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ABSTRACT

Deep learning models for time series forecasting often exhibit a spectral bias,
prioritizing high-energy, low-frequency components while underfitting predictive
but low-energy, high-frequency signals. Existing efforts attempt to correct this
by amplifying high-frequency components but suffer from indiscriminate am-
plification, enhancing both meaningful signals and task-irrelevant noise, which
destabilizes training and impairs generalization. To address this, we propose
AEA (Adaptive Energy Amplification), a novel framework that reframes the
problem as one of adaptive signal enhancement. AEA introduces two synergis-
tic innovations: (1) a Spectral Mirroring mechanism that constructs a phase-
preserving, low-frequency surrogate to guide targeted, distortion-free amplification
of high-frequency signals; and (2) a lightweight Differential Embedding mod-
ule that operates in a latent space to adaptively suppress common-mode noise.
By decoupling signal amplification from noise suppression, AEA selectively en-
hances only informative features. Extensive experiments on eight benchmark
datasets show that our model-agnostic framework consistently improves the fore-
casting performance of four state-of-the-art backbones, while significantly en-
hancing training stability and generalization. The code repository is available at
https://anonymous.4open.science/r/AEA-685E/.

1 INTRODUCTION

Time series forecasting (TSF) is critical in various real-world applications, including traffic flow
prediction (Wu et al., 2020), energy management (Zhou et al., 2021), weather forecasting (Liang
et al., 2023), financial investment (Oreshkin et al., 2020), human healthcare (Qiu et al., 2024), etc.
Recent deep learning-based methods, which have powerful nonlinear modeling capabilities to learn
complex patterns and feature representations, achieving remarkable performance on TSF, such as
convolutional-based (Wu et al., 2023; donghao & wang xue, 2024), Transformer-based (Nie et al.,
2023; Liu et al., 2024), and MLP-based methods (Zeng et al., 2023; Wang et al., 2024).

Despite these advances, such models exhibit a fundamental spectral bias: they consistently prioritize
high-energy, low-frequency components while overlooking subtle yet predictive high-frequency
signals (Xu et al., 2024; Yi et al., 2024). As shown in Figure 1a, masking low-frequency components
causes a drastic drop in performance, while masking high-frequency components only marginally
impacts performance, revealing the models’ over-reliance on low-frequency information with limited
capability for modeling high-frequency signals. This learning pathology originates from the model’s
optimization bias on low-frequency components with high energy. According to Parseval’s Theo-
rem (Lathi & Green, 1998; Yi et al., 2023), the energy is equivalent between the time and frequency
domains. In most real-world time series data, low-frequency components possess substantially
higher amplitudes than their high-frequency counterparts, meaning energy is concentrated in the
low-frequency part of the spectrum. As a result, the predictive loss landscape becomes dominated
by errors from these low-frequency components with high amplitude. This skews the optimization
process, compelling the learning algorithm to primarily allocate model capacity toward fitting these
dominant, low-frequency signals, while the informative yet low-energy high-frequency details are
consequently underfitted (Liu et al., 2023; Piao et al., 2024; Fei et al., 2025).

To address the issue, recent efforts have focused on amplifying the energy of high-frequency com-
ponents to recalibrate their influence during model optimization. These methods can be broadly
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Figure 1: The average degradation in forecasting performance (Values denote relative increase in
MSE (%) compared to the “None” baseline) during the inference stage on ETTh1. (a) When the lower
v.s. higher 50% of frequency bands are masked (set to zero), the significantly smaller performance
drop after high-frequency masking confirms the base model’s reliance on low-frequency information
and its insensitivity to high-frequency components. (b) Comparing the vanilla amplification method
with our enhanced version (+AEA) when artificially injecting Gaussian noise of the same intensity
into high frequencies. The results show that the vanilla methods’ performance degrades drastically,
proving that they are susceptible to noise. In contrast, our method successfully suppresses noise,
resulting in significantly enhanced robustness. We present more details in Appendix B.2.

categorized into two main strategies: indirect and direct enhancement. Specifically, the indirect
enhancement approaches mitigate energy disparity through normalization. For instance, Fredformer
(Piao et al., 2024) implements frequency-wise local normalization, which segments the spectrum and
normalizes each sub-band individually to eliminate amplitude disparity. On the other hand, the direct
enhancement strategy, conversely, explicitly modifies the spectral energy distribution. Amplifier (Fei
et al., 2025) is one representative work, whose key innovation is spectrum flipping. This technique
inverts the spectrum to leverage high-energy signals as a template for boosting low-energy signals.

However, despite their different mechanisms, these approaches share a fundamental flaw: their
amplification is indiscriminate. High-frequency bands inherently contain a mixture of predictive
signals (e.g., subtle seasonal variations and trends) and task-irrelevant noise (e.g., sensor artifacts and
background noise) (Eldele et al., 2024; Kou et al., 2025; Yi et al., 2025). By uniformly elevating
the energy across the high-frequency bands, existing methods inevitably amplify noise alongside the
valuable signals. This indiscriminate enhancement introduces spectral disturbances that destabilize the
optimization process and ultimately impair the model’s generalization performance. As empirically
demonstrated in Figure 1b, when noise is injected into the high-frequency bands, both indirect and
direct enhancement methods suffer a significant performance degradation, underscoring the negative
impact of their indiscriminate amplification and revealing an inherent inability to distinguish between
informative signals and spurious noise.

To address this limitation, we argue that the key to unlocking the potential of high-frequency sig-
nals lies not in indiscriminate amplification, but in adaptive enhancement. We introduce AEA
(Adaptive Energy Amplification), a novel framework that fundamentally reframes the problem by
simultaneously amplifying signals and suppressing noise. AEA achieves this through two synergistic
innovations designed to provide a more principled and reasonable energy amplification. First, (1)
Spectral Mirroring addresses the amplification itself by leveraging the typically cleaner, high-signal-
to-noise ratio of the low-frequency spectrum. It constructs a phase-preserving surrogate from these
reliable low-frequency components to serve as a structured template, guiding a targeted amplification
of high-frequency signals without introducing spectral distortion. Second, to explicitly tackle noise,
(2) Differential Embedding operates in a learned latent space to identify and filter out common-mode
noise, which indiscriminate methods inadvertently amplify. By integrating these two mechanisms,
AEA ensures that only the informative, discriminative features within the high-frequency bands are
selectively enhanced, thereby resolving the core issue of indiscriminate amplification by separating
the targeted enhancement of predictive signals from the active suppression of noise.

In summary, our contributions can be highlighted as followings:

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We systematically identify the problem of "indiscriminate amplification" in forecasting models
against spectral bias, establishing a novel connection between targeted energy amplification and
adaptive noise suppression.

• We propose AEA, a model-agnostic framework that employs spectral mirroring for distortion-free
amplification and differential embedding for adaptive noise suppression, seamlessly integrating
with various forecasting backbones.

• We empirically demonstrate that AEA consistently improves accuracy, stability, and generalization
across eight benchmark datasets and four state-of-the-art backbones, offering a robust new paradigm
for frequency-aware time series forecasting.

2 RELATED WORK

2.1 TIME SERIES FORECASTING MODELS

Traditional time series forecasting methods such as ARIMA (Zhang, 2003) and Prophet (Taylor &
Letham, 2018; Triebe et al., 2021) are effective at capturing trend and seasonal components in time
series (Cleveland et al., 1990; Ahmed et al., 2010; Wen et al., 2020; Zeng et al., 2023; Stitsyuk &
Choi, 2025). With the continuous growth in data availability, deep learning methods have brought
revolutionary advances to the field, introducing more complex and efficient models (Torres et al.,
2021; Lim & Zohren, 2021). Convolutional Neural Networks (CNNs) (Bai et al., 2018; Wan et al.,
2019; Sen et al., 2019; Liu et al., 2022a; Wu et al., 2023) have been widely adopted to capture local
temporal dependencies, while Recurrent Neural Networks (RNNs) (Rangapuram et al., 2018; Smyl,
2020; Salinas et al., 2020; Hewamalage et al., 2021), although proficient at processing sequential
information, often struggle with long-sequence modeling. Transformer-based models (Zhou et al.,
2021; Wu et al., 2021; Liu et al., 2022b; Zhang & Yan, 2022; Nie et al., 2023; Liu et al., 2024; Wen
et al., 2023; Tang & Matteson, 2021; Zhou et al., 2022b; Liu et al., 2021; Feng et al., 2024), typically
equipped with self-attention mechanisms (Vaswani et al., 2017), excel at capturing long-range
dependencies, albeit at considerable computational cost. Recently, linear models (Oreshkin et al.,
2020; Zhang et al., 2022; Das et al., 2023) such as DLinear (Zeng et al., 2023) and TSMixer (Chen
et al., 2023) have gained popularity due to their simplicity and strong performance in long-term
forecasting, though they may underperform on highly non-linear and complex patterns. Furthermore,
multi-periodicity analysis (Benaouda et al., 2006; Percival & Walden, 2000; Wu et al., 2023; Wang
et al., 2022; Chen et al., 2024; Yi et al., 2023; Zhou et al., 2022a) continues to play an essential role
in the preprocessing stages of advanced modeling pipelines.

2.2 FREQUENCY DOMAIN METHODS IN TIME SERIES FORECASTING

Recent studies have increasingly leveraged frequency-domain techniques to enhance the accuracy and
efficiency of time series forecasting (Yi et al., 2025). Prominent examples include FEDformer (Zhou
et al., 2022b), which accelerates attention via frequency-domain low-rank approximation; FreTS (Yi
et al., 2023), which integrates global frequency properties into an efficient MLP architecture; and
FITS (Xu et al., 2024), which employs frequency interpolation as an effective low-pass filter. A
common characteristic of these approaches is their tendency to prioritize high-energy, low-frequency
components, a design choice that aligns with the natural energy distribution of many real-world time
series. However, this emphasis may lead to insufficient use of subtle yet predictive high-frequency
signals, which often carry critical short-term variations and anomaly patterns. The challenge of
effectively balancing frequency components without amplifying noise has thus emerged as a key issue
in frequency-aware forecasting. Recent efforts have attempted to address this spectral imbalance.
Fredformer (Piao et al., 2024) mitigates frequency bias in Transformers by promoting more balanced
feature learning across bands, yet its architecture-specific design limits generalizability. Amplifier (Fei
et al., 2025) directly elevates high-frequency energy to match low-frequency levels, aiming to equalize
gradient scales across the spectrum. However, such uniform amplification risks enhancing high-
frequency noise alongside signals. In contrast to these end-to-end architectures, our proposed AEA is
designed as a model-agnostic plugin that decouples signal amplification from noise suppression. By
combining targeted energy amplification and adaptive noise suppression, AEA achieves more nuanced
enhancement while maintaining robustness and efficiency across diverse forecasting backbones.
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3 PRELIMINARIES

Time Series Forecasting. Formally, let X = [x1, . . .xT ] ∈ RT×C be a time series, where T is the
length of historical data. xt ∈ RC represents the observation at time t. C denotes the number of
variates (i.e., channels). The objective is to construct a predictive model f that estimates the future
values of the series, Y = [x̂T+1, . . . , x̂T+H ] ∈ RH×C , where H is the forecasting horizon.

Real Fast Fourier Transform. Given a real-valued sequence x[n] of length N , we employ the Real
Fast Fourier Transform (rFFT) (Sorensen et al., 1987) to efficiently convert it into the frequency
domain, and transform it back using the inverse rFFT (irFFT). The rFFT/irFFT exploits the conjugate
symmetry of real-valued inputs, reducing the computational complexity from O(N2) to O(N logN)
while compressing the output to N/2 + 1 complex-valued frequency components. The resulting
spectrum X ∈ CN/2+1 contains both magnitude and phase information:

A[k] = |X [k]|, θ[k] = ∠X [k] (1)

where A[k] represents amplitude and θ[k] phase at frequency ωk = 2πk/N . We provide more details
of the Fourier Transform in Appendix A.1.

4 PROPOSED METHOD

4.1 OVERALL ARCHITECTURE

We propose the Adaptive Energy Amplification (AEA) framework to address the limitation of
indiscriminate amplification in existing frequency-domain forecasting methods. As illustrated in
Figure 2, AEA operates primarily in the frequency domain and consists of two core innovations: (1) a
Spectral Mirroring module that performs targeted amplification of high-frequency signals via a phase-
preserving surrogate spectrum, and (2) a Differential Embedding module that suppresses common-
mode noise in a latent space to enhance discriminative features. To ensure spectral consistency, we
incorporate an Energy Predictor that aligns the predictions with the original data distribution. The
entire framework is model-agnostic and seamlessly integrates with various forecasting backbones.
We present the pseudo-code in Algorithm 1.

4.2 SPECTRAL MIRRORING

The Spectral Mirroring component aims to amplify the energy of high-frequency components in a
targeted and distortion-free manner. To enhance attention to low-energy, high-frequency components
as well as high-energy, low-frequency components, we reverse the entire spectrum to create a phase-
preserving surrogate (Fei et al., 2025). For an input spectrum X [k] with k = 0, 1, . . . , F − 1 (where
F = ⌊T/2⌋+ 1), the reversed spectrum is obtained by:

Xreverse[k] = X [F − 1− k]. (2)

This inverts the energy distribution, allowing high-energy low-frequency components to serve as a
template for amplifying low-energy high-frequency ones. A learnable scaling matrix M ∈ RF×C is
applied to control the degree of amplification per frequency and channel adaptively:

Xscaled[k, c] = Xreverse[k, c] ·M [k, c], for k = 0, 1, . . . , F − 1; c = 0, 1, . . . , C − 1. (3)

The key to avoiding distortion lies in how we mix the original and mirrored spectra. A simple linear
combination of amplitudes and phases would likely result in destructive interference (Demirel & Holz,
2025). Instead, we employ a phase mixing strategy that minimizes disruptive phase discontinuities.
The phase mixing involves calculating the circular difference between the original and scaled phases,
adjusting it to the shortest angular path within [−π, π], and then blending the phases accordingly:

∆θ[k, c] = (θ1[k, c]− θ2[k, c]) mod 2π, (4)

∆θadjusted[k, c] =

{
∆θ[k, c]− 2π, if ∆θ[k, c] > π,

∆θ[k, c], otherwise,
(5)

θmix[k, c] = θ1[k, c] + ∆θadjusted[k, c], (6)

4
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Figure 2: An illustration of the proposed AEA framework. The input time series is first transformed
into the frequency domain. The framework consists of five components: (a) The Spectral Mirroring
module (Section 4.2) that reverses the spectrum to adaptively amplify high-frequency signals without
distortion through a learned scaling matrix and phase-preserving mixing. (b) The Differential
Embedding module (Section 4.3) that projects the enhanced spectrum into a latent space to suppress
common-mode noise via a differential operation, and yields the non-stationarity loss to stabilize
learning. (c) The denoised spectrum is converted back to the time domain via irFFT for the base
model to forecast. (d) The Energy Predictor module (Section 4.4) that aligns the output of the base
model with the original data’s spectral properties. (e) The optimization of the entire framework by a
combined loss function (Section 4.5) comprising the forecast error and the non-stationarity loss.

where θ1[k, c] = ∠(X [k, c]) and θ2[k, c] = ∠(Xscaled[k, c]).

The mixed amplitude Amix[k, c] is computed as:
Amix[k, c] = α ·A1[k, c] + (1− α) ·A2[k, c], (7)

where A1[k, c] = |X [k, c]|, A2[k, c] = |Xscaled[k, c]|, α is a mixing ratio, and we set it to 0.5.

The enhanced spectrum is then reconstructed as:

Xenhanced[k, c] = Amix[k, c] · ejθmix[k,c]. (8)
This process preserves the temporal structure of the original signal while amplifying informative
high-frequency components. The output of this operation provides a refined input for the subsequent
differential embedding module.

4.3 DIFFERENTIAL EMBEDDING WITH NON-STATIONARITY LOSS

The Differential Embedding module suppresses common-mode noise while preserving discriminative
signals in the enhanced spectrum Xenhanced. It projects the input into an embedding space, applies a
differential operation for noise suppression, and incorporates a regularization loss to stabilize training.
The input spectrum is first projected into a complex-valued embedding space:

E1||E2 = We · Xenhanced + be, (9)
where We ∈ CD×1 and be ∈ CD are learnable parameters, and D is the embedding dimension.
E1 ∈ CF×C×D

2 and E2 ∈ CF×C×D
2 are the subspaces of the differential embedding.

Inspired by the principle of differential attention (Ye et al., 2025; Wang et al., 2025), we apply a
differential operation in the embedding space as follows:

E′
1 = E1 − λ1 · E2, E′

2 = E2 − λ2 · E1, (10)

where λ1 and λ2 are learnable scalars. These scalars are initialized with a random constant λinit and a
Softplus function (Nair & Hinton, 2010) to ensure they remain positive throughout training:

λ1 = Softplus(λinit), λ2 = Softplus(λinit), (11)

5
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The results are concatenated to form the denoised embedding:

E′ = Concat(E′
1, E

′
2), E′ ∈ CF×C×D. (12)

This operation is theoretically grounded in noise suppression (see Proposition 4.1). The denoised
embedding is projected back to the frequency domain:

Xdenoised = Wp · E′ + bp, Xdenoised ∈ CF×C , (13)

where Wp ∈ C1×D and bp ∈ C1 are learnable parameters.

Theoretical analysis 4.7 shows that this differential operation reduces gradient bias from common-
mode noise while preserving beneficial stochastic variance. To further enhance stability, we introduce
a non-stationarity loss that penalizes excessive variability in embedding magnitudes across batches:

Lnon-stat =
√

Varx∼B (|E′|), (14)

where B represents the current batch of samples. This loss term serves as a regularizer that encourages
the model to learn stable, stationary representations that are robust to batch-wise variations. The final
denoised spectrum Xdenoised is transformed back to the time domain via inverse rFFT for forecasting.

4.4 ENERGY PREDICTOR

The Spectral Mirroring and Differential Embedding alter the energy distribution of the input signal.
While this enhancement improves the model’s ability to capture high-frequency components, directly
using the base model’s predictions on this enhanced and denoised signal would therefore yield outputs
with inconsistent energy characteristics (Liu et al., 2023). To ensure spectral consistency with the
original data, our Energy Predictor learns a frequency-domain mapping. It takes the scaled historical
spectrum Xscaled and the base model’s preliminary prediction Ŷdenoised as inputs. First, Ŷdenoised is
transformed to the frequency domain via rFFT to obtain Ydenoised. Then, Xscaled is projected into a
latent embedding to represent the historical context. This embedding is concatenated with Ydenoised,
and the combined representation is passed through a final linear projection. This step yields the
adjusted spectrum Yadjusted, effectively aligning the prediction’s spectral properties with the original
data. These operations are defined precisely as follows:

Ydenoised = rFFT(Ŷdenoised), Ydenoised ∈ CH′×C , (15)

E = W1 · Xscaled + b1, E ∈ CD′×C , (16)

Yadjusted = W2 · Concat(E ,Ydenoised) + b2, Yadjusted ∈ C(D′+H′)×C , (17)

where H ′ = ⌊H/2⌋ + 1, and W1 ∈ CD′×F , W2 ∈ CH′×(D′+H′), b1 ∈ CD′
, and b2 ∈ CH′

are
learnable parameters.

Finally, the adjusted spectrum is transformed back to the time domain to produce the final prediction:

Ŷ = irFFT(Yadjusted). (18)

These designs enable the predictor to learn sophisticated adjustments based on the full spectral
information rather than just summary statistics. By operating in the frequency domain and utilizing the
mirrored spectrum as a conditioning signal, our Energy Predictor effectively bridges the distributional
gap between the enhanced input space and the original data characteristics, resulting in predictions
that maintain both the improved representational quality and appropriate energy distribution.

4.5 LOSS FUNCTION

We follow a multi-task optimization framework (Vandenhende et al., 2022) that simultaneously
ensures accurate forecasting while maintaining representation stability and formulates the loss
function L as:

L = Lforecast + λnon-stat · Lnon-stat, (19)

where Lforecast is the Mean Squared Error (MSE) between predictions Ŷ and ground truth Y , Lnon-stat
is the regularization term introduced in Equation 14, and λnon-stat is a balancing hyperparameter.
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4.6 COMPUTATIONAL COMPLEXITY ANALYSIS

AEA is designed as a plug-and-play framework whose computational overhead is typically negligible
compared to forecasting backbones, especially those with quadratic complexity. The complexity is
dominated by FFT operations and linear projections across its modules. The rFFT/irFFT transforma-
tions require O(T log T ) per channel. Spectral Mirroring performs element-wise operations in O(T )
time. Both Differential Embedding and Energy Predictor involve linear projections with complexity
O(F · C ·D) or O(F · C ·D′), where F = ⌊T/2⌋+ 1 ≈ T , D and D′ are fixed (typically 64-128).
Thus, the overall complexity of AEA is linear in both sequence length and number of channels, i.e.,
O(T ·C). This is significantly more efficient than the quadratic complexity O(T 2 ·C) of transformer
backbones, making AEA a practical enhancement for real-world forecasting applications.

4.7 THEORETICAL ANALYSIS

Notation. Let e(1), e(2) ∈ CF×C×D
2 denote the two embedding subspaces from Equation 9, Θ the

model parameters of loss L, λ ∈ R+ a learnable scaling parameter, si the true signal component,
n
(c)
i the common-mode noise, and ϵi the independent stochastic noise.

Proposition 4.1 (Adaptive Noise Suppression via Differential Embedding). The differential em-
bedding mechanism e(diff) = e(1) − λe(2) provides adaptive suppression of common-mode noise
while preserving discriminative signals. The resulting gradient estimates ĝ = g + δ exhibit superior
bias-variance trade-off:

E[δ] = (1− λ∗)bg, Var(δ) = (1− λ∗)2σ2
c + (1 + λ∗2)σ2

ϵ (20)

where λ∗ is the optimal value minimizing the training objective, bg is the bias introduced by common-
mode noise, δ is the gradient noise, and σ2

c , σ2
ϵ represent the gradient variances from common-mode

and stochastic noise components, respectively.

Proof. We begin by decomposing the embedding into signal and noise components under Assumption
A.1, which is supported by previous studies (Ye et al., 2025; Wang et al., 2025). This common-
mode noise often stems from systematic biases present in the input data (e.g., stop words in NLP,
background regions in spatio-temporal data, or certain frequency components in the spectrum (Eldele
et al., 2024)). The differential operation yields:

e(diff) = s(diff) + (1− λ)n(c) + (ϵ(1) − λϵ(2)) (21)

Taking expectation over stochastic noise (E[ϵ(1)] = E[ϵ(2)] = 0):

E[δ] = (1− λ)E
[

∂L

∂e(diff) ·
∂n(c)

∂Θ

]
= (1− λ∗)bg (22)

The variance analysis follows from the uncorrelatedness of noise components. The complete deriva-
tion, including detailed expectations, variance decompositions, and convergence guarantees, is
provided in Appendix A.4. This proposition validates our differential embedding by ensuring that:
(i) common-mode noise amplified during spectral mirroring is effectively suppressed, (ii) the non-
stationarity loss Lnon-stat in Equation 14 stabilizes training by controlling gradient variance, and
(iii) the adaptive parameter λ∗ optimally balances noise suppression against signal preservation
throughout optimization.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We conduct extensive experiments on eight widely used real-world multivariate time
series forecasting datasets, including ETT (ETTh1, ETTh2, ETTm1, and ETTm2), Electricity, Traffic,
and Weather, which are utilized by Autoformer (Wu et al., 2021). For a fair comparison, we follow
the same standard protocol (Wu et al., 2023) and split all forecasting datasets into training, validation,
and test sets by the ratio of 6:2:2 for the ETT dataset and 7:1:2 for the other datasets. More can be
found in the Appendix B.3.
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Table 1: Overall performance comparison w.r.t. forecasting models with their counterparts en-
hanced by the AEA in terms of MSE and MAE, the lower the better. The forecasting horizons are
{96, 192, 336, 720}. The better performance in each setting is shown in bold. The best results for
each row are underlined. ‘Avg’ denotes the average results of four forecasting horizons; The last
column, ‘IMP (%)’, shows the average percentage of MSE/MAE improvement over four base models.

Model DLinear + AEA PatchTST + AEA TimesNet + AEA Amplifier + AEA IMP (%)Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.384 0.397 0.380 0.392 0.387 0.403 0.374 0.396 0.390 0.414 0.395 0.410 0.437 0.439 0.397 0.407 2.956
192 0.433 0.427 0.432 0.422 0.455 0.444 0.428 0.431 0.519 0.486 0.441 0.436 0.451 0.436 0.440 0.428 5.457
336 0.481 0.459 0.479 0.458 0.490 0.463 0.466 0.452 0.471 0.458 0.473 0.452 0.497 0.457 0.482 0.447 1.775
720 0.509 0.506 0.495 0.489 0.510 0.496 0.479 0.478 0.543 0.511 0.490 0.476 0.508 0.484 0.492 0.475 4.890
Avg 0.452 0.447 0.447 0.440 0.460 0.451 0.437 0.439 0.480 0.467 0.450 0.443 0.473 0.454 0.452 0.439 3.815

E
T

T
m

1

96 0.344 0.371 0.332 0.368 0.327 0.366 0.327 0.365 0.357 0.389 0.338 0.377 0.323 0.363 0.321 0.361 1.805
192 0.381 0.393 0.370 0.386 0.367 0.388 0.369 0.387 0.440 0.427 0.375 0.391 0.365 0.382 0.365 0.382 3.913
336 0.416 0.418 0.402 0.408 0.405 0.417 0.406 0.410 0.410 0.421 0.410 0.414 0.397 0.403 0.393 0.401 2.592
720 0.478 0.458 0.464 0.444 0.481 0.464 0.458 0.445 0.518 0.468 0.478 0.451 0.476 0.443 0.468 0.437 3.705
Avg 0.405 0.410 0.392 0.402 0.395 0.409 0.390 0.402 0.431 0.427 0.400 0.408 0.390 0.398 0.387 0.395 2.728

E
T

T
h2

96 0.336 0.386 0.329 0.384 0.302 0.352 0.290 0.339 0.322 0.360 0.322 0.359 0.291 0.344 0.286 0.337 1.777
192 0.452 0.459 0.450 0.457 0.416 0.424 0.375 0.392 0.428 0.427 0.419 0.417 0.370 0.396 0.369 0.389 3.047
336 0.579 0.536 0.576 0.533 0.500 0.480 0.416 0.425 0.466 0.454 0.427 0.435 0.427 0.437 0.415 0.430 5.898
720 0.784 0.638 0.795 0.641 0.482 0.478 0.421 0.439 0.421 0.440 0.418 0.438 0.439 0.452 0.424 0.443 3.177
Avg 0.538 0.505 0.538 0.504 0.425 0.434 0.375 0.399 0.409 0.420 0.397 0.412 0.382 0.407 0.374 0.400 3.610

E
T

T
m

2

96 0.188 0.283 0.189 0.286 0.181 0.266 0.182 0.265 0.187 0.264 0.175 0.257 0.178 0.260 0.177 0.260 0.971
192 0.282 0.360 0.271 0.347 0.249 0.311 0.242 0.300 0.253 0.306 0.247 0.304 0.241 0.301 0.239 0.299 2.369
336 0.360 0.411 0.372 0.420 0.311 0.352 0.305 0.342 0.323 0.349 0.316 0.345 0.299 0.340 0.297 0.339 0.416
720 0.546 0.518 0.541 0.515 0.406 0.404 0.399 0.399 0.423 0.408 0.430 0.409 0.394 0.396 0.392 0.396 0.447
Avg 0.344 0.393 0.343 0.392 0.287 0.333 0.282 0.326 0.296 0.332 0.292 0.329 0.278 0.324 0.276 0.323 0.950

E
le

ct
ri

ci
ty 96 0.196 0.280 0.192 0.278 0.174 0.260 0.172 0.259 0.175 0.278 0.148 0.248 0.178 0.267 0.177 0.260 4.418

192 0.195 0.283 0.190 0.279 0.194 0.275 0.193 0.274 0.189 0.290 0.158 0.254 0.247 0.306 0.243 0.303 5.108
336 0.208 0.299 0.202 0.294 0.210 0.295 0.207 0.288 0.207 0.303 0.185 0.283 0.308 0.343 0.302 0.340 3.717
720 0.243 0.331 0.237 0.326 0.237 0.318 0.233 0.313 0.254 0.338 0.216 0.311 0.398 0.396 0.397 0.396 4.236
Avg 0.211 0.298 0.205 0.294 0.204 0.287 0.201 0.283 0.206 0.302 0.177 0.274 0.283 0.328 0.279 0.326 4.337

E
xc

ha
ng

e 96 0.080 0.199 0.077 0.199 0.091 0.211 0.084 0.204 0.109 0.240 0.099 0.223 0.084 0.203 0.084 0.201 4.188
192 0.161 0.296 0.158 0.295 0.191 0.312 0.186 0.306 0.193 0.323 0.196 0.319 0.179 0.300 0.178 0.299 0.924
336 0.302 0.414 0.270 0.394 0.325 0.414 0.323 0.410 0.394 0.465 0.346 0.428 0.337 0.419 0.327 0.412 5.544
720 0.778 0.666 0.773 0.667 1.004 0.759 0.877 0.707 1.013 0.770 1.063 0.776 0.874 0.703 0.851 0.694 2.297
Avg 0.330 0.394 0.320 0.389 0.403 0.424 0.367 0.407 0.427 0.449 0.426 0.436 0.369 0.406 0.360 0.402 3.008

W
ea

th
er

96 0.198 0.259 0.169 0.244 0.185 0.228 0.173 0.219 0.168 0.218 0.162 0.209 0.173 0.219 0.171 0.216 5.124
192 0.235 0.294 0.213 0.286 0.226 0.260 0.218 0.256 0.232 0.269 0.216 0.256 0.221 0.258 0.217 0.255 3.995
336 0.288 0.343 0.266 0.327 0.278 0.297 0.273 0.296 0.290 0.309 0.276 0.297 0.274 0.295 0.272 0.293 3.065
720 0.350 0.389 0.336 0.378 0.353 0.346 0.351 0.345 0.355 0.351 0.355 0.351 0.351 0.345 0.348 0.342 1.197
Avg 0.268 0.321 0.246 0.309 0.260 0.283 0.254 0.279 0.261 0.287 0.252 0.278 0.255 0.279 0.252 0.277 3.042

Tr
af

fic

96 0.652 0.400 0.611 0.388 0.488 0.308 0.481 0.306 0.604 0.322 0.456 0.290 0.554 0.360 0.536 0.350 7.610
192 0.601 0.375 0.589 0.370 0.499 0.307 0.486 0.301 0.625 0.329 0.470 0.300 0.542 0.352 0.530 0.340 7.004
336 0.608 0.378 0.597 0.374 0.513 0.314 0.503 0.309 0.651 0.341 0.506 0.320 0.555 0.358 0.536 0.342 6.168
720 0.648 0.399 0.634 0.392 0.547 0.336 0.541 0.328 0.695 0.365 0.569 0.347 0.592 0.370 0.569 0.359 5.188
Avg 0.627 0.388 0.614 0.383 0.512 0.316 0.503 0.311 0.644 0.339 0.500 0.314 0.561 0.360 0.543 0.348 6.436

Base model and Experimental details. AEA is a model-agnostic framework that can be seamlessly
integrated with arbitrary time series forecasting models to enhance their performance. We select
four state-of-the-art models as base models: DLinear (Zeng et al., 2023), Amplifier (Fei et al.,
2025), PatchTST (Nie et al., 2023), and TimesNet Wu et al. (2023), which collectively represent
three dominant forecasting paradigms: linear models, Transformers, and convolutional architectures.
Following the established evaluation protocol in TimesNet, we adopt Mean Squared Error (MSE)
and Mean Absolute Error (MAE) as the primary evaluation metrics, as well as set the historical
input length to 96, and forecasting horizons are evaluated at {96, 192, 336, 720}. To ensure a fair
comparison, we consistently use the same experimental configuration as the original implementations.
All experiments are conducted using PyTorch (Paszke et al., 2019) on a single NVIDIA RTX A100
80GB GPU. Experiment configurations and implementations are detailed in Appendix B.4.

5.2 MAIN RESULTS

We report the MSE and MAE on eight real-world datasets for long-term forecasting evaluation in
Table 1. The forecasting horizon is {96, 192, 336, 720}. From the table, we observe that the model
enhanced with AEA outperforms the base model in general. Specifically, AEA improves forecasting
performance in 96.563% cases in MSE and 97.19% cases in MAE. Remarkably, AEA achieves a
substantial boost on TimesNet, with a significant reduction on MSE by 8.108% and MAE by 4.337%.
The last column of the table quantifies the average percentage improvement in terms of MSE/MAE,
at 3.551%, which underscores the consistent enhancement brought by AEA across all forecasting
horizons and datasets.
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Table 2: Ablation study results across five datasets. Models are compared in terms of MSE and MAE
(lower values are better) using the DLinear backbone under a forecasting horizon of 96. The best
result for each dataset is highlighted in bold. ‘Avg’ denotes the average results of MSE and MAE.
The last column, ‘Drop (%)’, shows the average performance deterioration percentage of all datasets.

ETTh1 ETTh2 Weather Exchange Traffic Avg Drop (%)

AEA 0.386 0.356 0.207 0.138 0.500 0.317 -
w/o Spectral Mirroring 0.393 0.388 0.229 0.147 0.529 0.338 8.139
w/o Phase Mixing 0.389 0.404 0.210 0.143 0.522 0.333 5.737
w/o Differential Embedding 0.392 0.391 0.243 0.151 0.532 0.342 10.520
w/o Non-stationarity Loss 0.391 0.380 0.231 0.150 0.524 0.335 7.799
w/o Energy Predictor 0.402 0.374 0.233 0.164 0.539 0.342 11.508

Table 3: Parameter sensitivity study. Forecasting performance w.r.t. different Differential Embedding
dimensions D with DLinear as backbone on four datasets under a forecasting horizon of 96.

Dimension D=64 D=128 D=256 D=512
Metric MSE MAE Params Time MSE MAE Params Time MSE MAE Params Time MSE MAE Params Time

ETTh1 0.380 0.392 195 7.617 0.383 0.394 387 10.972 0.382 0.393 771 14.713 0.380 0.392 1539 27.907
Exchange 0.077 0.199 195 7.617 0.083 0.210 387 10.972 0.081 0.206 771 14.713 0.081 0.206 1539 27.907
Weather 0.169 0.244 195 7.617 0.178 0.256 387 10.972 0.172 0.247 771 14.713 0.177 0.257 1539 27.907
Traffic 0.611 0.388 195 7.617 0.611 0.386 387 10.972 0.620 0.389 771 14.713 0.633 0.392 1539 27.907

5.3 MODEL ANALYSIS

Ablation Study. We conduct an ablation study on the DLinear backbone under a forecasting
horizon of 96 to validate the contribution of each component in AEA, wherein individual modules
are systematically excluded (‘w/o’). The results, summarized in Table 2, demonstrate that the
complete AEA framework—integrating Spectral Mirroring, Phase Mixing, Differential Embedding,
Non-stationarity Loss, and Energy Predictor—achieves the best performance. The degradation
observed in all ablated settings confirms the necessity of the proposed modules. Notably, the absence
of the Energy Predictor leads to the most significant performance drop (11.508% deterioration),
underscoring its critical role in aligning the distribution of the denoised signal with the original data.
Removing the Differential Embedding module also causes a notable decline (10.520% deterioration),
highlighting its importance in common-mode noise suppression for learning robust representations.
The Spectral Mirroring module proves essential, as its removal results in an average result of 0.338
(8.139% deterioration), validating its effectiveness in high-frequency amplification. In contrast,
ablating Phase Mixing or the Non-stationarity Loss consistently degrades performance, further
affirming their contributions to stable and distortion-free feature enhancement.

Sensitivity of Differential Embedding dimension D. As mentioned in 4.6, the complexity of the
Differential Embedding module is O(F ·C ·D), dominated by embedding dimension D. We evaluate
the influence of different D values on prediction accuracy, parameters, and running time (ms/iter) in
Table 3 across four datasets on the DLinear backbone under a forecasting horizon of 96. Results show
that stable forecasting accuracy is achieved across dimensions, with the smallest setting (D = 64,
only 0.20K parameters, 7.6 ms) already attaining competitive results, even outperforming larger
dimensions on Weather and Exchange. These observations confirm that the differential embedding
module is both lightweight and effective, requiring only a modest number of parameters to deliver
strong performance. Due to the page limit, we provide more sensitivity analysis in Appendix C.1.

6 CONCLUSION

We have systematically identified the problem of indiscriminate amplification in existing frequency-
aware forecasting methods, which amplifies both informative high-frequency signals and task-
irrelevant noise, leading to unstable training and compromised generalization. To tackle this issue,
we introduce AEA, a novel model-agnostic framework that reformulates frequency enhancement as a
dual process of targeted signal amplification and adaptive noise suppression. Extensive experiments
on eight real-world datasets demonstrate that AEA consistently improves the forecasting accuracy,
robustness, and training stability across four state-of-the-art forecasting backbones.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Nesreen K Ahmed, Amir F Atiya, Neamat El Gayar, and Hisham El-Shishiny. An empirical
comparison of machine learning models for time series forecasting. Econometric reviews, 29(5-6):
594–621, 2010.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Djamel Benaouda, Fionn Murtagh, J-L Starck, and Olivier Renaud. Wavelet-based nonlinear
multiscale decomposition model for electricity load forecasting. Neurocomputing, 70(1-3):139–
154, 2006.

Peng Chen, Yingying ZHANG, Yunyao Cheng, Yang Shu, Yihang Wang, Qingsong Wen, Bin Yang,
and Chenjuan Guo. Pathformer: Multi-scale transformers with adaptive pathways for time series
forecasting. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=lJkOCMP2aW.

Si-An Chen, Chun-Liang Li, Sercan O Arik, Nathanael Christian Yoder, and Tomas Pfister. TSMixer:
An all-MLP architecture for time series forecast-ing. Transactions on Machine Learning Research,
2023. ISSN 2835-8856. URL https://openreview.net/forum?id=wbpxTuXgm0.

Robert B Cleveland, William S Cleveland, Jean E McRae, and Irma Terpenning. Stl: A seasonal-trend
decomposition. J. Off. Stat, 6(1):3–73, 1990.

Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan K Mathur, Rajat Sen, and Rose Yu. Long-term
forecasting with tiDE: Time-series dense encoder. Transactions on Machine Learning Research,
2023. ISSN 2835-8856. URL https://openreview.net/forum?id=pCbC3aQB5W.

Berken Utku Demirel and Christian Holz. Shifting the paradigm: A diffeomorphism between time
series data manifolds for achieving shift-invariancy in deep learning. In Y. Yue, A. Garg, N. Peng,
F. Sha, and R. Yu (eds.), International Conference on Representation Learning, volume 2025, pp.
99210–99249, 2025. URL https://proceedings.iclr.cc/paper_files/paper/
2025/file/f631e778fd3c1b871e9e3a94369335e9-Paper-Conference.pdf.

Luo donghao and wang xue. ModernTCN: A modern pure convolution structure for general time
series analysis. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=vpJMJerXHU.

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, and Xiaoli Li. TSLANet: Re-
thinking transformers for time series representation learning. In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 12409–12428. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/eldele24a.html.

Jingru Fei, Kun Yi, Wei Fan, Qi Zhang, and Zhendong Niu. Amplifier: bringing attention to neglected
low-energy components in time series forecasting. In Proceedings of the Thirty-Ninth AAAI
Conference on Artificial Intelligence and Thirty-Seventh Conference on Innovative Applications of
Artificial Intelligence and Fifteenth Symposium on Educational Advances in Artificial Intelligence,
AAAI’25/IAAI’25/EAAI’25. AAAI Press, 2025. ISBN 978-1-57735-897-8. doi: 10.1609/aaai.
v39i11.33267. URL https://doi.org/10.1609/aaai.v39i11.33267.

Aosong Feng, Jialin Chen, Juan Garza, Brooklyn Berry, Francisco Salazar, Yifeng Gao, Rex Ying,
and Leandros Tassiulas. Efficient high-resolution time series classification via attention kronecker
decomposition. arXiv preprint arXiv:2403.04882, 2024.

Huan He, Owen Queen, Teddy Koker, Consuelo Cuevas, Theodoros Tsiligkaridis, and Marinka
Zitnik. Domain adaptation for time series under feature and label shifts. In Proceedings of the
40th International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. Recurrent neural networks for time
series forecasting: Current status and future directions. International Journal of Forecasting, 37
(1):388–427, 2021.

10

https://openreview.net/forum?id=lJkOCMP2aW
https://openreview.net/forum?id=wbpxTuXgm0
https://openreview.net/forum?id=pCbC3aQB5W
https://proceedings.iclr.cc/paper_files/paper/2025/file/f631e778fd3c1b871e9e3a94369335e9-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2025/file/f631e778fd3c1b871e9e3a94369335e9-Paper-Conference.pdf
https://openreview.net/forum?id=vpJMJerXHU
https://proceedings.mlr.press/v235/eldele24a.html
https://doi.org/10.1609/aaai.v39i11.33267


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Feifei Kou, Jiahao Wang, Lei Shi, Yuhan Yao, Yawen Li, Suguo Zhu, Zhongbao Zhang, and Junping
Du. CFPT: Empowering time series forecasting through cross-frequency interaction and periodic-
aware timestamp modeling. In Forty-second International Conference on Machine Learning, 2025.
URL https://openreview.net/forum?id=hHYjiOJFum.

Bhagwandas Pannalal Lathi and Roger A Green. Signal processing and linear systems, volume 2.
Oxford university press Oxford, 1998.

Yuxuan Liang, Yutong Xia, Songyu Ke, Yiwei Wang, Qingsong Wen, Junbo Zhang, Yu Zheng,
and Roger Zimmermann. Airformer: Predicting nationwide air quality in china with trans-
formers. Proceedings of the AAAI Conference on Artificial Intelligence, 37(12):14329–14337,
Jun. 2023. doi: 10.1609/aaai.v37i12.26676. URL https://ojs.aaai.org/index.php/
AAAI/article/view/26676.

Bryan Lim and Stefan Zohren. Time-series forecasting with deep learning: a survey. Philosophical
Transactions of the Royal Society A, 379(2194):20200209, 2021.

Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
Time series modeling and forecasting with sample convolution and interaction. Advances in Neural
Information Processing Systems, 35:5816–5828, 2022a.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dust-
dar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and
forecasting. In International Conference on Learning Representations, 2021.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transform-
ers: Exploring the stationarity in time series forecasting. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems, volume 35, pp. 9881–9893. Curran Associates, Inc.,
2022b. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/4054556fcaa934b0bf76da52cf4f92cb-Paper-Conference.pdf.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=JePfAI8fah.

Zhiding Liu, Mingyue Cheng, Zhi Li, Zhenya Huang, Qi Liu, Yanhu Xie, and Enhong Chen.
Adaptive normalization for non-stationary time series forecasting: A temporal slice perspec-
tive. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Ad-
vances in Neural Information Processing Systems, volume 36, pp. 14273–14292. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/2e19dab94882bc95ed094c4399cfda02-Paper-Conference.pdf.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference on International Conference on Machine
Learning, ICML’10, pp. 807–814, Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
Jbdc0vTOcol.

Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis ex-
pansion analysis for interpretable time series forecasting. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=r1ecqn4YwB.

11

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=hHYjiOJFum
https://ojs.aaai.org/index.php/AAAI/article/view/26676
https://ojs.aaai.org/index.php/AAAI/article/view/26676
https://proceedings.neurips.cc/paper_files/paper/2022/file/4054556fcaa934b0bf76da52cf4f92cb-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/4054556fcaa934b0bf76da52cf4f92cb-Paper-Conference.pdf
https://openreview.net/forum?id=JePfAI8fah
https://openreview.net/forum?id=JePfAI8fah
https://proceedings.neurips.cc/paper_files/paper/2023/file/2e19dab94882bc95ed094c4399cfda02-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/2e19dab94882bc95ed094c4399cfda02-Paper-Conference.pdf
https://openreview.net/forum?id=Jbdc0vTOcol
https://openreview.net/forum?id=Jbdc0vTOcol
https://openreview.net/forum?id=r1ecqn4YwB


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. PyTorch: an imperative style, high-performance deep learning
library. Curran Associates Inc., Red Hook, NY, USA, 2019.

Donald B Percival and Andrew T Walden. Wavelet methods for time series analysis, volume 4.
Cambridge university press, 2000.

Xihao Piao, Zheng Chen, Taichi Murayama, Yasuko Matsubara, and Yasushi Sakurai. Fredformer:
Frequency debiased transformer for time series forecasting. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’24, pp. 2400–2410,
New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400704901. doi:
10.1145/3637528.3671928. URL https://doi.org/10.1145/3637528.3671928.

Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoying
Zhou, Christian S. Jensen, Zhenli Sheng, and Bin Yang. Tfb: Towards comprehensive and fair
benchmarking of time series forecasting methods. Proc. VLDB Endow., 17(9):2363–2377, May
2024. ISSN 2150-8097. doi: 10.14778/3665844.3665863. URL https://doi.org/10.
14778/3665844.3665863.

Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, and
Tim Januschowski. Deep state space models for time series forecasting. Advances in neural
information processing systems, 31, 2018.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic
forecasting with autoregressive recurrent networks. International Journal of Forecasting, 36(3):
1181–1191, 2020.

Rajat Sen, Hsiang-Fu Yu, and Inderjit S Dhillon. Think globally, act locally: A deep neural network
approach to high-dimensional time series forecasting. Advances in neural information processing
systems, 32, 2019.

Slawek Smyl. A hybrid method of exponential smoothing and recurrent neural networks for time
series forecasting. International Journal of Forecasting, 36(1):75–85, 2020.

H. Sorensen, D. Jones, M. Heideman, and C. Burrus. Real-valued fast fourier transform algorithms.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 35(6):849–863, 1987. doi:
10.1109/TASSP.1987.1165220.

Artyom Stitsyuk and Jaesik Choi. xpatch: Dual-stream time series forecasting with exponential
seasonal-trend decomposition. Proceedings of the AAAI Conference on Artificial Intelligence, 39
(19):20601–20609, Apr. 2025. doi: 10.1609/aaai.v39i19.34270. URL https://ojs.aaai.
org/index.php/AAAI/article/view/34270.

Binh Tang and David S Matteson. Probabilistic transformer for time series analysis. Advances in
Neural Information Processing Systems, 34:23592–23608, 2021.

Sean J. Taylor and Benjamin Letham. Forecasting at scale. The American Statistician, 72(1):
37–45, 2018. doi: 10.1080/00031305.2017.1380080. URL https://doi.org/10.1080/
00031305.2017.1380080.

José F Torres, Dalil Hadjout, Abderrazak Sebaa, Francisco Martínez-Álvarez, and Alicia Troncoso.
Deep learning for time series forecasting: a survey. Big Data, 9(1):3–21, 2021.

Oskar Triebe, Hansika Hewamalage, Polina Pilyugina, Nikolay Laptev, Christoph Bergmeir, and
Ram Rajagopal. Neuralprophet: Explainable forecasting at scale, 2021.

Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans, Dengxin Dai,
and Luc Van Gool. Multi-task learning for dense prediction tasks: A survey. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(7):3614–3633, 2022. doi: 10.1109/TPAMI.2021.
3054719.

12

https://doi.org/10.1145/3637528.3671928
https://doi.org/10.14778/3665844.3665863
https://doi.org/10.14778/3665844.3665863
https://ojs.aaai.org/index.php/AAAI/article/view/34270
https://ojs.aaai.org/index.php/AAAI/article/view/34270
https://doi.org/10.1080/00031305.2017.1380080
https://doi.org/10.1080/00031305.2017.1380080


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Renzhuo Wan, Shuping Mei, Jun Wang, Min Liu, and Fan Yang. Multivariate temporal convolutional
network: A deep neural networks approach for multivariate time series forecasting. Electronics, 8
(8):876, 2019.

Haichen Wang, Liu Yang, Xinyuan Zhang, Haomin Yu, Ming Li, and Jilin Hu. Adformer: Aggregation
differential transformer for passenger demand forecasting, 2025. URL https://arxiv.org/
abs/2506.02576.

Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. Micn: Multi-scale
local and global context modeling for long-term series forecasting. In The Eleventh International
Conference on Learning Representations, 2022.

Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y. Zhang,
and JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=7oLshfEIC2.

Qingsong Wen, Zhe Zhang, Yan Li, and Liang Sun. Fast robuststl: Efficient and robust seasonal-trend
decomposition for time series with complex patterns. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 2203–2213, 2020.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
Transformers in time series: a survey. In Proceedings of the Thirty-Second International Joint
Conference on Artificial Intelligence, IJCAI ’23, 2023. ISBN 978-1-956792-03-4. doi: 10.24963/
ijcai.2023/759. URL https://doi.org/10.24963/ijcai.2023/759.

Shmuel Winograd. On computing the discrete fourier transform. Proceedings of the National
Academy of Sciences, 73(4):1005–1006, 1976. doi: 10.1073/pnas.73.4.1005. URL https:
//www.pnas.org/doi/abs/10.1073/pnas.73.4.1005.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: decomposition transformers
with auto-correlation for long-term series forecasting. In Proceedings of the 35th International
Conference on Neural Information Processing Systems, NIPS ’21, Red Hook, NY, USA, 2021.
Curran Associates Inc. ISBN 9781713845393.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=ju_Uqw384Oq.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Connecting
the dots: Multivariate time series forecasting with graph neural networks. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD ’20, pp. 753–763, New York, NY, USA, 2020. Association for Computing Machinery.
ISBN 9781450379984. doi: 10.1145/3394486.3403118. URL https://doi.org/10.1145/
3394486.3403118.

Zhijian Xu, Ailing Zeng, and Qiang Xu. Fits: Modeling time series with 10k parame-
ters. In B. Kim, Y. Yue, S. Chaudhuri, K. Fragkiadaki, M. Khan, and Y. Sun (eds.),
International Conference on Representation Learning, volume 2024, pp. 26295–26318,
2024. URL https://proceedings.iclr.cc/paper_files/paper/2024/file/
701251e1db4a2e4dd2ef23f5265d5936-Paper-Conference.pdf.

Tianzhu Ye, Li Dong, Yuqing Xia, Yutao Sun, Yi Zhu, Gao Huang, and Furu
Wei. Differential transformer. In Y. Yue, A. Garg, N. Peng, F. Sha, and R. Yu
(eds.), International Conference on Representation Learning, volume 2025, pp. 144–164,
2025. URL https://proceedings.iclr.cc/paper_files/paper/2025/file/
00b67df24009747e8bbed4c2c6f9c825-Paper-Conference.pdf.

13

https://arxiv.org/abs/2506.02576
https://arxiv.org/abs/2506.02576
https://openreview.net/forum?id=7oLshfEIC2
https://openreview.net/forum?id=7oLshfEIC2
https://doi.org/10.24963/ijcai.2023/759
https://www.pnas.org/doi/abs/10.1073/pnas.73.4.1005
https://www.pnas.org/doi/abs/10.1073/pnas.73.4.1005
https://openreview.net/forum?id=ju_Uqw384Oq
https://openreview.net/forum?id=ju_Uqw384Oq
https://doi.org/10.1145/3394486.3403118
https://doi.org/10.1145/3394486.3403118
https://proceedings.iclr.cc/paper_files/paper/2024/file/701251e1db4a2e4dd2ef23f5265d5936-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2024/file/701251e1db4a2e4dd2ef23f5265d5936-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2025/file/00b67df24009747e8bbed4c2c6f9c825-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2025/file/00b67df24009747e8bbed4c2c6f9c825-Paper-Conference.pdf


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Kun Yi, Qi Zhang, Wei Fan, Shoujin Wang, Pengyang Wang, Hui He, Ning An, Defu Lian, Longbing
Cao, and Zhendong Niu. Frequency-domain MLPs are more effective learners in time series
forecasting. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=iif9mGCTfy.

Kun Yi, Jingru Fei, Qi Zhang, Hui He, Shufeng Hao, Defu Lian, and Wei Fan. Filternet: Harnessing
frequency filters for time series forecasting. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024. URL https://openreview.net/forum?id=
ugL2D9idAD.

Kun Yi, Qi Zhang, Wei Fan, Longbing Cao, Shoujin Wang, Hui He, Guodong Long, Liang Hu,
Qingsong Wen, and Hui Xiong. A survey on deep learning based time series analysis with
frequency transformation. In Proceedings of the 31st ACM SIGKDD Conference on Knowledge
Discovery and Data Mining V.2, KDD ’25, pp. 6206–6215, New York, NY, USA, 2025. Association
for Computing Machinery. ISBN 9798400714542. doi: 10.1145/3711896.3736571. URL
https://doi.org/10.1145/3711896.3736571.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence
and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth
Symposium on Educational Advances in Artificial Intelligence, AAAI’23/IAAI’23/EAAI’23. AAAI
Press, 2023. ISBN 978-1-57735-880-0. doi: 10.1609/aaai.v37i9.26317. URL https://doi.
org/10.1609/aaai.v37i9.26317.

G.Peter Zhang. Time series forecasting using a hybrid arima and neural network
model. Neurocomputing, 50:159–175, 2003. ISSN 0925-2312. doi: https://doi.org/10.
1016/S0925-2312(01)00702-0. URL https://www.sciencedirect.com/science/
article/pii/S0925231201007020.

Tianping Zhang, Yizhuo Zhang, Wei Cao, Jiang Bian, Xiaohan Yi, Shun Zheng, and Jian Li. Less is
more: Fast multivariate time series forecasting with light sampling-oriented mlp structures. arXiv
preprint arXiv:2207.01186, 2022.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The Eleventh International Conference on Learning
Representations, 2022.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. Proceedings
of the AAAI Conference on Artificial Intelligence, 35(12):11106–11115, May 2021. doi: 10.
1609/aaai.v35i12.17325. URL https://ojs.aaai.org/index.php/AAAI/article/
view/17325.

Tian Zhou, Ziqing Ma, Qingsong Wen, Liang Sun, Tao Yao, Wotao Yin, Rong Jin, et al. Film:
Frequency improved legendre memory model for long-term time series forecasting. Advances in
Neural Information Processing Systems, 35:12677–12690, 2022a.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer:
Frequency enhanced decomposed transformer for long-term series forecasting. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.),
Proceedings of the 39th International Conference on Machine Learning, volume 162 of Pro-
ceedings of Machine Learning Research, pp. 27268–27286. PMLR, 17–23 Jul 2022b. URL
https://proceedings.mlr.press/v162/zhou22g.html.

14

https://openreview.net/forum?id=iif9mGCTfy
https://openreview.net/forum?id=ugL2D9idAD
https://openreview.net/forum?id=ugL2D9idAD
https://doi.org/10.1145/3711896.3736571
https://doi.org/10.1609/aaai.v37i9.26317
https://doi.org/10.1609/aaai.v37i9.26317
https://www.sciencedirect.com/science/article/pii/S0925231201007020
https://www.sciencedirect.com/science/article/pii/S0925231201007020
https://ojs.aaai.org/index.php/AAAI/article/view/17325
https://ojs.aaai.org/index.php/AAAI/article/view/17325
https://proceedings.mlr.press/v162/zhou22g.html


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A THEORETICAL ANALYSIS

A.1 NOTION

Discrete Fourier Transform Given a sequence x[n] with length N, the Discrete Fourier Transform
(DFT) Winograd (1976) converts x[n] into the frequency domain, and transforms it back using the
inverse DFT (iDFT), which can be defined as:

DFT : X [k] =
N−1∑
n=0

x[n]e−j(2π/N)kn, s.t., k = 0, 1, ..., N − 1

iDFT : x[n] =
1

N

N−1∑
k=0

X [k]ej(2π/N)kn, s.t., n = 0, 1, ..., N − 1

(23)

where j is the imaginary unit and X [k] represents the spectrum of x[n] at the frequency ωk = 2πk/N .
The spectrum X ∈ Ck consists of real parts Re =

∑N−1
n=0 x[n] cos (2π/N)kn ∈ Rk and imaginary

parts Im = −
∑N−1

n=0 x[n] sin (2π/N)kn ∈ Rk as:

X = Re+j Im . (24)

The amplitude part A and phase part θ of X are defined as:

A =
√
Re2 +Im2. (25)

θ = arctan(
Im

Re
). (26)

The computational complexity of the DFT is typically O(N2) (Zhou et al. (2022b)). In practice, we
use the Fast Fourier Transform (FFT) to efficiently compute the DFT of complex sequences, which
reduces the computational complexity to O(N logN). Additionally, by employing the Real FFT
(rFFT), we can compress an input sequence of N real numbers into a signal sequence in the complex
frequency domain containing N/2 + 1 frequency components.

A.2 PROOF

Assumption A.1 (Decomposition of Embedding). Let ei denote the embedding at any sample i. The
embedded components ei can be decomposed into a true signal term si and a noise term ni:

ei = si + ni.

For two distinct segments from the embedding space, each associated with potentially different
representation properties, their respective noise terms admit a further decomposition into a common-
mode noise component n(c)

i and independent-mode noise components ϵ(1)i and ϵ
(2)
i :

n
(1)
i = n

(c)
i + ϵ

(1)
i , n

(2)
i = n

(c)
i + ϵ

(2)
i ,

where E[ϵ(1)i ] = E[ϵ(2)i ] = 0, Var(ϵ(1)i ) = Var(ϵ
(2)
i ) = σ2

ϵ , and ϵ
(1)
i and ϵ

(2)
i are independent.

We assume that the common-mode noise n
(c)
i corresponds to a shared noise component in the

embedding space, an assumption supported by previous studies (Ye et al., 2025; Wang et al., 2025).
This shared noise often stems from systematic biases present in the input data (e.g., stop words in
NLP, background regions in spatio-temporal data, or certain frequency components in spectral (Eldele
et al., 2024)). These features can introduce consistent bias into attention scores, as the softmax
function is sensitive to large values even when they originate from irrelevant features.

Theorem A.2 (Non-zero Expectation of Common-mode Noise). Under realistic data distributions
D, the common-mode noise n

(c)
i has a non-zero expectation:

E[n(c)
i ] ̸= 0.
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Proof. Let n(c)
i = f(Xi; Θ), where Xi ∼ D and f capture systematic biases with parameters Θ:

E[n(c)
i ] = EXi∼D[f(Xi; Θ)].

Real-world data distributions D often contain biased features that are statistically frequent but
non-causal or task-irrelevant Demirel & Holz (2025). Let ϕj(Xi) denote the j-th such feature func-
tion—each ϕj maps the input Xi to a scalar value representing the intensity of a particular spurious
attribute. Through training, the model may develop dependence on these features. We therefore
approximate the learned mapping f(Xi; Θ) as a linear combination of these feature functions:

f(Xi; Θ) ≈
∑
j

αjϕj(Xi),

where αj > 0 are weight coefficients. Since each ϕj is frequent, EXi∼D[ϕj(Xi)] > 0. By linearity
of expectation:

Ei[n
(c)
i ] = E

∑
j

αjϕj(Xi)

 =
∑
j

αjE[ϕj(Xi)] > 0,

unless αj = 0 for all j or E[ϕj(Xi)] = 0, both of which are uncommon in practice since the model
leverages any available signal to minimize loss.

Corollary A.3 (The Non-zero Expectation of Common-mode Noise After Training). During training,
parameters Θ are updated via gradient descent to minimize the loss L. However, if features ϕj(Xi)
are correlated with the label (without causality), the model may learn to rely on them as shortcuts
rather than suppressing their contribution He et al. (2023). Thus, αj tends to remain positive, and
E[n(c)

i ] > 0 persists throughout optimization.
Proposition A.4 (Adaptive Noise Suppression via Differential Embedding). The differential embed-
ding mechanism, defined as e(diff)

i = e
(1)
i − λe

(2)
i with a learnable parameter λ, provides adaptive

suppression of common-mode noise. This results in gradient estimates ĝ = g + δ that exhibit a
superior bias-variance trade-off for optimization, specifically:

1. Suppression of Systematic Bias: The mechanism attenuates the bias introduced by common-mode
noise: E[δ] = (1− λ∗)bg , where |1− λ∗| < 1.

2. Preservation of Beneficial Variance: It retains the variance from stochastic noise, which acts as a
regularizer: Var(δ) = (1− λ∗)2σ2

c + (1 + λ∗2)σ2
ϵ .

Here, λ∗ is the value of λ that minimizes the training objective, bg is the bias from common-mode
noise, and σ2

c , σ2
ϵ are the variances of the gradients of the common-mode and stochastic noise

components, respectively.

Proof. We prove the two properties of the gradient noise δ by analyzing its expectation and variance.

The gradient noise δ arises from the backpropagation through the differential embedding. Consider
the total gradient of the loss L with respect to the parameters Θ:

∂L

∂Θ
=

∂L

∂e
(diff)
i

· ∂e
(diff)
i

∂Θ
.

Under Assumption 1, we decompose the differential embedding into a true signal term and a noise
term: e

(diff)
i = s

(diff)
i + n

(diff)
i , where n

(diff)
i = (1 − λ)n

(c)
i + (ϵ

(1)
i − λϵ

(2)
i ). Substituting this

decomposition yields:
∂L

∂Θ
=

∂L

∂e
(diff)
i

·

(
∂s

(diff)
i

∂Θ
+

∂n
(diff)
i

∂Θ

)
.

The true gradient g is defined as g = ∂L

∂e
(diff)
i

· ∂s
(diff)
i

∂Θ . This suggests that the gradient noise δ is:

δ =
∂L

∂Θ
− g =

∂L

∂e
(diff)
i

· ∂n
(diff)
i

∂Θ
.
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1. Expectation of Gradient Noise (E[δ]):

Substituting the expression for the effective noise, n(diff)
i = (1− λ)n

(c)
i + (ϵ

(1)
i − λϵ

(2)
i ), we get:

δ =
∂L

∂e
(diff)
i

·

[
(1− λ)

∂n
(c)
i

∂Θ
+

∂(ϵ
(1)
i − λϵ

(2)
i )

∂Θ

]
.

We now take the expectation of δ over the distributions of the stochastic noises ϵ(1)i and ϵ
(2)
i . Under

Assumption A.1, these stochastic noises are zero-mean, independent of the model parameters Θ and
the common-mode noise n

(c)
i :

E[ϵ(k)i ] = 0, E

[
∂ϵ

(k)
i

∂Θ

]
= 0, for k = {1, 2}, and E[ϵ(k)i n

(c)
i ] = 0.

Applying the linearity of expectation and leveraging these properties, the terms involving ϵi vanish:

E[δ] = E

[
∂L

∂e
(diff)
i

·

(
(1− λ)

∂n
(c)
i

∂Θ

)]
+ E

[
∂L

∂e
(diff)
i

· ∂(ϵ
(1)
i − λϵ

(2)
i )

∂θ

]

= (1− λ)E

[
∂L

∂e
(diff)
i

· ∂n
(c)
i

∂Θ

]
+ 0.

The remaining expectation term, E
[

∂L

∂e
(diff)
i

· ∂n
(c)
i

∂Θ

]
, is precisely the systematic bias bg introduced

into the gradient by the common-mode noise. At convergence, λ reaches a value λ∗ that minimizes
the loss. Since the loss is minimized by reducing the effect of n(c)

i , the learning dynamics drive λ∗

towards 1, ensuring |1− λ∗| < 1. Thus,

E[δ] = (1− λ∗)bg,

which demonstrates a reduction of the original bias by a factor of |1− λ∗|.
2. Variance of Gradient Noise (Var(δ)):

We analyze the variance of δ:

Var(δ) = Var

(
∂L

∂e
(diff)
i

· ∂n
(diff)
i

∂Θ

)
.

For clarity, we define the shorthand:

A =
∂L

∂e
(diff)
i

· ∂n
(c)
i

∂Θ
, B =

∂L

∂e
(diff)
i

· ∂ϵ
(1)
i

∂Θ
, C =

∂L

∂e
(diff)
i

· ∂ϵ
(2)
i

∂Θ
.

This allows us to express δ as:
δ = (1− λ)A+B − λC.

The variance is then:
Var(δ) = Var ((1− λ)A+B − λC) .

We assume A, B, and C are uncorrelated. This is justified by the independence of n(c)
i and ϵ

(k)
i .

Under this assumption, the covariance terms between A, B, and C are zero. Applying the variance
property Var(aX + bY ) = a2Var(X) + b2Var(Y ) for uncorrelated variables, we get:

Var(δ) = (1− λ)2Var(A) + Var(B) + (−λ)2Var(C)

= (1− λ)2Var(A) + Var(B) + λ2Var(C).

We now define the variances of these components:

Var(A) = σ2
c , Var(B) = Var(C) = σ2

ϵ .
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Algorithm 1 AEA: Adaptive Energy Amplification for Robust Time Series Forecasting

1: Input: historical time series X ∈ RT×C , forecasting horizon H , mixing ratio α, non-stationarity
weight λnon-stat, differential embedding dimension D, energy predictor embedding dimension D′

2: Output: forecasted results Ŷ ∈ RH×C , total loss L
3:
4: Initialize learnable parameters: M,We, be,Wp, bp,W1, b1,W2, b2, λ1, λ2

5:
6: Spectral Mirroring (Section 4.2)
7: X ← rFFT(X) ▷ Transform to frequency domain
8: Xreverse[k]← X [F − 1− k], ∀k ∈ [0, F − 1] ▷ Spectrum reverse
9: Xscaled ← Xreverse ⊙M ▷ Adaptive scaling per frequency/channel

10: Phase-preserving mixing to avoid distortion:
11: for each frequency k, channel c do
12: θ1, θ2 ← ∠(X [k, c]),∠(Xscaled[k, c])
13: ∆θ ← (θ1 − θ2) mod 2π ▷ Circular difference modulo 2π

14: ∆θadjusted ←
{
∆θ − 2π if ∆θ > π

∆θ otherwise
▷ Shortest angular path

15: θmix ← θ1 +∆θadjusted ▷ Phase mixing (Equation 4)
16: Amix ← α · |X [k, c]|+ (1− α) · |Xscaled[k, c]|
17: Xenhanced[k, c]← Amix · ejθmix ▷ Reconstruct enhanced spectrum
18: end for
19:
20: Differential Embedding (Section 4.3)
21: E1∥E2 ←We · Xenhanced + be ▷ Project to complex embedding space
22: E′

1 ← E1 − λ1 · E2, E′
2 ← E2 − λ2 · E1 ▷ Differential operation for noise suppression

23: E′ ← Concat(E′
1, E

′
2) ▷ Denoised embedding (Proposition A.4)

24: Xdenoised ←Wp · E′ + bp ▷ Project back to frequency domain
25:
26: Energy Prediction & Forecasting (Section. 4.4)
27: Xdenoised ← irFFT(Xdenoised) ▷ Denoised input for base model
28: Ŷdenoised ← BaseModel(Xdenoised) ▷ Any forecasting backbone
29: Ydenoised ← rFFT(Ŷdenoised)
30: E ←W1 · Xscaled + b1 ▷ Encode historical spectral context
31: Yadjusted ←W2 · Concat(E ,Ydenoised) + b2 ▷ Spectral alignment
32: Ŷ ← irFFT(Yadjusted) ▷ Final consistent prediction
33:
34: Multi-Task Optimization (Section 4.5)
35: Lforecast ← MSE(Ŷ , Y ) ▷ Forecasting loss
36: Lnon-stat ←

√
Varx∼B(|E′|) ▷ Non-stationarity regularization (Equation 14)

37: L ← Lforecast + λnon-stat · Lnon-stat
38: return Ŷ ,L

The equality Var(B) = Var(C) stems from the assumption that ϵ(1)i and ϵ
(2)
i are identically dis-

tributed. Substituting these definitions and evaluating at the optimal λ = λ∗ yields:

Var(δ) = (1− λ∗)2σ2
c + (1 + λ∗2)σ2

ϵ .

This final expression shows that the mechanism suppresses the harmful variance from common-mode
noise by a factor of (1− λ∗)2 while preserving and even amplifying the beneficial stochastic noise
by a factor of (1 + λ∗2) ≥ 1.

Thus, the adaptive parameter λ∗ optimally balances the bias-variance trade-off in the gradient
estimates, leading to more robust and effective optimization.
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B MORE DETAILS

B.1 MORE DETAILS OF METRICS

We use Mean Squared Error (MSE) and Mean Absolute Error (MAE) as evaluation metrics. Given
the ground truth values Xi and the predicted values X̂i, these metrics are defined as follows:

MSE =
1

N

N∑
i=1

(Xi − X̂i)
2, MAE =

1

N

N∑
i=1

|Xi − X̂i|,

where N is the total number of predictions.

B.2 MORE DETAILS OF FIGURE 1

Figure 1(a): Spectral Bias. To evaluate the spectral bias of base models, we conduct frequency
masking experiments during inference. Given an input time series X ∈ RT×C , we compute its
frequency representation via rFFT:

X = rFFT(X), X ∈ CF×C ,

where F = ⌊T/2⌋+ 1 is the number of frequency components. We then create two masked variants:
Low-frequency mask: Set the lower 50% of frequencies to zero:

Xlow-mask[k] =

{
0, for k = 0, 1, . . . , ⌊F/2⌋,
X [k], otherwise.

High-frequency mask: Set the higher 50% of frequencies to zero:

Xhigh-mask[k] =

{
X [k], for k = 0, 1, . . . , ⌊F/2⌋,
0, otherwise.

Each masked spectrum is converted back to the time domain via inverse rFFT, and forecasting
performance is evaluated relative to the unmasked baseline.

Results indicate that masking low-frequency components leads to a severe performance degradation
(MSE increase > 100%), whereas masking high-frequency components has a negligible effect (MSE
increase < 5%). This pronounced discrepancy confirms that baseline models exhibit a strong reliance
on low-frequency information while overlooking high-frequency signals, underscoring a fundamental
spectral bias in existing forecasting architectures.

Figure 1(b): Indiscriminate Amplification. To assess robustness to high-frequency noise, we
compare vanilla amplification methods with our AEA-enhanced version under two noise injection
scenarios on the ETTh1 dataset:

(1) “Gaussian noise to high freq: before amplification” - Noise is injected directly into the
high-frequency bands of the input signal before spectral mirroring:

Xnoise-before[k] =

{
X [k] +N (0, σ2), for k > ⌊F/2⌋,
X [k], otherwise,

where N (0, σ2) denotes Gaussian noise with zero mean and variance σ2.

(2) “Gaussian noise to high freq: after amplification” - The same noise is introduced into the
high-frequency components of the enhanced spectrum output by the Spectral Mirroring
module:

Xenhanced = Spectral Mirroring(X )

Xnoise-after[k] =

{
Xenhanced[k] +N (0, σ2), for k > ⌊F/2⌋,
Xenhanced[k], otherwise.
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Performance degradation is measured as a relative increase in MSE compared to the “None” baseline.

Vanilla amplification methods suffer severe performance degradation under both noise conditions.
This demonstrates that indiscriminate amplification amplifies noise alongside signals, compromising
robustness. In contrast, AEA maintains stable forecasting accuracy, demonstrating that its differential
embedding mechanism effectively suppresses common-mode noise while preserving discriminative
high-frequency content. The significant performance gap highlights AEA’s superior noise robustness
compared to existing amplification approaches.

B.3 MORE DETAILS OF DATASETS

Table 4: Dataset detailed descriptions. The dataset size is organized into (Train, Validation, Test).

Datasets Dim Prediction Length Dataset Size Frequency Information

ETTh1 7 {96, 192, 336, 720} (8545, 2881, 2881) 15 min Electricity
ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) 15 min Electricity
ETTm1 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min Electricity
ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min Electricity

Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) 1 hour Electricity
Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) 1 day Exchange rate
Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10 min Weather
Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) 1 hour Transportation

We evaluate our method on eight established time series benchmarks for long-term forecasting.
Dataset statistics are summarized in Table 4, with detailed descriptions provided below:

(1) The ETT (Electricity Transformer Temperature) dataset (Zhou et al., 2021) records tempera-
ture and load data from power transformers in two Chinese regions between 2016 and 2018.
It includes two temporal resolutions: ETTh (hourly) and ETTm (15-minute intervals).

(2) The Electricity dataset (Wu et al., 2023) comprises hourly power consumption measure-
ments (kWh) from 321 customers. Collected from the UCL repository and spanning
2012-2014, it captures residential and commercial energy usage patterns.

(3) The Weather dataset (Wu et al., 2023) contains 21 meteorological variables recorded at
10-minute intervals throughout 2020 in Germany. Parameters include temperature, humidity,
pressure, and visibility, providing comprehensive environmental monitoring.

(4) The Exchange dataset (Wu et al., 2023) tracks daily currency values for eight major
economies relative to the US dollar over 1990-2016. This 26-year series reflects global
financial dynamics and macroeconomic trends.

(5) The Traffic dataset (Wu et al., 2023) provides hourly occupancy rates from 862 sensors on
San Francisco Bay Area freeways during 2015-2016. It captures urban mobility patterns
and congestion dynamics.

B.4 MORE DETAILS OF EXPERIMENT

We make our codes publicly available, including implementations of all base models and the pro-
posed AEA framework, to ensure reproducibility. The backbone implementations are adapted from
their official GitHub repositories, with reference to the TimesNet codebase (Wu et al., 2023). All
experiments were conducted using the following unified settings: batch size of 32, learning rate of
0.0005, random seed fixed at 2021, and Adam optimizer (Kingma & Ba, 2015). Each run was trained
for 10 epochs with early stopping (patience = 3) to prevent overfitting.

C MORE RESULTS

C.1 MORE RESULTS OF HYPERPARAMETER SENSITIVITY ANALYSIS

We conduct sensitivity analysis on four key hyperparameters using MSE as the evaluation metric,
with DLinear as the backbone model under a forecasting horizon of 96.
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Figure 3: Performance w.r.t. different amplitude
mixing ratio α with DLinear as backbone under

a horizon of 96.

Figure 4: Performance w.r.t. different
differential scaling initialization λinit with

DLinear as backbone under a horizon of 96.

Figure 5: Performance w.r.t. different
non-stationarity weight λnon−stat with DLinear

as backbone under a horizon of 96.

Figure 6: Performance w.r.t. different energy
predictor dimension D′ with DLinear as

backbone under a horizon of 96.

Sensitivity of Amplitude Mixing Ratio α. We investigate the impact of the amplitude mixing ratio
α in Spectral Mirroring, which controls the balance between original and mirrored spectra amplitudes.
As shown in Figure 4, performance remains stable across α ∈ [0, 1], with α = 0.4 achieving optimal
or near-optimal results on all four datasets. This suggests that equal weighting offers the optimal
balance between signal enhancement and distortion avoidance. The minimal performance variation
(< 1% MSE difference across values) demonstrates the robustness of our amplitude mixing strategy
to this hyperparameter.

Sensitivity of Differential Scaling Initialization λinit. The initialization of differential scaling
parameters λ1 and λ2 is crucial for stable training. As shown in Figure 5, performance is largely
insensitive to λinit ∈ [0, 1], with fluctuations within 5% across datasets. The Softplus constraint
ensures that positive values are maintained throughout the optimization process, while the learning
mechanism allows for adaptation to dataset-specific noise characteristics. We use λinit = 0.2 as the
default for consistent convergence.

Sensitivity of Non-stationarity Weight λnon−stat. The regularization weight λnon−stat balances
forecasting accuracy with representation stability. As shown in Figure 6, extreme values (≥ 100)
cause noticeable degradation, while moderate settings (0.1− 1.0) maintain stable performance. This
confirms the importance of the non-stationarity loss for robust learning, while demonstrating that
a wide range of values provides effective regularization. We set λnon−stat = 0.1 as the default
balanced configuration.
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Sensitivity of Energy Predictor Dimension D′. As shown in Figure 3, the embedding dimension
D′ in the Energy Predictor shows minimal impact on performance, with differences < 5% across
D′ ∈ [64, 512]. This indicates that even compact representations (D′ = 64) effectively capture the
spectral mapping between enhanced and original distributions. The consistency across dimensions
confirms the efficiency of our frequency-domain alignment approach.
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