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Abstract

KV Cache Optimization is a crucial topic in001
improving the inference efficiency and length002
extrapolation of Transformer-based Large Lan-003
guage Models (LLMs). Previous KV Cache004
Optimization approaches often focus on prun-005
ing or compressing the sequence dimension,006
leading to an irreversible loss of contextual in-007
formation. In this work, we propose Light-008
Cache, a novel KV Cache optimization ap-009
proach that operates on the feature dimension.010
LightCache employs parameter-aware compres-011
sion and full-context cache selection, allowing012
it to reduce memory usage and enhance com-013
putational efficiency without sacrificing con-014
textual information. Importantly, LightCache015
enables a training-free integration with LLMs.016
Experiments demonstrate that LightCache out-017
performs classic extrapolation, quantization,018
and context-pruning methods in long-context019
evaluation. In terms of efficiency, LightCache020
reduces the KV Cache size by over 60% and021
achieves 1.7∼2.4× memory efficiency as well022
as 1.5∼3.6× speedup in 32K context length.023

1 Introduction024

Recently, Large Language Models (LLMs) based025

on Transformer architecture(Vaswani et al., 2017)026

have been proven to achieve excellent performance027

in Natural Language Processing(OpenAI, 2023;028

Touvron et al., 2023a,b), leading to higher de-029

mands for their applications. Among these, long030

context processing has been a widely discussed031

topic over the past year(An et al., 2023; Bai et al.,032

2023b; Zhang et al., 2024b), resulting in numer-033

ous works focusing on expanding the context of034

LLMs(Rozière et al., 2023; Liu et al., 2023; Xiong035

et al., 2023), including Linear PI(Chen et al., 2023),036

NTK(bloc97, 2023b,a), YaRN(Peng et al., 2023),037

SelfExtend(Jin et al., 2024), etc., which have ex-038

tended the max-supported context of LLMs from039

2K to up to 2M tokens(Liu et al., 2024a; Ding et al.,040

2024). Simultaneously, as the context lengths of041
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(a) Results on LLaMA2-7B in 32K context length.
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(b) Results on LLaMA3-8B in 32K context length.

Figure 1: The comparison between LightCache and
full attention with Dynamic NTK(bloc97, 2023a) on
LLaMA2-7B(Touvron et al., 2023b) and LLaMA3-
8B(Meta, 2024) in 32K context length from the per-
spective of LongBench performance(Bai et al., 2023b),
memory cost and inference time. LightCache shows a
consistent superiority in every dimension.

LLMs expand, researchers turn to focus on mini- 042

mizing memory costs and enhancing computational 043

efficiency while maintaining the long-context per- 044

formance(Xiao et al., 2023b; Zhang et al., 2024a). 045

For a long-context Transformer-based LLM, 046

the bottleneck of storage and computation cost 047

primarily originates from the Key-Value (KV) 048

Cache(Vaswani et al., 2017; Anagnostidis et al., 049

2024; Zhang et al., 2024c). For one transformer 050

layer, the size of the KV Cache is 2 multiplied by 051

the product of sequence length, number of atten- 052

tion heads, size of the feature dimension, and size 053

of stored data type(Vaswani et al., 2017). From 054
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these aspects, different strategies for KV Cache055

Optimization have been derived. The mainstream056

methods for optimizing KV Cache mainly concen-057

trate on dynamically pruning(Anagnostidis et al.,058

2024; Zhang et al., 2024c; Xiao et al., 2023b; Ge059

et al., 2023a; Dong et al., 2024) or compressing060

token representations along the sequence dimen-061

sion(Ren et al., 2023; Pang et al., 2024; Zhang062

et al., 2024a); however, the operations along the se-063

quence dimension often result in loss of contextual064

information, harming the downstream tasks(Dong065

et al., 2024; Lu et al., 2024). Another study focuses066

on optimization in data storage, namely quanti-067

zation(Yue et al., 2024; Hooper et al., 2024; Liu068

et al., 2024b). Although most quantization methods069

commonly state lossless compression effects, they070

require the participation of a calibration set(Yue071

et al., 2024), which may introduce bias and cannot072

compress adaptively. Moreover, compressing along073

the attention head has also been a subject of per-074

sistent investigation, with representative works in-075

cluding MQA(Shazeer, 2019), GQA(Ainslie et al.,076

2023), and the recently emerging MLA(DeepSeek-077

AI, 2024). These approaches substantially reduce078

storage overhead and enhance inference speed but079

must be applied in pre-training and cannot offer080

plug-and-play compatibility.081

In this work, we propose our KV Cache opti-082

mization method, LightCache. It is plug-and-play083

compatible and derived from the perspective of084

feature dimension. It surpasses the extrapolation085

effect of NTK methods as shown in Figure1 with086

much lower memory cost as well as a remarkable087

speedup. In contrast to quantization methods, we088

introduce parameter-aware compression based on089

matrix factorization, minimizing information loss090

mathmatically during efficient storage processes.091

Compared to context pruning and compression, we092

employ full-context token selection to ensure com-093

prehensive coverage of crucial information within094

the complete context and demonstrate competitive095

performance on long-context tasks, showing superi-096

ority to NTK methods in testing. Our contributions097

can be summarized as follows.098

• We find that in LLMs, the feature dimensions099

of the KV Cache are highly redundant. Partic-100

ularly for the K Cache, the feature dimensions101

can be compressed to 1/16 of the original size102

while still preserving the original meaning.103

• Building upon this observation, we propose104

LightCache, a training-free KV Cache opti-105

mization method. LightCache compresses the 106

KV Cache along the feature dimension and 107

selects a subset of the key entries to conduct 108

self-attention. 109

• Experiments demonstrate that LightCache out- 110

performs KV Cache pruning and quantization 111

approaches in LongBench. Furthermore, it 112

also exhibits better extrapolation performance 113

than Dynamic NTK. Notably, LightCache 114

achieves 1.7∼2.4× memory efficiency as well 115

as 1.5∼3.6× speedup in 32K context length. 116

2 Method 117

The memory cost and inference latency of LLM 118

mainly come from the storage and computational 119

overhead of the KV Cache. To address this issue, 120

LightCache proposes parameter-aware compres- 121

sion in the feature dimension and full-context se- 122

lection in the sequential dimension and eventually 123

addresses it with a training-free integration. 124

2.1 Parameter-Aware Compression 125

Compared to sequential optimization and cache 126

quantization, feature dimension compression can 127

retain complete contextual information while pro- 128

viding a parameter-aware compression scheme for 129

KV Cache in every layer. Take the K Cache as an 130

example. The K Cache Kcache = [k1,k2, · · · ,kt] 131

is essentially a vector group obtained through the 132

Wk projection. The vector space of ks ∈ Rdk , s = 133

1, · · · , t, is determined by the singular vectors of 134

Wk, given the fact that 135

ks = hsW
T
k , s = 1, · · · , t. (1) 136

Therefore, by performing Singular Value Decompo- 137

sition on Wk, we can retain the projection matrix 138

on principal dimensions to achieve high-quality 139

compression of Kcache. 140

Specifically, we first decompose Wk into the 141

product of three matrices, namely 142

Wk = UkΣkV
T
k . (2) 143

For the orthogonal matrix Uk ∈ Rdk×dk , we only 144

keep the first rk row vectors corresponding to the 145

principle components, and that is the compression 146

matrix Pk 147

U ′
k = Uk[: rk] ∈ Rrk×dk . (3) 148

Therefore, for K Cache, projection by the pseudo- 149

inverse(Moore, 1920) of (U ′
k)

T , Pk, can transform 150
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Figure 2: Visualization of the working principle of LightCache. In this example, we set the global preservation
length to 1, the local preservation length to 2, the number of top-k selected segments k = 2, and the selected
segment length m = 1. In Figure3a, similar to the normal KV Cache, the key-value vectors generated in the
current step are first appended to the end. In Figure3b, the KV Cache entries that exceed the local part are
compressed to a lower dimension, as detailed in Equation4. Specifically, for K Cache, we compress it to 1/16,
while for V Cache, we only compress it to 1/2. In Figure2c, the query vector qt is also compressed based on
Equation5, and the top-k selection is performed on the reduced-dimension K Cache, as shown in Equation6, to
find the critical K and their corresponding V. In Figure2d, finally, the extracted KV entries are decompressed
based on Equation7, and then concatenated with the global and local preservation, with position embedding
applied in sequence order before performing normal self-attention calculation as shown in Equation8.

it into the low-dimensional principal component151

space, thus achieving compression in feature di-152

mension. On the other hand, V Cache compression153

follows the same method and may have different154

compressed dimensions rv as follows,155

Kzipped = KcachePk ∈ Rt×rk

Vzipped = VcachePv ∈ Rt×rv
. (4)156

Obviously, this compression strategy has the fol-157

lowing advantages. It does not add any additional158

training parameters. After that, It is mathematically159

the compression scheme with the highest informa-160

tion density under the same order of magnitude.161

Compared to quantization, this compression does162

not require an additional calibration set and is adap-163

tive to the parameters in each layer. Finally, the ex- 164

istence of the projection matrix Pk and its inverse 165

makes it possible for the subsequent training-free 166

integration. Additionally, to ensure the stability 167

of the self-attention computation in LLM, inspired 168

by StreamingLLM(Xiao et al., 2023b), LightCache 169

retains the beginning and ending parts of the KV 170

Cache, corresponding to the global and local con- 171

text, without compression in feature dimension, to 172

avoid disruption to the self-attention pattern. 173

2.2 Full-Context Selection 174

Since LightCache only performs compression in 175

the feature dimension and does no pruning or com- 176

pressing sequentially, it can attend to the full con- 177
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text of KV Cache during inference. However, since178

the training context of LLMs is limited and full179

attention is time-consuming, LightCache performs180

full-context cache selection before self-attention.181

We first compress the query vector qt ∈ Rd
k182

in the current inference step in the same way as183

Kzipped.184

q′t = qtPk ∈ Rrk . (5)185

Then, based on the dot product between q′t and186

Kzipped, LightCache conducts a top-k selection and187

acquires the most critical K Cache entries, sorted188

in sequential order, along with their corresponding189

V Cache.190

Indices = top-k
(
q′tKT

zipped
)

Kselect = Kzipped[Indices]

Vselect = Vzipped[Indices]

. (6)191

It’s important to note that this dot product only192

considers semantic similarity, enabling information193

filtering irrespective of relative distance.194

It’s worth noting that for GQA, the feature di-195

mension of qt the feature dimension of key vectors,196

dk, multiplied by the number of attention group,197

ngroup. Therefore, LightCache needs first to re-198

shape q′t from a vector to a matrix in Rngroup×dk ,199

then compress it in the feature dimension and fi-200

nally determine the selection is by voting across the201

attention groups. Furthermore, to improve the co-202

herence of the selected entries and ensure complete203

coverage of important information, LightCache204

selects not just the critical cache entries, but the205

m neighboring entries as well with overlaps be-206

ing deduplicated. This provides LightCache with207

greater flexibility compared to fixed-chunk efficient208

caching methods(Xiao et al., 2024; Lu et al., 2024).209

2.3 Training-Free Integration210

Finally, LightCache only performs self-attention211

calculations on the preserved and selected cache.212

For the selected KV Cache with lower dimensions,213

LightCache uses the aforementioned U ′
k,U

′
v to per-214

form decompression.215

K′
select = KselectU

′
k
T

V ′
select = VselectU

′
v
T

. (7)216

This ensures that the shape of the selected KV217

Cache matches the preserved KV Cache, allowing218

them to be directly concatenated. After applying219

positional encoding to the concatenated sequence,220

LightCache performs the self-attention directly. 221

K′
cache =

[
Kglobal,K′

select,Klocal
]

V ′
cache =

[
Vglobal,V ′

select,Vlocal
]

ot = SelfAttn
(
qt,K′

cache,V ′
cache

). (8) 222

This approach enables the training-free integra- 223

tion of LightCache with pre-trained LLMs. By con- 224

trolling the number of selected KV Cache, k, Light- 225

Cache achieves computational efficiency while lim- 226

iting the self-attention calculation window to the 227

pre-training context length. This avoids the OOD 228

issue of position information and extends the actual 229

context length that LLMs can handle. Additionally, 230

in the prompt reading stage, LightCache processes 231

the input chunk-wise and streamingly(Xiao et al., 232

2023b, 2024) to control GPU memory cost and 233

self-attention window length. 234

3 Experiments 235

3.1 Setup 236

We conduct experiments on LLaMA2-7B- 237

4k(Touvron et al., 2023b), LLaMA3-8B-8K(Meta, 238

2024), InternLM2-7B-200K(Cai et al., 2024), 239

InternLM2-1.8B-32K(Cai et al., 2024), Qwen1.5- 240

7B-128K(Bai et al., 2023a), Qwen1.5-1.8B- 241

32K(Bai et al., 2023a). For all models, we set 242

the global preservation length to 4, the number 243

of top-k selected segments k = 16, the selected 244

segment length m = 32, and the chunk size of 245

streaming input to 1K. For LLaMA2-7B, we set 246

the local context length to 2K, for LLaMA3B we 247

set it to 4K, and for the rest of the models, we set it 248

to 16K. The reason for this setting is that it allows 249

the attention window size close to the pre-training 250

context length, thus adapting LLM to the length 251

distribution learned in the pre-training stage. 252

3.2 Main Results 253

We use the OpenCompass(Contributors, 2023c) to 254

validate the effectiveness of our method on the 255

commonly used long-context benchmark Long- 256

Bench(Bai et al., 2023b), with an evaluation con- 257

text length of 32k and middle truncation. For 258

LLaMA2-7B(Touvron et al., 2023b) and LLaMA3- 259

8B(Meta, 2024), we use Dynamic NTK(bloc97, 260

2023a) and StreamingLLM(Xiao et al., 2023b) 261

as our baselines. For other LLMs with long- 262

context capability, we compare our LightCache 263

with Int8 and Int4. Except for the quantization 264

experiments, other experiments take BFloat16 pre- 265

cision, and the quantization is supported by the 266
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Pretrained LightCache (Ours)

Dynamic NTK StreamingLLM v×1/2 k×1/8 k×1/8
v×1/2 k×1/16 k×1/16

v×1/2

Compressing Ratio 0.00% 93.59% 17.00% 39.34% 56.34% 43.07% 60.07%

LLaMA2-7B-4K 28.15 26.70 28.09 28.58 28.17 28.80 28.02
LLaMA3-8B-8K 28.27 31.58 33.56 33.13 32.94 32.67 32.58

Table 1: Evaluation results of LLaMA2-7B and LLaMA3-8B on LongBench(Bai et al., 2023b) as well as the cache
efficiency, the percentage representing the amount of KV Cache reduced, in 32K context length. LightCache shows
a better performance than Dynamic NTK(bloc97, 2023a) and StreamingLLM(Xiao et al., 2023b).

Pretrained LightCache (Ours)

BFloat16 Int8 Int4 v×1/2 k×1/8 k×1/8
v×1/2 k×1/16 k×1/16

v×1/2

Compressing Ratio 0.00% 50.00% 75.00% 17.00% 39.34% 56.34% 43.07% 60.07%

InternLM2-7B-200K 42.93 44.94 43.76 42.45 42.53 42.47 42.42 42.41
InternLM2-1B-32K 33.01 32.73 32.19 32.66 32.74 32.68 32.70 32.63
Qwen1.5-7B-128K 39.37 34.63 34.41 39.10 39.06 39.04 39.07 39.05
Qwen1.5-1B-32K 29.22 25.66 24.60 29.20 29.11 29.19 29.16 29.20

Table 2: Evaluation results of InternLM2 and Qwen1.5 on LongBench(Bai et al., 2023b) as well as the cache
efficiency in 32K context length. LightCache shows a better performance than Int8/Int4 quantization on average and
a similar compression ratio.

LMDeploy(Contributors, 2023b); all experiments267

are accelerated with FlashAttention2(Dao, 2023)268

and conducted on one A100 GPU.269

For LightCache, we compare the effects of com-270

pressing only V Cache to 1/2, compressing only271

K Cache to 1/8 or 1/16, and compressing both.272

While comparing the experimental effects, we also273

compare the compressing ratio at the 32k length,274

namely the percentage of KV Cache being reduced275

Mfull −M
Mfull

× 100%.276

Here, M is the size of preserved KV Cache for a277

certain optimization strategy while Mfull is the size278

of KV Cache in full attention. For LightCache, the279

size of the projection matrix, Mproj, should also be280

considered, so the compressing ratio is281

Mfull −M+Mproj

Mfull
× 100%.282

As shown in Table 1, for the experiments on283

LLaMA2 and LLaMA3, LightCache significantly284

outperforms the StreamingLLM baseline in per-285

formance. Compared to the full attention with286

Dynamic NTK, our method can not only opti-287

mize 40%-60% of the KV Cache but also ac-288

quire a slight performance advantage. It should289

be noted that since LLaMA3 uses a larger rotary290

base(Meta, 2024), the NTK method has limited 291

improvement on its long-text capability(Liu et al., 292

2023), and therefore, Dynamic NTK is not as good 293

as StreamingLLM. In contrast, LightCache is inde- 294

pendent of whether GQA or how much the rotary 295

base is used and thus achieves stable downstream 296

improvements on both LLaMA2 and LLaMA3. 297

As shown in Table 2, for the experiments on 298

InternLM and Qwen1.5, LightCache can outper- 299

form the quantization methods on average with 300

similar compression strength and is closer to the 301

original performance of full attention. Except for 302

InternLM2-7B, where the quantization method can 303

surpass LightCache and even the original full at- 304

tention, for other models, especially the Qwen1.5 305

series, the quantization method presents a signif- 306

icant decline, proving that it suffers from biases 307

introduced by parameter adaptation and calibration 308

sets. Moreover, the compression of K Cache by 309

1/16 in LightCache is equivalent to 1-bit quanti- 310

zation in terms of storage, so we have achieved 311

compression effects superior to the quantization 312

methods in this sense. 313

Further analysis of the results in Table 6 and 314

Table 2 reveals that the performance degradation 315

from compressing V Cache is more severe than 316

compressing K Cache. Under the condition of com- 317

pressing K Cache to 1/16 of its original size, Light- 318
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GPU Memory (GB) Inference Time (sec. per token)

4K 8K 16K 32K 100K 4K 8K 16K 32K 100K

Full Attention 15.7 18.4 24.0 35.0 OOM 0.043 0.070 0.126 0.219 OOM
StreamingLLM 15.3 15.3 15.3 15.3 15.3 0.036 0.035 0.035 0.035 0.036
AutoCompressor* 17.7 22.6 32.3 51.7 OOM 0.087 0.134 0.224 0.478 OOM
LongLlama* 18.2 21.9 34.2 OOM OOM 0.079 0.190 0.436 OOM OOM
Activation Beacon* 21.7 21.3 21.4 21.6 21.6 0.071 0.121 0.237 0.473 1.494
LightCache (ours) 16.7 17.2 18.3 20.6 30.4 0.051 0.050 0.054 0.061 0.092

Table 3: Evaluation of inference time and GPU memory cost. Both are measured by the average value of 20
inference passes with FlashAttention2(Dao, 2023) enabled. The starred results of AutoCompressor(Chevalier et al.,
2023), LongLLaMA(Tworkowski et al., 2023) and Activation Beacon(Zhang et al., 2024a) is acquired from Zhang
et al. (2024a). LightCache shows slower memory growth and a much faster speed compared with full attention.

Cache can still achieve results close to or even319

better than that of full attention. This is also why320

LightCache can achieve over 60% compression,321

and approach 75% compression in infinite input322

length. However, the compression of V Cache323

is very limited, and on the LLaMA series, com-324

pressing V Cache will lead to certain performance325

degradation, which is consistent with the conclu-326

sion from some matrix compression research that327

the V projection matrix is more difficult to com-328

press(Peng et al., 2024). In the following experi-329

ments, we will continue to use the default setting330

of 1/16 optimization for the K Cache and 1/2 opti-331

mization for the V Cache.332

3.3 Efficiency333

We use the commonly used long-text dataset334

PG19(Rae et al., 2019) to evaluate the efficiency of335

our method in processing long contexts and com-336

pare the results of LightCache with that of full337

attention, as well as commonly used context prun-338

ing methods such as StreamingLLM(Xiao et al.,339

2023b), AutoCompressor(Chevalier et al., 2023),340

LongLLaMA(Tworkowski et al., 2023), and Acti-341

vation Beacon(Zhang et al., 2024a).342

As shown in Table 3, LightCache can save over343

60% of memory cost at a 32K context length and344

achieve over 3× speedup in inference, only inferior345

to StreamingLLM, which discards a large num-346

ber of tokens. Although at 100K input length, the347

memory cost of feature dimension compression348

still grows slowly with sequence length and is not349

as good as the token compression method of Acti-350

vation Beacon, its inference speed is still very fast,351

almost 15 × its counterpart.352

4 Analysis 353

4.1 Case Study 354

To verify that the top-k operation can help select 355

the key information from the previous text, we 356

conduct a case study on the QA and summariza- 357

tion tasks from the LongBench, using data from 358

the NarrativeQA(Kočiskỳ et al., 2018) and GovRe- 359

port(Huang et al., 2021). We track the token selec- 360

tion during the text generation process at all layers 361

in LLaMA2-7B with LightCache. The results are 362

shown in Figure3. The blue area represents the 363

global and local contexts stored without compres- 364

sion as well as the cache decompressed after top-k 365

selection. The more blue the color, the more times 366

the corresponding token was selected to attend to 367

during self-attention. 368

For the summarization task, we found that Light- 369

Cache could select the key cached fragments re- 370

gardless of the distance and thus generally cover 371

the information in the context during the generation. 372

For the QA task, we find that LightCache can iden- 373

tify the key information in the context, highlighted 374

in the red box, and pay continuous attention to it, 375

especially in the layers closer to the output, thereby 376

answering the questions correctly. This proves that 377

the process of compression in feature dimension, 378

top-k selection, decompression, and concatenation 379

for attention in LightCache is reasonable and effec- 380

tive. 381

4.2 Discussion 382

We then discussed the compression of the V cache, 383

the hyperparameters for the token selection in the 384

middle, and the size of the local context. We report 385

the changes in the average score of LongBench 386

when taking different model settings, as shown in 387

Table 4 and Table 5. 388
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(b) Case study on NarrativeQA

Figure 3: Visualization of KV Cache selected during the inference at each layer represented by color blocks. For
NarrativeQA, the paragraph containing the answer is highlighted with a red box.

Method Setting LongBench Avg.

LightCache 28.02

v×1/4 27.46
v×1/4, k×1/16 27.71
v×1/8 27.05
v×1/8, k×1/16 27.21

k=4, m=128 27.86
k=64, m=8 27.97
k=512, m=1 26.66

Table 4: Comparison based on LLaMA2-7B of the dif-
ferent compression ratios of V Cache and the different
top-k selection settings on LongBench.

Method Setting LongBench Avg.

LightCache 42.41

local size l=8192 40.40
local size l=4096 37.71
local size l=2048 33.22

Table 5: Comparison based on InternLM2-7B of the
different local attention size on LongBench.

Compression of V Cache In this work, the com-389

pression of V is significantly less than that of K.390

The results obtained by further compressing V are391

shown in Table 4. It can be found that further com-392

pressing V will have an obvious negative impact on393

the downstream tasks. This is mainly because, as394

reported in some studies, the projection matrix WV395

has a relatively high rank compared with WK(Peng396

et al., 2024) and V Cache is more essential in self-397

attention transform(Liu et al., 2024b). Therefore, it398

is not appropriate to apply excessive compression.399

Number of Token Selection For the hyperpa- 400

rameters for the token selection in the middle, 401

namely the number of top-k selected segments k 402

and the selected segment length m, we compare 403

the effects of different k,m pairs while keeping 404

k ×m the same. We find that our default setting 405

with k = 16,m = 32 achieved the best results. For 406

the setting, k = 1,m = 512, where only a single 407

entry is selected each time, we found that although 408

theoretically, it can acquire the most entries from 409

compressed KV Cache, the entries are too scat- 410

tered to form continuous semantics. Therefore the 411

results show a significant decline. Additionally, for 412

the setting that continuously selects more entries, 413

like k = 4,m = 128, the targeted entries are easy 414

to miss, which also leads to a decline. 415

Size of Local Context: In this paper, we use 416

a local size of 16K for InternLM2 and Qwen1.5 417

models, much larger than that for LLaMA2 and 418

LLaMA3. We compare the downstream perfor- 419

mance of InternLM2-7B under different local sizes, 420

since the context length of LLaMA2 and LLaMA3 421

are limited, and find that when local size is re- 422

duced, the downstream task performance of the 423

models declines. This is mainly because these 424

models have already been trained on longer con- 425

texts, and have adapted to the position information 426

features of longer lengths(Liu et al., 2023). If a 427

smaller local size is retained, it is detrimental to 428

their downstream task performance, and increasing 429

the intermediate selection tokens will also incur a 430

certain computational overhead. 431
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5 Related Work432

5.1 KV Cache Optimization433

KV Cache Optimization is a critical research area434

in LLMs based on Transformer architecture and is435

crucial for improving efficiency and capabilities in436

processing long contexts. It can be categorized into437

optimization from the perspectives of layer(Yen438

et al., 2024; Sun et al., 2024), sequence length,439

feature dimensions, and storage data types.440

optimization from the sequence dimension in-441

cludes different implementation methods such442

as pruning, compression, rolling, and retrieval.443

Nawrot et al. (2024); Zhang et al. (2024c); Xiao444

et al. (2023b); Ge et al. (2023a) enables LLMs to445

automatically prune the context during inference446

with key information being preserved. Though447

these works can enhance the inference speed448

greatly, the pruned context may lead to a perfor-449

mance decline. Besides, Mu et al. (2024); Ren et al.450

(2023); Pang et al. (2024); Zhang et al. (2024a)451

compress and replace context segments with spe-452

cial tokens, which can prune up to 99% of the453

context, but generally require fine-tuning and lack454

evaluation on long-context. Besides, Chevalier455

et al. (2023) and Ge et al. (2023b), borrow the456

idea of chunked input and memory from Dai et al.457

(2019); Bulatov et al. (2022) to improve the LLM458

efficiency in processing long contexts. Finally, Mo-459

htashami and Jaggi (2024); Xiao et al. (2024); Lu460

et al. (2024) apply KV chunk representations, CPU461

offload, and partial recall to reduce memory cost,462

but need to suffer the additional CPU-GPU traffic.463

Additionally, quantization methods optimize the464

KV Cache from the data type perspective, Xiao465

et al. (2023a); Hooper et al. (2024); Yue et al.466

(2024); Liu et al. (2024b) have proposed fine-467

designed optimization strategies tailored to the KV468

Cache features, achieving up to 2-bit optimization.469

While these methods claim to achieve nearly loss-470

less optimization, they still suffer from biases intro-471

duced by parameter adaptation and calibration sets.472

From the head perspective, MQA(Shazeer, 2019)473

and MHA(Vaswani et al., 2017) share KV Cache474

among the queries to achieve efficiency. Recently,475

MLA(DeepSeek-AI, 2024) combines the minor di-476

mensions of MHA and the major dimensions of477

MQA to balance efficiencye an performancd. How-478

ever, these works can only be used in pre-training.479

Past research lacks the exploration of KV Cache op-480

timization in the feature dimension. A few works,481

such as SparQ(Ribar et al., 2023), have discussed482

the potential of low-dimensional mapping to filter a 483

small number of tokens into self-attention to accel- 484

erate, but do not mention its potential in memory 485

saving. 486

5.2 Length Extrapolation 487

Long text processing is a key application of KV 488

Cache compression, while length extrapolation is 489

an important issue in long text processing. Length 490

extrapolation means making LLMs maintain sta- 491

ble downstream performance in long contexts de- 492

spite being trained in short contexts(Press et al., 493

2022). Extrapolation research stems from Linear 494

PI(Chen et al., 2023), compressing unseen position 495

information into the training window. Similarly, 496

ReRoPE(Su, 2023), SelfExtend(Jin et al., 2024), 497

and ChunkLLaMA(An et al., 2024) use relative po- 498

sition limits. In contrast, bloc97 (2023a) proposes 499

the lossless NTK method that amplifies rotation 500

angles during inference. Subsequent work com- 501

bines enlarging the rotary base(Su et al., 2021) with 502

fine-tuning on longer context as the mainstream 503

approach to extend model context(Rozière et al., 504

2023; Liu et al., 2023; Xiong et al., 2023). Ex- 505

tending context increases storage and computation, 506

leading to work on extending input length, from 507

parallel windows to LM-Infinite(Han et al., 2023) 508

and concurrent StreamingLLM(Xiao et al., 2023b), 509

which are part of KV Cache Optimization. Our 510

work extends model context while improving effi- 511

ciency, surpassing NTK on long text tasks. 512

6 Conclusion 513

We propose LightCache, a novel, training-free 514

framework to improve the efficiency of LLMs in 515

long contexts. Based on the parameter-aware com- 516

pression of the feature dimension of the KV Cache, 517

LightCache significantly enhances the storage effi- 518

ciency while achieving lossless storage of contex- 519

tual information. Through global top-k selection 520

and subsequent decompression, we achieve compu- 521

tational efficiency, extended context window, and 522

plug-and-play capability. Experiments demonstrate 523

that LightCache can achieve performance on par 524

with or even exceeding full attention, and is compet- 525

itive compared to quantization and StreamingLLM 526

approaches. Our method provides a new approach 527

to KV Cache optimization and length extrapolation 528

for LLMs. 529
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Limitations530

The main limitations of this work are as follows.531

First, We do not evaluate LightCache on the Needle-532

In-a-Haystack benchmark(Contributors, 2023a), so533

there is a lack of comprehensive verification on534

whether compression on the feature dimension535

can truly preserve contextual information with-536

out loss, and whether top-k selection can achieve537

distance-free retrieval in LLMs. Besides, From538

the performance perspective, we lack comparisons539

to works like Landmark Attention(Mohtashami540

and Jaggi, 2024), InfLLM(Xiao et al., 2024) and541

LongHeads(Lu et al., 2024). From the efficiency542

perspective, we lack comparisons to quantization543

methods. From the evaluation perspective, we544

lack evaluation on context over 100K(Zhang et al.,545

2024b), mainly due to limited resources and time.546

Additionally, LightCache only conducts compres-547

sion on the feature dimension rather than the se-548

quence dimension, so when the sequence length549

reaches a certain point, it will still exceed the GPU550

memory limit. For example, for LLaMA2-7B with551

LightCache, when the context window reaches552

400K, a single A800 GPU cannot support the in-553

ference. Finally, We did not integrate LightCache554

with efficient frameworks like vLLM(Kwon et al.,555

2023), which is planned for our future work.556
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Single-
Doc QA

Multi-
Doc QA Sum Few-shot Syn. Code Text Avg.

LLaMA2-7B Dynamic NTK 16.14 7.89 11.61 50.58 3.68 63.34 18.77 28.15
StreamingLLM 14.03 7.85 11.03 46.91 3.31 61.69 17.37 26.70
v×1/2 16.61 8.61 11.19 49.71 4.56 62.64 18.88 28.09
k×1/8 16.53 8.33 12.79 50.52 4.14 63.60 19.25 28.58
k×1/8, v×1/2 16.67 8.01 11.56 50.18 4.54 62.79 18.94 28.17
k×1/16 16.46 8.55 12.62 50.41 5.31 64.02 19.41 28.80
k×1/16, v×1/2 15.87 8.21 11.15 50.24 4.05 63.08 18.67 28.02

LLaMA3-8B Dynamic NTK 16.28 11.59 17.74 58.14 8.58 46.96 23.29 28.27
StreamingLLM 13.65 9.04 16.25 56.94 5.70 70.58 21.18 31.58
v×1/2 15.63 9.93 20.11 61.50 7.42 70.02 23.84 33.56
k×1/8 14.10 9.70 18.96 60.82 8.52 70.10 23.27 33.13
k×1/8, v×1/2 14.46 9.71 18.64 60.20 7.45 70.32 22.97 32.94
k×1/16 14.15 9.48 18.81 59.20 7.40 70.15 22.67 32.67
k×1/16, v×1/2 14.30 9.64 18.62 58.61 6.65 70.57 22.46 32.58

InternLM2-7B bfloat16 41.62 35.21 22.88 57.30 34.67 59.61 38.48 42.93
int8 40.02 36.68 23.59 60.28 40.33 62.79 40.18 44.94
int4 39.27 36.13 23.57 60.58 33.00 62.38 38.79 43.76
v×1/2 41.62 35.00 22.83 56.18 33.00 59.42 37.92 42.45
k×1/8 41.58 34.89 22.73 56.57 33.17 59.58 37.98 42.53
k×1/8, v×1/2 41.52 34.16 22.76 56.34 33.33 59.99 37.80 42.47
k×1/16 41.29 34.92 22.84 56.23 33.00 59.53 37.86 42.42
k×1/16, v×1/2 41.01 34.28 22.54 56.66 33.50 59.80 37.77 42.41

InternLM2-1B bfloat16 29.74 25.58 20.20 51.10 3.41 54.96 27.16 33.01
int8 27.44 26.13 20.29 51.13 3.44 54.78 26.85 32.73
int4 27.44 24.08 19.95 50.44 3.54 54.62 26.21 32.19
v×1/2 28.89 24.82 20.17 50.43 3.65 54.96 26.72 32.66
k×1/8 28.90 25.21 20.04 50.62 3.65 54.96 26.81 32.74
k×1/8, v×1/2 28.94 24.95 20.16 50.42 3.62 54.92 26.75 32.68
k×1/16 28.81 25.27 20.09 50.43 3.61 54.93 26.77 32.70
k×1/16, v×1/2 28.79 24.92 20.05 50.40 3.61 54.94 26.68 32.63

Qwen1.5-7B bfloat16 37.64 22.52 24.68 60.85 6.50 68.45 31.62 39.37
int8 22.37 14.38 22.21 59.89 4.60 67.79 25.79 34.63
int4 21.50 14.02 22.18 59.90 4.97 67.48 25.60 34.41
v×1/2 36.62 22.34 24.58 60.84 6.39 68.22 31.34 39.10
k×1/8 36.65 22.32 24.42 60.67 6.50 68.23 31.28 39.06
k×1/8, v×1/2 36.51 22.35 24.38 60.78 6.50 68.16 31.28 39.04
k×1/16 36.73 22.42 24.30 60.77 6.33 68.23 31.29 39.07
k×1/16, v×1/2 36.59 22.25 24.25 60.96 6.33 68.28 31.26 39.05

Qwen1.5-1B bfloat16 24.77 15.22 20.41 44.35 3.00 54.45 22.50 29.22
int8 13.60 8.37 18.84 42.04 3.50 54.18 18.05 25.66
int4 12.68 8.36 18.29 40.99 3.74 50.99 17.56 24.60
v×1/2 24.76 15.18 20.39 44.19 2.99 54.55 22.44 29.20
k×1/8 24.79 15.26 20.31 43.83 3.00 54.38 22.37 29.11
k×1/8, v×1/2 24.78 15.13 20.31 44.24 3.00 54.53 22.44 29.19
k×1/16 24.77 15.04 20.32 44.46 2.99 54.31 22.46 29.16
k×1/16, v×1/2 24.77 15.17 20.32 44.34 3.00 54.45 22.46 29.20

Table 6: Citation commands supported by the style file. The style is based on the natbib package and supports all
natbib citation commands. It also supports commands defined in previous ACL style files for compatibility.
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