) and EquiVDM-full used soft-edge map
as control signal for each frame along with the text prompt. EquiVDM-base generates videos from
warped noise without using dense conditioning.
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Figure 17: Comparison of EquiVDM with other methods. CtrlVid Chen et al. (2023b), T2V-
Zero Khachatryan et al. (2023), CtrlAdapter Lin et al. (2024) and EquiVDM-full used soft-edge map
as control signal for each frame along with the text prompt. EquiVDM-base generates videos from
warped noise without using dense conditioning.
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Figure 18: Comparison of EquiVDM with other methods. CtrlVid Chen et al. (2023b), T2V-
Zero Khachatryan et al. (2023), CtrlAdapter Lin et al. (2024) and EquiVDM-full used soft-edge map
as control signal for each frame along with the text prompt. EquiVDM-base generates videos from
warped noise without using dense conditioning.
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Figure 19: Comparison of EquiVDM with other methods. CtrlVid Chen et al. (2023b), T2V-
Zero Khachatryan et al. (2023), CtrlAdapter Lin et al. (2024) and EquiVDM-full used soft-edge map
as control signal for each frame along with the text prompt. EquiVDM-base generates videos from
warped noise without using dense conditioning.
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