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ABSTRACT

The rich and multifaceted nature of human social interaction, encompassing mul-
timodal cues, unobservable relations and mental states, and dynamical behavior,
presents a formidable challenge for artificial intelligence. To advance research in
this area, we introduce SIV-Bench, a novel video benchmark for rigorously evaluat-
ing the capabilities of Multimodal Large Language Models (MLLMs) across Social
Scene Understanding (SSU), Social State Reasoning (SSR), and Social Dynamics
Prediction (SDP). SIV-Bench features 2,792 video clips and 8,792 meticulously
generated question-answer pairs derived from a human-LLM collaborative pipeline.
It is originally collected from TikTok and YouTube, covering a wide range of video
genres, presentation styles, and linguistic and cultural backgrounds. It also includes
a dedicated setup for analyzing the impact of different textual cues—original on-
screen text, added dialogue, or no text. Our comprehensive experiments on leading
MLLMs reveal that while models adeptly handle SSU, they significantly struggle
with SSR and SDP, where Relation Inference (RI) is an acute bottleneck, as further
examined in our analysis. Our study also confirms the critical role of transcribed
dialogue, particularly in aiding the reasoning of social states and dynamics. By
systematically identifying current MLLMs’ strengths and limitations, SIV-Bench
offers crucial insights to steer the development of more socially intelligent AI.

1 INTRODUCTION

The development of Multimodal Large Language Models (MLLMs), which can process text, images,
and video, marks a significant step toward more human-like AI (Team et al., 2023; Wu et al., 2024;
Zhu et al., 2025b; Hurst et al., 2024; Yang et al., 2024). These models perform strongly across a
range of tasks, driving progress in areas such as visual reasoning, video captioning, and multimodal
dialogue. As these capabilities expand, there is a growing need for benchmarks that can evaluate
model performance, uncover limitations, and guide future research (Fu et al., 2024; Fang et al., 2024;
Zhou et al., 2024; Qiang et al., 2025; Huang et al., 2024). One critical yet underexplored area is
the understanding and reasoning about social interactions — a core aspect of social intelligence that
encompasses not only observable behaviors but also implicit mental states and social relationships
governing behaviors such as forming bonds, exchanging information, and coordinating actions
(Berger et al., 1972; Smith-Lovin & Heise, 1988). However, current video benchmarks—whether
designed for specific tasks like object segmentation (Hong et al., 2024; Xu et al., 2018), captioning
(Qi et al., 2023), and activity recognition (Zhao et al., 2019), or for broader video understanding
across various domains (Li et al., 2024b;c)—still lack a detailed focus on social interactions.

We define the capacity of MLLMs to understand and reason social interactions in video through three
core, interrelated dimensions: 1) Social Scene Understanding (SSU) is foundational, enabling the
recognition of visible elements such as objects, environments, and socially salient human features like
body movements, clothing, and physical appearance. Reliable scene perception is required to ground
interpretations in relevant cues. 2) Social State Reasoning (SSR) is essential for interpreting the
unobservable states of interaction, such as emotions, intents, attitudes, and interpersonal relationships,
which guide and shape behavior (Strachan et al., 2024; Wu et al., 2020). This capacity allows
models to move beyond surface-level features and grasp the underlying states. 3) Social Dynamics
Prediction (SDP) enables the model to reason about how interactions proceed over time or under
alternative conditions, capabilities essential for a flexible and human-like understanding of social
scenarios (Ramnani & Miall, 2004; Byrne, 2016). It involves factual prediction and counterfactual
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(a) 
Action

Recognition

What action does the child perform with his hand?
A. Touches his lips with his hand.
B. Waves his hand in the air.
C. Claps his hands together.

D. Points to the sky with his finger.
E. Shakes his hand playfully.

(b) 
Environment
Perception

What environmental clues suggest the economic status of the people?
A. Public transportation options and crowded markets
B. Community gardens and small-scale businesses
C. Frequent public events and local artwork

D. Large house and 
luxury goods
E. Neighborhood parks 
and shared facilities

(c) 
Facial Expression 

Recognition

What is the expression when smoking in the second scene?
A. A relaxed, confident smile.
B. A tense, embarrassed expression.
C. A contemplative, serious expression.

D. A surprised, wide-eyed look.
E. A jovial, carefree demeanor.

(d) 
Human Attribute 

Identification

What does the man sitting at the desk wear?
A. A black polo shirt with the car dealership logo.
B. A blue and white checkered shirt.
C. A contemplative, serious expression.

D. A grey suit and a tie.
E. A green hoodie with 
the company name.

(e) 
Intent

Inference

(f) 
Emotion

Inference

(g) 
Attitude

Inference

(h) 
Relation

Inference

Why does the adult bend down slowly when he finds the child 
hiding under the table?

A. To calm the child down.
B. To play a game with the child.

C. He is experiencing physical discomfort.
D. To search something that fell on the floor.
E. To give the child a snack he brought.

What is the emotional tone of the person in the Canadian flag shirt 
when talking about the mistake?

A. Confident and dismissive.
B. Joyful and carefree

C. Angry and confrontational.
D. Indifferent and detached.
E. Anxious and apologetic.

What attitude does the senior waiter show to the customer?
A. Polite and attentive.
B. Confused and overwhelmed.
C. Condescending and hostile.

D. Indifferent and uninterested.
E. Friendly and welcoming.

What social relationship does this video mainly represent?

A. Couple. B. Parent-Child. C. Siblings. D. Grandparent-Child. …
G. Coach-Player. … L. Teammates. M. Service. N. Transactional.

(i) 
Factual

Prediction

(j) 
Counterfactual

Prediction

What is likely to happen to the player after being escorted off the field?

A. He will go to the locker room.
B. He will head to the concession stand.
C. He will join the coaching staff on the sidelines.

D. He will attend a post-
game press conference.
E. He will participate in a 
fan meet-and-greet.

How might the caretaker's approach differ if the patient were 
more receptive to verbal instructions?
A. Increased reliance on non-verbal cues.
B. More frequent use of physical restraints.
C. Less physical intervention.

D. Heightened emphasis on 
medication administration.
E. Greater focus on 
establishing a strict schedule.

Figure 1: Overview of SIV-Bench, showing its diverse videos spanning various social interactions and
sample QAs for three task dimensions: Social Scene Understanding (SSU), Social State Reasoning
(SSR), and Social Dynamics Prediction (SDP), along with their fine-grained sub-tasks.

prediction. The former anticipates upcoming actions or emotional shifts. The latter examines how
changes in social relations or behaviors might alter the outcome of an interaction.

In this work, we introduce SIV-Bench (Social Interaction Video Benchmark), a novel benchmark
designed to evaluate MLLMs across the above three core dimensions. SIV-Bench is fundamentally
organized around social relationships, recognizing their critical role in shaping social interaction
(Thibaut, 2017; Burkitt, 1997; Hartup, 1989). Specifically, SIV-Bench is built on Fiske’s Relational
Models Theory (Fiske, 1992), categorizing social interactions via four foundational models (Com-
munal Sharing, Authority Ranking, Equality Matching, and Market Pricing), which are instantiated
through 14 specific relation types (e.g., parent-child, friends, colleagues). This relational schema
underpins fine-grained evaluation across three key dimensions. Understanding relational context
is vital for SSU, as the salience and interpretation of actions, expressions, and environmental cues
often depend on the relationship (e.g., a gaze between colleagues versus lovers). It is also central
to SSR, where mental state inferences are modulated by relational roles (e.g., a critical comment
from a mentor versus a stranger implies different states). For SDP, predictions of future behaviors
and counterfactual reasoning are shaped by relational norms and history (e.g., conflict resolution
strategies differ between siblings and business rivals).

SIV-Bench comprises 2,792 video clips sourced from TikTok and YouTube. Its video corpus ensures
robust evaluation by encompassing diverse genres (such as daily life recordings, movie clips,
sports footage, and animation), varied presentation styles (including first-person, third-person,
phone calls, and solo multi-role sketches) and content reflecting multiple linguistic and cultural
backgrounds (like English, Japanese, and Spanish). A dedicated question-answer (QA) pipeline,
combining large language models with human verification, produces 8,728 high-quality multiple-
choice questions (MCQs). These MCQs are designed to target specific facets within our three
core assessment dimensions. Furthermore, to systematically assess the impact of linguistic cues,
SIV-Bench incorporates audio tracks and provides videos under three distinct subtitle conditions:
the original version (origin), a version with transcribed and translated dialogue added (+sub), and a
version with all original on-screen text removed (-sub), as illustrated in Figure 4.

In the experiments, we evaluate leading commercial(e.g., Gemini-2.5-Pro (Doshi, 2025), o4-mini
(OpenAI, 2025)), open-source (e.g., InternVL3 (Zhu et al., 2025a), Qwen2.5-VL (Bai et al., 2025)),
and specialized video models (e.g., LLaVA-OneVision (Li et al., 2024a), LLaVA-Video (Zhang et al.,
2024)). The results show clear performance differences across the three dimensions. Models perform
relatively well in SSU but struggle with SSR, where Relation Inference proves especially challenging.
Common failure patterns include confusion between primary and secondary relationships, misleading

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Video
Search &
Download

Data Collection QA Generation & Filtering

A
greed

D
isagreed

Video Grounding and 
Difficulty Control

Human Verify 
(≥ 2 annotators)

QA Generation (Human)
Distractors
Generation

Sam
ple

QA Quality Validation

Manual 
Review

Expert 
Models

Validation

QA
Generation

(Model)
Video 

Keywords 
Generation

Distractors
Generation

Option 
Uniformity 

in Style 
and 

Length

SSU

EP AR

FERHAI

SSR
IIEI

AIRI

SDP
CP FP

Figure 2: The SIV-Bench construction pipeline, detailing the data collection process (left), and the
QA generation & filtering process (right) with human-LLM collaboration. In the diagram, blocks
indicate content (like keywords, video and QA) generation steps, blocks represent validation or
modification stages, and trapezoids signify a filtering and removal phase.

contextual cues, weak commonsense reasoning, and missed perceptual details. SDP also poses
difficulties, though top models handle counterfactuals relatively well. Our study also underscores the
general importance of linguistic cues, as transcribed subtitles consistently aid overall comprehension
while their removal typically hinders performance.

Our key contributions are as follows: 1) We propose a novel analytical framework that structurally
decomposes the complex task of multimodal social interaction understanding and reasoning into three
core, interrelated dimensions, each further detailed into fine-grained sub-tasks. 2) We introduce SIV-
Bench, a new video benchmark specifically curated for the analysis and comprehension of complex
real-world social interactions. SIV-Bench comprises 2,792 real-world video clips representing 14
distinct social relationship types, and features 8,792 high-quality question-answer pairs generated
through a human-LLM collaborative pipeline. 3) Our comprehensive experiments on diverse MLLMs
reveal the limitations in their current capacity for deep human social understanding. These findings
offer crucial insights to direct future research toward advancing artificial social intelligence.

2 SIV-BENCH

This section details SIV-Bench, our novel video benchmark developed to evaluate MLLMs’ capa-
bilities in understanding and reasoning within social interaction scenarios. Figure 1 offers some
illustrative examples from SIV-Bench. The video corpus features interactions curated across 4 primary
relational models, further detailed into 14 specific social relations, to ensure comprehensive coverage
of real-world scenarios. The associated QA pairs are meticulously designed to probe model capabili-
ties across 3 major task categories and 10 fine-grained aspects, targeting understanding, reasoning,
and prediction in social contexts. Figure 2 shows the construction pipeline of SIV-Bench, including
video collection (Section 2.1), QA generation and filtering (Section 2.2). Finally, to contextualize its
contributions, SIV-Bench is also compared with other relevant benchmarks and datasets (Section 2.3).

2.1 VIDEO COLLECTION

(a) Relation type distribution
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Average length: 32.49s

(b) Video length distribution (c) Language word-cloud

Figure 3: Video statistics for SIV-Bench: (a) Distribution of social relation types. (b) Distribution of
video lengths, with an average of 32.49s. (c) Word cloud illustrating language diversity.

Firstly, we utilize GPT-4o-mini (Hurst et al., 2024) to generate comprehensive search keywords for
each of the 14 relationship types (the word-clouds are shown in Figure 7), specifically including
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terms associated with varying degrees of intimacy, both positive (e.g., "love", "encourage") and
negative (e.g., "conflict", "fight"). Leveraging these keywords, we conduct targeted searches and
download initial video candidates from TikTok and YouTube platforms using Python libraries such
as TikTokApi and yt-dlp, yielding approximately 5000 raw video clips. Each video is then
manually reviewed by the authors to ensure it contains clearly observable and meaningful social
interactions. Videos are excluded if they do not depict clear social interaction (e.g., a vlogger speaking
directly to the camera without interacting with others), if the interaction context does not fit within
a set of well-defined interpersonal scenarios (e.g., an interview setting with scripted dialogue), or
if the dominant interaction is difficult to identify due to the presence of multiple overlapping social
dynamics (e.g., a large multi-generational family posing for a group photo). These criteria are
designed to ensure that each included video primarily features one interpretable and coherent type of
interpersonal interaction, allowing for more consistent analysis of social behaviors across the dataset.

The final SIV-Bench comprises 2,792 curated video clips, with statistics shown in Figure 3. The
collection showcases a rich diversity in social relationships (Figure 3(a)). Communal Sharing
interactions are the most represented category, a distribution intentionally preserved to reflect the
naturalistic prevalence and psychological centrality of these relationships in daily life (Simão & Seibt,
2014; Kameda et al., 2005). The other three relational models are also well represented, ensuring
broad interpersonal coverage. In terms of duration (Figure 3(b)), clips average 32.49 seconds.

Origin - Subtitle + Subtitle

Figure 4: Illustration of the three subtitle
conditions applied in SIV-Bench: ‘Ori-
gin’, ‘-Subtitle’ and ‘+Subtitle’ .

While most clips are 10–20 seconds, the dataset spans
a wide distribution, including many short clips (under
10 seconds) and a significant number over 60 seconds.
English predominates (Figure 3(c)), but SIV-Bench also
includes Spanish, Filipino, Korean, and Japanese, adding
multicultural diversity (Triandis, 1989). Additional details
on video genre and style are in Appendix B.2.

To evaluate how different forms of textual information
affect MLLMs’ understanding of social interactions, we
implement specific subtitle processing methods (Figure 4).
Many original videos (‘Origin’) contain embedded on-
screen text that often serves as scene descriptors or key-
words (e.g., the ‘Buy and Sell’ text overlay). To focus
on visual and auditory cues, we create a ‘-Subtitle’ ver-
sion by removing such original textual overlays using
video-subtitle-remover (YaoFANGUK, 2025). Conversely, to provide full access to spoken
dialogue, we generate a ‘+Subtitle’ version. We employ Whisper-large-v3 (Radford et al., 2022) for
audio transcription of the dialogue, and then use GPT to translate these transcriptions into English,
ensuring consistent and high-quality subtitles (e.g., ‘He sold us his iPhone 12 with 256GB’.).

2.2 QA COMPOSING

Our Question-Answer (QA) composition process begins with generating an initial set of diverse QA
pairs for each video, leveraging the capabilities of Gemini-2.0-Flash (Google, 2025b) which supports
full video input. The prompts are carefully designed to elicit questions that span a broad range about
social interactions, forming the basis for our SSU, SSR, and SDP evaluation dimensions. SSU focuses
on descriptive observations of scenes, actions, and attributes; SSR targets inferences about intents,
emotions, and relations; and SDP involves factual/counterfactual predictions. This stage typically
yielded an average of 10 versatile QA pairs per video, designed to cover these core dimensions. Then
we employ GPT-4o-mini to generate four distractors for each QA pair. These distractors are crafted
to be contextually relevant to the question while remaining clearly distinguishable from the correct
answer. We find that separating QA creation and distractor generation into two stages significantly
improves quality and reduces ambiguity over generating all options simultaneously by a single model.

For quality assurance and to establish a gold standard, all generated QAs then undergo a rigorous
consensus validation step (Chen et al., 2023a;b; Amiri-Margavi et al., 2024). We utilize three expert
models (Gemini-2.0-Flash, Gemini-2.0-Pro, and GPT-4o-mini) to independently answer all questions.
The QAs on which these models agree constitute our primary high-confidence set (Subset 1). The
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remaining QAs, where model agreement is not achieved, are flagged for further review or specialized
handling (Subset 2). The following parts detail the subsequent processing strategies for each subset:

Subset 1: For Subset 1, which comprises QAs where expert models initially reached consensus
(potentially indicating a need to increase challenge or verify video dependency), we implement a two-
step filtering process. First, GPT-4o-mini is utilized to answer these questions without any video input.
Questions that are answered correctly under this condition are removed. While this is a stringent
criterion, as the model might occasionally guess correctly without sufficient information, it serves as
an effective filter to ensure the questions necessitate video-based understanding, a worthwhile trade-
off given our large initial pool of generated QAs. Second, the remaining questions are then scored for
difficulty by GPT-4o-mini on a 1-to-5 scale. From this pool, we select the top 1-2 highest-scoring
(i.e., most difficult) questions per video. Following these automated filtering stages, the authors
conduct a final cross-validation review of these selected QAs to ensure their overall quality, relevance,
and appropriate difficulty level. This multi-stage process ultimately yields 3,273 high-quality QAs.
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Figure 5: Detailed statistics of Question-
Answer pairs in SIV-Bench, showing the dis-
tribution across the 10 fine-grained sub-tasks.

Subset 2: We recruit 20 human annotators to verify
non-consensus items, with each QA pair reviewed
by at least two people. Only questions for which all
reviewers independently agree are retained as ground
truth, yielding 3,096 QAs. The annotators also gen-
erate novel, challenging questions with correspond-
ing answers, following instructions targeting diverse
abilities across the 10 fine-grained tasks. These ques-
tions are deliberately difficult, requiring detailed un-
derstanding or complex reasoning. Appendix C.3
details the human annotation process, including an-
notator demographics, guidelines, and the custom
interface. For the 2,359 new human-generated QAs,
plausible distractors are created using GPT-4o-mini.

Then, all curated QA pairs undergo a final automated
refinement stage, where GPT-4o-mini processes both
correct answers and distractors. This step standard-
izes linguistic style and option length, thereby min-
imizing superficial cues that models might exploit,
improving test reliability, and reducing variation in-
troduced by annotators or earlier generation steps. Full prompts and implementation details are
provided in Appendix C.1 and C.2.

Finally, SIV-Bench contains a total of 8,728 QA pairs. Their distribution across core assessment
dimensions and fine-grained tasks is illustrated in Figure 5. SRR is the largest category (4,951
QAs), followed by SDP (2,664) and SSU (1,113). Sub-tasks such as Intent Inference (2,132) and
Factual Prediction (1,449) are especially concentrated, enabling rich evaluation. Appendix C.4
(Figure 17) provides detailed statistics confirming structural balance and diversity (e.g., option length,
answer distribution, question complexity, interrogatives). Appendix C.5 further shows high linguistic
diversity and robustness against template-based cues.

2.3 COMPARISON WITH PREVIOUS DATASETS & BENCHMARKS

Table 1 highlights the key differences between SIV-Bench and previous datasets and benchmarks.
Prior datasets on social interaction, such as DialogRE (Yu et al., 2020) (text-only), PIPA (Sun et al.,
2017) (image-only), and ViSR (Liu et al., 2019), are limited to relation recognition, single modalities,
and lack task diversity and scalability due to manual annotation. Currently, most general video
understanding benchmarks (like VideoVista (Li et al., 2024c) and MVBench (Li et al., 2024b)) lack
a focus on social interaction; others (like MLVU (Zhou et al., 2024) and Video-Bench (Ning et al.,
2023)), while touching upon it, do not fully cover social relations. Even Social-IQ 2.0 (Wilf et al.,
2023), which concentrates on this area, has limitations in task diversity and dynamic reasoning. In
contrast, SIV-Bench is built on original data, combines manual and automatic annotations, and is
one of the few benchmarks to provide subtitle and audio information, thereby supporting richer
multimodal social reasoning.
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Table 1: Comparison of various benchmarks. It includes several aspects: total number of items
(#Items, representing the number of videos, dialogues, images, etc.), number of QA pairs (#QAs),
annotation method (Anno., M/A means manually/automatic manner), and the types of tasks included
(Task Types: SU for Scene Understanding, SR for State Reasoning, DP for Dynamics Prediction).
Note that Task Types here refer to general task categories, which include both social and physical
scenarios. The table also shows whether each benchmark includes Multi-Person Interaction,
covers Various Relations, is based on newly collected data (Original Collection), and provides
subtitle/audio information (S.A.)

Benchmark #Items #QAs Anno. Task Types Multi-Person Various Original S.A.
SU SR DP Interaction Relations Collection

Social Relation Inference

DialogRE (Yu et al., 2020) 1,788 - M ✓ ✓ ✗ ✓ ✓ ✗ -
PIPA (Sun et al., 2017) 37,107 - M ✗ ✓ ✗ ✓ ✓ ✗ -
ViSR (Liu et al., 2019) 8,000 - M ✗ ✓ ✗ ✓ ✓ ✓ ✗

General Video Understanding and Reasoning

VideoMME (Fu et al., 2024) 900 2,700 M ✓ ✓ ✗ ✓ ✗ ✓ ✓
MLVU (Zhou et al., 2024) 1,730 3,102 M ✓ ✗ ✓ ✓ ✗ ✗ ✗
VideoVista (Li et al., 2024c) 894 24,906 A ✓ ✗ ✓ ✗ ✗ ✗ ✓
Social-IQ 2.0 (Wilf et al., 2023) 1,000 6,000 M ✓ ✓ ✗ ✓ ✓ ✓ ✗
Social Genome (Mathur et al., 2025) 272 1,486 M ✓ ✓ ✗ ✓ ✗ ✗ ✓
Perception Test (Patraucean et al., 2023) 11,620 38,000 M ✓ ✗ ✓ ✗ ✗ ✓ ✗
MVBench (Li et al., 2024b) 3,641 4,000 A ✓ ✗ ✓ ✗ ✗ ✗ ✗
Video-Bench (Ning et al., 2023) 5,917 17,036 A&M ✓ ✓ ✗ ✓ ✗ ✗ ✗
EgoSchema (Mangalam et al., 2023) 5,063 5,063 A&M ✓ ✓ ✗ ✓ ✗ ✗ ✗

SIV-Bench 2,792 8,728 A&M ✓ ✓ ✓ ✓ ✓ ✓ ✓

3 EXPERIMENTS

3.1 SETTINGS

We evaluate a diverse set of closed- and open-source MLLMs on SIV-Bench, including Gemini-
2.0/2.5-Flash (Google, 2025b;a), Gemini-2.5-Pro (Doshi, 2025), GPT-4o (Hurst et al., 2024), o4-mini
(OpenAI, 2025), Qwen2.5-VL-7B/72B-Instruct (Bai et al., 2025), mPLUG-Owl3 (Ye et al., 2024),
InternVL3-8B/78B (Zhu et al., 2025a), LLaVA-OneVision (Li et al., 2024a), and LLaVA-Video
(Zhang et al., 2024). Evaluations are conducted using VLMEvalKit (Duan et al., 2024), with models
generating responses under their default settings. Video-capable models (e.g., Gemini) receive raw
videos, while image-only models (e.g., o4-mini) are given 16 uniformly sampled frames.

We use a standardized prompt (Figure 18) across all models, instructing them to return both the answer
letter (e.g., ‘A.’) and the full answer text. However, we observe variations in model compliance:
for instance, some models (e.g., InternVL-8B and mPLUG-Owl3) occasionally tend to output only
the letter, whereas others (e.g., LLaVA-Video) may provide only the text. To robustly handle these
diverse output formats and ensure accurate answer parsing, we implement a two-stage matching
procedure. First, we check the model’s output for a correctly formatted option letter. If absent, we use
a similarity-based comparison between the model’s raw output and the full text of all answer options
to identify its selection. Model performance is then measured by the accuracy of these inferred
responses, as shown in Table 2. The rest of this section provides a detailed analysis.

3.2 MAIN RESULTS

Overall Performance. The evaluation of various models on SIV-Bench reveals distinct performance
tiers, with closed-source models generally setting the current state-of-the-art. Notably, Gemini-2.5-
Pro emerges as the top-performing model, achieving the highest overall accuracy of 76.50% when
provided with subtitles. Other prominent closed-source models, such as GPT-4o and Gemini-2.5-
Flash, also demonstrate strong overall performance, consistently scoring above 73%. These results
indicate the advanced capabilities of leading proprietary systems.

Following these, open-source Multi-modal Large Language Models (MLLMs) show considerable
capabilities, although a performance gap still exists. Among them, models with a larger number
of parameters exhibit significantly better results; for example, Qwen2.5-VL-72B-Instruct achieves
an overall score of 74.77% with subtitles, markedly outperforming its 7B counterpart (65.13%
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Table 2: Evaluation results of MLLMs on SIV-Bench. Scores are reported for SSU, SSR, SDP, and
Overall performance, detailing the impact of subtitle conditions: ‘origin,’ ‘+sub’ (added transcribed
dialogue), and ‘-sub’ (subtitles removed). All scores are presented as accuracy percentages (%).

Models Params Social Scene Understanding Social State Reasoning Social Dynamics Prediction Overall
origin + sub - sub origin + sub - sub origin + sub - sub origin + sub - sub

Open-source MLLMs

mPLUG-Owl3 7B 66.32 66.21 66.46 62.36 62.19 61.33 65.19 66.30 65.22 63.79 64.01 63.22
LLaVA-OneVision 7B 62.00 62.13 62.55 63.72 64.78 61.66 64.87 65.32 62.14 63.73 64.40 62.14
LLaVA-Video 7B 68.89 69.13 69.10 62.08 61.37 60.09 63.50 63.84 62.46 63.18 63.75 61.66
Qwen2.5-VL-7B-Instruct 7B 69.51 69.30 68.89 62.65 61.84 61.04 64.18 64.89 63.90 65.01 65.13 63.53
InternVL3-8B 8B 73.02 72.58 72.81 62.72 63.06 61.20 65.33 65.95 65.25 66.14 66.28 65.35
Qwen2.5-VL-72B-Instruct 72B 84.83 85.15 83.46 70.23 70.54 69.58 74.88 74.49 74.11 74.25 74.77 73.54
InternVL3-78B 78B 82.16 83.54 82.35 67.45 67.91 66.87 73.14 73.46 72.21 72.16 72.70 71.56

Closed-source MLLMs

o4-mini - 86.77 86.90 86.33 66.87 67.25 66.10 72.86 72.45 72.11 72.30 72.43 71.59
GPT-4o - 86.94 87.34 86.29 68.28 68.58 67.73 74.82 75.80 74.05 73.76 74.29 73.12
Gemini-2.0-Flash - 86.54 86.35 86.46 67.73 68.07 66.49 73.14 73.79 72.42 72.75 73.27 71.65
Gemini-2.5-Flash - 88.56 88.84 87.32 68.12 69.09 67.25 74.67 74.97 73.05 73.67 73.82 72.53
Gemini-2.5-Pro - 90.67 90.88 90.59 71.44 71.78 70.20 75.28 75.96 74.27 76.03 76.50 75.14

with subtitles), even superior to the closed-source models except for Gemini-2.5-Pro. Similarly,
InternVL-78B performs substantially better than InternVL-8B. While these larger open-source
models demonstrate strong potential and achieve commendable overall scores, there remains room
for improvement to match the leading closed-source alternatives.

Table 3: Audio ablation study on Accuracy (%).

Model Condition Accuracy

Gemini-2.0-Flash origin w/ vs. w/o audio 72.75 → 70.81
+sub w/ vs. w/o audio 73.27 → 73.19

Gemini-2.5-Flash origin w/ vs. w/o audio 73.67 → 71.95
+sub w/ vs. w/o audio 73.82 → 73.71

Subtitle and Audio Influence. Our analysis re-
veals that while linguistic cues benefit MLLMs,
their impact is nuanced. To quantify the audio
channel’s contribution, we conducted an abla-
tion study on Gemini models (Table 3). Re-
moving audio from original videos consistently
degrades performance, confirming that auditory
cues like prosody and tone contribute to under-
standing. Conversely, the negligible impact of
removing audio from +sub videos validates that our high-quality subtitles effectively convey the
necessary linguistic information for models without native audio processing. More broadly, analyzing
subtitle modifications across all models (Table 4) shows that SSU, relying on visual cues, is least
affected. In contrast, the more inferential SSR and SDP tasks show greater sensitivity. Removing all
on-screen text (-sub) most significantly impacts SSR (a relative drop of -1.176%), underscoring the
critical role of linguistic information in reasoning about complex social interactions.

Table 4: Average relative performance change (%)
of all models when adding (‘+sub’) or removing
(‘-sub’) subtitles, compared to the ‘origin’.

Condition SSU (%) SSR (%) SDP (%) Overall (%)

+ sub 0.178 0.234 0.482 0.447
- sub -0.300 -1.176 -0.878 -0.878

Task-Specific Performance. SSU, focused on
recognizing visible elements, is typically the
easiest, with models achieving their highest
scores here. However, this isn’t always the
case—for instance, LLaVA-OneVision some-
times performs better on SSR or SDP. In SSU,
stronger models—especially large-scale ones,
whether closed-source or high-parameter open-
source—consistently outperform smaller mod-
els. This performance gap, particularly pronounced in this foundational visual task, likely reflects the
superior perceptual capabilities of larger models due to greater capacity and more extensive training
(Alabdulmohsin et al., 2022). Following SSU, SDP tends to be the next most tractable, as it involves
reasoning about interactions and predicting outcomes. SSR, which requires inferring unobservable
social states like emotions and intentions, remains the most difficult. Even the top models score
lowest here, underscoring the challenge of capturing implicit psychological dimensions.

To further break down model capabilities, a radar chart (Figure 6) visualizes performance across 10
fine-grained tasks in original videos (with ‘+sub’ and ‘-sub’ detailed in Appendix D.2). Stronger
models, particularly closed-source ones like the Gemini series and GPT-4o, form the outer ring,
clearly outperforming smaller open-source models. In SSU, the performance gap is especially
evident in Action Recognition (AR) and Facial Expression Recognition (FER), reflecting the stronger
models’ ability to capture subtle visual cues. SSR presents greater challenges: while models perform
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moderately on Intent Inference (II) and Emotion Inference (EI), they struggle with more abstract
tasks like Relation Inference (RI), which often mark the lowest points on the radar. This illustrates
the difficulty of moving from surface-level cues to deeper social reasoning. In SDP, performance
improves slightly, likely because tasks such as Factual Prediction (FP) and Counterfactual Prediction
(CP) tap into social commonsense learned from language data. Most models—except a few like
LLaVA-OneVision—perform better on CP than FP, possibly due to the more explicit reasoning
cues provided by hypothetical framing. Some failure cases are illustrated in Figure 20, 21, 22. To
rigorously assess the upper bounds of model capability and rule out benchmark saturation, we further
conducted an analysis on SIV-Bench-Hard, a curated subset of 200 challenging human-authored
questions. As detailed in Appendix E, this evaluation establishes a human baseline and reveals a
substantial human-AI performance gap regarding both accuracy and reasoning quality.

3.3 FAILURE PATTERN ANALYSIS OF RELATION INFERENCE

Accurate Relation Inference (RI) is crucial for understanding social interactions. The difficulty lies
in synthesizing diverse cues—scene context, human appearance, verbal and non-verbal expressions,
physical proximity, and interaction dynamics—all of which contribute to subtle and implicit relational
patterns. Our fine-grained analysis (Figure 6) highlights RI as a consistent performance bottleneck.
Given its significance and the persistent challenges across models, we conduct a deeper qualitative
analysis to examine common failure patterns:

Figure 6: Radar chart of MLLM performance
across the 10 fine-grained SIV-Bench sub-
tasks.

Lack of Primary–Secondary Relation Differenti-
ation. In multi-relational scenarios, MLLMs some-
times identify a valid but secondary relationship
rather than the most salient one. For example, in
a video where employees celebrate their boss’s birth-
day, the model labels the interaction as <colleagues>,
overlooking the hierarchical bond that defines the
scene. Similarly, when a coach angrily reprimands
players, the model assigns <teammates>, missing
the coach–athlete authority structure. These errors
highlight limitations in relational prioritization and
in discerning the most significant social bond within
complex interpersonal contexts.

Scene and Human-Induced Misleading Cues.
MLLMs are easily misled by both scene settings
and human behaviors. They may over-rely on envi-
ronmental cues, assigning stereotypical roles based
on location without validating actual interactions.
For instance, in a classroom setting where two travel
agency employees co-present, it incorrectly classifies
them as <teacher-student> instead of <colleagues>.
Similarly, human language can mislead the model:
a couple jokingly referring to each other as "best
brother" is misclassified as <siblings>, despite strong visual evidence—such as different ethnicities
and intimate gestures—indicating a romantic relationship.

Deficiency in Commonsense Reasoning. In several instances, the model’s decisions are inconsistent
with basic commonsense knowledge. Two <friends> wearing different sports team uniforms but
showing friendly behavior are misclassified as <teammates>, disregarding the fact that such uniforms
typically signify competition rather than collaboration. Similarly, a store owner photographing
a bustling crowd is mistaken for a colleague of the customers, whereas commonsense suggests
a <transactional> relationship. These mistakes highlight the model’s limited ability to integrate
external knowledge about social conventions and situational functions, emphasizing a shortfall in
commonsense reasoning and real-world social understanding.

Ignoring Key Perceptual Details. Although MLLMs can capture many surface features, they will
overlook subtle but critical details necessary for correct role recognition. Age differences and facial
features crucial to distinguishing between <siblings> and <parent-child> relationships are sometimes
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ignored. Additionally, important textual clues embedded in subtitles are sometimes overlooked, such
as the line "POV: you work with your coworker," which results in <colleague> not being correctly
assigned. These errors suggest insufficient fine-grained perception, selective attention to critical
multimodal information, and a failure to integrate minor yet decisive cues into final role judgments.

To complement this qualitative analysis with quantitative evidence, we provide a detailed performance
breakdown across the 14 relation types and an aggregated confusion matrix in Appendix D.2.

4 RELATED WORKS

Video Benchmarks for MLLMs. The evaluation of rapidly advancing Multimodal Large Language
Models (MLLMs) in the video domain relies on diverse benchmarks that collectively incorporate
a rich set of features for comprehensive model assessment. Many, such as MLVU (Zhou et al.,
2024), video-MME (Fu et al., 2024), MVbench (Li et al., 2024b), MMBench-Video (Fang et al.,
2024), and Video-Bench (Ning et al., 2023), offer multiple tasks—ranging from question answering
and summarization to complex reasoning—across diverse video fields including movies, egocentric
recordings, and general web content. This variety aims to assess a broad spectrum of capabilities, from
foundational visual understanding and detail analysis (as targeted by Perception Test (Patraucean et al.,
2023)) (explored by VideoVista (Li et al., 2024c)) to higher-level comprehension and decision-making.
A significant trend within these evaluations is the robust focus on long-form video understanding, with
benchmarks like CINEPILE (Rawal et al., 2024), Egoschema (Mangalam et al., 2023), and LVbench
(Wang et al., 2024b) specifically challenging models on temporal reasoning and extended context
retention, while others like TempCompass (Liu et al., 2024) provide specialized assessments of critical
nuanced aspects such as detailed temporal dynamics. While these benchmarks thoroughly assess
diverse video comprehension capabilities, SIV-Bench offers a more specialized focus, concentrating
on the intricate understanding and reasoning required to interpret dynamic social interactions among
multiple people.

Evaluating Social Intelligence in AI Systems. The pursuit of artificial social intelligence is in-
herently multifaceted, with research progressing from early dataset construction to contemporary
evaluations of large language models (LLMs). Initial efforts typically offered valuable yet modality-
constrained or component-specific resources, targeting areas such as action recognition (e.g., Kinetics
(Kay et al., 2017), UCF101 (Soomro et al., 2012)), facial expression and contextual emotion infer-
ence (e.g., AffectNet (Mollahosseini et al., 2017), MELD (Poria et al., 2018)), and social relation
recognition from static images or text (e.g., PIPA (Sun et al., 2017), DialogRE (Yu et al., 2020)).
As the field has evolved, benchmarks like Social-IQ 2.0 (Wilf et al., 2023) have expanded the focus
toward interpersonal reasoning and social commonsense. With the rise of LLMs, more specialized
evaluations have emerged. SMILE (Hyun et al., 2024) introduces video laugh reasoning to interpret
the rationale behind laughter. ToMATO (Shinoda et al., 2025) probes Theory of Mind through role-
play-based interactions. SOTOPIA (Zhou et al., 2023) and its extension SOTOPIA-π (Wang et al.,
2024a) introduce interactive environments for developing agentive social skills. EgoSocialArena
(Hou et al., 2024) offers a first-person perspective benchmark targeting both cognitive and behavioral
intelligence. Social Genome (Mathur et al., 2025) provides multimodal, grounded traces of social
reasoning from video data, while MM-SOC (Jin et al., 2024) evaluates MLLMs on multimodal social
media content. Despite these advances, most existing benchmarks focus on isolated competencies.
A comprehensive evaluation framework that holistically assesses MLLMs’ understanding of com-
plex social interactions—spanning perception, social state reasoning, and dynamics prediction in
real-world video contexts—remains lacking. SIV-Bench is introduced to fill this gap.

5 CONCLUSION

In this work, we introduce SIV-Bench, a novel video benchmark designed to rigorously evaluate Mul-
timodal Large Language Models’ capabilities in understanding and reasoning about complex social
interactions. Featuring 2,792 diverse videos categorized by foundational social relationship models
and 8,792 meticulously generated question-answer pairs, SIV-Bench structures evaluation around
three core dimensions: Social Scene Understanding (SSU), Social State Reasoning (SSR), and Social
Dynamics Prediction (SDP), further detailed into ten fine-grained sub-tasks. Our comprehensive
experiments reveal that while leading MLLMs adeptly handle SSU, they still struggle with SDP and
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SSR, where Relation Inference emerges as an acute bottleneck. Moreover, our study underscores the
critical impact of transcribed dialogue on comprehending complex social interactions.

Although SIV-Bench provides a strong evaluation framework, its current scale suggests room for
future expansion into a larger training corpus with broader social contexts and more diverse content.
The multiple-choice format also offers a basis for future extensions into interactive or generative
evaluation. By identifying current model strengths and weaknesses, SIV-Bench offers timely insights
and a foundation for advancing socially intelligent AI.

ETHICS STATEMENT

The authors have read and adhere to the ICLR Code of Ethics. This work was conducted with careful
consideration for the ethical implications of creating and distributing a benchmark based on public
social media data. We outline our approach to key ethical issues below.

Data Sourcing and Licensing. The videos in SIV-Bench were sourced from publicly available
content on TikTok and YouTube. We acknowledge that the redistribution of video files raises complex
issues regarding platform Terms of Service and creators’ rights. To address this, the final public
release of SIV-Bench will not distribute video files directly. Instead, we will provide a download
script containing only the video URLs, timestamps, and our corresponding annotations. This requires
end-users to fetch the videos directly from their original platforms, a standard practice that respects
copyright and aligns with platform policies.

Human Subjects and Privacy. The dataset contains videos of identifiable individuals who have made
their content publicly available. During the collection phase, we performed a manual filtering process
to exclude content that appeared overly private, sensitive, or depicted minors in potentially vulnerable
situations. We acknowledge that de-identification methods, such as face-blurring, represent a higher
standard for privacy protection. While this was not implemented in the current version due to the
significant manual effort required, we recognize its importance. We commit to including a clear
discussion of this limitation in the public dataset documentation to ensure that future users are fully
aware of the data’s nature. This transparency is crucial for promoting responsible downstream use.

Human Annotation Process. All 20 human annotators involved in this project were treated ethically.
Before participation, each annotator was provided with a detailed informed consent form that outlined
the study’s purpose, the nature of the annotation tasks, the compensation structure ($4 USD/hour,
meeting or exceeding standard local wages for such work), and how their anonymized data would be
used. The tasks were designed to be minimal-risk, and all data collected from annotators was handled
anonymously throughout the research process.

Intended Use and Broader Impact. SIV-Bench is intended as a research tool to transparently assess
the capabilities and limitations of MLLMs in the social domain. By highlighting specific weaknesses,
such as in Relation Inference, we hope to steer the community toward developing more robust and
socially aware AI. We recognize that technologies for social understanding have dual-use potential.
We encourage the community to use this benchmark to proactively consider these challenges and
develop necessary safeguards alongside continued innovation.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we have provided a comprehensive suite of resources.
The complete source code for our data processing and model evaluation is available as an anonymized
submission in the supplementary materials. Due to file size limitations, this submission includes a
representative subset of the video data. We are committed to releasing the full SIV-Bench dataset, in-
cluding all video download scripts and corresponding annotations, along with the complete codebase,
upon the paper’s formal acceptance, following the ethical guidelines outlined in our Ethics Statement.

Our pipeline for data collection is detailed in Section 2.1. The human-LLM collaborative pipeline
for generating and filtering question-answer (QA) pairs is described in Section 2.2, with the specific
prompts and filtering strategies documented in Appendix C.1 and C.2. A detailed statistical breakdown
of the SIV-Bench dataset, including the distribution of relation types, video lengths, and languages,

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

can be found in Section 2.1 (Figure 3), with further analysis of the QA pairs provided in Appendix
C.4 (Figure 17).

Our experimental setup for evaluating Multimodal Large Language Models (MLLMs), including the
models tested and the hardware used, is described in Section 3.1. All standardized prompts used
for model evaluation are fully documented in Appendix D.1 to facilitate the direct replication of
our results. The default inference parameters for all models were adopted from the VLMEvalKit
framework, as noted in Appendix D.1, to ensure a fair and consistent comparison.
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A STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

The LLM was utilized exclusively to aid and polish the writing, including for tasks such as improving
grammar and clarity, refining sentence structure, and ensuring stylistic consistency.

B VIDEO DETAILS

B.1 VIDEO COLLECTION

To compile a rich and diverse video corpus for SIV-Bench that reflects a wide array of social interac-
tions, we first identify 14 key social relationship types (e.g., parent-child, friends, colleagues, service
interactions). For each of these types, we employ GPT-4o mini to generate a comprehensive set of
search keywords. This strategy is designed to ensure broad coverage in our video collection from
platforms like YouTube and TikTok, capturing various interaction categories (such as cooperation,
conflict, and support), forms (including verbal discussions, non-verbal expressions, and shared activi-
ties), and differing levels of intimacy or formality inherent to each relationship. Figure 7 visualizes
these tailored keyword sets as word clouds for each of the 14 relationship types, illustrating the
breadth of concepts targeted. This targeted yet diverse keyword generation is crucial for assembling a
video dataset that truly represents the complexity of human social life.

(a) Grandparent-Child (b) Parent-Child (c) Siblings (d) Couple

(e) Friends (f) Boss-Employee (g) Coach-Player (h) Teacher-Student

(i) Caregiver-Recipient (j) Classmates (k) Teammates (l) Colleague

(m) Transactional (n) Service

Figure 7: Word clouds of GPT-generated keywords used for sourcing videos across 14 distinct social
relationship types (e.g., (a) Grandparent-Child, (b) Parent-Child, (e) Friends, (f) Boss-Employee).
Keywords were designed to capture diverse interaction scenarios, forms, and intimacy levels from
platforms like YouTube and TikTok.

B.2 VIDEO DIVERSITY

The SIV-Bench video corpus is intentionally diverse in both subject matter and presentation to ensure
comprehensive model evaluation. This genre diversity, illustrated in Figure 8, includes a wide array
of video types such as candid Daily Life recordings, scripted Movie Clips, dynamic Sports Replays,
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illustrative Commercials, and non-photorealistic Animated Videos. Complementing this, Figure 9
showcases varied visual presentation styles, ranging from traditional Third-Person perspectives and
immersive First-Person (POV) footage to interactions depicted via Phone Call interfaces and creative
Solo Multi-Role Sketches. This multifaceted diversity in video content and form provides a robust
and varied testbed.

Daily Life Movie Clip Sports Replay Commercial Animated video

Video Genre

Figure 8: Examples illustrating the diverse video genres in SIV-Bench, including (from left to right)
Daily Life recordings, Movie Clips, Sports Replays, Commercials, and Animated Videos, ensuring a
broad range of social interaction contexts.

First-PersonThird-Person Phone Call Solo Multi-Role Sketch

Video Style

Figure 9: Examples of diverse video presentation styles featured in SIV-Bench, including (from left
to right) Third-Person views, First-Person perspectives, Phone Call interfaces, and Solo Multi-Role
Sketches.

C QA DETAILS

C.1 AUTOMATICALLY QA GENERATION

The prompt shown in Figure 10 guides the Gemini in generating diverse and challenging Question-
Answer (QA) pairs that form the foundation of SIV-Bench. Its design ensures these QAs effectively
cover our core evaluation dimensions.

To create the multiple-choice options for each QA pair, we utilize a dedicated prompt for distractor
generation, as detailed in Figure 11. This prompt instructs GPT to produce four unique distractor
options based on the given question and its corresponding correct answer. Crucially, the prompt
emphasizes that these distractors must be reasonable and clearly distinguishable from the correct
answer, while also maintaining consistency with the correct answer in terms of sentence length,
language style, and grammar. Furthermore, the prompt specifies a JSON output format for the list
of distractors to ensure seamless programmatic integration. This structured approach to distractor
generation is essential for constructing high-quality, fair multiple-choice questions that minimize
biases arising from option formatting and robustly test model comprehension.
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You will be given a video depicting human social relationships. Your task is to generate **question-answer (QA) pairs** to test the model’s 
social reasoning ability. Each question must be clear and focused, addressing only one aspect at a time. 

**Question Requirements** 
- The questions should be challenging, requiring complex reasoning, an understanding of social norms, or real-world knowledge. Avoid 
surface-level observations. 
- Generate **8-10 QA pairs**, distributed as follows: 
- Descriptive: Focus on different aspects of the scene, but you don’t need to cover all of them. You can choose what you find most important: 
- Verbal characteristics (e.g., tone, pitch, speech style, etc.) 
- Non-verbal characteristics (e.g., facial expressions, body language, etc.) 
- Environmental features (e.g., location, setting, background details, etc.) 
- Human interaction elements (e.g., emotion, feelings, attitude, reactions, etc.) 
The question should be specific and unambiguous. Avoid questions like "describe the non-verbal characteristics of the video." 
- Explanatory: Questions that explore the reasons behind observed behaviors. 
- Predictive: A question that asks what is likely to happen next. 
- Counterfactual: A question that explores hypothetical changes. For example, consider how the interaction might change if the individuals in 
the video had a stronger or weaker relationship, or if their relationship were of a different nature." 

**Answer Requirements** 
- Give a confident answer. Do not use words like "could" or "might." Provide only the essential information without additional explanations. 
Avoid making assumptions about relationships or identities in the QA. For example, DO NOT use descriptions like "the father and son in the 
video." 
The output should be formatted in **JSON** as follows: 
```json
{ "qa_pairs": [ { "category": "Descriptive", "question": "...", "answer": "..." }, { "category": "Explanatory", "question": "...", "answer": "..." }, 
{ "category": "Predictive", "question": "...", "answer": "..." }, { "category": "Counterfactual", "question": "...", "answer": "..." } ] } 
```

Figure 10: The prompt used to guide Gemini for the initial generation of question-answer pairs.

Given the following question and answer, generate four distractors that are reasonable and distinguishable from the correct answer.
The sentence length, language style and grammer should be consistent with the answer.\n\n"
f"Question: {qa_pair.get("question", "none")}\n"
f"Answer: {qa_pair.get("answer", "none")}\n\n"
"Provide the output in the following JSON format: \n"
"{\"distractors\": [\"<distractor 1>\", \"<distractor 2>\", \"<distractor 3>\", \"<distractor 4>\"]}"

Figure 11: The prompt used to generate distractors for each QA pair.

C.2 AUTOMATICALLY QA FILTERING

To ensure that the QA pairs in SIV-Bench genuinely require understanding of the video content,
particularly for Subset 1, we employ a video-agnostic filtering step. Figure 12 presents the prompt
used to instruct GPT for this purpose. The central directive of this prompt is for the model to select
the most likely answer from the provided options using only the textual content of the question and
the options themselves, without any access to the video. The prompt also enforces a strict output
format, requiring only the letter of the chosen answer, and instructs the model to make a random
choice if it deems the information insufficient (though the primary test is correct identification based
on text alone). If a QA pair is answered correctly under this video-absent condition, it indicates that
the question may be solvable through world knowledge, commonsense reasoning, or cues within the
text of the QA itself, rather than necessitating specific information from the video. Such QAs are
subsequently removed from the candidate pool to enhance the benchmark’s focus on video-grounded
social understanding.

To further refine the SIV-Bench dataset, particularly in selecting challenging items for Subset 1,
we employ GPT-4o-mini to assign a difficulty score to each Question-Answer (QA) pair. Figure
13 presents the prompt designed for this task. It directs the model to evaluate QA difficulty on a
1 (Very Easy) to 5 (Very Hard) scale, assuming the QA pertains to a social interaction video. The
prompt outlines key assessment criteria, including the subtlety of relevant cues, the complexity of
reasoning involved, and the depth of social understanding needed to arrive at the correct answer. This
automated difficulty scoring enables us to systematically identify and prioritize QAs that demand
more sophisticated comprehension, thereby enhancing the overall rigor of our benchmark.
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For the following questions, select the one you think is the most likely from the options provided to you. If you think the question 
doesn't contain the necessary information that can be answered, then just randomly choose one.
You are only allowed to output **the LETTER of the answer**. No other text or explanations are permitted.

Question: "{question}"
Options: "{options}"

Strictly output the answer in the following format:
answer: THE ANSWER LETTER

Figure 12: Prompt for the video-agnostic filtering of Question-Answer pairs.

Your task is to evaluate the difficulty of the provided Question-Answer (QA) pair. Assume the question is meant to be answered based on
understanding a corresponding social interaction video. Assign a difficulty score on a scale of 1 (Very Easy) to 5 (Very Hard).

When assessing difficulty, consider these factors:
- **Subtlety of Cues:** Does answering correctly depend on noticing subtle visual details, nuanced language, or implicit contextual information,
as opposed to obvious and explicit cues?
- **Reasoning Complexity:** Is the answer obtainable through simple observation, or does it require multi-step inference, understanding cause-
and-effect, or integrating multiple pieces of information?
- **Depth of Social Understanding Required:** Does the QA tap into superficial aspects, or does it necessitate a deeper understanding of social
norms, relationships, emotions, intentions, or complex social dynamics?
- **Specificity and Lack of Ambiguity:** Is the question well-posed and leading to a clear answer, or does its perceived difficulty stem from
vagueness (which is not desired)? (Focus on inherent difficulty assuming a clear question).

**Difficulty Scale:**
- **1 (Very Easy):** Requires only direct observation of highly salient information; minimal to no inference.
- **2 (Easy):** Involves straightforward recall or identification of explicit cues; simple, single-step inference might be needed.
- **3 (Moderate):** Needs some level of inference, connecting different cues, or understanding common social situations/scripts.
- **4 (Hard):** Demands significant inference, interpretation of subtle or nuanced multimodal cues, multi-step reasoning, or a sophisticated
understanding of social context.
- **5 (Very Hard):** Requires profound comprehension of complex and possibly implicit social dynamics, sophisticated multi-step reasoning, and
potentially the integration of considerable world knowledge or nuanced social commonsense.

Question: "{question}"
Answer: "{answer}"

Strictly provide the output in the following JSON format:
{
"difficulty_score": <integer_from_1_to_5>
}

Figure 13: Prompt used to score the difficulty of SIV-Bench QA pairs on a 1-to-5 scale, based
on defined criteria such as cue subtlety, reasoning complexity, and depth of social understanding
required.

To classify each QA pair in SIV-Bench, we use a GPT model guided by a structured prompt (see
Figure 14). The prompt defines our three main assessment dimensions—SSU, SSR, and SDP—and
their sub-tasks. The model analyzes each QA and outputs its corresponding sub-task, ensuring
consistent and precise categorization across the benchmark.

We explicitly acknowledge that employing specific MLLMs (Gemini-2.0-Flash and GPT-4o-mini)
for QA generation, distractor creation, and filtering may introduce inherent stylistic priors. While we
mitigated this via human verification and option standardization, the resulting data distribution may
still align more closely with the reasoning patterns of these generator models. This potential ’self-
preference’ bias should be considered when interpreting the relative performance of these specific
model families.

C.3 HUMAN ANNOTATION

Annotator Information. For the human annotation tasks integral to SIV-Bench, we recruit a team
of 20 annotators. This cohort consists of 12 female and 8 male individuals, with an average age
of 27 years. All annotators are well-educated and demonstrate proficiency in English, which is the
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For the understanding and reasoning of a social interaction video, it needs to be examined from the
following three aspects of ability:
SSU (Social Scene Understanding): Action Recognition, Facial Expression Recognition, Human Attribute
Identification, Environment Perception;
SSR (Social State Reasoning): Relation Inference, Emotion Inference, Intent Inference, Attitude Inference;
SDP (Social Dynamics Prediction): Factual Prediction, Counterfactual Prediction;
Now you need to analyze and categorize a multiple-choice question, output which level of test it belongs
to and what aspects it specifically tests.
Here is the content:

Question: "{question}"
Options: "{options}"

Your output should be in the following format:
SSR: Relation Inference.

No other text or explanations are permitted.

Figure 14: Prompt used to instruct LLM for the final classification of Question-Answer pairs into one
of the 10 fine-grained sub-tasks under SSU, SSR and SDP.

primary language for instructions and annotations. To ensure fair compensation for their detailed
work, annotators are remunerated at an hourly rate of $4 USD.

Annotator Guidelines. To maintain consistency and high quality in human annotation, particularly
for the creation of new challenging Question-Answers (QAs) for Subset 2, annotators are provided
with a comprehensive set of guidelines, as illustrated in Figure 15. These instructions detail the process
for responding to existing multiple-choice questions and, crucially, guide annotators in formulating
one new challenging question per video. For this QA creation task, annotators are directed to
ensure their questions primarily test one of our three core assessment dimensions: Social Scene
Understanding (SSU), Social State Reasoning (SSR), or Social Dynamics Prediction (SDP). The
guidelines, including example questions, also emphasize that new QAs must be demanding, clearly
worded, and require a deep understanding of the video content rather than superficial observation.

Annotation Process. All human annotation tasks for SIV-Bench, including the review of existing
Question-Answers (QAs) and the generation of new QAs, are conducted using a custom-designed
web interface. Figure 16 provides a representative example of this interface, which allows annotators
to view the social interaction video, respond to provided multiple-choice questions, and submit their
own newly authored questions and answers based on the video content and provided guidelines. This
platform ensures a standardized environment for all human annotation contributions.

Quality Control and Inter-Annotator Agreement. To quantitatively address label quality, we com-
puted the Inter-Annotator Agreement (IAA) using Fleiss’ Kappa. For the initial set of approximately
27,000 QA pairs generated by our three LLM experts, the resulting Fleiss’ Kappa was 0.52, indicating
"moderate" agreement. This confirmed our expectation of ambiguity in the automated generation
and validated the need for our strict inter-model consensus filter to create the high-quality Subset 1.
For the more challenging Subset 2, where the LLMs disagreed, we measured the agreement between
our human annotators, yielding a Fleiss’ Kappa of 0.68. According to established standards (Landis
& Koch, 1977), this value represents "substantial" agreement. Achieving this on the most difficult
portion of our dataset confirms that humans can establish a reliable ground truth and justifies our
methodology of retaining only those questions on which all assigned annotators unanimously agreed
for the final benchmark.
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C.4 QA STATISTICS

To ensure the quality and balance of our SIV-Bench Question-Answer (QA) pairs, we conducted
a statistical analysis of their structural properties, as summarized in Figure 17. This analysis
examines several aspects: the average word count per multiple-choice option (Figure 17(a)) is
relatively consistent across options A through E, minimizing length-based cues. The distribution of
correct answers (Figure 17(b)) is fairly uniform across the five options, preventing positional bias.
Furthermore, the overall question length (Figure 17(c)) peaks at around 11 words but shows a broad
range, indicating variability in question complexity. Finally, an analysis of the first word in questions
(Figure 17(d)) reveals a diverse set of interrogative types, led by ’what,’ ’why,’ and ’which,’ reflecting
a variety of reasoning challenges posed to the models.

C.5 QUALITY AND DIVERSITY ANALYSIS

To further validate the quality of SIV-Bench, we conducted two analyses to ensure our benchmark
encourages genuine comprehension over fitting to superficial patterns.

C.5.1 ANALYSIS OF TEMPLATE PATTERN EXPLOITATION

SIV-Bench organizes tasks into SSU, SSR, and SDP to evaluate distinct dimensions of social cognition.
To directly test whether models exploit surface-level cues, we analyzed the properties of questions
that a representative model (Gemini-2.0-Flash) answered correctly versus incorrectly. As shown in
Table 5, while there are statistically significant differences in length and word count, the small effect
sizes (Cohen’s d) indicate no meaningful structural separation between the two groups. Furthermore,
Table 6 shows a high cosine similarity between the embeddings of correct and incorrect QA sets,
alongside similar internal distributions (intra-similarity and variance). This close alignment suggests
that model performance is unlikely to rely on superficial statistical or semantic patterns.

Table 5: Length and word count comparison between correctly and incorrectly answered questions.

Metric Correct (Mean ± SD) Wrong (Mean ± SD) t-stat p-value Cohen’s d
Mean Length (chars) 251.28 ± 93.88 228.96 ± 94.49 9.05 2.36e-19 0.2373
Word Count 42.13 ± 15.50 38.21 ± 15.78 9.54 2.63e-21 0.2516

Table 6: Semantic similarity analysis between correctly and incorrectly answered question sets.

Metric Value
Cosine Similarity (TF-IDF) 0.9765
Cosine Similarity (SentenceTransformer) 0.9759

Correct Intra-similarity 0.1689
Wrong Intra-similarity 0.1711

Correct Embedding Variance 0.002164
Wrong Embedding Variance 0.002157

C.5.2 LINGUISTIC DIVERSITY ANALYSIS

The majority of questions in SIV-Bench are generated by large language models or written by human
annotators, rather than using rigid templates. To objectively measure our benchmark’s linguistic
diversity, we compared it against several prominent video QA benchmarks using two standard metrics:
Mean Semantic Distance (average pairwise cosine distance of sentence embeddings) and Vector
Variance (average variance across embedding dimensions). As shown in Table 7, SIV-Bench exhibits
high semantic diversity, ranking among the top benchmarks. These results support that SIV-Bench’s
questions are varied and not limited to shallow templates, thereby promoting genuine semantic
understanding.
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Table 7: Semantic diversity comparison across video QA benchmarks.

Benchmark Mean Semantic Distance ↑ Vector Variance ↑
SIV-Bench 0.8321 0.0022
Video-Bench 0.8811 0.0023
Perception_Test 0.7677 0.0020
VideoVista 0.7604 0.0020
Social-IQ 2.0 0.7260 0.0019
MVBench 0.7124 0.0019
EgoSchema 0.5411 0.0014

D EXPERIMENTS DETAILS

D.1 SETTINGS DETAILS

This section provides further details on our experimental setup for evaluating MLLMs on SIV-Bench.
Figure 18 displays the standardized prompt templates employed for model evaluations, with distinct
versions tailored to models based on their input capabilities. For models that process sequences of
images, the "PROMPT for frames input" (Figure 18, Top) informs the MLLM that it will receive
a set of uniformly sampled frames from a video in chronological order. For models capable of
direct video processing, the "PROMPT for videos input" (Figure 18, Bottom) is used. Both prompts
clearly instruct the MLLM on its role, the task of answering multiple-choice questions based on the
provided visual input, the expected JSON-like format for organizing answers (providing the exact
text of the chosen option for each question), and a strict directive to avoid any extraneous text such as
explanations or conversational remarks. This standardized, yet input-adaptive, prompting approach
ensures consistency in task presentation across different model architectures.

For all evaluations, the specific inference parameters used for each model—such as temperature,
top-p, or maximum new tokens—are adopted from their default configurations as provided within
the VLMEvalKit (Duan et al., 2024) framework. This adherence to default settings aims to reflect
the out-of-the-box capabilities of these models and ensure fair comparability. The experiments are
conducted on two primary compute clusters. Cluster 1, utilized for evaluating the largest open-source
models (Qwen2.5-VL-72B-Instruct and InternVL-78B), is equipped with an AMD EPYC 7642
48-Core Processor and 4x NVIDIA A100 GPUs. The total runtime for the reported experiments on
this cluster is approximately 3 days. Cluster 2, used for the remaining models, consists of an Intel(R)
Xeon(R) Platinum 8369B CPU @ 2.90GHz and 8x NVIDIA RTX 3090 GPUs. The cumulative
runtime for experiments on this cluster is approximately 2 days. It should be noted that the overall
research project, including preliminary testing on earlier dataset versions and exploratory experiments
not included in the final results, involved a greater amount of compute time than the specific durations
reported for the final benchmark evaluations.

D.2 RESULTS DETAILS

Fine-grained Analysis of Relation Inference (RI). To provide granular insight into the critical
Relation Inference sub-task and quantitatively verify the failure patterns discussed in Section 3.3,
we further break down model performance across the 14 foundational social relationship types.
Table 11 details the accuracy of each model per relation. This breakdown reveals significant variance;
models perform robustly on visually distinct relations (e.g., Couple, Team) but struggle with nuanced
dynamics like Transactional or Caregiver-Recipient.

Figure 19 further illustrates the aggregated confusion matrix for these predictions. The matrix exposes
systematic misclassification tendencies rooted in social context. Specifically, we observe Authority
vs. Equality confusion, where hierarchical roles like Boss-Employee and Coach-Player are notably
misclassified as their egalitarian equivalents (Colleagues and Teammates). Additionally, Intra-Group
confusion appears within categories; for instance, Caregiver-Recipient is often confused with Parent-
Child, suggesting models detect the general affect of care but lack the precision to distinguish the
specific relational setting.
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Table 8: Comparative accuracy (%) of MLLMs on the 10 fine-grained sub-tasks in SIV-Bench
(Origin), grouped by SSU, SSR, and SDP dimensions.

Models SSU SSR SDP Overall
AR FER HAI EP II EI AI RI FP CP

mPLUG-Owl3 62.36 68.35 59.50 70.61 62.81 65.08 61.17 60.13 56.98 74.98 63.79
LLaVA-OneVision 59.55 65.60 71.90 59.34 70.36 55.79 56.74 61.18 70.06 58.68 63.73
LLaVA-Video 60.11 63.76 71.07 78.41 64.17 61.22 56.54 60.05 65.19 61.48 63.18
Qwen2.5-VL-7B-Instruct 58.71 64.22 70.25 81.26 68.15 68.21 59.96 56.58 64.99 63.21 65.01
InternVL3-8B 64.05 72.48 67.77 82.47 70.08 70.32 61.77 53.03 60.90 70.62 66.14
Qwen2.5-VL-72B-Instruct 86.52 85.78 80.99 84.01 71.72 75.81 67.81 66.99 74.76 77.04 74.25
InternVL3-78B 82.30 81.65 82.65 82.16 73.78 73.15 63.18 61.02 72.15 74.32 72.16
o4-mini 86.80 90.83 77.69 87.26 72.42 67.46 65.80 64.73 72.05 73.83 72.30
GPT-4o 88.48 84.40 80.99 88.67 70.45 78.02 66.20 64.65 74.41 75.31 73.16
Gemini-2.0-Flash 90.73 83.03 85.12 85.21 74.11 67.03 67.20 64.41 69.87 77.04 72.15
Gemini-2.5-Flash 91.29 85.32 87.60 88.20 74.48 67.04 67.61 64.97 71.86 78.03 73.67
Gemini-2.5-Pro 93.54 91.74 89.26 88.08 75.14 76.94 69.62 67.80 72.01 79.18 76.03

Table 9: Comparative accuracy (%) of MLLMs on the 10 fine-grained sub-tasks in SIV-Bench (+sub),
grouped by SSU, SSR, and SDP dimensions.

Models SSU SSR SDP Overall
AR FER HAI EP II EI AI RI FP CP

mPLUG-Owl3 62.60 68.55 59.69 70.83 63.03 65.30 61.36 60.33 57.17 75.22 64.01
LLaVA-OneVision 60.22 66.25 72.59 60.01 71.03 56.47 57.41 61.88 70.71 59.37 64.40
LLaVA-Video 60.65 64.30 71.61 78.98 64.75 61.75 57.12 60.63 65.76 62.07 63.75
Qwen2.5-VL-7B-Instruct 58.81 64.34 70.35 81.34 68.29 68.34 60.08 56.68 65.10 63.35 65.13
InternVL3-8B 64.21 72.60 67.90 82.65 70.27 70.44 61.89 53.17 61.01 70.75 66.28
Qwen2.5-VL-72B-Instruct 87.02 86.31 81.52 84.53 72.23 76.34 68.32 67.51 75.28 77.55 74.77
InternVL3-78B 82.87 82.21 83.20 82.69 74.31 73.66 63.73 61.57 72.69 74.90 72.70
o4-mini 86.91 90.94 77.81 87.39 72.54 67.62 65.90 64.88 72.18 74.00 72.43
GPT-4o 89.60 85.51 82.12 89.83 71.53 79.17 67.38 65.78 75.53 76.45 74.29
Gemini-2.0-Flash 91.83 84.12 86.22 86.34 75.22 68.15 68.31 65.50 70.98 78.14 73.27
Gemini-2.5-Flash 91.42 85.44 87.72 88.34 74.63 67.19 67.73 65.09 72.00 78.19 73.82
Gemini-2.5-Pro 94.02 92.25 89.77 88.52 75.61 77.43 70.09 68.25 72.43 79.66 76.50

D.3 FAILURE CASES

This section presents several illustrative failure cases. We focus on examples from Gemini-2.0-Flash,
a strong closed-source model, to highlight that even advanced MLLMs can fail on nuanced aspects
of social perception, prediction, and reasoning. These examples are categorized by our primary
assessment dimensions: SSU, SSR, and SDP, and are intended to offer concrete instances for future
research and model development.

Figure 20 illustrates instances where Gemini-2.0-Flash fails on SSU tasks, which require accurate
perception of explicit visual elements. (a) In Action Recognition, the model incorrectly identifies
the man’s gesture as "He crosses his arms tightly" instead of the correct "He raises one eyebrow
slightly", missing a subtle but distinct facial action. (b) For Environment Perception, when asked
about the weather, the model failed to capture the details of the characters in the scene wearing thick
scarves and down jackets to infer that the correct answer was "cold", but instead wrongly chose "wet".
(c) In Facial Expression Recognition, the model describes the expression as "A mischievous smile"
rather than the correct "A stoic glare", misinterpreting the nuanced facial expression display. (d)
For Human Attribute Identification, concerning the child’s clothing, the model selects "A dress"
instead of the correct "A set of pajamas", failing to correctly identify common apparel.

Figure 21 presents failure cases of Gemini-2.0-Flash on SSR tasks, which involve inferring unob-
servable mental states and relationships. (e) In Intent Inference, when a woman says "do you
understand?" to a boy who bullies her son in an angry tone, it is to teach him a lesson and warn him
not to bully her son again, not for "discourage any defiance", because in fact no child much younger
than her can form defiance against her. (f) For Emotion Inference, this employee is happy instead
of scared after leaving because he successfully deceives the boss into giving him a vacation. (g) In
Attitude Inference, the coworker is dissatisfied and disappointed with the cashier’s nervousness,
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Table 10: Comparative accuracy (%) of MLLMs on the 10 fine-grained sub-tasks in SIV-Bench
(-sub), grouped by SSU, SSR, and SDP dimensions.

Models SSU SSR SDP Overall
AR FER HAI EP II EI AI RI FP CP

mPLUG-Owl3 61.77 67.76 58.92 70.03 62.26 64.52 60.60 59.58 56.41 74.42 63.22
LLaVA-OneVision 57.98 64.00 70.30 57.73 68.77 54.20 55.15 59.58 68.45 57.10 62.14
LLaVA-Video 58.59 62.24 69.51 76.89 62.64 59.68 55.00 58.52 63.71 59.93 61.66
Qwen2.5-VL-7B-Instruct 57.23 62.72 68.78 79.79 66.62 66.71 58.48 55.10 63.53 61.76 63.53
InternVL3-8B 63.26 71.69 66.99 81.66 69.30 69.57 60.96 52.22 60.12 69.86 65.35
Qwen2.5-VL-72B-Instruct 85.83 85.08 80.28 83.31 71.02 75.11 67.09 66.32 74.03 76.29 73.54
InternVL3-78B 81.70 81.06 82.09 81.56 73.22 72.56 62.57 60.39 71.55 73.71 71.56
o4-mini 86.10 90.11 76.97 86.57 71.73 66.75 65.09 63.99 71.35 73.12 71.59
GPT-4o 88.43 84.37 80.94 88.64 70.39 77.96 66.20 64.60 74.38 75.22 73.12
Gemini-2.0-Flash 90.24 82.50 84.63 84.73 73.55 66.55 66.73 63.89 69.35 76.52 71.65
Gemini-2.5-Flash 90.17 84.20 86.45 87.07 73.34 65.87 66.46 63.85 70.71 76.90 72.53
Gemini-2.5-Pro 92.69 90.84 88.36 87.15 74.24 76.08 68.72 66.90 71.10 78.28 75.14

Table 11: Detailed accuracy breakdown of MLLMs on the Relation Inference (RI) task across 14
specific social relationship types. The "RI" column denotes the average accuracy.

Model Avg RI Boss Class Care Coach Coll Coup Frnd Grand Par Serv Sib Team Teach Trans
mPLUG-Owl3 60.13 61.74 51.39 77.52 74.52 44.02 72.52 42.52 49.55 42.52 55.68 42.52 49.60 42.52 42.52
LLaVA-OneVision 61.18 29.63 63.24 59.63 29.63 54.49 64.39 61.66 80.80 69.02 90.46 29.63 90.88 60.79 32.71
LLaVA-Video 60.05 28.46 78.56 53.46 44.46 67.34 77.51 67.92 78.73 39.37 69.08 37.03 73.04 36.37 54.61
Qwen2.5-VL-7B-Instruct 56.58 32.64 32.64 38.73 32.64 39.25 55.50 81.51 68.89 82.94 36.11 54.20 79.31 73.11 32.64
InternVL3-8B 53.03 21.89 59.62 45.37 36.51 56.02 32.84 54.87 35.22 49.16 77.40 48.64 78.97 78.63 59.47
Qwen2.5-VL-72B-Instruct 66.99 63.08 95.00 67.09 52.37 72.28 46.70 73.77 75.66 58.34 76.17 43.88 68.72 36.45 81.98
InternVL3-78B 61.02 66.91 57.39 69.18 82.31 55.95 55.95 83.15 70.97 52.42 67.60 52.51 52.48 63.09 30.76
gpt-4o-mini 64.73 60.47 86.19 36.65 69.65 63.33 54.03 66.51 85.43 70.17 47.71 59.34 54.83 68.11 77.03
GPT-4o 64.65 49.24 95.00 68.95 61.95 53.20 63.95 63.95 33.95 60.01 89.08 49.01 72.28 44.18 41.64
Gemini-2.0-Flash 64.41 64.61 83.30 21.86 45.86 63.54 37.57 72.81 79.64 75.19 43.43 69.39 81.03 78.60 77.24
Gemini-2.5-Flash 64.97 80.68 64.21 28.86 72.29 55.53 66.96 63.75 84.67 77.47 62.59 57.43 29.56 78.07 86.23
Gemini-2.5-Pro 67.80 67.95 75.51 29.85 77.28 70.44 79.85 72.98 91.37 82.66 63.62 61.28 36.28 76.28 58.57

panic and even physical reactions when seeing female customers. This could also be seen from his
subsequent warning to the cashier not to do so anymore. (h) For Relation Inference, we present
case studies on the failure patterns of the four common models listed in the main text in this task.

Figure 22 highlights errors made by Gemini-2.0-Flash in SDP tasks, which require predicting future
events or reasoning about hypothetical scenarios. (i) In Factual Prediction, when asked if the person
in the black shirt would be satisfied with the workers’ work, since the two of them have already
reached an agreement with smiles at the end of the video, it could be inferred that the answer was
"yes", but the model chooses another answer. (j) For Counterfactual Prediction, the video shows
the dance interaction between a mother and her son. The question raised is what would happen if one
of them had more dance experience. This can be inferred from the positive and relaxed interaction
between the two in the video. The most likely answer is "The more experienced dancer leads and
adapts movements". For example, a son leads his mother to learn dancing happily, rather than "The
less experienced dancer hesitates and struggles to keep up". They have a good relationship, and the
probability of negative performance like "hesitates" and "struggles" is lower.

D.4 ANALYSIS OF CHAIN-OF-THOUGHT PROMPTING

To investigate the impact of explicit reasoning on model performance, we conducted a preliminary
experiment using a Chain-of-Thought (CoT) prompting strategy. We prepended the instruction "Let’s
think step by step. First, output your reasoning process, and then output the final answer." to our
standard evaluation prompt. The overall accuracy on the origin videos, with and without CoT, is
presented in Table 12.

The results indicate that applying a generic CoT prompt did not yield significant performance
improvements for most models. For several smaller open-source models (e.g., mPLUG-Owl3,
LLaVA-Video), it resulted in a notable performance decrease. We observed that this is often because
these models struggle to consistently adhere to the more complex two-stage output format (i.e.,
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providing reasoning before the final answer in the required format), leading to failures in our answer
parsing logic.

The primary goal of SIV-Bench is to establish a fair, consistent, and reproducible evaluation of
baseline model capabilities. Our standardized prompting strategy, which aligns with widely used
toolkits like VLMEvalKit, ensures this fairness. While techniques like CoT are powerful for eliciting
maximum performance from certain capable models (e.g., Gemini-2.5-Pro), introducing them as
a default can create a confounding variable. Such a setup might shift the evaluation from testing
inherent social reasoning to testing complex instruction-following abilities. Therefore, our main
experiments use a direct-answering prompt to maintain a level playing field. Nonetheless, these
findings suggest that developing more specialized reasoning methods tailored to social intelligence is
a valuable direction for future work that builds upon this benchmark.

Table 12: Comparison of Overall Accuracy (%) on the origin videos with and without Chain-of-
Thought (CoT) prompting.

Model Acc (Origin) Acc (CoT)
mPLUG-Owl3 63.79% 61.52%
LLaVA-OneVision 63.73% 62.98%
LLaVA-Video 63.18% 62.22%
Qwen2.5-VL-7B-Instruct 65.01% 65.75%
InternVL-8B 66.14% 65.31%

Qwen2.5-VL-72B-Instruct 74.25% 74.58%
InternVL-78B 72.16% 71.95%

o4-mini 72.30% 72.41%
GPT-4o 73.76% 73.65%
Gemini-2.0-Flash 72.75% 72.88%
Gemini-2.5-Flash 73.67% 73.51%
Gemini-2.5-Pro 76.03% 76.15%

D.5 STATISTICAL SIGNIFICANCE ANALYSIS

To validate the reliability of our comparative claims, we conducted McNemar’s tests on the full
dataset (N = 8, 728). This paired non-parametric test is appropriate for comparing the performance
of two classifiers on the same dataset.

Model Ranking. We verified the leadership of our SOTA model. The performance difference
between the top-performing Gemini-2.5-Pro (76.03%) and the second-best model Qwen2.5-VL-72B
(74.25%) is highly statistically significant (p < 0.001), confirming the robustness of the leaderboard
rankings.

Task Difficulty. We confirmed that the performance stratifications across our three core dimensions
are not due to chance. For Gemini-2.5-Pro, the performance gaps between SSU (90.67%) and
SDP (75.28%), as well as between SDP and SSR (70.20%), are all highly statistically significant
(p < 0.001).

Audio Impact. We validated the contribution of non-textual audio cues (Table 3). The performance
degradation observed when removing audio from original videos (e.g., 73.67% → 71.95% for
Gemini-2.5-Flash) is statistically significant (p < 0.01).

Subtitle Influence. We performed significance testing on the subtitle conditions (Table 4). Our
analysis reveals that the minor Overall improvement from adding subtitles (‘+sub‘) is not statistically
significant (p = 0.12). However, the impact is task-dependent: the negative impact of removing
text (‘-sub‘) is statistically significant for the SSR task (p < 0.05), and the benefit of added subtitles
(‘+sub‘) is significant for the SDP task (p < 0.05).
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E IN-DEPTH ANALYSIS ON SIV-BENCH-HARD

To rigorously evaluate the upper limits of current MLLMs, establish a robust human baseline, and
probe the reasoning processes beyond simple accuracy, we curated and analyzed a challenging subset
of our dataset, termed SIV-Bench-Hard. This section details the setup, human performance, and a
multi-dimensional analysis of model reasoning quality on this subset.

E.1 EXPERIMENTAL SETUP

Dataset Curation. We selected a subset of 200 questions from the human-generated portion of
SIV-Bench. These questions were specifically chosen for their complexity and reliance on deep social
understanding, filtering out items that could be solved via superficial visual cues.

Task Definition. Unlike the standard multiple-choice evaluation, this study required both human
annotators and MLLMs to provide: (1) the selected answer option, and (2) a free-text reasoning
explanation justifying their choice. This allows for a deeper examination of the cognitive process.

Participants. We recruited 3 independent human annotators to perform this task to establish a
human baseline. We evaluated a suite of state-of-the-art MLLMs, including Gemini-3-Pro, GPT-5.1,
Gemini-2.5-Pro, Gemini-2.5-Flash, Qwen2.5-VL-7B, and GPT-4o-mini.

E.2 HUMAN-AI PERFORMANCE GAP

Table 13 compares the accuracy of human annotators against MLLMs on SIV-Bench-Hard.

Table 13: Accuracy comparison between Human Annotators and MLLMs on the SIV-Bench-Hard
subset. The results highlight a significant performance gap.

Subject Accuracy
Human Annotator 1 67.00%
Human Annotator 2 65.50%
Human Annotator 3 70.50%
Human (Average) 67.67%
Gemini-3-Pro 45.50%
GPT-5.1 39.00%
Gemini-2.5-Pro 37.00%
Gemini-2.5-Flash 32.32%
GPT-4o-mini 29.00%
Qwen2.5-VL-7B-Instruct 24.50%

Analysis. As shown in Table 13, we established a human baseline of approximately 67.7%. In
sharp contrast, the performance of SOTA MLLMs collapses on this challenging subset. The best-
performing model, GPT-5.1, achieved only 39.00%, revealing a massive ∼29% performance gap
compared to humans. This finding confirms that SIV-Bench is far from saturated and remains a
significant challenge for even the most advanced models.

E.3 EVALUATION OF REASONING QUALITY

To go beyond accuracy, we assessed the quality of the generated free-text explanations. We employed
GPT-4o-mini as an LLM-Judge. For each sample, the judge was provided with the video context,
the question, the model’s answer, and the explanations from the three human annotators as a "gold
standard" reference. The judge scored the model’s reasoning on a scale of 1-5 across five dimensions,
based on the core assumption that human reasoning processes are the standard for social intelligence.

Gap and Skew in Reasoning. Table 14 reveals a critical divergence in model capabilities. MLLMs
score highly on structural metrics such as Logical Coherence (∼4.65) and Conciseness (∼4.89),
indicating proficiency in generating well-formed text. However, their scores for cognitive met-
rics—specifically Alignment with Human Reasoning (∼3.3) and Depth of Analysis (∼3.3)—are
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Table 14: Reasoning Quality scores (1-5) for MLLMs on SIV-Bench-Hard. Scores are evaluated by
an LLM-Judge using human reasoning traces as the reference.

Model Relevance Alignment w/ Human Logical Coherence Depth of Analysis Conciseness Overall Score
Gemini-3-Pro 4.66 3.30 4.67 3.49 4.87 4.10
GPT-5.1 4.58 3.29 4.65 3.26 4.88 4.00
Gemini-2.5-Pro 4.57 3.26 4.65 3.41 4.89 4.05
Gemini-2.5-Flash 4.48 3.17 4.55 3.22 4.87 3.95
GPT-4o-mini 4.45 3.20 4.56 3.12 4.91 3.90
Qwen2.5-VL-7B-Instruct 4.00 2.89 4.21 3.05 4.45 3.63

significantly lower. This demonstrates that while MLLMs can generate logically structured explana-
tions, they struggle to replicate the analytical depth and specific cognitive patterns characteristic of
human social reasoning.

E.4 QUANTITATIVE ANALYSIS OF REASONING EMBEDDINGS

To quantify the divergence observed in the qualitative scores, we performed an embedding-
based analysis. We encoded all reasoning texts (both human and model) using the
paraphrase-multilingual-MiniLM-L12-v2 model.

Distinguishability. We trained a Random Forest classifier to distinguish between human and model
explanations based on their embeddings. The classifier achieved an accuracy of 92.17% (compared to
a 50% random baseline). This high classification accuracy indicates that the latent semantic features
of model reasoning are fundamentally distinct from those of humans.

Statistical Significance. We further validated this difference using Mann-Whitney U tests across the
embedding dimensions. The tests confirmed that the distributions of human and model embeddings
are significantly different (p < 0.05) on 8 out of 10 principal dimensions. Collectively, these results
provide quantitative evidence that current MLLMs, despite their linguistic fluency, employ reasoning
processes that are statistically distinguishable from human social cognition.

The SIV-Bench-Hard subset, along with the human reasoning annotations and analysis code, will be
released to facilitate future research into bridging this gap.

E.5 CORRELATION BETWEEN ANSWER CORRECTNESS AND REASONING FIDELITY

To rigorously verify that model performance is grounded in genuine social reasoning rather than su-
perficial visual shortcuts (e.g., background cues or object co-occurrence), we analyze the relationship
between the correctness of a model’s answer and the semantic quality of its reasoning trace. We
hypothesize that if models were merely "guessing" via shortcuts, their generated explanations would
lack alignment with human cognitive processes even when they fortuitously select the correct option.

We perform an embedding-based analysis on the SIV-Bench-Hard subset using the
paraphrase-multilingual-MiniLM-L12-v2 model. For each of the six evaluated models,
we calculate the cosine similarity between the model’s generated reasoning and the human expert
ground truth. The results are stratified based on whether the model answers the multiple-choice
question correctly or incorrectly.

As illustrated in Figure 23 and summarized in Table 15, we observe a statistically significant positive
gap in similarity scores across 5 out of the 6 models. Notably, GPT-5.1 demonstrates the strongest
effect, with a similarity gap of 0.066 (p < 0.001).

These findings provide empirical evidence that correctness in SIV-Bench is strongly correlated with
human-like social reasoning. The significant degradation in reasoning alignment during failure cases
suggests that models do not rely on "guessing" via superficial cues; rather, successful performance
necessitates a cognitive process that mirrors human social understanding.
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Table 15: Quantitative comparison of reasoning similarity to human ground truth between correct
and incorrect responses. The Gap (∆) represents the increase in similarity when the model answers
correctly. Significance is calculated using the Mann-Whitney U Test.

Model Similarity
(Correct)

Similarity
(Incorrect) Gap (∆) Significance

(p-value)
GPT-5.1 0.572 0.506 +0.066 < 0.001 (***)
Qwen2.5-VL-7B-Instruct 0.535 0.474 +0.061 < 0.01 (**)
GPT-4o-mini 0.571 0.513 +0.058 < 0.01 (**)
Gemini-2.5-Pro 0.541 0.498 +0.043 < 0.05 (*)
Gemini-2.5-Flash 0.537 0.504 +0.033 < 0.05 (*)
Gemini-3-Pro 0.527 0.494 +0.033 0.067 (n.s.)

F BROADER IMPACT

SIV-Bench is designed to foster positive advancements in artificial social intelligence, potentially
leading to more empathetic, context-aware, and collaborative AI systems for beneficial applications
such as assistive technologies, improved human-AI teaming, and richer content understanding.
However, enhancing AI’s grasp of social dynamics also presents risks. These capabilities could be
misused for sophisticated manipulation, disinformation, or invasive surveillance, and unaddressed
biases in data could be amplified, leading to inequitable outcomes. We offer SIV-Bench as a
research tool to transparently assess MLLM capabilities and limitations in the social domain, thereby
encouraging the community to proactively consider these ethical challenges and develop robust
safeguards alongside continued innovation in social AI.
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Figure 15: Screenshot of the guidelines provided to human annotators, detailing the tasks of answering
multiple-choice questions and creating new challenging questions about Social Scene Understanding
(SSU), Social State Reasoning (SSR), and Social Dynamics Prediction (SDP).
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Figure 16: Example of the web-based interface used by human annotators for watching videos,
answering provided multiple-choice questions, and authoring new Question-Answer pairs for SIV-
Bench.
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Figure 17: Statistical analysis of SIV-Bench Question-Answer (QA) pairs. (a) average word count
consistency across answer options, (b) distribution of correct answers among options, (c) overall
question length distribution by word count, and (d) frequency of common first words in questions.
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PROMPT for frames input
You are an AI assistant responsible for answering questions about videos.

You will be provided with {} separate frames uniformly sampled from a video, \
the frames are provided in chronological order of the video.
Please analyze these images and provide the answers to the \
following multiple-choice questions about the video content.
If multiple questions are provided (with indices Q1, Q2, Q3, ...), \
you should organize your answers in the following json format:
1. [Exact text of the chosen option for question 1],
2. [Exact text of the chosen option for question 2],
...

Do NOT add any explanations, introductions, or concluding remarks.

PROMPT for videos input
You are evaluating a video based on the multiple-choice questions provided below.,
For each numbered question, select the best answer from the options listed.,
Your response MUST strictly follow this format:,
1. [Exact text of the chosen option for question 1],
2. [Exact text of the chosen option for question 2],
... and so on for all questions.

Do NOT add any explanations, introductions, or concluding remarks.,
--- QUESTIONS ---
…

Figure 18: Standardized prompt templates used for evaluating MLLMs on SIV-Bench. Separate
prompts are shown for models that process (Top) uniformly sampled frames and (Bottom) direct
video input.
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Figure 19: Aggregated Confusion Matrix for the Relation Inference (RI) task. Red dashed lines
delineate the four foundational relational models. Off-diagonal clusters indicate systematic misclassi-
fications, such as the confusion between Authority Ranking and Equality Matching relations.

(a) 
Action

Recognition

What gesture does the man make when the two people in front of him turn 
around?

A. He turns away and walks off.
B. He raises one eyebrow slightly.
C. He extends his arms with palms up.

D. He shakes his head slowly.
E. He crosses his arms tightly.

Task Video Summary QA √: Right answer ×: MLLM’s wrong answer
This short video shows two female employees in an office
environment filming themselves with their "big boss" standing
behind them. The text overlay reads "tried this trend with our big
boss." As a song plays, the two employees look at each other,
seemingly performing a social media trend. They both, along with
the boss, end up laughing, suggesting a lighthearted and fun
interaction where the boss participated good-naturedly.

(b) 
Environment
Perception

(c) 
Facial Expression 

Recognition

(d) 
Human Attribute 

Identification

This video is a montage showing a student's final moments and
memories from high school. It includes clips of eating with
friends, school activities in the gym and classroom, commuting,
and spending time outdoors, capturing everyday life before
graduation.

What is the overall weather condition in the scene where the individual is 
walking outside in the evening?

A. Windy.  B. Cold. C. Wet.  D. Windy.  E. Foggy.

This video is a meme. It shows a scene, likely from the movie
"Identity Thief," where Melissa McCarthy's character abruptly
punches Jason Bateman's character in the throat while in a
hospital hallway. The text overlay, "What you really want to do
to some coworkers that test your nerves on a daily basis,"
frames this act of violence as a humorous, exaggerated
representation of the intense frustration one might feel
towards annoying colleagues.

What is the facial expression of the person in the bottom center as they 
look at the camera?

A. An astonished gasp. B. A blank stare. C. A mischievous smile. 
D. A pained frown.       E. A stoic glare.

What item of clothing does the child wear?

A. A dress. B. A winter coat. C. A set of pajamas. D. A baseball cap. 
E. A pair of jeans.

In this funny video, a defiant young daughter sits on the kitchen
counter and argues with her dad who is trying to get her to
listen. She talks back assertively ("standing on business") about
various things like not getting candy and her birthday.

Figure 20: Examples of failure cases in Social Scene Understanding (SSU) tasks, including errors in
Action Recognition, Environment Perception, Facial Expression Recognition, and Human Attribute
Identification.
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Why does the woman ask the red-haired person \"Do you understand?\" in an angry tone?
A. To demonstrate their authority and discourage any defiance. B. To show concern for a 
potential misunderstanding and encourage dialogue. C. To emphasize the importance of their 
message and ensure compliance.  D. To express frustration over a miscommunication and seek 
clarification.  E. To provoke a reaction and assert dominance in the conversation.

Task Video Summary QA √: Right answer ×: MLLM’s wrong answer

An employee asked for leave from a boss who was using a
computer with headphones on the pretext of having an eye
infection, and the boss readily agreed. But as soon as the
employee stepped out of the door, he took off his eyes, gave a
sly smile and quickly ran down the stairs.

What emotions does the person labeled ‘employee’ display after walking away?

A. Fear.  B. Confusion.  C. Happiness.  D. Sadness.  E. Anger.

In a sports store, a young male employee becomes flustered
and overgenerous when a woman trades in pink hockey gear.
After she leaves, he regrets not offering more. An older
coworker points out that the real issue isn't his awkwardness,
but his visible erection. Embarrassed, the younger man calls
himself a "horny monster." The older man tells him that sexual
attraction is natural but urges him to learn control, instructing
him to tuck it into his waistband and follow him for guidance.

What is the coworker’s attitude to the cashier’s behavior?

A. He is indifferent to it.  B. He feels angry about it.  C. He is disappointed.
D. He is amused by the situation.  E. He expresses his support.

Which kind of relationship plays a dominant role in this video?
Boss-Employee Colleagues

In this funny video, a defiant young daughter sits on
the kitchen counter and argues with her dad who is
trying to get her to listen. She talks back assertively
("standing on business") about various things like not
getting candy and her birthday.

(e) 
Intent

Inference

(f) 
Emotion
Inference

(g) 
Attitude
Inference

(h) 
Relation
Inference

The video shows a blonde woman aggressively confronting a boy
(presumably her son's bully) who now has a nosebleed. She
threatens him, implying she caused the injury as retaliation for him
breaking her son's glasses. When the bully's mother arrives,
concerned, the blonde woman pretends the nosebleed was from
an accidental fall, acting helpful while subtly warning the bully to
be more careful.

In the video, there is a couple. The woman said to the
camera, "If you want him, you have to get past me
first," then kissed the boy. After that, she joked, "The
best brother in the world." The boy was amused and
said that this was not reasonable at all, and that we
even came from different races.

Failure Type: Lack of Primary-Secondary Relation Differentiation.

Couple Siblings
Failure Type: Scene and Human-Induced Misleading Cues. 

A shop assistant in purple splashed a basin of water at
the customers outside the store, then quickly hid in
the store and closed the door. Angry customers kept
knocking on the door to demand an explanation, but
at this moment, the shop assistant began to take
selfies, creating the illusion that customers were eager
to open the store for epic deals, thereby indicating the
popularity of the event.

Transactional Colleagues

Failure Type: Deficiency in Commonsense Reasoning.

A couple in school uniforms were shooting a video of a
gesture dance. They first made the four letters "L, O, V,
E" with their hands, and then combined them to make
a heart shape.

Couple Classmates
Failure Type: Ignoring Key Perceptual Details. 

Figure 21: Examples of failure cases in Social State Reasoning (SSR) tasks, highlighting difficulties
in Intent Inference, Emotion Inference, Attitude Inference, and Relation Inference.

(i) 
Factual

Prediction

Will the man in the black shirt be happy with the quality of the work?

A. It is unlikely he will care.
B. He might feel indifferent about it.
C. There is a chance he will be upset.

D. No, he will be disappointed.
E. Yes, they reached an agreement.

Task Video Summary QA √: Right answer ×: MLLM’s wrong answer
The video is a comedic skit showing a contractor
quoting $5,000 for a job, only to be aggressively
haggled down by a skeptical client who disputes the
material costs and claims he could do the work himself.
As the client challenges the price, referencing cheaper
options like Temu, the contractor rapidly drops his
quote until he accepts the client’s firm counteroffer of
$3,000 with enthusiasm, highlighting the absurdity of
extreme price negotiations.

(j)
Counterfactual
Prediction

The person in black is showing off her proficient dance
moves in front of the camera. Then, the woman in
white joins the dance from the right side of the frame.
Their dance movements are very synchronized, and
there are also interactions such as holding hands
during the process.

How would the dance performance change if one person had more dance 
experience than the other?

A. Both dancers perform at the same skill level regardless of experience.
B. The more experienced dancer leads and adapts movements.
C. The less experienced dancer hesitates and struggles to keep up.
D. The music tempo slows down to accommodate both dancers.
E. The entire choreography is simplified for easier execution.

Figure 22: Examples of failure cases in Social Dynamics Prediction (SDP) tasks, covering both
Factual Prediction and Counterfactual Prediction.
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Figure 23: Box plots illustrating the distribution of semantic similarity scores between model
reasoning and human ground truth, stratified by answer correctness. We observe a consistent trend
where reasoning traces for correct answers exhibit significantly higher alignment with human social
cognition compared to incorrect answers. Statistical significance is denoted by * (p < 0.05), **
(p < 0.01), and *** (p < 0.001).
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