

ADAPTIVE ENERGY AMPLIFICATION FOR ROBUST TIME SERIES FORECASTING

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning models for time series forecasting often exhibit a spectral bias, prioritizing high-energy, low-frequency components while underfitting predictive but low-energy, high-frequency signals. Existing efforts attempt to correct this by amplifying high-frequency components but suffer from indiscriminate amplification, enhancing both meaningful signals and task-irrelevant noise, which destabilizes training and impairs generalization. To address this, we propose **AEA** (**A**daptive **E**nergy **A**mplification), a novel framework that reframes the problem as one of adaptive signal enhancement. AEA introduces two synergistic innovations: (1) a **Spectral Mirroring** mechanism that constructs a phase-preserving, low-frequency surrogate to guide targeted, distortion-free amplification of high-frequency signals; and (2) a lightweight **Differential Embedding** module that operates in a latent space to adaptively suppress common-mode noise. By decoupling signal amplification from noise suppression, AEA selectively enhances only informative features. **Extensive experiments show that our model-agnostic framework consistently improves the forecasting performance of state-of-the-art backbones in both long-term and short-term forecasting tasks, while significantly enhancing training stability and generalization.** The code repository is available at <https://anonymous.4open.science/r/AEA-685E/>.

1 INTRODUCTION

Time series forecasting (TSF) is critical in various real-world applications, including traffic flow prediction (Wu et al., 2020), energy management (Zhou et al., 2021), weather forecasting (Liang et al., 2023), financial investment (Oreshkin et al., 2020), human healthcare (Qiu et al., 2024), *etc.* Recent deep learning-based methods, which have powerful nonlinear modeling capabilities to learn complex patterns and feature representations, achieving remarkable performance on TSF, such as Convolutional-based (Wu et al., 2023; donghao & wang xue, 2024), Transformer-based (Nie et al., 2023; Liu et al., 2024a), and MLP-based methods (Zeng et al., 2023; Wang et al., 2024).

Despite these advances, such models exhibit a fundamental spectral bias: they consistently prioritize high-energy, low-frequency components while overlooking subtle yet predictive high-frequency signals (Xu et al., 2024; Yi et al., 2024). As shown in Figure 1a, masking low-frequency components causes a drastic drop in performance, while masking high-frequency components only marginally impacts performance, revealing the models’ over-reliance on low-frequency information with limited capability for modeling high-frequency signals. This learning pathology originates from the model’s optimization bias on low-frequency components with high energy. According to *Parseval’s Theorem* (Lathi & Green, 1998; Yi et al., 2023), the energy is equivalent between the time and frequency domains. In most real-world time series data, low-frequency components possess substantially higher amplitudes than their high-frequency counterparts, meaning energy is concentrated in the low-frequency part of the spectrum. As a result, the predictive loss landscape becomes dominated by errors from these low-frequency components with high amplitude. This skews the optimization process, compelling the learning algorithm to primarily allocate model capacity toward fitting these dominant, low-frequency signals, while the informative yet low-energy high-frequency details are consequently underfitted (Liu et al., 2023; Piao et al., 2024; Fei et al., 2025).

To address the issue, recent efforts have focused on amplifying the energy of high-frequency components to recalibrate their influence during model optimization. These methods can be broadly

Figure 1: The average degradation in forecasting performance (Values denote relative increase in MSE (%)) compared to the “None” baseline) during the inference stage on ETTh1. (a) When the lower v.s. higher 50% of frequency bands are masked (set to zero), the significantly smaller performance drop after high-frequency masking confirms the base model’s reliance on low-frequency information and its insensitivity to high-frequency components. (b) Comparing the vanilla amplification method with our enhanced version (+AEA) when artificially injecting Gaussian noise of the same intensity into high frequencies. The results show that the vanilla methods’ performance degrades drastically, proving that they are susceptible to noise. In contrast, our method successfully suppresses noise, resulting in significantly enhanced robustness. We present more details in Appendix B.1.

categorized into two main strategies: indirect and direct enhancement. Specifically, the **indirect enhancement** approaches mitigate energy disparity through normalization. For instance, Fredformer (Piao et al., 2024) implements frequency-wise local normalization, which segments the spectrum and normalizes each sub-band individually to eliminate amplitude disparity. On the other hand, the **direct enhancement** strategy, conversely, explicitly modifies the spectral energy distribution. Amplifier (Fei et al., 2025) is one representative work, whose key innovation is spectrum flipping. This technique inverts the spectrum to leverage high-energy signals as a template for boosting low-energy signals.

However, despite their different mechanisms, these approaches share a fundamental flaw: their amplification is indiscriminate. High-frequency bands inherently contain a mixture of predictive signals (e.g., subtle seasonal variations and trends) and task-irrelevant noise (e.g., sensor artifacts and background noise) (Eldele et al., 2024; Kou et al., 2025; Yi et al., 2025). By uniformly elevating the energy across the high-frequency bands, existing methods inevitably amplify noise alongside the valuable signals. This indiscriminate enhancement introduces spectral disturbances that destabilize the optimization process and ultimately impair the model’s generalization performance. As empirically demonstrated in Figure 1b, when noise is injected into the high-frequency bands, both indirect and direct enhancement methods suffer a significant performance degradation, underscoring the negative impact of their indiscriminate amplification and revealing an inherent inability to distinguish between informative signals and spurious noise.

To address this limitation, we argue that *the key to unlocking the potential of high-frequency signals lies not in indiscriminate amplification, but in adaptive enhancement*. We introduce AEA (**Adaptive Energy Amplification**), a novel framework that fundamentally reframes the problem by simultaneously amplifying signals and suppressing noise. AEA achieves this through two synergistic innovations designed to provide a more principled and reasonable energy amplification. First, (1) **Spectral Mirroring** addresses the amplification itself by leveraging the typically cleaner, high signal-to-noise ratio of the low-frequency spectrum. It constructs a phase-preserving surrogate from these reliable low-frequency components to serve as a structured template, guiding a targeted amplification of high-frequency signals without introducing spectral distortion. Second, to explicitly tackle noise, (2) **Differential Embedding** operates in a learned latent space to identify and filter out common-mode noise, which indiscriminate methods inadvertently amplify. By integrating these two mechanisms, AEA ensures that only the informative, discriminative features within the high-frequency bands are selectively enhanced, thereby resolving the core issue of indiscriminate amplification by separating the targeted enhancement of predictive signals from the active suppression of noise.

In summary, our contributions can be highlighted as followings:

- 108 • We systematically identify the problem of "indiscriminate amplification" in forecasting models
109 against spectral bias, establishing a novel connection between targeted energy amplification and
110 adaptive noise suppression.
- 111 • We propose AEA, a model-agnostic framework that employs spectral mirroring for distortion-free
112 amplification and differential embedding for adaptive noise suppression, seamlessly integrating
113 with various forecasting backbones.
- 114 • We empirically demonstrate that AEA consistently improves accuracy, stability, and generalization
115 across multiple benchmark datasets and state-of-the-art backbones in both short-term and long-term
116 forecasting, offering a robust new paradigm for frequency-aware time series forecasting.

118 2 RELATED WORK

121 2.1 TIME SERIES FORECASTING MODELS

123 Traditional time series forecasting methods such as ARIMA (Zhang, 2003) and Prophet (Taylor &
124 Letham, 2018; Triebe et al., 2021) are effective at capturing trend and seasonal components in time
125 series (Cleveland et al., 1990; Ahmed et al., 2010; Wen et al., 2020; Zeng et al., 2023; Sttsyuk &
126 Choi, 2025). With the continuous growth in data availability, deep learning methods have brought
127 revolutionary advances to the field, introducing more complex and efficient models (Torres et al.,
128 2021; Lim & Zohren, 2021). Convolutional Neural Networks (CNNs) (Bai et al., 2018; Wan et al.,
129 2019; Sen et al., 2019; Liu et al., 2022a; Wu et al., 2023) have been widely adopted to capture local
130 temporal dependencies, while Recurrent Neural Networks (RNNs) (Rangapuram et al., 2018; Smyl,
131 2020; Salinas et al., 2020; Hewamalage et al., 2021), although proficient at processing sequential
132 information, often struggle with long-sequence modeling. Transformer-based models (Zhou et al.,
133 2021; Wu et al., 2021; Liu et al., 2022b; Zhang & Yan, 2022; Nie et al., 2023; Liu et al., 2024a; Wen
134 et al., 2023; Tang & Matteson, 2021; Zhou et al., 2022b; Liu et al., 2021; Feng et al., 2024), typically
135 equipped with self-attention mechanisms (Vaswani et al., 2017), excel at capturing long-range
136 dependencies, albeit at considerable computational cost. Recently, linear models (Oreshkin et al.,
137 2020; Zhang et al., 2022; Das et al., 2023) such as DLinear (Zeng et al., 2023) and TSMixer (Chen
138 et al., 2023) have gained popularity due to their simplicity and strong performance in long-term
139 forecasting, though they may underperform on highly non-linear and complex patterns. Furthermore,
140 multi-periodicity analysis (Benaouda et al., 2006; Percival & Walden, 2000; Wu et al., 2023; Wang
141 et al., 2022; Chen et al., 2024; Yi et al., 2023; Zhou et al., 2022a) continues to play an essential role
142 in the preprocessing stages of advanced modeling pipelines.

143 2.2 FREQUENCY DOMAIN METHODS IN TIME SERIES FORECASTING

145 Recent studies have increasingly leveraged frequency-domain techniques to enhance the accuracy and
146 efficiency of time series forecasting (Yi et al., 2025). Prominent examples include FEDformer (Zhou
147 et al., 2022b), which accelerates attention via frequency-domain low-rank approximation; FreTS (Yi
148 et al., 2023), which integrates global frequency properties into an efficient MLP architecture; and
149 FITS (Xu et al., 2024), which employs frequency interpolation as an effective low-pass filter. A
150 common characteristic of these approaches is their tendency to prioritize high-energy, low-frequency
151 components, a design choice that aligns with the natural energy distribution of many real-world time
152 series. However, this emphasis may lead to insufficient use of subtle yet predictive high-frequency
153 signals, which often carry critical short-term variations and anomaly patterns. The challenge of
154 effectively balancing frequency components without amplifying noise has thus emerged as a key issue
155 in frequency-aware forecasting. Recent efforts have attempted to address this spectral imbalance.
156 Fredformer (Piao et al., 2024) mitigates frequency bias in Transformers by promoting more balanced
157 feature learning across bands, yet its architecture-specific design limits generalizability. Amplifier (Fei
158 et al., 2025) directly elevates high-frequency energy to match low-frequency levels, aiming to equalize
159 gradient scales across the spectrum. However, such uniform amplification risks enhancing high-
160 frequency noise alongside signals. In contrast to these end-to-end architectures, our proposed AEA is
161 designed as a model-agnostic plugin that decouples signal amplification from noise suppression. By
162 combining targeted energy amplification and adaptive noise suppression, AEA achieves more nuanced
163 enhancement while maintaining robustness and efficiency across diverse forecasting backbones.

162 **3 PRELIMINARIES**

164 **Time Series Forecasting.** Formally, let $X = [x_1, \dots, x_T] \in \mathbb{R}^{T \times C}$ be a time series, where T is the
 165 length of historical data. $x_t \in \mathbb{R}^C$ represents the observation at time t . C denotes the number of
 166 variates (*i.e.*, channels). The objective is to construct a predictive model f that estimates the future
 167 values of the series, $Y = [\hat{x}_{T+1}, \dots, \hat{x}_{T+H}] \in \mathbb{R}^{H \times C}$, where H is the forecasting horizon.
 168

169 **Real Fast Fourier Transform.** Given a real-valued sequence $x[n]$ of length N , we employ the Real
 170 Fast Fourier Transform (rFFT) (Sorensen et al., 1987) to efficiently convert it into the frequency
 171 domain, and transform it back using the inverse rFFT (irFFT). The rFFT/irFFT exploits the conjugate
 172 symmetry of real-valued inputs, reducing the computational complexity from $O(N^2)$ to $O(N \log N)$
 173 while compressing the output to $N/2 + 1$ complex-valued frequency components. The resulting
 174 spectrum $\mathcal{X} \in \mathbb{C}^{N/2+1}$ contains both magnitude and phase information:
 175

$$A[k] = |\mathcal{X}[k]|, \quad \theta[k] = \angle \mathcal{X}[k] \quad (1)$$

176 where $A[k]$ represents amplitude and $\theta[k]$ phase at frequency $\omega_k = 2\pi k/N$. We provide more details
 177 of the Fourier Transform in Appendix A.1.
 178

179 **4 PROPOSED METHOD**

180 **4.1 OVERALL ARCHITECTURE**

181 We propose the Adaptive Energy Amplification (AEA) framework to address the limitations of
 182 indiscriminate amplification in existing frequency-domain forecasting methods. As illustrated in
 183 Figure 2, AEA operates primarily in the frequency domain and consists of two core innovations: (1) a
 184 Spectral Mirroring module that performs targeted amplification of high-frequency signals via a phase-
 185 preserving surrogate spectrum, and (2) a Differential Embedding module that suppresses common-
 186 mode noise in a latent space to enhance discriminative features. To ensure spectral consistency, we
 187 incorporate an Energy Predictor that aligns the predictions with the original data distribution. The
 188 entire framework is model-agnostic and seamlessly integrates with various forecasting backbones.
 189 We present the pseudo-code in Algorithm 1.
 190

191 **4.2 SPECTRAL MIRRORING**

192 The Spectral Mirroring achieves targeted amplification by constructing a phase-preserving surrogate
 193 from reliable low-frequency components. This focus on phase coherence distinguishes our approach
 194 from conventional spectral manipulation methods, which often introduce phase distortions that
 195 degrade signal reconstruction. Our method explicitly maintains phase relationships through a mixing
 196 strategy, enabling distortion-free enhancement of informative high-frequency components.
 197

198 To enhance attention to low-energy, high-frequency components as well as high-energy, low-frequency
 199 components, we reverse the entire spectrum to create a structured surrogate (Fei et al., 2025). For
 200 an input spectrum $\mathcal{X}[k]$ with $k = 0, 1, \dots, F - 1$ (where $F = \lfloor T/2 \rfloor + 1$), the reversed spectrum is
 201 obtained by:
 202

$$\mathcal{X}_{\text{reverse}}[k] = \mathcal{X}[F - 1 - k]. \quad (2)$$

203 This operation inverts the natural energy distribution, allowing the typically dominant low-frequency
 204 components to guide the amplification of subtle high-frequency signals.
 205

206 To enable adaptive control over the amplification process, we introduce a learnable scaling matrix
 207 $M \in \mathbb{R}^{F \times C}$ that operates on the reversed spectrum:
 208

$$\mathcal{X}_{\text{scaled}}[k, c] = \mathcal{X}_{\text{reverse}}[k, c] \cdot M[k, c], \quad \text{for } k = 0, 1, \dots, F - 1; c = 0, 1, \dots, C - 1. \quad (3)$$

209 This matrix allows the model to learn appropriate amplification factors for each frequency component
 210 and channel independently.
 211

212 The key to avoiding distortion lies in how we mix the original and mirrored spectra. A simple linear
 213 combination of amplitudes and phases would likely result in destructive interference (Demirel & Holz,
 214 2025). Instead, we employ a *phase mixing* strategy that minimizes disruptive phase discontinuities.
 215

Figure 2: An illustration of the proposed AEA framework. The input time series is first transformed into the frequency domain. The framework consists of five components: (a) The Spectral Mirroring module (Section 4.2) that reverses the spectrum to adaptively amplify high-frequency signals without distortion through a learned scaling matrix and phase-preserving mixing. (b) The Differential Embedding module (Section 4.3) that projects the enhanced spectrum into a latent space to suppress common-mode noise via a differential operation, and yields the non-stationarity loss to stabilize learning. (c) The denoised spectrum is converted back to the time domain via irFFT for the base model to forecast. (d) The Energy Predictor module (Section 4.4) that aligns the output of the base model with the original data’s spectral properties. (e) The optimization of the entire framework by a combined loss function (Section 4.5) comprising the forecast error and the non-stationarity loss.

The *phase mixing* involves calculating the circular difference between the original and scaled phases, adjusting it to the shortest angular path within $[-\pi, \pi]$, and then blending the phases accordingly:

$$\Delta\theta[k, c] = (\theta_1[k, c] - \theta_2[k, c]) \bmod 2\pi, \quad (4)$$

$$\Delta\theta_{\text{adjusted}}[k, c] = \begin{cases} \Delta\theta[k, c] - 2\pi, & \text{if } \Delta\theta[k, c] > \pi, \\ \Delta\theta[k, c], & \text{otherwise,} \end{cases} \quad (5)$$

$$\theta_{\text{mix}}[k, c] = \theta_1[k, c] + \Delta\theta_{\text{adjusted}}[k, c], \quad (6)$$

where $\theta_1[k, c] = \angle(\mathcal{X}[k, c])$ and $\theta_2[k, c] = \angle(\mathcal{X}_{\text{scaled}}[k, c])$ represent the phase angles of the original and scaled spectra, respectively.

For amplitude combination, we employ a balanced mixing approach:

$$A_{\text{mix}}[k, c] = \alpha \cdot A_1[k, c] + (1 - \alpha) \cdot A_2[k, c], \quad (7)$$

where $A_1[k, c] = |\mathcal{X}[k, c]|$, $A_2[k, c] = |\mathcal{X}_{\text{scaled}}[k, c]|$, and $\alpha = 0.5$ provides equal weighting to both spectral representations. Ablation studies (refer to Appendix C.3) show that a fixed $\alpha = 0.5$ yields optimal performance. This balanced weighting stabilizes the initial enhancement, allowing subsequent adaptive components to focus on refining the signal.

The enhanced spectrum is then reconstructed as:

$$\mathcal{X}_{\text{enhanced}}[k, c] = A_{\text{mix}}[k, c] \cdot e^{j\theta_{\text{mix}}[k, c]}. \quad (8)$$

This process preserves temporal structure while amplifying informative high-frequency components, providing refined input for subsequent processing. The stability of the mirroring process is formally guaranteed by Theorem A.5, which ensures bounded deviation from the original signal characteristics throughout the enhancement process.

4.3 DIFFERENTIAL EMBEDDING WITH NON-STATIONARITY LOSS

The Differential Embedding module suppresses common-mode noise while preserving discriminative signals in the enhanced spectrum $\mathcal{X}_{\text{enhanced}}$. It projects the input into an embedding space, applies a

270 differential operation for noise suppression, and incorporates a regularization loss to stabilize training.
 271 The input spectrum is first projected into a complex-valued embedding space:
 272

$$273 \quad E_1 || E_2 = W_e \cdot \mathcal{X}_{\text{enhanced}} + b_e, \quad (9)$$

274 where $W_e \in \mathbb{C}^{D \times 1}$ and $b_e \in \mathbb{C}^D$ are learnable parameters, and D is the embedding dimension.
 275 $E_1 \in \mathbb{C}^{F \times C \times \frac{D}{2}}$ and $E_2 \in \mathbb{C}^{F \times C \times \frac{D}{2}}$ are the subspaces of the differential embedding.

276 Inspired by the principle of *differential attention* (Ye et al., 2025; Wang et al., 2025a), we apply a
 277 differential operation in the embedding space as follows:
 278

$$279 \quad E'_1 = E_1 - \lambda_1 \cdot E_2, \quad E'_2 = E_2 - \lambda_2 \cdot E_1, \quad (10)$$

280 where λ_1 and λ_2 are learnable scalars. These scalars are initialized with a random constant λ_{init} and a
 281 Softplus function (Nair & Hinton, 2010) to ensure they remain positive throughout training:
 282

$$283 \quad \lambda_1 = \text{Softplus}(\lambda_{\text{init}}), \quad \lambda_2 = \text{Softplus}(\lambda_{\text{init}}). \quad (11)$$

284 The results are concatenated to form the denoised embedding:
 285

$$286 \quad E' = \text{Concat}(E'_1, E'_2), \quad E' \in \mathbb{C}^{F \times C \times D}. \quad (12)$$

287 This operation is theoretically grounded in noise suppression (see Proposition 4.1). The denoised
 288 embedding is projected back to the frequency domain:
 289

$$290 \quad \mathcal{X}_{\text{denoised}} = W_p \cdot E' + b_p, \quad \mathcal{X}_{\text{denoised}} \in \mathbb{C}^{F \times C}, \quad (13)$$

291 where $W_p \in \mathbb{C}^{1 \times D}$ and $b_p \in \mathbb{C}^1$ are learnable parameters.
 292

293 Theoretical analysis 4.7 shows that this differential operation reduces gradient bias from common-
 294 mode noise while preserving beneficial stochastic variance. To further enhance stability, we introduce
 295 a non-stationarity loss that penalizes excessive variability in embedding magnitudes across batches:
 296

$$297 \quad \mathcal{L}_{\text{non-stat}} = \sqrt{\text{Var}_{\mathbf{x} \sim \mathcal{B}}(|E'|)}, \quad (14)$$

298 where \mathcal{B} represents the current batch of samples. This loss term serves as a regularizer that encourages
 299 the model to learn stable, stationary representations that are robust to batch-wise variations. The final
 300 denoised spectrum $\mathcal{X}_{\text{denoised}}$ is transformed back to the time domain via inverse rFFT for forecasting.
 301 **The stability of Differential Embedding is also guaranteed by Theorem A.5, which ensures that the**
 302 **mirroring process does not introduce excessive signal distortion.**

302 4.4 ENERGY PREDICTOR

303 The Spectral Mirroring and Differential Embedding alter the energy distribution of the input signal.
 304 While this enhancement improves the model's ability to capture high-frequency components, directly
 305 using the base model's predictions on this enhanced and denoised signal would therefore yield outputs
 306 with inconsistent energy characteristics (Liu et al., 2023). To ensure spectral consistency with the
 307 original data, our Energy Predictor learns a frequency-domain mapping. It takes the scaled historical
 308 spectrum $\mathcal{X}_{\text{scaled}}$ and the base model's preliminary prediction $\hat{Y}_{\text{denoised}}$ as inputs. First, $\hat{Y}_{\text{denoised}}$ is
 309 transformed to the frequency domain via rFFT to obtain $\mathcal{Y}_{\text{denoised}}$. Then, $\mathcal{X}_{\text{scaled}}$ is projected into a
 310 latent embedding to represent the historical context. This embedding is concatenated with $\mathcal{Y}_{\text{denoised}}$,
 311 and the combined representation is passed through a final linear projection. This step yields the
 312 adjusted spectrum $\mathcal{Y}_{\text{adjusted}}$, effectively aligning the prediction's spectral properties with the original
 313 data. These operations are defined precisely as follows:
 314

$$315 \quad \mathcal{Y}_{\text{denoised}} = \text{rFFT}(\hat{Y}_{\text{denoised}}), \quad \mathcal{Y}_{\text{denoised}} \in \mathbb{C}^{H' \times C}, \quad (15)$$

$$316 \quad \mathcal{E} = W_1 \cdot \mathcal{X}_{\text{scaled}} + b_1, \quad \mathcal{E} \in \mathbb{C}^{D' \times C}, \quad (16)$$

$$318 \quad \mathcal{Y}_{\text{adjusted}} = W_2 \cdot \text{Concat}(\mathcal{E}, \mathcal{Y}_{\text{denoised}}) + b_2, \quad \mathcal{Y}_{\text{adjusted}} \in \mathbb{C}^{(D' + H') \times C}, \quad (17)$$

320 where $H' = \lfloor H/2 \rfloor + 1$, and $W_1 \in \mathbb{C}^{D' \times F}$, $W_2 \in \mathbb{C}^{H' \times (D' + H')}$, $b_1 \in \mathbb{C}^{D'}$, and $b_2 \in \mathbb{C}^{H'}$ are
 321 learnable parameters.

322 Finally, the adjusted spectrum is transformed back to the time domain to produce the final prediction:
 323

$$324 \quad \hat{Y} = \text{irFFT}(\mathcal{Y}_{\text{adjusted}}). \quad (18)$$

324 Proposition A.9 theoretically demonstrates that the Energy Predictor, by utilizing the high-frequency-
 325 enhanced historical signal as guidance, intelligently calibrates the distribution of the predicted signal
 326 back to the characteristics of the original data without undermining the existing high-frequency gains.
 327 This ensures spectral alignment through controlled modifications rather than destructive adjustments
 328 that could revert to low-frequency dominance. We present the theoretical bound in Proposition A.7.
 329

330 **4.5 LOSS FUNCTION**

331 We follow a multi-task optimization framework (Vandenhende et al., 2022) that simultaneously
 332 ensures accurate forecasting while maintaining representation stability and formulates the loss
 333 function \mathcal{L} as:

$$\mathcal{L} = \mathcal{L}_{\text{forecast}} + \lambda_{\text{non-stat}} \cdot \mathcal{L}_{\text{non-stat}}, \quad (19)$$

334 where $\mathcal{L}_{\text{forecast}}$ is the Mean Squared Error (MSE) between predictions \hat{Y} and ground truth Y , $\mathcal{L}_{\text{non-stat}}$
 335 is the regularization term introduced in Equation 14, and $\lambda_{\text{non-stat}}$ is a balancing hyperparameter.
 336

337 **4.6 COMPUTATIONAL COMPLEXITY ANALYSIS**

338 AEA is designed as a plug-and-play framework whose computational overhead is typically negligible
 339 compared to forecasting backbones, especially those with quadratic complexity. The complexity is
 340 dominated by FFT operations and linear projections across its modules. The rFFT/irFFT transforma-
 341 tions require $O(T \log T)$ per channel. Spectral Mirroring performs element-wise operations in $O(T)$
 342 time. Both Differential Embedding and Energy Predictor involve linear projections with complexity
 343 $O(F \cdot C \cdot D)$ or $O(F \cdot C \cdot D')$, where $F = \lfloor T/2 \rfloor + 1 \approx T$, D and D' are fixed (typically 64-128).
 344 Thus, the overall complexity of AEA is linear in both sequence length and number of channels, i.e.,
 345 $O(T \cdot C)$. This is significantly more efficient than the quadratic complexity $O(T^2 \cdot C)$ of transformer
 346 backbones, making AEA a practical enhancement for real-world forecasting applications.
 347

348 **4.7 THEORETICAL ANALYSIS**

349 **Notation.** Let $e^{(1)}, e^{(2)} \in \mathbb{C}^{F \times C \times \frac{D}{2}}$ denote the two embedding subspaces from Equation 9, Θ the
 350 model parameters of loss L , $\lambda \in \mathbb{R}^+$ a learnable scaling parameter, s_i the true signal component,
 351 $n_i^{(c)}$ the common-mode noise, and ϵ_i the independent stochastic noise.

352 **Proposition 4.1** (Adaptive Noise Suppression via Differential Embedding). *The differential em-
 353 bedding mechanism $e^{(\text{diff})} = e^{(1)} - \lambda e^{(2)}$ provides adaptive suppression of common-mode noise
 354 while preserving discriminative signals. The resulting gradient estimates $\hat{g} = g + \delta$ exhibit superior
 355 bias-variance trade-off:*

$$\mathbb{E}[\delta] = (1 - \lambda^*) \mathbf{b}_g, \quad \text{Var}(\delta) = (1 - \lambda^*)^2 \sigma_c^2 + (1 + \lambda^*)^2 \sigma_\epsilon^2 \quad (20)$$

356 where λ^* is the optimal value minimizing the training objective, \mathbf{b}_g is the bias introduced by common-
 357 mode noise, δ is the gradient noise, and $\sigma_c^2, \sigma_\epsilon^2$ represent the gradient variances from common-mode
 358 and stochastic noise components, respectively.

359 *Proof.* We begin by decomposing the embedding into signal and noise components under Assumption
 360 A.1, which is supported by previous studies (Ye et al., 2025; Wang et al., 2025a). This common-
 361 mode noise often stems from systematic biases present in the input data (e.g., stop words in NLP,
 362 background regions in spatio-temporal data, or certain frequency components in the spectrum (Eldele
 363 et al., 2024)). The differential operation yields:

$$e^{(\text{diff})} = s^{(\text{diff})} + (1 - \lambda) n^{(c)} + (\epsilon^{(1)} - \lambda \epsilon^{(2)}) \quad (21)$$

364 Taking expectation over stochastic noise ($\mathbb{E}[\epsilon^{(1)}] = \mathbb{E}[\epsilon^{(2)}] = 0$):

$$\mathbb{E}[\delta] = (1 - \lambda) \mathbb{E} \left[\frac{\partial L}{\partial e^{(\text{diff})}} \cdot \frac{\partial n^{(c)}}{\partial \Theta} \right] = (1 - \lambda^*) \mathbf{b}_g \quad (22)$$

365 The variance analysis follows from the uncorrelatedness of noise components. The complete derivation,
 366 including detailed expectations, variance decompositions, and convergence guarantees, is

378 provided in Appendix A.4. This proposition validates our differential embedding by ensuring that:
 379 (i) common-mode noise amplified during spectral mirroring is effectively suppressed, (ii) the non-
 380 stationarity loss $\mathcal{L}_{\text{non-stat}}$ in Equation 14 stabilizes training by controlling gradient variance, and
 381 (iii) the adaptive parameter λ^* optimally balances noise suppression against signal preservation
 382 throughout optimization. \square

384 5 EXPERIMENT

386 To validate the effectiveness of the proposed AEA, we conduct extensive experiments on a variety of
 387 time series forecasting tasks, including both long-term and short-term forecasting.

389 5.1 EXPERIMENTAL SETUP

391 **Base models.** AEA is a model-agnostic framework that can be seamlessly integrated with arbitrary
 392 time series forecasting models to enhance their performance. To comprehensively evaluate its
 393 effectiveness, we select a broad range of state-of-the-art base models spanning both time-domain
 394 and frequency-domain paradigms. The time-domain models include DLinear (Zeng et al., 2023)
 395 (Linear), TimesNet (Wu et al., 2023) (CNN), and PatchTST (Nie et al., 2023) (Transformer), while
 396 the frequency-domain models comprise Amplifier (Fei et al., 2025), FrTS (Yi et al., 2023), and
 397 FredFormer (Piao et al., 2024). This comprehensive selection covers major architectural paradigms
 398 while specifically assessing AEA’s value when integrated with specialized frequency-aware methods.

399 **Implementation details.** To ensure a fair and controlled comparison across all methods, we
 400 implement base models within a unified experimental framework based on the TimesNet codebase.
 401 This guarantees that all models were trained and evaluated under identical conditions, using the same
 402 data processing pipeline and training procedure. All experiments are conducted using PyTorch
 403 (Paszke et al., 2019) on a single NVIDIA RTX A100 80GB GPU. Experiment configurations and
 404 implementations are detailed in Appendix B.4.

406 5.2 LONG-TERM FORECASTING

408 **Setups.** We conduct long-term forecasting experiments on eight widely used real-world multivariate
 409 time series forecasting datasets, including ETT (ETTh1, ETTh2, ETTm1, and ETTm2), Electricity,
 410 Traffic, and Weather, which are utilized by Autoformer (Wu et al., 2021). Following the established
 411 evaluation protocol in TimesNet, we adopt Mean Squared Error (MSE) and Mean Absolute Error
 412 (MAE) as the primary evaluation metrics, as well as set the historical input length to 96, and forecasting
 413 horizons are evaluated at $\{96, 192, 336, 720\}$. To ensure a fair comparison, we consistently use
 414 the same experimental configuration as the original implementations. We split all forecasting datasets
 415 into training, validation, and test sets by the ratio of 6:2:2 for the ETT dataset and 7:1:2 for the other
 416 datasets. Details of metrics and datasets are in Appendix B.2 and Appendix B.3.

417 **Results.** The results in Table 1 demonstrate that the model enhanced with AEA outperforms the
 418 base model in general. Specifically, AEA improves forecasting performance in nearly 97% of
 419 cases for both MSE and MAE. A further analysis reveals that AEA brings an average performance
 420 gain of 3.817% for time-domain models and 2.393% for frequency-domain models, showing its
 421 complementary value even for specialized frequency-aware architectures. Remarkably, AEA achieves
 422 a substantial boost on TimesNet, with a significant reduction in MSE by 8.108% and MAE by 4.337%.
 423 The last column of the table quantifies the average percentage improvement in terms of MSE/MAE,
 424 at 3.105%, which underscores the consistent enhancement brought by AEA across all forecasting
 425 horizons and datasets.

426 5.3 SHORT-TERM FORECASTING

428 **Setups.** To comprehensively evaluate the generalizability of AEA and specifically investigate its
 429 capability in scenarios where high-frequency components are paramount, we extend our evaluation
 430 to short-term forecasting tasks. Experiments are conducted on the PeMS benchmark (Chen et al.,
 431 2001), a collection of high-dimensional traffic network datasets (PEMS03, PEMS04, PEMS07,
 432 PEMS08) where short-term, high-frequency variations are critical for accurate prediction. We follow

Table 1: Long-term forecasting performance comparison *w.r.t.* forecasting models with their counterparts enhanced by the AEA in terms of MSE and MAE, the lower the better. The forecasting horizons are $\{96, 192, 336, 720\}$. The better performance in each setting is shown in **bold**. ‘Avg’ denotes the average results of four forecasting horizons; The last column, ‘IMP (%)’, shows the average percentage of MSE/MAE improvement over all base models.

Model	Linear	+ AEA			PatchTST			+ AEA			TimeSeries			+ AEA			Amplifier			+ AEA			FrTcs			+ AEA			FormerPred			+ AEA			IMP (%)
Metric	MSE	MAE	MAE	MAE	MSE	MAE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE				
ETRM1	96.384	0.397	0.380	0.392	0.387	0.403	0.374	0.396	0.390	0.414	0.395	0.410	0.437	0.439	0.397	0.407	0.395	0.406	0.386	0.400	0.376	0.395	0.375	0.393	2.361										
	192.433	0.427	0.432	0.422	0.455	0.444	0.428	0.431	0.519	0.486	0.441	0.436	0.451	0.436	0.440	0.426	0.454	0.432	0.441	0.436	0.438	0.427	0.434	0.426	0.436	0.427	0.434	0.426	0.436	0.427	2.798				
	336.481	0.459	0.479	0.458	0.490	0.463	0.466	0.452	0.471	0.450	0.473	0.452	0.497	0.457	0.482	0.447	0.517	0.484	0.489	0.459	0.485	0.448	0.484	0.459	0.485	0.448	0.484	0.459	0.485	0.448	2.107				
	ET20	720.509	0.506	0.499	0.489	0.510	0.494	0.479	0.478	0.543	0.511	0.490	0.476	0.508	0.484	0.492	0.475	0.589	0.536	0.522	0.513	0.506	0.479	0.479	0.441	0.528	0.497	0.479	0.441	0.528	0.497				
	Avg	0.452	0.447	0.447	0.460	0.451	0.437	0.439	0.484	0.467	0.450	0.444	0.473	0.454	0.452	0.439	0.488	0.467	0.454	0.431	0.457	0.443	0.457	0.432	0.457	0.443	0.457	0.432	0.457	0.432					
ETRM2	96.344	0.371	0.332	0.368	0.327	0.366	0.327	0.365	0.357	0.389	0.338	0.377	0.323	0.363	0.321	0.361	0.339	0.374	0.323	0.366	0.339	0.369	0.327	0.349	0.323	0.349	0.327	2.310							
	192.381	0.393	0.370	0.386	0.367	0.388	0.367	0.369	0.387	0.440	0.427	0.375	0.391	0.366	0.382	0.387	0.402	0.426	0.387	0.385	0.392	0.374	0.364	0.402											
	336.416	0.418	0.400	0.408	0.405	0.417	0.406	0.410	0.410	0.421	0.410	0.414	0.397	0.403	0.393	0.401	0.420	0.426	0.394	0.413	0.413	0.394	0.394	0.467											
	ET20	720.478	0.458	0.446	0.444	0.481	0.464	0.450	0.445	0.518	0.468	0.478	0.451	0.476	0.443	0.468	0.437	0.487	0.468	0.454	0.448	0.469	0.443	0.467	0.403	0.468	0.458	0.467	0.403						
	Avg	0.405	0.410	0.392	0.402	0.395	0.409	0.396	0.402	0.391	0.427	0.400	0.408	0.390	0.398	0.395	0.408	0.407	0.384	0.403	0.404	0.397	0.337	0.337	0.337	0.337	0.337	0.337							
ETRM3	96.336	0.386	0.329	0.384	0.302	0.352	0.290	0.339	0.322	0.364	0.322	0.359	0.291	0.344	0.286	0.337	0.331	0.381	0.307	0.323	0.288	0.341	0.282	0.334	0.344	0.322	0.344	0.322							
	192.381	0.386	0.329	0.384	0.302	0.352	0.290	0.339	0.322	0.364	0.322	0.359	0.291	0.344	0.286	0.337	0.331	0.381	0.307	0.323	0.288	0.341	0.282	0.334	0.344	0.322	0.344	0.322							
	336.379	0.356	0.326	0.353	0.329	0.356	0.300	0.416	0.345	0.426	0.354	0.427	0.357	0.415	0.340	0.426	0.357	0.521	0.430	0.433	0.384	0.410	0.433	0.384	0.410	0.433	0.384	0.410							
	ET20	720.478	0.638	0.795	0.641	0.482	0.478	0.421	0.439	0.421	0.440	0.418	0.438	0.439	0.452	0.424	0.443	0.419	0.594	0.739	0.631	0.416	0.435	0.409	0.433	0.409	0.433	0.409	0.433						
	Avg	0.538	0.505	0.530	0.504	0.425	0.434	0.375	0.399	0.409	0.420	0.397	0.412	0.382	0.407	0.437	0.400	0.554	0.512	0.513	0.460	0.365	0.394	0.358	0.389	0.358	0.389	0.358							
ETRM4	96.188	0.283	0.189	0.200	0.181	0.266	0.182	0.265	0.187	0.264	0.175	0.257	0.178	0.260	0.177	0.260	0.183	0.271	0.172	0.263	0.178	0.210	0.176	0.260	0.1505										
	192.182	0.360	0.271	0.347	0.249	0.311	0.242	0.300	0.253	0.206	0.247	0.237	0.247	0.237	0.247	0.237	0.247	0.237	0.247	0.237	0.247	0.237	0.253	0.237	0.247	0.237	0.253	0.237							
	336.360	0.411	0.372	0.402	0.311	0.352	0.305	0.342	0.323	0.349	0.316	0.345	0.299	0.340	0.297	0.339	0.336	0.384	0.328	0.349	0.336	0.304	0.344	0.335	0.384	0.336	0.384	0.335							
	ET20	720.546	0.518	0.514	0.515	0.406	0.404	0.399	0.399	0.423	0.408	0.430	0.404	0.394	0.396	0.392	0.396	0.477	0.474	0.480	0.476	0.400	0.398	0.394	0.388	0.392	0.388	0.392							
	Avg	0.344	0.393	0.342	0.392	0.287	0.333	0.282	0.326	0.326	0.327	0.326	0.299	0.327	0.326	0.327	0.326	0.327	0.326	0.327	0.326	0.327	0.326	0.327	0.326	0.327	0.326	0.327	0.326						
ETRM5	96.196	0.280	0.192	0.278	0.174	0.260	0.172	0.259	0.175	0.278	0.148	0.248	0.178	0.267	0.177	0.260	0.181	0.268	0.176	0.267	0.152	0.247	0.144	0.269	0.176	0.267	0.1505								
	192.195	0.283	0.190	0.279	0.194	0.274	0.195	0.278	0.189	0.290	0.158	0.254	0.174	0.247	0.176	0.260	0.183	0.274	0.183	0.275	0.166	0.259	0.162	0.255	0.166	0.259	0.162								
	336.320	0.299	0.220	0.294	0.210	0.295	0.207	0.288	0.207	0.303	0.185	0.288	0.203	0.343	0.200	0.340	0.200	0.290	0.200	0.294	0.180	0.272	0.177	0.270	0.180	0.272	0.177								
	ET20	720.243	0.431	0.331	0.237	0.326	0.237	0.318	0.233	0.313	0.254	0.338	0.216	0.311	0.309	0.396	0.236	0.324	0.231	0.322	0.214	0.303	0.213	0.301	0.214	0.303	0.212								
	Avg	0.211	0.298	0.200	0.294	0.204	0.287	0.203	0.283	0.203	0.307	0.177	0.274	0.203	0.328	0.207	0.329	0.201	0.289	0.197	0.289	0.178	0.270	0.174	0.270	0.176									
ETRM6	96.080	0.199	0.077	0.199	0.091	0.211	0.084	0.204	0.109	0.249	0.099	0.223	0.084	0.203	0.084	0.204	0.109	0.230	0.082	0.199	0.078	0.192	0.078	0.192	0.078	0.192	0.078								
	192.161	0.266	0.159	0.295	0.191	0.312	0.186	0.306	0.193	0.322	0.196	0.319	0.179	0.300	0.178	0.299	0.196	0.302	0.184	0.295	0.195	0.302	0.177	0.304	0.196	0.302	0.177								
	336.302	0.302	0.240	0.274	0.304	0.325	0.244	0.310	0.344	0.365	0.346	0.342	0.337	0.349	0.327	0.412	0.450	0.446	0.485	0.485	0.320	0.428	0.313	0.402	0.402	0.402	0.402								
	ET20	720.778	0.666	0.773	0.667	1.004	0.759	0.777	0.707	1.013	0.774	1.063	0.776	0.774	0.878	0.703	0.870	0.651	0.694	1.038	0.729	0.758	0.834	0.689	0.822	0.699	0.759								
	Avg	0.330	0.394	0.320	0.389	0.403	0.424	0.367	0.407	0.426	0.436	0.369	0.406	0.340	0.404	0.475	0.480	0.468	0.447	0.467	0.354	0.400	0.348	0.391	0.291	0.471	0.2671								
ETRM7	96.198	0.259	0.169	0.244	0.185	0.222	0.173	0.219	0.168	0.218	0.162	0.209	0.175	0.219	0.171	0.216	0.171	0.221	0.162	0.226	0.161	0.206	0.163	0.207	0.162										
	192.195	0.261	0.170	0.245	0.186	0.226	0.174	0.219	0.170	0.226	0.162	0.216	0.174	0.219	0.170	0.221	0.162	0.226	0.161	0.227	0.162	0.207	0.163	0.207	0.162										
	336.288	0.243	0.246	0.266	0.277	0.290	0.250	0.290	0.277	0.295	0.279	0.292	0.277	0.295	0.279	0.292	0.279	0.293	0.279	0.292	0.265	0.299	0.287	0.261	0.299	0.287									
	ET20	720.350	0.389	0.336	0.378	0.353	0.346	0.351	0.345	0.355	0.351	0.353	0.345	0.348	0.345	0.333	0.360	0.335	0.368	0.334	0.341	0.343	0.329	0.343	0.329	0.343									
	Avg	0.268	0.321	0.293	0.309	0.260	0.283	0.254	0.279	0.261	0.287	0.252	0.279	0.252	0.277	0.244	0.292	0.245	0.274	0.243	0.292	0.245	0.274	0.243	0.292	0.245									
ETRM8	96.052	0.400	0.611	0.388	0.488	0.306	0.604	0.322	0.456	0.309	0.554	0.360	0.536	0.350	0.532	0.340	0.533	0.341	0.481	0.288	0.416	0.289	0.378	0.288	0.416	0.289									
	192.061	0.375	0.589	0.370	0.499	0.307	0.486	0.301	0.625	0.290	0.441	0.304	0.532	0.340	0.530	0.337	0.535	0.341	0.495	0.287	0.424	0.288	0.4580												
	336.008	0.378	0.597	0.374	0.513	0.314	0.531	0.309	0.651	0.341	0.506	0.326	0.555	0.338	0.545	0.336	0.544	0.341	0.495	0.287	0.424	0.288	0.4585												
	ET20	720.648	0.393	0.631	0.392	0.547	0.330	0.541	0.328	0.659	0.																								

Table 2: Short-term forecasting performance comparison *w.r.t.* forecasting models with their counterparts enhanced by the AEA in the PEMS datasets. All input lengths are 96, and prediction lengths are 12. A lower MAE, MAPE, or RMSE indicates a better prediction. The better performance in each setting is shown in **bold**. ‘IMP (%)’ shows the percentage of MSE/MAPE/RMSE improvement.

Model Metric	DLLinear				+ AEA				PatchTST				+ AEA				Amplifier				+ AEA			
	MSE	MAPE	RMSE	MSE	MAPE	RMSE	MSE	MAPE	RMSE	MSE	MAPE	RMSE	MSE	MAPE	RMSE	MSE	MAPE	RMSE	MSE	MAPE	RMSE	MSE	MAPE	RMSE
PeMS03	19.567	18.315	32.335	18.734	17.915	31.816	18.925	17.291	30.153	18.127	16.593	29.532	16.441	15.167	25.712	16.031	14.892	25.424	16.433	15.167	25.712	16.031	14.892	25.424
PeMS04	24.632	16.122	39.521	23.889	15.791	38.481	24.864	16.635	40.346	23.913	16.006	39.651	21.363	13.315	34.609	20.713	12.885	34.036	20.713	12.885	34.036	20.713	12.885	34.036
PeMS07	28.615	12.415	45.062	27.941	11.458	43.215	27.876	12.369	42.556	26.316	11.491	41.230	25.712	10.661	40.671	24.901	10.124	39.887	24.901	10.124	39.887	24.901	10.124	39.887
PeMS08	20.264	12.049	32.389	19.732	11.874	31.693	20.352	12.155	31.204	19.145	12.781	30.771	19.501	11.983	30.365	19.032	11.153	29.884	19.032	11.153	29.884	19.032	11.153	29.884

the standard evaluation protocol (Wang et al., 2025b) for short-term forecasting, using Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Squared Error (RMSE) as evaluation metrics. The historical input length is set to 96 and the forecasting horizon to 12. All models are evaluated under the same experimental conditions to ensure a fair comparison. Details of metrics and datasets are in Appendix B.2 and Appendix B.3.

Results. The short-term forecasting results are presented in Table 2. AEA provides consistent and meaningful performance improvements across all models and datasets, with an average performance gain of 3.226%. Specifically, AEA achieves an average improvement of 2.966% for DLinear, 3.792% for PatchTST, and 2.830% for Amplifier. These results demonstrate that the benefits of AEA generalize beyond long-term forecasting, proving effective in scenarios where the role of high-frequency components is both different and critically important.

5.4 MODEL ANALYSIS

Ablation Study. We conduct an ablation study on the DLinear backbone under a forecasting horizon of 96 to validate the contribution of each component in AEA, wherein individual modules are systematically excluded ('w/o'). The results, summarized in Table 3, demonstrate that the complete AEA framework—integrating *Spectral Mirroring*, *Phase Mixing*, *Differential Embedding*, *Non-stationarity Loss*, and *Energy Predictor*—achieves the best performance. The degradation observed in all ablated settings confirms the necessity of the proposed modules. Notably, the absence of the *Energy Predictor* leads to the most significant performance drop (11.508% deterioration), underscoring its critical role in aligning the distribution of the denoised signal with the original data. Removing the *Differential Embedding* module also causes a notable decline (10.520% deterioration),

486
 487
 488
 489
 490
 491 Table 3: Ablation study results across five datasets. Models are compared in terms of MSE and MAE
 492 (lower values are better) using the DLinear backbone under a forecasting horizon of 96. The best
 493 result for each dataset is highlighted in **bold**. ‘Avg’ denotes the average results of MSE and MAE.
 494 The last column, ‘Drop (%)’, shows the average performance deterioration percentage of all datasets.
 495
 496

	ETTh1	ETTh2	Weather	Exchange	Traffic	Avg	Drop (%)
AEA	0.386	0.356	0.207	0.138	0.500	0.317	-
w/o <i>Spectral Mirroring</i>	0.393	0.388	0.229	0.147	0.529	0.338	8.139
w/o <i>Phase Mixing</i>	0.389	0.404	0.210	0.143	0.522	0.333	5.737
w/o <i>Differential Embedding</i>	0.392	0.391	0.243	0.151	0.532	0.342	10.520
w/o <i>Non-stationarity Loss</i>	0.391	0.380	0.231	0.150	0.524	0.335	7.799
w/o <i>Energy Predictor</i>	0.402	0.374	0.233	0.164	0.539	0.342	11.508

497
 498 Table 4: Parameter sensitivity study. Forecasting performance *w.r.t.* different Differential Embedding
 499 dimensions D with DLinear as backbone on four datasets under a forecasting horizon of 96.
 500

Dimension Metric	$D=64$			$D=128$			$D=256$			$D=512$		
	MSE	MAE	Params	Time	MSE	MAE	Params	Time	MSE	MAE	Params	Time
ETTh1	0.380	0.392	195	7.617	0.383	0.394	387	10.972	0.382	0.393	771	14.713
Exchange	0.077	0.199	195	7.617	0.083	0.210	387	10.972	0.081	0.206	771	14.713
Weather	0.169	0.244	195	7.617	0.178	0.256	387	10.972	0.172	0.247	771	14.713
Traffic	0.611	0.388	195	7.617	0.611	0.386	387	10.972	0.620	0.389	771	14.713

501
 502
 503
 504
 505
 506
 507
 highlighting its importance in common-mode noise suppression for learning robust representations.
 508 The *Spectral Mirroring* module proves essential, as its removal results in an average result of 0.338
 509 (8.139% deterioration), validating its effectiveness in high-frequency amplification. In contrast,
 510 ablating *Phase Mixing* or the *Non-stationarity Loss* consistently degrades performance, further
 511 affirming their contributions to stable and distortion-free feature enhancement.

512
 513 We further verify our ablation findings on the non-linear PatchTST backbone. The results, in Table
 514 6, show a consistent hierarchy of module importance, confirming the generalizability of AEA’s
 515 components across architectures.

516
 517 **Sensitivity of Differential Embedding dimension D .** As mentioned in 4.6, the complexity of the
 518 Differential Embedding module is $O(F \cdot C \cdot D)$, dominated by embedding dimension D . We evaluate
 519 the influence of different D values on prediction accuracy, parameters, and running time (ms/iter) in
 520 Table 4 across four datasets on the DLinear backbone under a forecasting horizon of 96. Results show
 521 that stable forecasting accuracy is achieved across dimensions, with the smallest setting ($D = 64$,
 522 only 0.20K parameters, 7.6 ms) already attaining competitive results, even outperforming larger
 523 dimensions on Weather and Exchange. These observations confirm that the differential embedding
 524 module is both lightweight and effective, requiring only a modest number of parameters to deliver
 525 strong performance. Due to the page limit, we provide more sensitivity analysis in Appendix C.1.

526 6 CONCLUSION

527
 528 This work systematically identifies the problem of indiscriminate amplification in existing frequency-
 529 aware forecasting methods, which amplify both informative high-frequency signals and task-irrelevant
 530 noise, leading to unstable training and compromised generalization. We introduce AEA, a model-
 531 agnostic framework that reframes this challenge through targeted spectral amplification and adaptive
 532 noise suppression. The proposed framework incorporates two key innovations: Spectral Mirroring,
 533 which constructs phase-preserving surrogates from reliable low-frequency components to guide
 534 distortion-free enhancement, and Differential Embedding, which operates in latent space to suppress
 535 common-mode noise while preserving discriminative features. Through comprehensive evaluation on
 536 multiple real-world datasets, we demonstrate that AEA consistently improves forecasting accuracy,
 537 robustness, and training stability across both long-term and short-term tasks and diverse backbone
 538 architectures. Our approach establishes a new paradigm for adaptive spectral enhancement that
 539 effectively balances energy distribution with noise characteristics, opening promising avenues for
 developing more powerful and reliable forecasting systems.

540 REFERENCES

542 Nesreen K Ahmed, Amir F Atiya, Neamat El Gayar, and Hisham El-Shishiny. An empirical
 543 comparison of machine learning models for time series forecasting. *Econometric reviews*, 29(5-6):
 544 594–621, 2010.

545 Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and
 546 recurrent networks for sequence modeling. *arXiv preprint arXiv:1803.01271*, 2018.

547 Djamel Benaouda, Fionn Murtagh, J-L Starck, and Olivier Renaud. Wavelet-based nonlinear
 548 multiscale decomposition model for electricity load forecasting. *Neurocomputing*, 70(1-3):139–
 549 154, 2006.

550 Chao Chen, Karl F. Petty, Alexander Skabardonis, Pravin Pratap Varaiya, and Zhanfeng Jia. Freeway
 551 performance measurement system: Mining loop detector data. *Transportation Research Record*,
 552 2001.

553 Peng Chen, Yingying ZHANG, Yunyao Cheng, Yang Shu, Yihang Wang, Qingsong Wen, Bin Yang,
 554 and Chenjuan Guo. Pathformer: Multi-scale transformers with adaptive pathways for time series
 555 forecasting. In *The Twelfth International Conference on Learning Representations*, 2024. URL
 556 <https://openreview.net/forum?id=1JkOCMP2aW>.

557 Si-An Chen, Chun-Liang Li, Sercan O Arik, Nathanael Christian Yoder, and Tomas Pfister. TSMixer:
 558 An all-MLP architecture for time series forecasting. *Transactions on Machine Learning Research*,
 559 2023. ISSN 2835-8856. URL <https://openreview.net/forum?id=wpbxTuXgm0>.

560 Robert B Cleveland, William S Cleveland, Jean E McRae, and Irma Terpenning. Stl: A seasonal-trend
 561 decomposition. *J. Off. Stat.*, 6(1):3–73, 1990.

562 Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan K Mathur, Rajat Sen, and Rose Yu. Long-term
 563 forecasting with tiDE: Time-series dense encoder. *Transactions on Machine Learning Research*,
 564 2023. ISSN 2835-8856. URL <https://openreview.net/forum?id=pCbC3aQB5W>.

565 Berken Utku Demirel and Christian Holz. Shifting the paradigm: A diffeomorphism between time
 566 series data manifolds for achieving shift-invariancy in deep learning. In Y. Yue, A. Garg, N. Peng,
 567 F. Sha, and R. Yu (eds.), *International Conference on Representation Learning*, volume 2025, pp.
 568 99210–99249, 2025. URL https://proceedings.iclr.cc/paper_files/paper/2025/file/f631e778fd3c1b871e9e3a94369335e9-Paper-Conference.pdf.

569 Luo donghao and wang xue. ModernTCN: A modern pure convolution structure for general time
 570 series analysis. In *The Twelfth International Conference on Learning Representations*, 2024. URL
 571 <https://openreview.net/forum?id=vpJMJerXHU>.

572 Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, and Xiaoli Li. TSLANet: Re-
 573 thinking transformers for time series representation learning. In Ruslan Salakhutdinov, Zico
 574 Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
 575 (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of
 576 *Proceedings of Machine Learning Research*, pp. 12409–12428. PMLR, 21–27 Jul 2024. URL
 577 <https://proceedings.mlr.press/v235/eldele24a.html>.

578 Jingru Fei, Kun Yi, Wei Fan, Qi Zhang, and Zhendong Niu. Amplifier: bringing attention to neglected
 579 low-energy components in time series forecasting. In *Proceedings of the Thirty-Ninth AAAI
 580 Conference on Artificial Intelligence and Thirty-Seventh Conference on Innovative Applications of
 581 Artificial Intelligence and Fifteenth Symposium on Educational Advances in Artificial Intelligence,
 582 AAAI’25/IAAI’25/EAAI’25*. AAAI Press, 2025. ISBN 978-1-57735-897-8. doi: 10.1609/aaai.
 583 v39i11.33267. URL <https://doi.org/10.1609/aaai.v39i11.33267>.

584 Aosong Feng, Jialin Chen, Juan Garza, Brooklyn Berry, Francisco Salazar, Yifeng Gao, Rex Ying,
 585 and Leandros Tassiulas. Efficient high-resolution time series classification via attention kronecker
 586 decomposition. *arXiv preprint arXiv:2403.04882*, 2024.

587 Huan He, Owen Queen, Teddy Koker, Consuelo Cuevas, Theodoros Tsiligkaridis, and Marinka
 588 Zitnik. Domain adaptation for time series under feature and label shifts. In *Proceedings of the
 589 40th International Conference on Machine Learning*, ICML’23. JMLR.org, 2023.

594 Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. Recurrent neural networks for time
 595 series forecasting: Current status and future directions. *International Journal of Forecasting*, 37
 596 (1):388–427, 2021.

597

598 Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu Chen,
 599 Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-LLM: Time series forecasting
 600 by reprogramming large language models. In *The Twelfth International Conference on Learning
 601 Representations*, 2024. URL <https://openreview.net/forum?id=Unb5CVpta>.

602 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
 603 Bengio and Yann LeCun (eds.), *3rd International Conference on Learning Representations, ICLR
 604 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings*, 2015. URL [http://arxiv.org/abs/1412.6980](https://arxiv.org/abs/1412.6980).

605

606 Feifei Kou, Jiahao Wang, Lei Shi, Yuhao Yao, Yawen Li, Suguo Zhu, Zhongbao Zhang, and Junping
 607 Du. CFPT: Empowering time series forecasting through cross-frequency interaction and periodic-
 608 aware timestamp modeling. In *Forty-second International Conference on Machine Learning*, 2025.
 609 URL <https://openreview.net/forum?id=hHYjioJFum>.

610

611 Bhagwandas Pannalal Lathi and Roger A Green. *Signal processing and linear systems*, volume 2.
 612 Oxford university press Oxford, 1998.

613

614 Yuxuan Liang, Yutong Xia, Songyu Ke, Yiwei Wang, Qingsong Wen, Junbo Zhang, Yu Zheng,
 615 and Roger Zimmermann. Airformer: Predicting nationwide air quality in china with trans-
 616 formers. *Proceedings of the AAAI Conference on Artificial Intelligence*, 37(12):14329–14337,
 617 Jun. 2023. doi: 10.1609/aaai.v37i12.26676. URL <https://ojs.aaai.org/index.php/AAAI/article/view/26676>.

618

619 Bryan Lim and Stefan Zohren. Time-series forecasting with deep learning: a survey. *Philosophical
 620 Transactions of the Royal Society A*, 379(2194):20200209, 2021.

621

622 Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
 623 Time series modeling and forecasting with sample convolution and interaction. *Advances in Neural
 624 Information Processing Systems*, 35:5816–5828, 2022a.

625

626 Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dust-
 627 dar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and
 628 forecasting. In *International Conference on Learning Representations*, 2021.

629

630 Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transform-
 631 ers: Exploring the stationarity in time series forecasting. In S. Koyejo, S. Mo-
 632 hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural
 633 Information Processing Systems*, volume 35, pp. 9881–9893. Curran Associates, Inc.,
 634 2022b. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/4054556fcaa934b0bf76da52cf4f92cb-Paper-Conference.pdf.

635

636 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 637 itrformer: Inverted transformers are effective for time series forecasting. In *The Twelfth
 638 International Conference on Learning Representations*, 2024a. URL <https://openreview.net/forum?id=JePfAI8fah>.

639

640 Yong Liu, Guo Qin, Xiangdong Huang, Jianmin Wang, and Mingsheng Long. Autotimes: Autoregres-
 641 sive time series forecasters via large language models. In *The Thirty-eighth Annual Conference on
 642 Neural Information Processing Systems*, 2024b. URL <https://openreview.net/forum?id=FOvZztnp1H>.

643

644 Zhiding Liu, Mingyue Cheng, Zhi Li, Zhenya Huang, Qi Liu, Yanhu Xie, and Enhong Chen.
 645 Adaptive normalization for non-stationary time series forecasting: A temporal slice perspec-
 646 tive. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Ad-
 647 vances in Neural Information Processing Systems*, volume 36, pp. 14273–14292. Curran Asso-
 648 ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/2e19dab94882bc95ed094c4399cfda02-Paper-Conference.pdf.

648 Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines.
 649 In *Proceedings of the 27th International Conference on International Conference on Machine*
 650 *Learning*, ICML'10, pp. 807–814, Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077.
 651

652 Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
 653 64 words: Long-term forecasting with transformers. In *The Eleventh International Confer-*
 654 *ence on Learning Representations*, 2023. URL <https://openreview.net/forum?id=Jbdc0vTOcol>.
 655

656 Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis ex-
 657 pansion analysis for interpretable time series forecasting. In *International Conference on Learning*
 658 *Representations*, 2020. URL <https://openreview.net/forum?id=r1ecqn4YwB>.
 659

660 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 661 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
 662 Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
 663 Junjie Bai, and Soumith Chintala. *PyTorch: an imperative style, high-performance deep learning*
 664 *library*. Curran Associates Inc., Red Hook, NY, USA, 2019.

665 Donald B Percival and Andrew T Walden. *Wavelet methods for time series analysis*, volume 4.
 666 Cambridge university press, 2000.
 667

668 Xihao Piao, Zheng Chen, Taichi Murayama, Yasuko Matsubara, and Yasushi Sakurai. Fredformer:
 669 Frequency debiased transformer for time series forecasting. In *Proceedings of the 30th ACM*
 670 *SIGKDD Conference on Knowledge Discovery and Data Mining*, KDD '24, pp. 2400–2410,
 671 New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400704901. doi:
 10.1145/3637528.3671928. URL <https://doi.org/10.1145/3637528.3671928>.
 672

673 Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoying
 674 Zhou, Christian S. Jensen, Zhenli Sheng, and Bin Yang. Tfb: Towards comprehensive and fair
 675 benchmarking of time series forecasting methods. *Proc. VLDB Endow.*, 17(9):2363–2377, May
 676 2024. ISSN 2150-8097. doi: 10.14778/3665844.3665863. URL <https://doi.org/10.14778/3665844.3665863>.
 677

678 Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, and
 679 Tim Januschowski. Deep state space models for time series forecasting. *Advances in neural*
 680 *information processing systems*, 31, 2018.

681 David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic
 682 forecasting with autoregressive recurrent networks. *International Journal of Forecasting*, 36(3):
 683 1181–1191, 2020.

684 Rajat Sen, Hsiang-Fu Yu, and Inderjit S Dhillon. Think globally, act locally: A deep neural network
 685 approach to high-dimensional time series forecasting. *Advances in neural information processing*
 686 *systems*, 32, 2019.

687 Slawek Smyl. A hybrid method of exponential smoothing and recurrent neural networks for time
 688 series forecasting. *International Journal of Forecasting*, 36(1):75–85, 2020.
 689

690 H. Sorensen, D. Jones, M. Heideman, and C. Burrus. Real-valued fast fourier transform algorithms.
 691 *IEEE Transactions on Acoustics, Speech, and Signal Processing*, 35(6):849–863, 1987. doi:
 692 10.1109/TASSP.1987.1165220.

693 Artyom Sttsyuk and Jaesik Choi. xpatch: Dual-stream time series forecasting with exponential
 694 seasonal-trend decomposition. *Proceedings of the AAAI Conference on Artificial Intelligence*, 39
 695 (19):20601–20609, Apr. 2025. doi: 10.1609/aaai.v39i19.34270. URL <https://ojs.aaai.org/index.php/AAAI/article/view/34270>.
 696

697 Binh Tang and David S Matteson. Probabilistic transformer for time series analysis. *Advances in*
 698 *Neural Information Processing Systems*, 34:23592–23608, 2021.
 699

700 Sean J. Taylor and Benjamin Letham. Forecasting at scale. *The American Statistician*, 72(1):
 701 37–45, 2018. doi: 10.1080/00031305.2017.1380080. URL <https://doi.org/10.1080/00031305.2017.1380080>.

702 José F Torres, Dalil Hadjout, Abderrazak Sebaa, Francisco Martínez-Álvarez, and Alicia Troncoso.
 703 Deep learning for time series forecasting: a survey. *Big Data*, 9(1):3–21, 2021.
 704

705 Oskar Triebe, Hansika Hewamalage, Polina Pilyugina, Nikolay Laptev, Christoph Bergmeir, and
 706 Ram Rajagopal. Neuralprophet: Explainable forecasting at scale, 2021.
 707

708 Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans, Dengxin Dai,
 709 and Luc Van Gool. Multi-task learning for dense prediction tasks: A survey. *IEEE Transactions
 710 on Pattern Analysis and Machine Intelligence*, 44(7):3614–3633, 2022. doi: 10.1109/TPAMI.2021.
 711 3054719.

712 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 713 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing
 714 systems*, 30, 2017.
 715

716 Renzhuo Wan, Shuping Mei, Jun Wang, Min Liu, and Fan Yang. Multivariate temporal convolutional
 717 network: A deep neural networks approach for multivariate time series forecasting. *Electronics*, 8
 718 (8):876, 2019.

719

720 Haichen Wang, Liu Yang, Xinyuan Zhang, Haomin Yu, Ming Li, and Jilin Hu. Adformer: Aggregation
 721 differential transformer for passenger demand forecasting, 2025a. URL <https://arxiv.org/abs/2506.02576>.
 722

723 Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. Micn: Multi-scale
 724 local and global context modeling for long-term series forecasting. In *The Eleventh International
 725 Conference on Learning Representations*, 2022.

726

727 Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y. Zhang,
 728 and JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting.
 729 In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=7oLshfEIC2>.
 730

731

732 Shiyu Wang, Jiawei LI, Xiaoming Shi, Zhou Ye, Baichuan Mo, Wenze Lin, Ju Shengtong, Zhixuan
 733 Chu, and Ming Jin. Timemixer++: A general time series pattern machine for universal predictive
 734 analysis. In *The Thirteenth International Conference on Learning Representations*, 2025b. URL
 735 <https://openreview.net/forum?id=1CLzLXSFNn>.

736

737 Qingsong Wen, Zhe Zhang, Yan Li, and Liang Sun. Fast robuststl: Efficient and robust seasonal-trend
 738 decomposition for time series with complex patterns. In *Proceedings of the 26th ACM SIGKDD
 739 International Conference on Knowledge Discovery & Data Mining*, pp. 2203–2213, 2020.

740

741 Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
 742 Transformers in time series: a survey. In *Proceedings of the Thirty-Second International Joint
 743 Conference on Artificial Intelligence, IJCAI '23*, 2023. ISBN 978-1-956792-03-4. doi: 10.24963/
 744 ijcai.2023/759. URL <https://doi.org/10.24963/ijcai.2023/759>.

745

746 Shmuel Winograd. On computing the discrete fourier transform. *Proceedings of the National
 747 Academy of Sciences*, 73(4):1005–1006, 1976. doi: 10.1073/pnas.73.4.1005. URL <https://www.pnas.org/doi/abs/10.1073/pnas.73.4.1005>.
 748

749 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: decomposition transformers
 750 with auto-correlation for long-term series forecasting. In *Proceedings of the 35th International
 751 Conference on Neural Information Processing Systems, NIPS '21*, Red Hook, NY, USA, 2021.
 752 Curran Associates Inc. ISBN 9781713845393.

753

754 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
 755 Temporal 2d-variation modeling for general time series analysis. In *The Eleventh International
 756 Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=ju_Uqw3840q.

756 Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Connecting
 757 the dots: Multivariate time series forecasting with graph neural networks. In *Proceedings of*
 758 *the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*,
 759 KDD '20, pp. 753–763, New York, NY, USA, 2020. Association for Computing Machinery.
 760 ISBN 9781450379984. doi: 10.1145/3394486.3403118. URL <https://doi.org/10.1145/3394486.3403118>.

762 Zhijian Xu, Ailing Zeng, and Qiang Xu. Fits: Modeling time series with 10k parameters.
 763 In B. Kim, Y. Yue, S. Chaudhuri, K. Fragkiadaki, M. Khan, and Y. Sun (eds.),
 764 *International Conference on Representation Learning*, volume 2024, pp. 26295–26318,
 765 2024. URL https://proceedings.iclr.cc/paper_files/paper/2024/file/701251e1db4a2e4dd2ef23f5265d5936-Paper-Conference.pdf.

768 Tianzhu Ye, Li Dong, Yuqing Xia, Yutao Sun, Yi Zhu, Gao Huang, and Furu
 769 Wei. Differential transformer. In Y. Yue, A. Garg, N. Peng, F. Sha, and R. Yu
 770 (eds.), *International Conference on Representation Learning*, volume 2025, pp. 144–164,
 771 2025. URL https://proceedings.iclr.cc/paper_files/paper/2025/file/00b67df24009747e8bbed4c2c6f9c825-Paper-Conference.pdf.

773 Kun Yi, Qi Zhang, Wei Fan, Shoujin Wang, Pengyang Wang, Hui He, Ning An, Defu Lian, Longbing
 774 Cao, and Zhendong Niu. Frequency-domain MLPs are more effective learners in time series
 775 forecasting. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL
 776 <https://openreview.net/forum?id=iif9mGCTfy>.

777 Kun Yi, Jingru Fei, Qi Zhang, Hui He, Shufeng Hao, Defu Lian, and Wei Fan. Filternet: Harnessing
 778 frequency filters for time series forecasting. In *The Thirty-eighth Annual Conference on Neural*
 779 *Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=ugL2D9idAD>.

782 Kun Yi, Qi Zhang, Wei Fan, Longbing Cao, Shoujin Wang, Hui He, Guodong Long, Liang Hu,
 783 Qingsong Wen, and Hui Xiong. A survey on deep learning based time series analysis with
 784 frequency transformation. In *Proceedings of the 31st ACM SIGKDD Conference on Knowledge*
 785 *Discovery and Data Mining V.2*, KDD '25, pp. 6206–6215, New York, NY, USA, 2025. Association
 786 for Computing Machinery. ISBN 9798400714542. doi: 10.1145/3711896.3736571. URL
 787 <https://doi.org/10.1145/3711896.3736571>.

788 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
 789 forecasting? In *Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence*
 790 and *Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth*
 791 *Symposium on Educational Advances in Artificial Intelligence*, AAAI'23/IAAI'23/EAAI'23. AAAI
 792 Press, 2023. ISBN 978-1-57735-880-0. doi: 10.1609/aaai.v37i9.26317. URL <https://doi.org/10.1609/aaai.v37i9.26317>.

794 G.Peter Zhang. Time series forecasting using a hybrid arima and neural network
 795 model. *Neurocomputing*, 50:159–175, 2003. ISSN 0925-2312. doi: [https://doi.org/10.1016/S0925-2312\(01\)00702-0](https://doi.org/10.1016/S0925-2312(01)00702-0). URL <https://www.sciencedirect.com/science/article/pii/S0925231201007020>.

799 Tianping Zhang, Yizhuo Zhang, Wei Cao, Jiang Bian, Xiaohan Yi, Shun Zheng, and Jian Li. Less is
 800 more: Fast multivariate time series forecasting with light sampling-oriented mlp structures. *arXiv*
 801 *preprint arXiv:2207.01186*, 2022.

802 Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
 803 for multivariate time series forecasting. In *The Eleventh International Conference on Learning*
 804 *Representations*, 2022.

806 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
 807 Informer: Beyond efficient transformer for long sequence time-series forecasting. *Proceedings*
 808 *of the AAAI Conference on Artificial Intelligence*, 35(12):11106–11115, May 2021. doi: 10.
 809 1609/aaai.v35i12.17325. URL <https://ojs.aaai.org/index.php/AAAI/article/view/17325>.

810 Tian Zhou, Ziqing Ma, Qingsong Wen, Liang Sun, Tao Yao, Wotao Yin, Rong Jin, et al. Film:
811 Frequency improved legendre memory model for long-term time series forecasting. *Advances in*
812 *Neural Information Processing Systems*, 35:12677–12690, 2022a.

813
814 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer:
815 Frequency enhanced decomposed transformer for long-term series forecasting. In Kamalika
816 Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.),
817 *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of *Pro-
818 ceedings of Machine Learning Research*, pp. 27268–27286. PMLR, 17–23 Jul 2022b. URL
819 <https://proceedings.mlr.press/v162/zhou22g.html>.

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 A THEORETICAL ANALYSIS
865866 A.1 NOTION
867868 **Discrete Fourier Transform** Given a sequence $x[n]$ with length N , the Discrete Fourier Transform
869 (DFT) Winograd (1976) converts $x[n]$ into the frequency domain, and transforms it back using the
870 inverse DFT (iDFT), which can be defined as:

871
$$\text{DFT : } \mathcal{X}[k] = \sum_{n=0}^{N-1} x[n] e^{-j(2\pi/N)kn}, \text{ s.t., } k = 0, 1, \dots, N-1 \quad (23)$$

872
$$\text{iDFT : } x[n] = \frac{1}{N} \sum_{k=0}^{N-1} \mathcal{X}[k] e^{j(2\pi/N)kn}, \text{ s.t., } n = 0, 1, \dots, N-1$$

873

874 where j is the imaginary unit and $\mathcal{X}[k]$ represents the spectrum of $x[n]$ at the frequency $\omega_k = 2\pi k/N$.
875 The spectrum $\mathcal{X} \in \mathbb{C}^k$ consists of real parts $\text{Re} = \sum_{n=0}^{N-1} x[n] \cos(2\pi/N)kn \in \mathbb{R}^k$ and imaginary
876 parts $\text{Im} = -\sum_{n=0}^{N-1} x[n] \sin(2\pi/N)kn \in \mathbb{R}^k$ as:

877
$$\mathcal{X} = \text{Re} + j \text{Im}. \quad (24)$$

878

879 The amplitude part A and phase part θ of \mathcal{X} are defined as:
880

881
$$A = \sqrt{\text{Re}^2 + \text{Im}^2}. \quad (25)$$

882

883
$$\theta = \arctan\left(\frac{\text{Im}}{\text{Re}}\right). \quad (26)$$

884

885 The computational complexity of the DFT is typically $O(N^2)$ (Zhou et al. (2022b)). In practice, we
886 use the Fast Fourier Transform (FFT) to efficiently compute the DFT of complex sequences, which
887 reduces the computational complexity to $O(N \log N)$. Additionally, by employing the Real FFT
888 (rFFT), we can compress an input sequence of N real numbers into a signal sequence in the complex
889 frequency domain containing $N/2 + 1$ frequency components.
890891 A.2 PROOF
892893 **Assumption A.1** (Decomposition of Embedding). Let e_i denote the embedding at any sample i . The
894 embedded components e_i can be decomposed into a true signal term s_i and a noise term n_i :

895
$$e_i = s_i + n_i.$$

896

897 For two distinct segments from the embedding space, each associated with potentially different
898 representation properties, their respective noise terms admit a further decomposition into a common-
899 mode noise component $n_i^{(c)}$ and independent-mode noise components $\epsilon_i^{(1)}$ and $\epsilon_i^{(2)}$:
900

901
$$n_i^{(1)} = n_i^{(c)} + \epsilon_i^{(1)}, \quad n_i^{(2)} = n_i^{(c)} + \epsilon_i^{(2)},$$

902

903 where $\mathbb{E}[\epsilon_i^{(1)}] = \mathbb{E}[\epsilon_i^{(2)}] = 0$, $\text{Var}(\epsilon_i^{(1)}) = \text{Var}(\epsilon_i^{(2)}) = \sigma_\epsilon^2$, and $\epsilon_i^{(1)}$ and $\epsilon_i^{(2)}$ are independent.
904905 We assume that the common-mode noise $n_i^{(c)}$ corresponds to a shared noise component in the
906 embedding space, an assumption supported by previous studies (Ye et al., 2025; Wang et al., 2025a).
907 This shared noise often stems from systematic biases present in the input data (e.g., stop words in
908 NLP, background regions in spatio-temporal data, or certain frequency components in spectral (Eldele
909 et al., 2024)). These features can introduce consistent bias into attention scores, as the softmax
910 function is sensitive to large values even when they originate from irrelevant features.
911912 **Theorem A.2** (Non-zero Expectation of Common-mode Noise). *Under realistic data distributions
913 \mathcal{D} , the common-mode noise $n_i^{(c)}$ has a non-zero expectation:*

914
$$\mathbb{E}[n_i^{(c)}] \neq 0.$$

915

918 *Proof.* Let $n_i^{(c)} = f(X_i; \Theta)$, where $X_i \sim \mathcal{D}$ and f capture systematic biases with parameters Θ :

$$919 \quad \mathbb{E}[n_i^{(c)}] = \mathbb{E}_{X_i \sim \mathcal{D}}[f(X_i; \Theta)].$$

920 Real-world data distributions \mathcal{D} often contain biased features that are statistically frequent but
921 non-causal or task-irrelevant Demirel & Holz (2025). Let $\phi_j(X_i)$ denote the j -th such feature function—each ϕ_j maps the input X_i to a scalar value representing the intensity of a particular spurious
922 attribute. Through training, the model may develop dependence on these features. We therefore
923 approximate the learned mapping $f(X_i; \Theta)$ as a linear combination of these feature functions:

$$924 \quad f(X_i; \Theta) \approx \sum_j \alpha_j \phi_j(X_i),$$

925 where $\alpha_j > 0$ are weight coefficients. Since each ϕ_j is frequent, $\mathbb{E}_{X_i \sim \mathcal{D}}[\phi_j(X_i)] > 0$. By linearity
926 of expectation:

$$927 \quad \mathbb{E}_i[n_i^{(c)}] = \mathbb{E} \left[\sum_j \alpha_j \phi_j(X_i) \right] = \sum_j \alpha_j \mathbb{E}[\phi_j(X_i)] > 0,$$

928 unless $\alpha_j = 0$ for all j or $\mathbb{E}[\phi_j(X_i)] = 0$, both of which are uncommon in practice since the model
929 leverages any available signal to minimize loss. \square

930 **Corollary A.3** (The Non-zero Expectation of Common-mode Noise After Training). *During training,
931 parameters Θ are updated via gradient descent to minimize the loss \mathcal{L} . However, if features $\phi_j(X_i)$
932 are correlated with the label (without causality), the model may learn to rely on them as shortcuts
933 rather than suppressing their contribution He et al. (2023). Thus, α_j tends to remain positive, and
934 $\mathbb{E}[n_i^{(c)}] > 0$ persists throughout optimization.*

935 **Proposition A.4** (Adaptive Noise Suppression via Differential Embedding). *The differential embedding
936 mechanism, defined as $e_i^{(\text{diff})} = e_i^{(1)} - \lambda e_i^{(2)}$ with a learnable parameter λ , provides adaptive
937 suppression of common-mode noise. This results in gradient estimates $\hat{g} = g + \delta$ that exhibit a
938 superior bias-variance trade-off for optimization, specifically:*

939 1. *Suppression of Systematic Bias: The mechanism attenuates the bias introduced by common-mode
940 noise: $\mathbb{E}[\delta] = (1 - \lambda^*) \mathbf{b}_g$, where $|1 - \lambda^*| < 1$.*

941 2. *Preservation of Beneficial Variance: It retains the variance from stochastic noise, which acts as a
942 regularizer: $\text{Var}(\delta) = (1 - \lambda^*)^2 \sigma_c^2 + (1 + \lambda^*)^2 \sigma_\epsilon^2$.*

943 Here, λ^* is the value of λ that minimizes the training objective, \mathbf{b}_g is the bias from common-mode
944 noise, and σ_c^2 , σ_ϵ^2 are the variances of the gradients of the common-mode and stochastic noise
945 components, respectively.

946 *Proof.* We prove the two properties of the gradient noise δ by analyzing its expectation and variance.

947 The gradient noise δ arises from the backpropagation through the differential embedding. Consider
948 the total gradient of the loss L with respect to the parameters Θ :

$$949 \quad \frac{\partial L}{\partial \Theta} = \frac{\partial L}{\partial e_i^{(\text{diff})}} \cdot \frac{\partial e_i^{(\text{diff})}}{\partial \Theta}.$$

950 Under Assumption 1, we decompose the differential embedding into a true signal term and a noise
951 term: $e_i^{(\text{diff})} = s_i^{(\text{diff})} + n_i^{(\text{diff})}$, where $n_i^{(\text{diff})} = (1 - \lambda) n_i^{(c)} + (\epsilon_i^{(1)} - \lambda \epsilon_i^{(2)})$. Substituting this
952 decomposition yields:

$$953 \quad \frac{\partial L}{\partial \Theta} = \frac{\partial L}{\partial e_i^{(\text{diff})}} \cdot \left(\frac{\partial s_i^{(\text{diff})}}{\partial \Theta} + \frac{\partial n_i^{(\text{diff})}}{\partial \Theta} \right).$$

954 The true gradient g is defined as $g = \frac{\partial L}{\partial e_i^{(\text{diff})}} \cdot \frac{\partial s_i^{(\text{diff})}}{\partial \Theta}$. This suggests that the gradient noise δ is:

$$955 \quad \delta = \frac{\partial L}{\partial \Theta} - g = \frac{\partial L}{\partial e_i^{(\text{diff})}} \cdot \frac{\partial n_i^{(\text{diff})}}{\partial \Theta}.$$

972 1. Expectation of Gradient Noise ($\mathbb{E}[\delta]$):
 973

974 Substituting the expression for the effective noise, $n_i^{(\text{diff})} = (1 - \lambda)n_i^{(c)} + (\epsilon_i^{(1)} - \lambda\epsilon_i^{(2)})$, we get:
 975

$$976 \quad \delta = \frac{\partial L}{\partial e_i^{(\text{diff})}} \cdot \left[(1 - \lambda) \frac{\partial n_i^{(c)}}{\partial \Theta} + \frac{\partial(\epsilon_i^{(1)} - \lambda\epsilon_i^{(2)})}{\partial \Theta} \right].
 977$$

978
 979 We now take the expectation of δ over the distributions of the stochastic noises $\epsilon_i^{(1)}$ and $\epsilon_i^{(2)}$. Under
 980 Assumption A.1, these stochastic noises are zero-mean, independent of the model parameters Θ and
 981 the common-mode noise $n_i^{(c)}$:
 982

$$983 \quad \mathbb{E}[\epsilon_i^{(k)}] = 0, \quad \mathbb{E}\left[\frac{\partial \epsilon_i^{(k)}}{\partial \Theta}\right] = 0, \quad \text{for } k = \{1, 2\}, \quad \text{and} \quad \mathbb{E}[\epsilon_i^{(k)} n_i^{(c)}] = 0.
 984$$

985 Applying the linearity of expectation and leveraging these properties, the terms involving ϵ_i vanish:
 986

$$987 \quad \mathbb{E}[\delta] = \mathbb{E}\left[\frac{\partial L}{\partial e_i^{(\text{diff})}} \cdot \left((1 - \lambda) \frac{\partial n_i^{(c)}}{\partial \Theta}\right)\right] + \mathbb{E}\left[\frac{\partial L}{\partial e_i^{(\text{diff})}} \cdot \frac{\partial(\epsilon_i^{(1)} - \lambda\epsilon_i^{(2)})}{\partial \Theta}\right]
 988
 989 = (1 - \lambda)\mathbb{E}\left[\frac{\partial L}{\partial e_i^{(\text{diff})}} \cdot \frac{\partial n_i^{(c)}}{\partial \Theta}\right] + 0.
 990$$

991 The remaining expectation term, $\mathbb{E}\left[\frac{\partial L}{\partial e_i^{(\text{diff})}} \cdot \frac{\partial n_i^{(c)}}{\partial \Theta}\right]$, is precisely the systematic bias \mathbf{b}_g introduced
 992 into the gradient by the common-mode noise. At convergence, λ reaches a value λ^* that minimizes
 993 the loss. Since the loss is minimized by reducing the effect of $n_i^{(c)}$, the learning dynamics drive λ^*
 994 towards 1, ensuring $|1 - \lambda^*| < 1$. Thus,
 995

$$996 \quad \mathbb{E}[\delta] = (1 - \lambda^*)\mathbf{b}_g,$$

1000 which demonstrates a reduction of the original bias by a factor of $|1 - \lambda^*|$.
 1001

1002 2. Variance of Gradient Noise ($\text{Var}(\delta)$):
 1003

1004 We analyze the variance of δ :

$$1005 \quad \text{Var}(\delta) = \text{Var}\left(\frac{\partial L}{\partial e_i^{(\text{diff})}} \cdot \frac{\partial n_i^{(\text{diff})}}{\partial \Theta}\right).
 1006$$

1007 For clarity, we define the shorthand:
 1008

$$1009 \quad A = \frac{\partial L}{\partial e_i^{(\text{diff})}} \cdot \frac{\partial n_i^{(c)}}{\partial \Theta}, \quad B = \frac{\partial L}{\partial e_i^{(\text{diff})}} \cdot \frac{\partial \epsilon_i^{(1)}}{\partial \Theta}, \quad C = \frac{\partial L}{\partial e_i^{(\text{diff})}} \cdot \frac{\partial \epsilon_i^{(2)}}{\partial \Theta}.
 1010$$

1011 This allows us to express δ as:
 1012

$$1013 \quad \delta = (1 - \lambda)A + B - \lambda C.
 1014$$

1015 The variance is then:
 1016

$$1017 \quad \text{Var}(\delta) = \text{Var}((1 - \lambda)A + B - \lambda C).
 1018$$

1019 We assume A , B , and C are uncorrelated. This is justified by the independence of $n_i^{(c)}$ and $\epsilon_i^{(k)}$.
 1020 Under this assumption, the covariance terms between A , B , and C are zero. Applying the variance
 1021 property $\text{Var}(aX + bY) = a^2\text{Var}(X) + b^2\text{Var}(Y)$ for uncorrelated variables, we get:
 1022

$$1023 \quad \text{Var}(\delta) = (1 - \lambda)^2\text{Var}(A) + \text{Var}(B) + (-\lambda)^2\text{Var}(C)
 1024 = (1 - \lambda)^2\text{Var}(A) + \text{Var}(B) + \lambda^2\text{Var}(C).
 1025$$

1026 We now define the variances of these components:
 1027

$$1028 \quad \text{Var}(A) = \sigma_c^2, \quad \text{Var}(B) = \text{Var}(C) = \sigma_\epsilon^2.$$

1026 The equality $\text{Var}(B) = \text{Var}(C)$ stems from the assumption that $\epsilon_i^{(1)}$ and $\epsilon_i^{(2)}$ are identically distributed.
 1027 Substituting these definitions and evaluating at the optimal $\lambda = \lambda^*$ yields:
 1028

$$\text{Var}(\delta) = (1 - \lambda^*)^2 \sigma_c^2 + (1 + \lambda^{*2}) \sigma_\epsilon^2.$$

1030 This final expression shows that the mechanism suppresses the harmful variance from common-mode
 1031 noise by a factor of $(1 - \lambda^*)^2$ while preserving and even amplifying the beneficial stochastic noise
 1032 by a factor of $(1 + \lambda^{*2}) \geq 1$.
 1033

1034 Thus, the adaptive parameter λ^* optimally balances the bias-variance trade-off in the gradient
 1035 estimates, leading to more robust and effective optimization. \square
 1036

1037 **Theorem A.5** (Perturbation Bound for Spectral Mirroring and Differential Embedding). *Let $\mathcal{X} \in \mathbb{C}^{B \times F \times C}$ be the original frequency-domain representation of the input time series $x \in \mathbb{R}^{B \times T \times C}$, and let $\mathcal{X}' \in \mathbb{C}^{B \times F \times C}$ be the enhanced and denoised frequency-domain representation after the Spectral Mirroring and Differential Embedding modules. Suppose the scaling matrix M satisfies $\|M - \mathbf{1}\|_2 \leq \epsilon_M$, where $\mathbf{1}$ is the all-ones matrix, and the differential parameters λ_1, λ_2 satisfy $|\lambda_1| \leq \epsilon_{\lambda_1}, |\lambda_2| \leq \epsilon_{\lambda_2}$. Then, the ℓ_2 -norm of the enhancement error in the time domain satisfies:*

$$\|x' - x\|_2 \leq (\epsilon_M + \epsilon_{\lambda_1} + \epsilon_{\lambda_2}) \|\mathcal{X}\|_2,$$

1044 where x' is the enhanced and denoised time series obtained by applying the inverse rFFT to \mathcal{X}' , and
 1045 $\|\mathcal{X}\|_2$ is the ℓ_2 -norm of \mathcal{X} .
 1046

1047 *Proof.* Let $\Delta\mathcal{X} = \mathcal{X}' - \mathcal{X}$ denote the frequency-domain perturbation. This process consists of two
 1048 main steps: Spectral Mirroring and Differential Embedding.
 1049

1050 **1. Spectral Mirroring Perturbation:** Let \mathcal{X}_e be the output of the Spectral Mirroring module. The
 1051 Spectral Mirroring operation involves: (i) Reversing the spectrum: $\mathcal{X}_{\text{reverse}}[k] = \mathcal{X}[F - 1 - k]$
 1052 for $k = 0, 1, \dots, F - 1$. (ii) Scaling: $\mathcal{X}_{\text{scaled}} = \mathcal{X}_{\text{reverse}} \odot M$, where \odot denotes element-wise
 1053 multiplication. (iii) Phase mixing: The enhanced spectrum \mathcal{X}_e is constructed via amplitude mixing
 1054 and phase mixing. Specifically, the amplitude is $A_{\text{mix}} = \alpha|\mathcal{X}| + (1 - \alpha)|\mathcal{X}_{\text{scaled}}|$, and the phase θ_{mix}
 1055 is obtained by adjusting the phase difference between \mathcal{X} and $\mathcal{X}_{\text{scaled}}$ using the phase mixing strategy
 1056 in Equation 4 of the paper.

1057 The key observation is that the reversal operation does not change the overall norm: $\|\mathcal{X}_{\text{reverse}}\|_2 =$
 1058 $\|\mathcal{X}\|_2$, since it merely permutes the frequency components. Under the assumption $\|M - \mathbf{1}\|_2 \leq \epsilon_M$,
 1059 we have $\|\mathcal{X}_{\text{scaled}}\|_2 \leq \|M\|_2 \|\mathcal{X}_{\text{reverse}}\|_2$. Since $\|M\|_2 \leq \|\mathbf{1}\|_2 + \|M - \mathbf{1}\|_2 \leq 1 + \epsilon_M$ (where
 1060 $\|\mathbf{1}\|_2 = 1$ for the all-ones matrix in the Frobenius norm), it follows that:

$$\|\mathcal{X}_{\text{scaled}}\|_2 \leq (1 + \epsilon_M) \|\mathcal{X}\|_2.$$

1061 Now, consider the amplitude mixing: $A_{\text{mix}} = \alpha|\mathcal{X}| + (1 - \alpha)|\mathcal{X}_{\text{scaled}}|$. The ℓ_2 -norm of A_{mix} satisfies:
 1062

$$\begin{aligned} \|A_{\text{mix}}\|_2 &\leq \alpha \|\mathcal{X}\|_2 + (1 - \alpha) \|\mathcal{X}_{\text{scaled}}\|_2 \\ &\leq \alpha \|\mathcal{X}\|_2 + (1 - \alpha)(1 + \epsilon_M) \|\mathcal{X}\|_2 \\ &= [1 + (1 - \alpha)\epsilon_M] \|\mathcal{X}\|_2. \end{aligned}$$

1063 The phase mixing strategy minimizes phase distortions by ensuring smooth phase transitions. Under
 1064 small ϵ_M , the phase perturbation is bounded, and the resulting spectrum $\mathcal{X}_{\text{enhanced}}$ satisfies
 1065 $\|\mathcal{X}_{\text{enhanced}}\|_2 = \|A_{\text{mix}}\|_2$ because phase changes do not alter the amplitude. Thus,
 1066

$$\|\mathcal{X}_{\text{enhanced}}\|_2 \leq [1 + (1 - \alpha)\epsilon_M] \|\mathcal{X}\|_2.$$

1067 The perturbation from Spectral Mirroring is $\Delta\mathcal{X}_1 = \mathcal{X}_{\text{enhanced}} - \mathcal{X}$. Using the triangle inequality:
 1068

$$\begin{aligned} \|\Delta\mathcal{X}_1\|_2 &\leq \|\mathcal{X}_{\text{enhanced}}\|_2 + \|\mathcal{X}\|_2 \\ &\leq [1 + (1 - \alpha)\epsilon_M] \|\mathcal{X}\|_2 + \|\mathcal{X}\|_2 \\ &= (2 + (1 - \alpha)\epsilon_M) \|\mathcal{X}\|_2. \end{aligned}$$

1069 For small ϵ_M , this bound can be simplified to $\|\Delta\mathcal{X}_1\|_2 \leq C_1 \epsilon_M \|\mathcal{X}\|_2$, where C_1 is a constant. In
 1070 practice, since phase mixing preserves structure, a tighter bound is achievable. For simplicity, we
 1071 absorb constants into ϵ_M and assume:
 1072

$$\|\Delta\mathcal{X}_1\|_2 \leq \epsilon_M \|\mathcal{X}\|_2.$$

1080

1081

1082 **2. Differential Embedding Perturbation:** The Differential Embedding module projects $\mathcal{X}_{enhanced}$
 1083 into an embedding space, applies differential denoising, and projects it back. Let $E = W_e \mathcal{X}_{enhanced} +$
 1084 b_e be the embedding, where W_e and b_e are learnable parameters with bounded norms (e.g., $\|W_e\|_2 \leq$
 1085 C_w , $\|b_e\|_2 \leq C_b$). The embedding is split into two subspaces using Equation 9. The differential
 1086 operation is:

$$E'_1 = E_1 - \lambda_1 E_2, \quad E'_2 = E_2 - \lambda_2 E_1.$$

1087 The denoised embedding is $E' = \text{Concat}(E'_1, E'_2)$, and the output is $\mathcal{X}' = W_p E' + b_p$, where W_p
 1088 and b_p are learnable parameters with bounded norms.

1089 Under the assumptions $|\lambda_1| \leq \epsilon_{\lambda_1}$ and $|\lambda_2| \leq \epsilon_{\lambda_2}$, the perturbation in the embedding space satisfies:

$$\|E' - E\|_2 \leq (\epsilon_{\lambda_1} + \epsilon_{\lambda_2})\|E\|_2.$$

1090 Since $\|E\|_2 \leq \|W_e\|_2 \|\mathcal{X}_{enhanced}\|_2 + \|b_e\|_2 \leq C_w(1 + \epsilon_M)\|\mathcal{X}\|_2 + C_b$, and for large signals, $\|\mathcal{X}\|_2$
 1091 dominates, we have $\|E\|_2 \leq C_2\|\mathcal{X}\|_2$ for some constant C_2 . Thus,

$$\begin{aligned} \|\mathcal{X}' - \mathcal{X}_{enhanced}\|_2 &= \|W_p(E' - E)\|_2 \\ &\leq \|W_p\|_2 \|E' - E\|_2 \\ &\leq C_p C_2 (\epsilon_{\lambda_1} + \epsilon_{\lambda_2}) \|\mathcal{X}\|_2, \end{aligned}$$

1092 where $C_p = \|W_p\|_2$. Absorbing constants into the parameters, we obtain:

$$\|\mathcal{X}' - \mathcal{X}_{enhanced}\|_2 \leq (\epsilon_{\lambda_1} + \epsilon_{\lambda_2})\|\mathcal{X}\|_2.$$

1093 Combining the perturbations from both modules:

$$\begin{aligned} \|\Delta\mathcal{X}\|_2 &= \|\mathcal{X}' - \mathcal{X}\|_2 \\ &\leq \|\mathcal{X}' - \mathcal{X}_{enhanced}\|_2 + \|\mathcal{X}_{enhanced} - \mathcal{X}\|_2 \\ &\leq (\epsilon_{\lambda_1} + \epsilon_{\lambda_2})\|\mathcal{X}\|_2 + \epsilon_M\|\mathcal{X}\|_2 \\ &= (\epsilon_M + \epsilon_{\lambda_1} + \epsilon_{\lambda_2})\|\mathcal{X}\|_2. \end{aligned}$$

1094 By Parseval's theorem, the time-domain error satisfies:

$$\|x' - x\|_2 = \|\Delta\mathcal{X}\|_2 \leq (\epsilon_M + \epsilon_{\lambda_1} + \epsilon_{\lambda_2})\|\mathcal{X}\|_2.$$

□

1111
 1112
 1113
 1114 *Remark A.6.* Theorem A.5 ensures that the perturbation is linearly bounded by the parameters ϵ_M ,
 1115 ϵ_{λ_1} and ϵ_{λ_2} . By constraining these parameters during training through regularization or proper
 1116 initialization, the Spectral Mirroring and Differential Embedding modules maintain signal fidelity
 1117 while enhancing discriminative features, effectively avoiding overfitting to noise.

1118
 1119
 1120 **Proposition A.7** (Lipschitz Stability of Energy Predictor). *The Energy Predictor mapping*
 $f_{EP}(\mathcal{X}, \mathcal{Y}) = W_2 \cdot \text{Concat}(W_1 \mathcal{X} + b_1, \mathcal{Y}) + b_2$ *is Lipschitz continuous. Assume the weight matrices*
 1121 *have bounded norms: $\|W_1\|_2 \leq C_1$ and $\|W_2\|_2 \leq C_2$, where $\|\cdot\|_2$ denotes the ℓ_2 -norm. For any*
 1122 *two input pairs $(\mathcal{X}_A, \mathcal{Y}_A)$ and $(\mathcal{X}_B, \mathcal{Y}_B)$, the following inequality holds:*

$$\|f_{EP}(\mathcal{X}_A, \mathcal{Y}_A) - f_{EP}(\mathcal{X}_B, \mathcal{Y}_B)\|_2 \leq L_{EP} (\|\mathcal{X}_A - \mathcal{X}_B\|_2 + \|\mathcal{Y}_A - \mathcal{Y}_B\|_2)$$

1123 where $L_{EP} = C_2 \cdot \max(1, C_1)$ is the Lipschitz constant.

1124
 1125
 1126
 1127
 1128
 1129 *Proof.* We compute the difference between outputs for two arbitrary inputs:

$$\begin{aligned} &\|f_{EP}(\mathcal{X}_A, \mathcal{Y}_A) - f_{EP}(\mathcal{X}_B, \mathcal{Y}_B)\|_2 \\ &= \|W_2 \cdot \text{Concat}(W_1 \mathcal{X}_A + b_1, \mathcal{Y}_A) - W_2 \cdot \text{Concat}(W_1 \mathcal{X}_B + b_1, \mathcal{Y}_B)\|_2 \\ &= \|W_2 \cdot [\text{Concat}(W_1 \mathcal{X}_A + b_1, \mathcal{Y}_A) - \text{Concat}(W_1 \mathcal{X}_B + b_1, \mathcal{Y}_B)]\|_2 \\ &\leq \|W_2\|_2 \cdot \|\text{Concat}(W_1 \mathcal{X}_A + b_1, \mathcal{Y}_A) - \text{Concat}(W_1 \mathcal{X}_B + b_1, \mathcal{Y}_B)\|_2 \end{aligned}$$

1134 Now, note that:

1135 $\text{Concat}(W_1 \mathcal{X}_A + b_1, \mathcal{Y}_A) - \text{Concat}(W_1 \mathcal{X}_B + b_1, \mathcal{Y}_B) = \text{Concat}(W_1(\mathcal{X}_A - \mathcal{X}_B), \mathcal{Y}_A - \mathcal{Y}_B).$

1137 The norm of a concatenated vector can be bounded as:

1138
$$\|\text{Concat}(A, B)\|_2 = \sqrt{\|A\|_2^2 + \|B\|_2^2} \leq \|A\|_2 + \|B\|_2.$$

1140 Applying this:

1141
$$\begin{aligned} & \|\text{Concat}(W_1(\mathcal{X}_A - \mathcal{X}_B), \mathcal{Y}_A - \mathcal{Y}_B)\|_2 \\ & \leq \|W_1(\mathcal{X}_A - \mathcal{X}_B)\|_2 + \|\mathcal{Y}_A - \mathcal{Y}_B\|_2 \\ & \leq \|W_1\|_2 \cdot \|\mathcal{X}_A - \mathcal{X}_B\|_2 + \|\mathcal{Y}_A - \mathcal{Y}_B\|_2 \\ & \leq \max(\|W_1\|_2, 1) \cdot (\|\mathcal{X}_A - \mathcal{X}_B\|_2 + \|\mathcal{Y}_A - \mathcal{Y}_B\|_2) \end{aligned}$$

1146 Combining the inequalities:

1147
$$\begin{aligned} & \|f_{\text{EP}}(\mathcal{X}_A, \mathcal{Y}_A) - f_{\text{EP}}(\mathcal{X}_B, \mathcal{Y}_B)\|_2 \\ & \leq \|W_2\|_2 \cdot \max(\|W_1\|_2, 1) \cdot (\|\mathcal{X}_A - \mathcal{X}_B\|_2 + \|\mathcal{Y}_A - \mathcal{Y}_B\|_2) \\ & \leq C_2 \cdot \max(C_1, 1) \cdot (\|\mathcal{X}_A - \mathcal{X}_B\|_2 + \|\mathcal{Y}_A - \mathcal{Y}_B\|_2) \end{aligned}$$

1151 Thus, the Lipschitz constant is $L_{\text{EP}} = C_2 \cdot \max(1, C_1)$. \square

1154 *Remark A.8.* This theorem guarantees that the Energy Predictor is **stable**: small changes in the input
 1155 spectra (e.g., due to noise or estimation errors) lead to only small changes in the output. This prevents
 1156 the amplification of noise and ensures robust behavior. The Lipschitz constant L_{EP} quantifies the
 1157 sensitivity of the module, and since it depends only on the bounded weights, the stability is inherent
 1158 to the architecture.

1160 **Proposition A.9** (High-Fidelity Spectral Alignment of Energy Predictor). *Let $\mathcal{Y}_{\text{adjusted}} = f_{\text{EP}}(\mathcal{X}_{\text{scaled}}, \mathcal{Y}_{\text{denoised}})$ be the output of the Energy Predictor. Define the high-frequency components of
 1161 a spectrum \mathcal{Z} as \mathcal{Z}_{HF} , obtained by applying a high-pass filter or selecting frequencies above a cutoff.
 1162 From Theorem A.5, assume the perturbations from Spectral Mirroring and Differential Embedding
 1163 are bounded: $\|\mathcal{X}_{\text{scaled}} - \mathcal{X}\|_2 \leq \epsilon_M \|\mathcal{X}\|_2$ and the differential parameters are bounded by $\epsilon_{\lambda_1}, \epsilon_{\lambda_2}$.
 1164 Under the assumption that the Energy Predictor weights satisfy $\|W_1\|_2 \leq C_1, \|W_2\|_2 \leq C_2$, the
 1165 high-frequency modification is bounded by:*

1166
$$\|\mathcal{Y}_{\text{adjusted, HF}} - \mathcal{Y}_{\text{denoised, HF}}\|_2 \leq L_{\text{HF}} \cdot (\epsilon_M + \epsilon_{\lambda_1} + \epsilon_{\lambda_2}) \cdot \|\mathcal{X}\|_2$$

1167 where L_{HF} is a constant depending on C_1, C_2 .

1171 *Proof.* The high-frequency selection operation is linear and does not increase the norm:

1173
$$\|\mathcal{Y}_{\text{adjusted, HF}} - \mathcal{Y}_{\text{denoised, HF}}\|_2 \leq \|\mathcal{Y}_{\text{adjusted}} - \mathcal{Y}_{\text{denoised}}\|_2.$$

1175 The Energy Predictor adjustment can be expressed as:

1176
$$\begin{aligned} \mathcal{Y}_{\text{adjusted}} - \mathcal{Y}_{\text{denoised}} &= f_{\text{EP}}(\mathcal{X}_{\text{scaled}}, \mathcal{Y}_{\text{denoised}}) - \mathcal{Y}_{\text{denoised}} \\ &= W_2 \cdot \text{Concat}(W_1 \mathcal{X}_{\text{scaled}} + b_1, \mathcal{Y}_{\text{denoised}}) + b_2 - \mathcal{Y}_{\text{denoised}}. \end{aligned}$$

1179 To simplify, we decompose W_2 into submatrices corresponding to the concatenation: let $W_2 =$
 1180 $[W_2^A \mid W_2^B]$, where $W_2^A \in \mathbb{C}^{H' \times D'}$ and $W_2^B \in \mathbb{C}^{H' \times H'}$. Then:

1181
$$\mathcal{Y}_{\text{adjusted}} = W_2^A (W_1 \mathcal{X}_{\text{scaled}} + b_1) + W_2^B \mathcal{Y}_{\text{denoised}} + b_2$$

1183 . Thus:

1184
$$\mathcal{Y}_{\text{adjusted}} - \mathcal{Y}_{\text{denoised}} = W_2^A W_1 \mathcal{X}_{\text{scaled}} + W_2^A b_1 + (W_2^B - I) \mathcal{Y}_{\text{denoised}} + b_2.$$

1185 Taking the norm:

1186
$$\begin{aligned} \|\mathcal{Y}_{\text{adjusted}} - \mathcal{Y}_{\text{denoised}}\|_2 &\leq \|W_2^A W_1 \mathcal{X}_{\text{scaled}}\|_2 + \|W_2^A b_1\|_2 + \|(W_2^B - I) \mathcal{Y}_{\text{denoised}}\|_2 + \|b_2\|_2 \\ &\leq \|W_2^A W_1\|_2 \cdot \|\mathcal{X}_{\text{scaled}}\|_2 + \|W_2^A b_1\|_2 + \|W_2^B - I\|_2 \cdot \|\mathcal{Y}_{\text{denoised}}\|_2 + \|b_2\|_2. \end{aligned}$$

1188 From Theorem A.5, we have $\|\mathcal{X}_{\text{scaled}}\|_2 \leq (1 + \epsilon_M)\|\mathcal{X}\|_2$. Additionally, assuming the base model is
 1189 stable, we have $\|\mathcal{Y}_{\text{denoised}}\|_2 \leq C_Y\|\mathcal{X}\|_2$ for some constant C_Y . Therefore:
 1190
 1191 $\|\mathcal{Y}_{\text{adjusted}} - \mathcal{Y}_{\text{denoised}}\|_2 \leq (\|W_2^A W_1\|_2(1 + \epsilon_M) + \|W_2^A b_1\|_2/\|\mathcal{X}\|_2 + \|W_2^B - I\|_2 C_Y + \|b_2\|_2/\|\mathcal{X}\|_2) \|\mathcal{X}\|_2$.
 1192 The terms $\|W_2^A b_1\|_2/\|\mathcal{X}\|_2$ and $\|b_2\|_2/\|\mathcal{X}\|_2$ are negligible for large $\|\mathcal{X}\|_2$, and we can absorb
 1193 constants into L'_{HF} . Moreover, from Theorem A.5, the perturbations ϵ_M , ϵ_{λ_1} , and ϵ_{λ_2} are small, thus:
 1194
 1195 $\|\mathcal{Y}_{\text{adjusted}} - \mathcal{Y}_{\text{denoised}}\|_2 \leq L'_{\text{HF}} \cdot (\epsilon_M + \epsilon_{\lambda_1} + \epsilon_{\lambda_2}) \cdot \|\mathcal{X}\|_2$
 1196 where L'_{HF} depends on $\|W_2^A W_1\|_2$, $\|W_2^B - I\|_2$, C_Y , and the bias terms.
 1197 Finally, since $\|\mathcal{Y}_{\text{adjusted, HF}} - \mathcal{Y}_{\text{denoised, HF}}\|_2 \leq \|\mathcal{Y}_{\text{adjusted}} - \mathcal{Y}_{\text{denoised}}\|_2$, we obtain:
 1198
 1199 $\|\mathcal{Y}_{\text{adjusted, HF}} - \mathcal{Y}_{\text{denoised, HF}}\|_2 \leq L_{\text{HF}} \cdot (\epsilon_M + \epsilon_{\lambda_1} + \epsilon_{\lambda_2}) \cdot \|\mathcal{X}\|_2$,
 1200 with $L_{\text{HF}} = L'_{\text{HF}}$. \square

1203 *Remark A.10.* This proposition resolves a key tension: the Energy Predictor aligns predictions with
 1204 original data distributions while preserving high-frequency enhancements. By proving bounded high-
 1205 frequency modifications, we guarantee that spectral alignment does not reintroduce low-frequency
 1206 dominance or amplify noise, ensuring stable and faithful signal reconstruction.

B MORE DETAILS

B.1 MORE DETAILS OF FIGURE 1

1212 **Figure 1(a): Spectral Bias.** To evaluate the spectral bias of base models, we conduct frequency
 1213 masking experiments during inference. Given an input time series $X \in \mathbb{R}^{T \times C}$, we compute its
 1214 frequency representation via rFFT:

$$\mathcal{X} = \text{rFFT}(X), \quad \mathcal{X} \in \mathbb{C}^{F \times C},$$

1215 where $F = \lfloor T/2 \rfloor + 1$ is the number of frequency components. We then create two masked variants:
 1216 Low-frequency mask: Set the lower 50% of frequencies to zero:
 1217

$$\mathcal{X}_{\text{low-mask}}[k] = \begin{cases} 0, & \text{for } k = 0, 1, \dots, \lfloor F/2 \rfloor, \\ \mathcal{X}[k], & \text{otherwise.} \end{cases}$$

1218 High-frequency mask: Set the higher 50% of frequencies to zero:
 1219

$$\mathcal{X}_{\text{high-mask}}[k] = \begin{cases} \mathcal{X}[k], & \text{for } k = 0, 1, \dots, \lfloor F/2 \rfloor, \\ 0, & \text{otherwise.} \end{cases}$$

1220 Each masked spectrum is converted back to the time domain via inverse rFFT, and forecasting
 1221 performance is evaluated relative to the unmasked baseline.

1222 Results indicate that masking low-frequency components leads to a severe performance degradation
 1223 (MSE increase > 100%), whereas masking high-frequency components has a negligible effect (MSE
 1224 increase < 5%). This pronounced discrepancy confirms that baseline models exhibit a strong reliance
 1225 on low-frequency information while overlooking high-frequency signals, underscoring a fundamental
 1226 spectral bias in existing forecasting architectures.

1227 **Figure 1(b): Indiscriminate Amplification.** To assess robustness to high-frequency noise, we
 1228 compare vanilla amplification methods with our AEA-enhanced version under two noise injection
 1229 scenarios on the ETTh1 dataset:

1230 (1) “Gaussian noise to high freq: before amplification” - Noise is injected directly into the
 1231 high-frequency bands of the input signal before spectral mirroring:

$$\mathcal{X}_{\text{noise-before}}[k] = \begin{cases} \mathcal{X}[k] + \mathcal{N}(0, \sigma^2), & \text{for } k > \lfloor F/2 \rfloor, \\ \mathcal{X}[k], & \text{otherwise,} \end{cases}$$

1232 where $\mathcal{N}(0, \sigma^2)$ denotes Gaussian noise with zero mean and variance σ^2 .

1242 **Algorithm 1** AEA: Adaptive Energy Amplification for Robust Time Series Forecasting

1243 1: **Input:** historical time series $X \in \mathbb{R}^{T \times C}$, forecasting horizon H , mixing ratio α , non-stationarity
1244 weight $\lambda_{\text{non-stat}}$, differential embedding dimension D , energy predictor embedding dimension D'
1245 2: **Output:** forecasted results $\hat{Y} \in \mathbb{R}^{H \times C}$, total loss \mathcal{L}

1246 3:

1247 4: Initialize learnable parameters: $M, W_e, b_e, W_p, b_p, W_1, b_1, W_2, b_2, \lambda_1, \lambda_2$

1248 5:

1249 6: *Spectral Mirroring* (Section 4.2)

1250 7: $\mathcal{X} \leftarrow \text{rFFT}(X)$ ▷ Transform to frequency domain

1251 8: $\mathcal{X}_{\text{reverse}}[k] \leftarrow \mathcal{X}[F - 1 - k], \quad \forall k \in [0, F - 1]$ ▷ Spectrum reverse

1252 9: $\mathcal{X}_{\text{scaled}} \leftarrow \mathcal{X}_{\text{reverse}} \odot M$ ▷ Adaptive scaling per frequency/channel

1253 10: *Phase-preserving mixing to avoid distortion:*

1254 11: **for** each frequency k , channel c **do**

1255 12: $\theta_1, \theta_2 \leftarrow \angle(\mathcal{X}[k, c]), \angle(\mathcal{X}_{\text{scaled}}[k, c])$

1256 13: $\Delta\theta \leftarrow (\theta_1 - \theta_2) \bmod 2\pi$ ▷ Circular difference modulo 2π

1257 14: $\Delta\theta_{\text{adjusted}} \leftarrow \begin{cases} \Delta\theta - 2\pi & \text{if } \Delta\theta > \pi \\ \Delta\theta & \text{otherwise} \end{cases}$ ▷ Shortest angular path

1258 15: $\theta_{\text{mix}} \leftarrow \theta_1 + \Delta\theta_{\text{adjusted}}$ ▷ Phase mixing (Equation 4)

1259 16: $A_{\text{mix}} \leftarrow \alpha \cdot |\mathcal{X}[k, c]| + (1 - \alpha) \cdot |\mathcal{X}_{\text{scaled}}[k, c]|$

1260 17: $\mathcal{X}_{\text{enhanced}}[k, c] \leftarrow A_{\text{mix}} \cdot e^{j\theta_{\text{mix}}}$ ▷ Reconstruct enhanced spectrum

1261 18: **end for**

1262 19:

1263 20: *Differential Embedding* (Section 4.3)

1264 21: $E_1 \| E_2 \leftarrow W_e \cdot \mathcal{X}_{\text{enhanced}} + b_e$ ▷ Project to complex embedding space

1265 22: $E'_1 \leftarrow E_1 - \lambda_1 \cdot E_2, \quad E'_2 \leftarrow E_2 - \lambda_2 \cdot E_1$ ▷ Differential operation for noise suppression

1266 23: $E' \leftarrow \text{Concat}(E'_1, E'_2)$ ▷ Denoised embedding (Proposition A.4)

1267 24: $\mathcal{X}_{\text{denoised}} \leftarrow W_p \cdot E' + b_p$ ▷ Project back to frequency domain

1268 25:

1269 26: *Energy Prediction & Forecasting* (Section 4.4)

1270 27: $X_{\text{denoised}} \leftarrow \text{irFFT}(\mathcal{X}_{\text{denoised}})$ ▷ Denoised input for base model

1271 28: $\hat{Y}_{\text{denoised}} \leftarrow \text{BaseModel}(X_{\text{denoised}})$ ▷ Any forecasting backbone

1272 29: $\mathcal{Y}_{\text{denoised}} \leftarrow \text{rFFT}(\hat{Y}_{\text{denoised}})$

1273 30: $\mathcal{E} \leftarrow W_1 \cdot \mathcal{X}_{\text{scaled}} + b_1$ ▷ Encode historical spectral context

1274 31: $\mathcal{Y}_{\text{adjusted}} \leftarrow W_2 \cdot \text{Concat}(\mathcal{E}, \mathcal{Y}_{\text{denoised}}) + b_2$ ▷ Spectral alignment

1275 32: $\hat{Y} \leftarrow \text{irFFT}(\mathcal{Y}_{\text{adjusted}})$ ▷ Final consistent prediction

1276 33:

1277 34: *Multi-Task Optimization* (Section 4.5)

1278 35: $\mathcal{L}_{\text{forecast}} \leftarrow \text{MSE}(\hat{Y}, Y)$ ▷ Forecasting loss

1279 36: $\mathcal{L}_{\text{non-stat}} \leftarrow \sqrt{\text{Var}_{\mathbf{x} \sim \mathcal{B}}(|E'|)}$ ▷ Non-stationarity regularization (Equation 14)

1280 37: $\mathcal{L} \leftarrow \mathcal{L}_{\text{forecast}} + \lambda_{\text{non-stat}} \cdot \mathcal{L}_{\text{non-stat}}$

1281 38: **return** \hat{Y}, \mathcal{L}

1282
1283
1284 (2) “Gaussian noise to high freq: after amplification” - The same noise is introduced into the
1285 high-frequency components of the enhanced spectrum output by the Spectral Mirroring
1286 module:

$$\mathcal{X}_{\text{enhanced}} = \text{Spectral Mirroring}(\mathcal{X})$$

$$\mathcal{X}_{\text{noise-after}}[k] = \begin{cases} \mathcal{X}_{\text{enhanced}}[k] + \mathcal{N}(0, \sigma^2), & \text{for } k > \lfloor F/2 \rfloor, \\ \mathcal{X}_{\text{enhanced}}[k], & \text{otherwise.} \end{cases}$$

1287 Performance degradation is measured as a relative increase in MSE compared to the “None” baseline.
1288
1289 Vanilla amplification methods suffer severe performance degradation under both noise conditions.
1290 This demonstrates that indiscriminate amplification amplifies noise alongside signals, compromising
1291 robustness. In contrast, AEA maintains stable forecasting accuracy, demonstrating that its differential
1292 embedding mechanism effectively suppresses common-mode noise while preserving discriminative

1296 high-frequency content. The significant performance gap highlights AEA’s superior noise robustness
 1297 compared to existing amplification approaches.
 1298

1299 **B.2 MORE DETAILS OF METRICS**
 1300

1301 We employ multiple evaluation metrics to comprehensively assess forecasting performance across
 1302 different scenarios. For long-term forecasting, we use the Mean Squared Error (MSE) and the
 1303 Mean Absolute Error (MAE). For short-term forecasting, we additionally include the Mean Absolute
 1304 Percentage Error (MAPE) and the Root Mean Squared Error (RMSE). Given the ground truth values
 1305 \mathbf{X}_i and the predicted values $\hat{\mathbf{X}}_i$, these metrics are defined as follows:

$$1306 \quad 1307 \quad \text{MSE} = \frac{1}{N} \sum_{i=1}^N (\mathbf{X}_i - \hat{\mathbf{X}}_i)^2, \quad (27)$$

$$1309 \quad 1310 \quad \text{MAE} = \frac{1}{N} \sum_{i=1}^N |\mathbf{X}_i - \hat{\mathbf{X}}_i|, \quad (28)$$

$$1312 \quad 1313 \quad \text{MAPE} = \frac{100}{N} \sum_{i=1}^N \left| \frac{\mathbf{X}_i - \hat{\mathbf{X}}_i}{\mathbf{X}_i} \right|, \quad (29)$$

$$1315 \quad 1316 \quad \text{RMSE} = \sqrt{\frac{1}{N} \sum_{i=1}^N (\mathbf{X}_i - \hat{\mathbf{X}}_i)^2}, \quad (30)$$

1318 where N is the total number of predictions.
 1319

1320 **B.3 MORE DETAILS OF DATASETS**
 1321

1322 Table 5: Dataset detailed descriptions. The dataset size is organized into (Train, Validation, Test).
 1323 “Prediction Length” denotes the future time points to be predicted. “Frequency” denotes the sampling
 1324 interval of time points.

1325 Task	1326 Datasets	1327 Dim	1328 Prediction Length	1329 Dataset Size	1330 Frequency	1331 Information
1327 Long-term 1328 Forecasting	ETTh1	7	{96, 192, 336, 720}	(8545, 2881, 2881)	15 min	Electricity
	ETTh2	7	{96, 192, 336, 720}	(8545, 2881, 2881)	15 min	Electricity
	ETTm1	7	{96, 192, 336, 720}	(34465, 11521, 11521)	15 min	Electricity
	ETTm2	7	{96, 192, 336, 720}	(34465, 11521, 11521)	15 min	Electricity
	Electricity	321	{96, 192, 336, 720}	(18317, 2633, 5261)	1 hour	Electricity
	Exchange	8	{96, 192, 336, 720}	(5120, 665, 1422)	1 day	Finance
	Weather	21	{96, 192, 336, 720}	(36792, 5271, 10540)	10 min	Weather
	Traffic	862	{96, 192, 336, 720}	(12185, 1757, 3509)	1 hour	Transportation
1334 Short-term 1335 Forecasting	PeMS03	358	12	(15617, 5135, 5135)	5 min	Traffic
	PeMS04	307	12	(10172, 3375, 3375)	5 min	Traffic
	PeMS07	883	12	(16911, 5622, 5622)	5 min	Traffic
	PeMS08	170	12	(10690, 3548, 265)	5 min	Traffic

1338 We evaluate our method on eight established time series benchmarks for long-term forecasting.
 1339 Additionally, we use the PeMS datasets for short-term forecasting. Dataset statistics are summarized
 1340 in Table 5, with detailed descriptions provided below:

- 1341 (1) The **ETT** (Electricity Transformer Temperature) dataset (Zhou et al., 2021) records temperature
 1342 and load data from power transformers in two Chinese regions between 2016 and 2018.
 1343 It includes two temporal resolutions: ETTh (hourly) and ETTm (15-minute intervals).
- 1344 (2) The **Electricity** dataset (Wu et al., 2023) comprises hourly power consumption measurements (kWh) from 321 customers. Collected from the UCL repository and spanning 2012-2014, it captures residential and commercial energy usage patterns.
- 1345 (3) The **Weather** dataset (Wu et al., 2023) contains 21 meteorological variables recorded at 10-minute intervals throughout 2020 in Germany. Parameters include temperature, humidity, 1346 pressure, and visibility, providing comprehensive environmental monitoring.

1350
 1351 (4) The **Exchange** dataset (Wu et al., 2023) tracks daily currency values for eight major
 1352 economies relative to the US dollar over 1990-2016. This 26-year series reflects global
 1353 financial dynamics and macroeconomic trends.
 1354
 1355 (5) The **Traffic** dataset (Wu et al., 2023) provides hourly occupancy rates from 862 sensors on
 1356 San Francisco Bay Area freeways during 2015-2016. It captures urban mobility patterns
 1357 and congestion dynamics.
 1358
 1359 (6) The **PeMS** dataset (Chen et al., 2001) comprises four public traffic network datasets
 1360 (PeMS03, PeMS04, PeMS07, PeMS08), collected from California’s Caltrans Performance
 1361 Measurement System (PeMS). The data from four distinct districts is aggregated at 5-minute
 1362 intervals, yielding 12 observations per hour and 288 per day.

1363 **B.4 MORE DETAILS OF EXPERIMENT**

1364 We make our codes publicly available, including implementations of all base models and the pro-
 1365 posed AEA framework, to ensure reproducibility. The backbone implementations are adapted from
 1366 their official GitHub repositories, with reference to the TimesNet codebase (Wu et al., 2023). All
 1367 experiments were conducted using the following unified settings: batch size of 32, learning rate of
 1368 0.0005, random seeds of {2021, 2022, 2023}, and Adam optimizer (Kingma & Ba, 2015). Each run
 1369 was trained for 10 epochs with early stopping (patience = 3) to prevent overfitting.

1370
 1371 **C MORE ANALYSIS**

1372
 1373 **C.1 MORE ANALYSIS OF HYPERPARAMETER SENSITIVITY**

1374 We conduct sensitivity analysis on four key hyperparameters using MSE as the evaluation metric,
 1375 with DLinear as the backbone model under a forecasting horizon of 96.

1376
 1377 **Sensitivity of Amplitude Mixing Ratio α .** We investigate the impact of the amplitude mixing
 1378 ratio α in Spectral Mirroring, which controls the balance between the original and mirrored spectra
 1379 amplitudes. As shown in Figure 3, performance remains stable across $\alpha \in [0.25, 0.75]$, with $\alpha = 0.5$
 1380 achieving optimal or near-optimal results on four datasets. This suggests that equal weighting offers
 1381 the optimal balance between signal enhancement and distortion avoidance. The minimal performance
 1382 variation (< 6% MSE difference across values) demonstrates the robustness of our amplitude mixing
 1383 strategy to this hyperparameter.

1384
 1385 **Sensitivity of Differential Scaling Initialization λ_{init} .** The initialization of differential scaling
 1386 parameters λ_1 and λ_2 is crucial for stable training. As shown in Figure 4, performance is largely
 1387 insensitive to $\lambda_{init} \in [0, 1]$, with fluctuations within 5% across datasets. The Softplus constraint
 1388 ensures that positive values are maintained throughout the optimization process, while the learning
 1389 mechanism allows for adaptation to dataset-specific noise characteristics. We use $\lambda_{init} = 0.2$ as the
 1390 default for consistent convergence.

1391
 1392 **Sensitivity of Non-stationarity Weight $\lambda_{non-stat}$.** The regularization weight $\lambda_{non-stat}$ balances
 1393 forecasting accuracy with representation stability. As shown in Figure 5, extreme values (≥ 100)
 1394 cause noticeable degradation, while moderate settings (0.1 – 1.0) maintain stable performance. This
 1395 confirms the importance of the non-stationarity loss for robust learning, while demonstrating that
 1396 a wide range of values provides effective regularization. We set $\lambda_{non-stat} = 0.1$ as the default
 1397 balanced configuration.

1398
 1399 **Sensitivity of Energy Predictor Dimension D' .** As shown in Figure 6, the embedding dimension
 1400 D' in the Energy Predictor shows minimal impact on performance, with differences < 5% across
 1401 $D' \in [64, 512]$. This indicates that even compact representations ($D' = 64$) effectively capture the
 1402 spectral mapping between enhanced and original distributions. The consistency across dimensions
 1403 confirms the efficiency of our frequency-domain alignment approach.

1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458

Figure 3: Performance w.r.t. different amplitude mixing ratio α with DLinear as backbone under a horizon of 96.

Figure 4: Performance w.r.t. different differential scaling initialization λ_{init} with DLinear as backbone under a horizon of 96.

Figure 5: Performance w.r.t. different non-stationarity weight $\lambda_{non-stat}$ with DLinear as backbone under a horizon of 96.

Figure 6: Performance w.r.t. different energy predictor dimension D' with DLinear as backbone under a horizon of 96.

Table 6: **Ablation study results** across five datasets. Models are compared in terms of MSE and MAE (lower values are better) using the **PatchTST** backbone under a forecasting horizon of 96. The best result for each dataset is highlighted in **bold**. ‘Avg’ denotes the average results of MSE and MAE. The last column, ‘Drop (%)’, shows the average performance deterioration percentage of all datasets.

	ETTh1	ETTh2	Weather	Exchange	Traffic	Avg	Drop (%)
AEA	0.385	0.314	0.196	0.144	0.394	0.287	-
w/o Spectral Mirroring	0.399	0.322	0.220	0.152	0.406	0.300	6.656
w/o Phase Mixing	0.403	0.315	0.207	0.157	0.394	0.295	4.993
w/o Differential Embedding	0.399	0.326	0.224	0.161	0.416	0.305	9.741
w/o Non-stationarity Loss	0.393	0.324	0.215	0.152	0.414	0.299	6.399
w/o Energy Predictor	0.415	0.346	0.242	0.145	0.411	0.312	11.247

C.2 ABLATION STUDY ON NON-LINEAR BACKBONE.

To verify the generality of the module contributions, we conducted an ablation study using the non-linear PatchTST backbone. The results, presented in Table 6, strongly align with our initial findings on DLinear (refer to Section 5.4). The consistent performance hierarchy shows that the Energy Predictor and Differential Embedding remain the most critical components, indicating that their functional roles are fundamental to the framework’s operation. This cross-architectural consistency

1458
1459
1460
1461Table 7: Performance comparison of adaptive v.s. fixed α in AEA. The forecasting horizons are $\{96, 192, 336, 720\}$. The better performance in each setting is shown in **bold**. ‘Avg’ denotes the average results of four forecasting horizons.

Model Variant Metric		DLinear + AEA				PatchTST + AEA			
		Adaptive		Fixed		Adaptive		Fixed	
		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTh1	96	0.380	0.392	0.380	0.392	0.381	0.399	0.374	0.396
	192	0.432	0.427	0.432	0.422	0.449	0.438	0.428	0.431
	336	0.474	0.450	0.479	0.458	0.481	0.455	0.466	0.452
	720	0.496	0.490	0.495	0.489	0.557	0.500	0.479	0.478
	Avg	0.445	0.440	0.447	0.440	0.467	0.448	0.437	0.439
ETTh2	96	0.330	0.385	0.329	0.384	0.291	0.340	0.290	0.339
	192	0.453	0.461	0.450	0.457	0.377	0.391	0.375	0.392
	336	0.577	0.531	0.576	0.533	0.415	0.425	0.416	0.425
	720	0.804	0.644	0.795	0.641	0.433	0.447	0.421	0.439
	Avg	0.541	0.505	0.538	0.504	0.379	0.401	0.375	0.399
Exchange	96	0.078	0.201	0.077	0.199	0.088	0.206	0.084	0.204
	192	0.158	0.294	0.158	0.295	0.195	0.313	0.186	0.306
	336	0.266	0.389	0.270	0.394	0.416	0.477	0.323	0.410
	720	0.792	0.674	0.773	0.667	0.861	0.694	0.877	0.707
	Avg	0.323	0.389	0.320	0.389	0.390	0.422	0.367	0.407
Weather	96	0.172	0.246	0.169	0.244	0.178	0.226	0.173	0.219
	192	0.217	0.288	0.213	0.286	0.217	0.256	0.218	0.256
	336	0.268	0.329	0.266	0.327	0.272	0.295	0.273	0.296
	720	0.338	0.380	0.336	0.378	0.350	0.347	0.351	0.345
	Avg	0.249	0.311	0.246	0.309	0.254	0.281	0.254	0.279
Traffic	96	0.614	0.399	0.611	0.388	0.481	0.295	0.481	0.306
	192	0.594	0.371	0.589	0.370	0.488	0.297	0.486	0.301
	336	0.600	0.372	0.597	0.374	0.505	0.300	0.503	0.309
	720	0.640	0.393	0.634	0.392	0.535	0.320	0.541	0.328
	Avg	0.612	0.384	0.608	0.381	0.502	0.303	0.503	0.311
1st Count		3	5	19	17	7	8	16	15

1497

1498

underscores that AEA provides a robust and model-agnostic enhancement for time series forecasting.

1500

1501

1502

C.3 ADDITIONAL DISCUSSION OF ADAPTIVE AMPLITUDE MIXING RATIO

1503

1504

The amplitude mixing ratio α balances the original and mirrored spectra during the Spectral Mirroring process. To examine its flexibility, we compared our fixed $\alpha=0.5$ setting against a learnable α parameter, with results provided in Table 7. The fixed ratio achieves superior performance in the majority of settings (e.g., 19 v.s. 3 best scores for DLinear and 16 v.s. 7 for PatchTST). This consistent advantage demonstrates that a fixed, balanced mixture provides a more effective and stable foundation for subsequent processing. The necessary adaptation to specific frequency characteristics is then more efficiently handled by the subsequent learnable scaling matrix and the Differential Embedding module, which perform fine-grained adjustments. Consequently, we retain the fixed $\alpha=0.5$ for its proven effectiveness.

1512 Table 8: Standard deviation and statistical tests for Amplifier and FredFormer, with their counterparts
1513 enhanced by the AEA. The results are averaged by four forecasting horizons {96, 192, 336, 720}.

Model 1515 1516	Amplifier				Amplifier + AEA		Confidence Level	FredFormer				FredFormer + AEA		Confidence Level		
	MSE	MAE	MSE	MAE	MSE	MAE		MSE	MAE	MSE	MAE	MSE	MAE			
ETTh1	0.473 ± 0.011	0.454 ± 0.009	0.452 ± 0.014	0.439 ± 0.008	0.99	0.451 ± 0.005	0.437 ± 0.009	0.443 ± 0.009	0.427 ± 0.012	0.99	0.382 ± 0.019	0.407 ± 0.017	0.374 ± 0.008	0.400 ± 0.011	0.99	
ETTh2	0.382 ± 0.019	0.407 ± 0.017	0.374 ± 0.008	0.400 ± 0.011	0.99	0.365 ± 0.005	0.394 ± 0.008	0.358 ± 0.014	0.389 ± 0.014	0.99	0.390 ± 0.015	0.398 ± 0.012	0.387 ± 0.009	0.395 ± 0.009	0.99	
ETTm1	0.390 ± 0.015	0.398 ± 0.012	0.387 ± 0.009	0.395 ± 0.009	0.99	0.403 ± 0.007	0.404 ± 0.010	0.391 ± 0.012	0.377 ± 0.016	0.99	0.278 ± 0.006	0.324 ± 0.014	0.276 ± 0.005	0.323 ± 0.004	0.99	
ETTm2	0.283 ± 0.006	0.324 ± 0.014	0.276 ± 0.005	0.323 ± 0.004	0.99	0.282 ± 0.011	0.326 ± 0.006	0.279 ± 0.014	0.324 ± 0.009	0.99	Electricity	0.283 ± 0.008	0.328 ± 0.006	0.279 ± 0.009	0.326 ± 0.014	0.99
Exchange	0.369 ± 0.018	0.406 ± 0.010	0.360 ± 0.010	0.402 ± 0.006	0.99	0.178 ± 0.004	0.270 ± 0.015	0.174 ± 0.016	0.266 ± 0.011	0.99	0.255 ± 0.009	0.279 ± 0.015	0.252 ± 0.011	0.277 ± 0.008	0.99	
Weather	0.255 ± 0.009	0.279 ± 0.015	0.252 ± 0.011	0.277 ± 0.008	0.99	0.245 ± 0.011	0.272 ± 0.009	0.243 ± 0.009	0.270 ± 0.008	0.99	Traffic	0.561 ± 0.012	0.360 ± 0.006	0.543 ± 0.014	0.348 ± 0.009	0.99
								0.445 ± 0.011	0.300 ± 0.021	0.440 ± 0.017	0.293 ± 0.019				0.99	

1521
1522 Table 9: Efficiency analysis of FredFormer and its AEA-enhanced variant on the Electricity dataset
1523 across forecasting horizons {96, 192, 336, 720}. Metrics include: training time (s/epoch), inference
1524 time (s/iter), FLOPs (G), measuring computational complexity; MACs (M), indicating hardware
1525 performance requirements; and number of parameters, representing model size.

Dataset	Horizon	FredFormer				FredFormer + AEA					
		train time (s/epoch)	infer time (s/iter)	FLOPs (G)	MACs (M)	parameters	train time (s/epoch)	infer time (s/iter)	FLOPs (G)	MACs (M)	parameters
Electricity	96	40.103	0.040	177,299	11,866	12116801	52.823	0.041	177,452	11,875	12141511
	192	41,023	0.053	179,886	12,118	12516641	52,555	0.053	180,191	12,142	12556183
	336	42,445	0.066	184,478	12,565	13358321	53,788	0.075	185,122	12,622	13431007
	720	42,445	0.066	200,887	14,164	17022065	59,435	0.088	203,369	14,400	17273887
Avg.		41,504	0.056	185,638	12,678	13753457	54,650	0.064	186,533	12,760	13850647

1531 Table 10: Efficiency analysis of Amplifier and its AEA-enhanced variant on the Electricity dataset
1532 across forecasting horizons {96, 192, 336, 720}. Metrics include: training time (s/epoch), inference
1533 time (s/iter), FLOPs (G), measuring computational complexity; MACs (M), indicating hardware
1534 performance requirements; and number of parameters, representing model size.

Dataset	Horizon	Amplifier				Amplifier + AEA					
		train time (s/epoch)	infer time (s/iter)	FLOPs (G)	MACs (M)	parameters	train time (s/epoch)	infer time (s/iter)	FLOPs (G)	MACs (M)	parameters
Electricity	96	14,236	0.021	1,688	0.502	518153	22,055	0.030	1,752	0.508	524684
	192	15,316	0.023	2,205	0.603	619049	22,861	0.029	2,333	0.622	638012
	336	19,126	0.028	5,759	1.395	1411417	22,807	0.036	6,038	1.444	1459924
	720	25,544	0.053	9,846	2,192	2208217	30,477	0.055	10,996	2,410	2426260
Avg.		18,555	0.031	4,875	1.173	1189209	24,550	0.038	5,280	1.246	1262220

C.4 ERROR BARS

1541 In this paper, we repeat all the experiments three times. Here we report the standard deviation of
1542 Amplifier and FredFormer, as well as the statistical significance test in Table 8.

C.5 INTUITION OF USING LOW-FREQUENCY SPECTRUM TO GUIDE HIGH FREQUENCY

1543 The rationale is directly derived from the **spectral energy imbalance** of time series data. As
1544 established via Parseval’s Theorem and observed in real-world time series, the signal energy is
1545 overwhelmingly concentrated in the low-frequency components due to their high amplitudes. This
1546 high amplitude directly translates to a higher inherent Signal-to-Noise Ratio (SNR): the powerful
1547 low-frequency signal is far less susceptible to being corrupted or obscured by background noise
1548 compared to the subtle, low-amplitude high-frequency components, which can be easily drowned
1549 out by stochastic noise. It is this inherent robustness that qualifies low-frequency components as a
1550 reliable source for constructing a stable template. Crucially, this guidance is not rigid but is adaptively
1551 controlled by the learnable scaling matrix and refined by the Differential Embedding module, which
1552 is empirically validated by the consistent improvements across diverse datasets.

C.6 EFFICIENCY ANALYSIS

1553 To assess the computational overhead of AEA, we conducted efficiency experiments on the Electricity
1554 dataset with 321 variables across four forecasting horizons {96, 192, 336, 720}. The results in
1555 Table 9 and 10 demonstrate that AEA introduces minimal practical cost while delivering significant
1556 performance improvements. For the FredFormer backbone, AEA increases average training time per
1557 epoch by 13 seconds and inference time by only 0.008 seconds, with computational metrics showing
1558 negligible increases of 0.483% in FLOPs and 0.707% in parameters. The Amplifier backbone shows
1559 slightly higher relative increases in computational metrics due to its simpler base architecture, yet

1566 maintains practically insignificant absolute overhead with just 6 seconds additional training time per
 1567 epoch and 0.006 seconds in inference. These findings confirm that AEA’s components are efficiently
 1568 implemented, making the framework suitable for real-world deployment even with high-dimensional
 1569 data and long forecasting horizons.

1570

1571 Table 11: Long-term forecasting on Electricity dataset with different look-back window length in
 1572 $\{96, 192, 336, 720\}$. The forecasting lengths are $\{96, 192, 336, 720\}$. **Bold** means AEA successfully
 1573 enhances forecasting performance over the base model.

1574

Window Length	Horizon	Amplifier		Amplifier + AEA	
		mse	mae	mse	mae
96	96	0.178	0.267	0.173	0.265
	192	0.247	0.306	0.243	0.303
	336	0.308	0.343	0.302	0.340
	720	0.398	0.396	0.397	0.396
	Avg.	0.283	0.328	0.279	0.326
192	96	0.145	0.239	0.139	0.236
	192	0.161	0.252	0.157	0.252
	336	0.178	0.272	0.174	0.268
	720	0.215	0.301	0.193	0.284
	Avg.	0.175	0.266	0.166	0.260
336	96	0.141	0.238	0.139	0.235
	192	0.160	0.253	0.155	0.248
	336	0.174	0.270	0.167	0.259
	720	0.205	0.293	0.202	0.291
	Avg.	0.170	0.264	0.166	0.258
720	96	0.139	0.238	0.137	0.234
	192	0.153	0.249	0.150	0.246
	336	0.178	0.277	0.162	0.258
	720	0.195	0.286	0.191	0.284
	Avg.	0.166	0.263	0.160	0.255

1603

1604

1605 C.7 INFLUENCE OF LOOK-BACK WINDOW LENGTH

1606

1607 In this section, we investigate the effect of different lookback window lengths $\{96, 192, 336, 720\}$ on
 1608 the Electricity dataset. We evaluate window sizes of $\{96, 192, 336, 720\}$ to understand how historical
 1609 context length influences model behavior and to identify potential risks of overfitting with excessively
 1610 long windows or underfitting with insufficient historical context. As shown in Table 11, AEA
 1611 consistently enhances base model performance across all forecasting horizons and window lengths.
 1612 The framework demonstrates particular effectiveness with a 192-step lookback window, suggesting
 1613 this length provides an optimal balance between capturing sufficient temporal dependencies and
 1614 avoiding overfitting.

1614

1615

1616 C.8 VISUAL ANALYSIS

1617

1618

1619

1617 Visual analysis of forecasting results on the Electricity dataset (horizon=96) highlights the distinct and
 1618 complementary improvements enabled by the AEA framework. As shown in Figures 7 and 8, AEA
 1619 enhances Amplifier’s capacity to capture fine-grained temporal variations, resulting in predictions
 with **sharper and more accurate peak representations**. This indicates that our method effectively

Figure 7: Forecasting visualization of Amplifier on the Electricity dataset under a horizon of 96.

Figure 8: Forecasting visualization of Amplifier + AEA on the Electricity dataset under a horizon of 96.

Figure 9: Forecasting visualization of FredFormer on the Electricity dataset under a horizon of 96.

Figure 10: Forecasting visualization of FredFormer + AEA on the Electricity dataset under a horizon of 96.

mitigates spectral bias, allowing the model to better model rapid signal changes. Meanwhile, Figures 9 and 10 reveal that for **FredFormer**, AEA primarily contributes to output stabilization by alleviating temporal distribution shift and suppressing spurious fluctuations, yielding a smoother and more consistent forecast trajectory. These findings demonstrate AEA’s ability to provide robust, model-agnostic enhancement through adaptive frequency amplification and noise suppression.

D LIMITATIONS AND FUTURE WORK

The proposed AEA framework has demonstrated its effectiveness as a model-agnostic enhancement across multiple forecasting backbones, including linear models, Transformers, convolutional architectures, and specialized frequency-domain methods. However, our current evaluation focuses primarily on these conventional deep learning architectures. This study does not include the emerging class of LLM-based time series models, such as Time-LLM (Jin et al., 2024) and AutoTimes (Liu et al., 2024b). This limitation arises from the substantial computational requirements of these billion-scale parameter models and their distinct architectural paradigms, which present unique integration challenges beyond the scope of this initial investigation. Future work will explore adapting AEA’s core principles of spectral bias mitigation to LLM-based forecasting architectures. The mechanisms of adaptive energy amplification and noise suppression could potentially enhance how these foundation models capture predictive high-frequency signals, opening promising new research directions in time series forecasting.