LightCache: Efficient Inference for Transformers via KV Cache
Compression in Feature Dimension

Anonymous ACL submission

Abstract

KV Cache Optimization is a crucial topic in
improving the inference efficiency and length
extrapolation of Transformer-based Large Lan-
guage Models (LLMs). Previous KV Cache
Optimization approaches often focus on prun-
ing or compressing the sequence dimension,
leading to an irreversible loss of contextual in-
formation. In this work, we propose Light-
Cache, a novel KV Cache optimization ap-
proach that operates on the feature dimension.
LightCache employs parameter-aware compres-
sion and full-context cache selection, allowing
it to reduce memory usage and enhance com-
putational efficiency without sacrificing con-
textual information. Importantly, LightCache
enables a training-free integration with LLMs.
Experiments demonstrate that LightCache out-
performs classic extrapolation, quantization,
and context-pruning methods in long-context
evaluation. In terms of efficiency, LightCache
reduces the KV Cache size by over 60% and
achieves 1.7~2.4x memory efficiency as well
as 1.5~3.6x speedup in 32K context length.

1 Introduction

Recently, Large Language Models (LLMs) based
on Transformer architecture(Vaswani et al., 2017)
have been proven to achieve excellent performance
in Natural Language Processing(OpenAl, 2023;
Touvron et al., 2023a,b), leading to higher de-
mands for their applications. Among these, long
context processing has been a widely discussed
topic over the past year(An et al., 2023; Bai et al.,
2023b; Zhang et al., 2024b), resulting in numer-
ous works focusing on expanding the context of
LLMs(Roziere et al., 2023; Liu et al., 2023; Xiong
etal., 2023), including Linear PI(Chen et al., 2023),
NTK(bloc97, 2023b,a), YaRN(Peng et al., 2023),
SelfExtend(Jin et al., 2024), etc., which have ex-
tended the max-supported context of LLMs from
2K to up to 2M tokens(Liu et al., 2024a; Ding et al.,
2024). Simultaneously, as the context lengths of

0.05 - .
0.00
Inference Time
(sec. per token)

LongBench Performance Memory Cost
on 32K Context Length (GB)

Full Attention B LightCache

(a) Results on LLaMA2-7B in 32K context length.

Inference Time
(sec. per token)

LongBench Performance

Memory Cost
on 32K Context Length (GB)

BN LightCache

Full Attention

(b) Results on LLaMA3-8B in 32K context length.

Figure 1: The comparison between LightCache and
full attention with Dynamic NTK(bloc97, 2023a) on
LLaMA2-7B(Touvron et al., 2023b) and LLaMA3-
8B(Meta, 2024) in 32K context length from the per-
spective of LongBench performance(Bai et al., 2023b),
memory cost and inference time. LightCache shows a
consistent superiority in every dimension.

LLMs expand, researchers turn to focus on mini-
mizing memory costs and enhancing computational
efficiency while maintaining the long-context per-
formance(Xiao et al., 2023b; Zhang et al., 2024a).

For a long-context Transformer-based LLM,
the bottleneck of storage and computation cost
primarily originates from the Key-Value (KV)
Cache(Vaswani et al., 2017; Anagnostidis et al.,
2024; Zhang et al., 2024c). For one transformer
layer, the size of the KV Cache is 2 multiplied by
the product of sequence length, number of atten-
tion heads, size of the feature dimension, and size
of stored data type(Vaswani et al., 2017). From

these aspects, different strategies for KV Cache
Optimization have been derived. The mainstream
methods for optimizing KV Cache mainly concen-
trate on dynamically pruning(Anagnostidis et al.,
2024; Zhang et al., 2024c; Xiao et al., 2023b; Ge
et al., 2023a; Dong et al., 2024) or compressing
token representations along the sequence dimen-
sion(Ren et al., 2023; Pang et al., 2024; Zhang
et al., 2024a); however, the operations along the se-
quence dimension often result in loss of contextual
information, harming the downstream tasks(Dong
etal., 2024; Lu et al., 2024). Another study focuses
on optimization in data storage, namely quanti-
zation(Yue et al., 2024; Hooper et al., 2024; Liu
etal., 2024b). Although most quantization methods
commonly state lossless compression effects, they
require the participation of a calibration set(Yue
et al., 2024), which may introduce bias and cannot
compress adaptively. Moreover, compressing along
the attention head has also been a subject of per-
sistent investigation, with representative works in-
cluding MQA(Shazeer, 2019), GQA(Ainslie et al.,
2023), and the recently emerging MLA(DeepSeek-
Al, 2024). These approaches substantially reduce
storage overhead and enhance inference speed but
must be applied in pre-training and cannot offer
plug-and-play compatibility.

In this work, we propose our KV Cache opti-
mization method, LightCache. It is plug-and-play
compatible and derived from the perspective of
feature dimension. It surpasses the extrapolation
effect of NTK methods as shown in Figurel with
much lower memory cost as well as a remarkable
speedup. In contrast to quantization methods, we
introduce parameter-aware compression based on
matrix factorization, minimizing information loss
mathmatically during efficient storage processes.
Compared to context pruning and compression, we
employ full-context token selection to ensure com-
prehensive coverage of crucial information within
the complete context and demonstrate competitive
performance on long-context tasks, showing superi-
ority to NTK methods in testing. Our contributions
can be summarized as follows.

* We find that in LLMs, the feature dimensions
of the KV Cache are highly redundant. Partic-
ularly for the K Cache, the feature dimensions
can be compressed to 1/16 of the original size
while still preserving the original meaning.

* Building upon this observation, we propose
LightCache, a training-free KV Cache opti-

mization method. LightCache compresses the
KV Cache along the feature dimension and
selects a subset of the key entries to conduct
self-attention.

* Experiments demonstrate that LightCache out-
performs KV Cache pruning and quantization
approaches in LongBench. Furthermore, it
also exhibits better extrapolation performance
than Dynamic NTK. Notably, LightCache
achieves 1.7~2.4 x memory efficiency as well
as 1.5~3.6x speedup in 32K context length.

2 Method

The memory cost and inference latency of LLM
mainly come from the storage and computational
overhead of the KV Cache. To address this issue,
LightCache proposes parameter-aware compres-
sion in the feature dimension and full-context se-
lection in the sequential dimension and eventually
addresses it with a training-free integration.

2.1 Parameter-Aware Compression

Compared to sequential optimization and cache
quantization, feature dimension compression can
retain complete contextual information while pro-
viding a parameter-aware compression scheme for
KV Cache in every layer. Take the K Cache as an
example. The K Cache ICoyche = [K1, K2, - - , k]
is essentially a vector group obtained through the
W), projection. The vector space of k, € R%, s =
1,---,t, is determined by the singular vectors of
Wy, given the fact that
k. =hW!, s=1,---,t)
Therefore, by performing Singular Value Decompo-
sition on W}, we can retain the projection matrix
on principal dimensions to achieve high-quality
compression of Kcache.
Specifically, we first decompose W, into the
product of three matrices, namely

W, = U, S, V! 2

For the orthogonal matrix Uy, € R%*% we only
keep the first r;, row vectors corresponding to the
principle components, and that is the compression
matrix Py

U], = Up[: 7] € RT#>dk, (3)

Therefore, for K Cache, projection by the pseudo-
inverse(Moore, 1920) of (U,’C)T, Py, can transform

Wo

- Kcache

Wy append !
|

(a) The Initial KV Cache

(2) top-k selection

(1) compress

hy,

—) —

i select V2

Veache

(c) Full-Context Cache Selection

- Keache
q: ———— e e e
(xglobal Kipped xlocal |
] | compress |
hy I :
L] {_DDDDDDDD Uy,
ke Joke o kiz keske
. __—__—__—— —__
v (V1 V2 Ve V10 \l
1 1[100006oeoa nn:!
' |
u : L compress Uu |
\ Vgliobal Vaipped Viocal /I

Veache

(b) Parameter-Aware Compression

hy,

- ac (2) concatenate
B
| Uﬂlw e]
{I=IDD@D ocooo UU } @ self-

ke_» E—l_kz/ attention

\
&
F
i
5
g

(g
s
K
L
|

=
| I(| -
\ Vhiobal _ Vaipped Viodal J
& ~ P,

T cache (2) concatenate

(d) Training-Free Integration

Figure 2: Visualization of the working principle of LightCache. In this example, we set the global preservation
length to 1, the local preservation length to 2, the number of top-k selected segments k£ = 2, and the selected
segment length m = 1. In Figure3a, similar to the normal KV Cache, the key-value vectors generated in the
current step are first appended to the end. In Figure3b, the KV Cache entries that exceed the local part are
compressed to a lower dimension, as detailed in Equation4. Specifically, for K Cache, we compress it to 1/16,
while for V Cache, we only compress it to 1/2. In Figure2c, the query vector q; is also compressed based on
Equation5, and the top-k selection is performed on the reduced-dimension K Cache, as shown in Equation6, to
find the critical K and their corresponding V. In Figure2d, finally, the extracted KV entries are decompressed
based on Equation7, and then concatenated with the global and local preservation, with position embedding
applied in sequence order before performing normal self-attention calculation as shown in Equation8.

it into the low-dimensional principal component
space, thus achieving compression in feature di-
mension. On the other hand, V Cache compression
follows the same method and may have different
compressed dimensions 7, as follows,

tx
K:zipped = Kcachesz € R™T*

. 4)
Viipped = Vecache Py € RE*T

Obviously, this compression strategy has the fol-
lowing advantages. It does not add any additional
training parameters. After that, It is mathematically
the compression scheme with the highest informa-
tion density under the same order of magnitude.
Compared to quantization, this compression does
not require an additional calibration set and is adap-

tive to the parameters in each layer. Finally, the ex-
istence of the projection matrix Py, and its inverse
makes it possible for the subsequent training-free
integration. Additionally, to ensure the stability
of the self-attention computation in LLM, inspired
by StreaminglLLM(Xiao et al., 2023b), LightCache
retains the beginning and ending parts of the KV
Cache, corresponding to the global and local con-
text, without compression in feature dimension, to
avoid disruption to the self-attention pattern.

2.2 Full-Context Selection

Since LightCache only performs compression in
the feature dimension and does no pruning or com-
pressing sequentially, it can attend to the full con-

text of KV Cache during inference. However, since
the training context of LLMs is limited and full
attention is time-consuming, LightCache performs
full-context cache selection before self-attention.
We first compress the query vector q; € Rg
in the current inference step in the same way as
’Czipped-
q, = qP, € R"%,)

Then, based on the dot product between g; and
ICipped» LightCache conducts a top-k selection and
acquires the most critical K Cache entries, sorted
in sequential order, along with their corresponding
V Cache.
Indices = top-k (qglC;‘Fipped)
Kselect = ’Czipped [Indices] . 6)

vselect = vzipped [Indices]

It’s important to note that this dot product only
considers semantic similarity, enabling information
filtering irrespective of relative distance.

It’s worth noting that for GQA, the feature di-
mension of g, the feature dimension of key vectors,
dy., multiplied by the number of attention group,
Ngroup- Therefore, LightCache needs first to re-
shape ¢, from a vector to a matrix in R7eow X
then compress it in the feature dimension and fi-
nally determine the selection is by voting across the
attention groups. Furthermore, to improve the co-
herence of the selected entries and ensure complete
coverage of important information, LightCache
selects not just the critical cache entries, but the
m neighboring entries as well with overlaps be-
ing deduplicated. This provides LightCache with
greater flexibility compared to fixed-chunk efficient
caching methods(Xiao et al., 2024; Lu et al., 2024).

2.3 Training-Free Integration

Finally, LightCache only performs self-attention
calculations on the preserved and selected cache.
For the selected KV Cache with lower dimensions,
LightCache uses the aforementioned U}, U, to per-
form decompression.

/ 1T
Kselect =K select Uk

/ T
select — Viselect Uv

(N

This ensures that the shape of the selected KV
Cache matches the preserved KV Cache, allowing
them to be directly concatenated. After applying
positional encoding to the concatenated sequence,

LightCache performs the self-attention directly.

éa(;he = [’Cglobal’ ’C;electu ’Clocal]
véache = [vglobah v;e]ecw Viocal] . (8)
o; = SelfAttn (qt7 K !)

caches ¥ cache

This approach enables the training-free integra-
tion of LightCache with pre-trained LLMs. By con-
trolling the number of selected KV Cache, k, Light-
Cache achieves computational efficiency while lim-
iting the self-attention calculation window to the
pre-training context length. This avoids the OOD
issue of position information and extends the actual
context length that LLMs can handle. Additionally,
in the prompt reading stage, LightCache processes
the input chunk-wise and streamingly(Xiao et al.,
2023b, 2024) to control GPU memory cost and
self-attention window length.

3 Experiments

3.1 Setup

We conduct experiments on LLaMA2-7B-
4k(Touvron et al., 2023b), LLaMA3-8B-8K(Meta,
2024), InternLM2-7B-200K(Cai et al., 2024),
InternL.M2-1.8B-32K(Cai et al., 2024), Qwenl.5-
7B-128K(Bai et al.,, 2023a), Qwenl.5-1.8B-
32K(Bai et al., 2023a). For all models, we set
the global preservation length to 4, the number
of top-k selected segments k = 16, the selected
segment length m = 32, and the chunk size of
streaming input to 1K. For LLaMA2-7B, we set
the local context length to 2K, for LLaMA3B we
set it to 4K, and for the rest of the models, we set it
to 16K. The reason for this setting is that it allows
the attention window size close to the pre-training
context length, thus adapting LLM to the length
distribution learned in the pre-training stage.

3.2 Main Results

We use the OpenCompass(Contributors, 2023c¢) to
validate the effectiveness of our method on the
commonly used long-context benchmark Long-
Bench(Bai et al., 2023b), with an evaluation con-
text length of 32k and middle truncation. For
LLaMA2-7B(Touvron et al., 2023b) and LLaMA3-
8B(Meta, 2024), we use Dynamic NTK(bloc97,
2023a) and Streamingl.L.M(Xiao et al., 2023b)
as our baselines. For other LLMs with long-
context capability, we compare our LightCache
with Int8 and Int4. Except for the quantization
experiments, other experiments take BFloat16 pre-
cision, and the quantization is supported by the

Pretrained LightCache (Ours)
. . kx1/8 kx1/16
Dynamic NTK StreamingLLM vx1/2 kx1/8 ox1/2 kx1/16 ox1/2
Compressing Ratio 0.00% 93.59% 17.00% 39.34% 56.34% 43.07% 60.07%
LLaMA2-7B-4K 28.15 26.70 28.09 28.58 28.17 28.80 28.02
LLaMA3-8B-8K 28.27 31.58 33.56 33.13 32.94 32.67 32.58

Table 1: Evaluation results of LLaMA2-7B and LLaMA3-8B on LongBench(Bai et al., 2023b) as well as the cache
efficiency, the percentage representing the amount of KV Cache reduced, in 32K context length. LightCache shows
a better performance than Dynamic NTK(bloc97, 2023a) and StreamingLLM(Xiao et al., 2023b).

Pretrained LightCache (Ours)
kx1/8 kx1/16
BFloat16 Int8 Int4 ox1/2 kx1/8 ox1/2 kx1/16 ox1/2
Compressing Ratio 0.00% 50.00% 75.00% 17.00% 39.34% 56.34% 43.07% 60.07%
InternLM2-7B-200K 42.93 44.94 43.76 42.45 42.53 42.47 42.42 42.41
InternLM2-1B-32K 33.01 32.73 32.19 32.66 32.74 32.68 32.70 32.63
Qwenl.5-7B-128K 39.37 34.63 34.41 39.10 39.06 39.04 39.07 39.05
Qwenl.5-1B-32K 29.22 25.66 24.60 29.20 29.11 29.19 29.16 29.20

Table 2: Evaluation results of InternLM2 and Qwenl.5 on LongBench(Bai et al., 2023b) as well as the cache
efficiency in 32K context length. LightCache shows a better performance than Int8/Int4 quantization on average and

a similar compression ratio.

LMDeploy(Contributors, 2023b); all experiments
are accelerated with FlashAttention2(Dao, 2023)
and conducted on one A100 GPU.

For LightCache, we compare the effects of com-
pressing only V Cache to 1/2, compressing only
K Cache to 1/8 or 1/16, and compressing both.
While comparing the experimental effects, we also
compare the compressing ratio at the 32k length,
namely the percentage of KV Cache being reduced

Here, M is the size of preserved KV Cache for a
certain optimization strategy while My is the size
of KV Cache in full attention. For LightCache, the
size of the projection matrix, M, should also be
considered, so the compressing ratio is

Mfull - M+ Mproj

x 100%.
M !

As shown in Table 1, for the experiments on
LLaMA?2 and LLaMA3, LightCache significantly
outperforms the Streamingl.LM baseline in per-
formance. Compared to the full attention with
Dynamic NTK, our method can not only opti-
mize 40%-60% of the KV Cache but also ac-
quire a slight performance advantage. It should
be noted that since LLaMA3 uses a larger rotary

base(Meta, 2024), the NTK method has limited
improvement on its long-text capability(Liu et al.,
2023), and therefore, Dynamic NTK is not as good
as StreamingLLLLM. In contrast, LightCache is inde-
pendent of whether GQA or how much the rotary
base is used and thus achieves stable downstream
improvements on both LLaMA2 and LLaMA3.

As shown in Table 2, for the experiments on
InternLM and Qwenl.5, LightCache can outper-
form the quantization methods on average with
similar compression strength and is closer to the
original performance of full attention. Except for
InternLM2-7B, where the quantization method can
surpass LightCache and even the original full at-
tention, for other models, especially the Qwen1.5
series, the quantization method presents a signif-
icant decline, proving that it suffers from biases
introduced by parameter adaptation and calibration
sets. Moreover, the compression of K Cache by
1/16 in LightCache is equivalent to 1-bit quanti-
zation in terms of storage, so we have achieved
compression effects superior to the quantization
methods in this sense.

Further analysis of the results in Table 6 and
Table 2 reveals that the performance degradation
from compressing V Cache is more severe than
compressing K Cache. Under the condition of com-
pressing K Cache to 1/16 of its original size, Light-

GPU Memory (GB) Inference Time (sec. per token)

4K 8K 16K 32K 100K 4K 8K 16K 32K 100K
Full Attention 157 184 240 350 OOM 0.043 0.070 0.126 0.219 OOM
StreamingLLM 153 153 153 153 153 0.036 0.035 0.035 0.035 0.036
AutoCompressor* 177 22,6 323 517 OOM 0.087 0.134 0224 0478 OOM
LongLlama* 182 219 342 OOM OOM 0.079 0.190 0436 OOM OOM
Activation Beacon* 21.7 21.3 214 216 21.6 0.071 0.121 0.237 0473 1.494
LightCache (ours) 16.7 17.2 183 20.6 30.4 0.051 0.050 0.054 0.061 0.092

Table 3: Evaluation of inference time and GPU memory cost. Both are measured by the average value of 20
inference passes with FlashAttention2(Dao, 2023) enabled. The starred results of AutoCompressor(Chevalier et al.,
2023), LongLLaMA (Tworkowski et al., 2023) and Activation Beacon(Zhang et al., 2024a) is acquired from Zhang
et al. (2024a). LightCache shows slower memory growth and a much faster speed compared with full attention.

Cache can still achieve results close to or even
better than that of full attention. This is also why
LightCache can achieve over 60% compression,
and approach 75% compression in infinite input
length. However, the compression of V Cache
is very limited, and on the LLaMA series, com-
pressing V Cache will lead to certain performance
degradation, which is consistent with the conclu-
sion from some matrix compression research that
the V projection matrix is more difficult to com-
press(Peng et al., 2024). In the following experi-
ments, we will continue to use the default setting
of 1/16 optimization for the K Cache and 1/2 opti-
mization for the V Cache.

3.3 Efficiency

We use the commonly used long-text dataset
PG19(Rae et al., 2019) to evaluate the efficiency of
our method in processing long contexts and com-
pare the results of LightCache with that of full
attention, as well as commonly used context prun-
ing methods such as StreamingLLM(Xiao et al.,
2023b), AutoCompressor(Chevalier et al., 2023),
LongLLaMA (Tworkowski et al., 2023), and Acti-
vation Beacon(Zhang et al., 2024a).

As shown in Table 3, LightCache can save over
60% of memory cost at a 32K context length and
achieve over 3 x speedup in inference, only inferior
to StreamingLLLM, which discards a large num-
ber of tokens. Although at 100K input length, the
memory cost of feature dimension compression
still grows slowly with sequence length and is not
as good as the token compression method of Acti-
vation Beacon, its inference speed is still very fast,
almost 15 X its counterpart.

4 Analysis

4.1 Case Study

To verify that the top-k operation can help select
the key information from the previous text, we
conduct a case study on the QA and summariza-
tion tasks from the LongBench, using data from
the NarrativeQA(Kocisky et al., 2018) and GovRe-
port(Huang et al., 2021). We track the token selec-
tion during the text generation process at all layers
in LLaMA2-7B with LightCache. The results are
shown in Figure3. The blue area represents the
global and local contexts stored without compres-
sion as well as the cache decompressed after top-k
selection. The more blue the color, the more times
the corresponding token was selected to attend to
during self-attention.

For the summarization task, we found that Light-
Cache could select the key cached fragments re-
gardless of the distance and thus generally cover
the information in the context during the generation.
For the QA task, we find that LightCache can iden-
tify the key information in the context, highlighted
in the red box, and pay continuous attention to it,
especially in the layers closer to the output, thereby
answering the questions correctly. This proves that
the process of compression in feature dimension,
top-k selection, decompression, and concatenation
for attention in LightCache is reasonable and effec-
tive.

4.2 Discussion

We then discussed the compression of the V cache,
the hyperparameters for the token selection in the
middle, and the size of the local context. We report
the changes in the average score of LongBench
when taking different model settings, as shown in
Table 4 and Table 5.

Layer Index

313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0

4096 8192 12288 16384
Position in the Document

(a) Case study on GovReport

Layer Index

313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0

4096 8192 12288 16384 20480 24576 28672 32768 36864 40960

Position in the Document

(b) Case study on NarrativeQA

Figure 3: Visualization of KV Cache selected during the inference at each layer represented by color blocks. For
NarrativeQA, the paragraph containing the answer is highlighted with a red box.

Method Setting LongBench Avg.
LightCache 28.02
vx1/4 27.46
vx1/4, kx1/16 27.71
vx1/8 27.05
vx1/8, kx1/16 27.21
k=4, m=128 27.86
k=64, m=8 27.97
k=512, m=1 26.66

Table 4: Comparison based on LLaMA2-7B of the dif-
ferent compression ratios of V Cache and the different
top-k selection settings on LongBench.

Method Setting LongBench Avg.
LightCache 42.41
local size (=8192 40.40
local size [=4096 37.71
local size (=2048 33.22

Table 5: Comparison based on InternLM2-7B of the
different local attention size on LongBench.

Compression of V Cache In this work, the com-
pression of V is significantly less than that of K.
The results obtained by further compressing V are
shown in Table 4. It can be found that further com-
pressing V will have an obvious negative impact on
the downstream tasks. This is mainly because, as
reported in some studies, the projection matrix Wy,
has a relatively high rank compared with Wi (Peng
et al., 2024) and V Cache is more essential in self-
attention transform(Liu et al., 2024b). Therefore, it
is not appropriate to apply excessive compression.

Number of Token Selection For the hyperpa-
rameters for the token selection in the middle,
namely the number of top-k selected segments k
and the selected segment length m, we compare
the effects of different k, m pairs while keeping
k x m the same. We find that our default setting
with k£ = 16, m = 32 achieved the best results. For
the setting, K = 1, m = 512, where only a single
entry is selected each time, we found that although
theoretically, it can acquire the most entries from
compressed KV Cache, the entries are too scat-
tered to form continuous semantics. Therefore the
results show a significant decline. Additionally, for
the setting that continuously selects more entries,
like k = 4, m = 128, the targeted entries are easy
to miss, which also leads to a decline.

Size of Local Context: In this paper, we use
a local size of 16K for InternLM?2 and Qwenl.5
models, much larger than that for LLaMA?2 and
LLaMA3. We compare the downstream perfor-
mance of InternLM?2-7B under different local sizes,
since the context length of LLaMA2 and LLaMA3
are limited, and find that when local size is re-
duced, the downstream task performance of the
models declines. This is mainly because these
models have already been trained on longer con-
texts, and have adapted to the position information
features of longer lengths(Liu et al., 2023). If a
smaller local size is retained, it is detrimental to
their downstream task performance, and increasing
the intermediate selection tokens will also incur a
certain computational overhead.

5 Related Work
5.1 KYV Cache Optimization

KV Cache Optimization is a critical research area
in LLMs based on Transformer architecture and is
crucial for improving efficiency and capabilities in
processing long contexts. It can be categorized into
optimization from the perspectives of layer(Yen
et al., 2024; Sun et al., 2024), sequence length,
feature dimensions, and storage data types.
optimization from the sequence dimension in-
cludes different implementation methods such
as pruning, compression, rolling, and retrieval.
Nawrot et al. (2024); Zhang et al. (2024c¢); Xiao
et al. (2023b); Ge et al. (2023a) enables LLMs to
automatically prune the context during inference
with key information being preserved. Though
these works can enhance the inference speed
greatly, the pruned context may lead to a perfor-
mance decline. Besides, Mu et al. (2024); Ren et al.
(2023); Pang et al. (2024); Zhang et al. (2024a)
compress and replace context segments with spe-
cial tokens, which can prune up to 99% of the
context, but generally require fine-tuning and lack
evaluation on long-context. Besides, Chevalier
et al. (2023) and Ge et al. (2023b), borrow the
idea of chunked input and memory from Dai et al.
(2019); Bulatov et al. (2022) to improve the LLM
efficiency in processing long contexts. Finally, Mo-
htashami and Jaggi (2024); Xiao et al. (2024); Lu
et al. (2024) apply KV chunk representations, CPU
offload, and partial recall to reduce memory cost,
but need to suffer the additional CPU-GPU traffic.
Additionally, quantization methods optimize the
KV Cache from the data type perspective, Xiao
et al. (2023a); Hooper et al. (2024); Yue et al.
(2024); Liu et al. (2024b) have proposed fine-
designed optimization strategies tailored to the KV
Cache features, achieving up to 2-bit optimization.
While these methods claim to achieve nearly loss-
less optimization, they still suffer from biases intro-
duced by parameter adaptation and calibration sets.
From the head perspective, MQA(Shazeer, 2019)
and MHA (Vaswani et al., 2017) share KV Cache
among the queries to achieve efficiency. Recently,
MLA(DeepSeek-Al, 2024) combines the minor di-
mensions of MHA and the major dimensions of
MQA to balance efficiencye an performancd. How-
ever, these works can only be used in pre-training.
Past research lacks the exploration of KV Cache op-
timization in the feature dimension. A few works,
such as SparQ(Ribar et al., 2023), have discussed

the potential of low-dimensional mapping to filter a
small number of tokens into self-attention to accel-
erate, but do not mention its potential in memory
saving.

5.2 Length Extrapolation

Long text processing is a key application of KV
Cache compression, while length extrapolation is
an important issue in long text processing. Length
extrapolation means making LLMs maintain sta-
ble downstream performance in long contexts de-
spite being trained in short contexts(Press et al.,
2022). Extrapolation research stems from Linear
PI(Chen et al., 2023), compressing unseen position
information into the training window. Similarly,
ReRoPE(Su, 2023), SelfExtend(Jin et al., 2024),
and ChunkLLaMA(An et al., 2024) use relative po-
sition limits. In contrast, bloc97 (2023a) proposes
the lossless NTK method that amplifies rotation
angles during inference. Subsequent work com-
bines enlarging the rotary base(Su et al., 2021) with
fine-tuning on longer context as the mainstream
approach to extend model context(Roziere et al.,
2023; Liu et al., 2023; Xiong et al., 2023). Ex-
tending context increases storage and computation,
leading to work on extending input length, from
parallel windows to LM-Infinite(Han et al., 2023)
and concurrent StreamingL.LM(Xiao et al., 2023b),
which are part of KV Cache Optimization. Our
work extends model context while improving effi-
ciency, surpassing NTK on long text tasks.

6 Conclusion

We propose LightCache, a novel, training-free
framework to improve the efficiency of LLMs in
long contexts. Based on the parameter-aware com-
pression of the feature dimension of the KV Cache,
LightCache significantly enhances the storage effi-
ciency while achieving lossless storage of contex-
tual information. Through global top-k selection
and subsequent decompression, we achieve compu-
tational efficiency, extended context window, and
plug-and-play capability. Experiments demonstrate
that LightCache can achieve performance on par
with or even exceeding full attention, and is compet-
itive compared to quantization and Streamingl.LM
approaches. Our method provides a new approach
to KV Cache optimization and length extrapolation
for LLMs.

Limitations

The main limitations of this work are as follows.
First, We do not evaluate LightCache on the Needle-
In-a-Haystack benchmark(Contributors, 2023a), so
there is a lack of comprehensive verification on
whether compression on the feature dimension
can truly preserve contextual information with-
out loss, and whether top-k selection can achieve
distance-free retrieval in LLMs. Besides, From
the performance perspective, we lack comparisons
to works like Landmark Attention(Mohtashami
and Jaggi, 2024), InfLLM(Xiao et al., 2024) and
LongHeads(Lu et al., 2024). From the efficiency
perspective, we lack comparisons to quantization
methods. From the evaluation perspective, we
lack evaluation on context over 100K(Zhang et al.,
2024b), mainly due to limited resources and time.
Additionally, LightCache only conducts compres-
sion on the feature dimension rather than the se-
quence dimension, so when the sequence length
reaches a certain point, it will still exceed the GPU
memory limit. For example, for LLaMA2-7B with
LightCache, when the context window reaches
400K, a single A800 GPU cannot support the in-
ference. Finally, We did not integrate LightCache
with efficient frameworks like vVLLM(Kwon et al.,
2023), which is planned for our future work.

References

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury
Zemlyanskiy, Federico Lebron, and Sumit Sanghai.
2023. Gqa: Training generalized multi-query trans-
former models from multi-head checkpoints. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4895—
4901.

Chenxin An, Shansan Gong, Ming Zhong, Mukai Li,
Jun Zhang, Lingpeng Kong, and Xipeng Qiu. 2023.
L-eval: Instituting standardized evaluation for long
context language models. CoRR, abs/2307.11088.

Chenxin An, Fei Huang, Jun Zhang, Shansan Gong,
Xipeng Qiu, Chang Zhou, and Lingpeng Kong. 2024.
Training-free long-context scaling of large language
models. arXiv preprint arXiv:2402.17463.

Sotiris Anagnostidis, Dario Pavllo, Luca Biggio,
Lorenzo Noci, Aurelien Lucchi, and Thomas Hof-
mann. 2024. Dynamic context pruning for efficient
and interpretable autoregressive transformers. Ad-
vances in Neural Information Processing Systems,
36.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei

Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chenggiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuangi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang
Zhu. 2023a. Qwen technical report. arXiv preprint
arXiv:2309.16609.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. 2023b. Longbench:
A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508.

bloc97. 2023a. Dynamically scaled rope further in-
creases performance of long context llama with zero
fine-tuning.

bloc97. 2023b. Ntk-aware scaled rope allows llama
models to have extended (8k+) context size without
any fine-tuning and minimal perplexity degradation.

Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev.
2022. Recurrent memory transformer. Advances
in Neural Information Processing Systems, 35:11079-
11091.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen,
Keyu Chen, Xin Chen, Xun Chen, Zehui Chen,
Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan,
Qi Fan, Zhaoye Fei, Yang Gao, Jiaye Ge, Chenya
Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo,
Conghui He, Yingfan Hu, Ting Huang, Tao Jiang,
Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li,
Jingwen Li, Linyang Li, Shuaibin Li, Wei Li, Yin-
ing Li, Hongwei Liu, Jiangning Liu, Jiawei Hong,
Kaiwen Liu, Kuikun Liu, Xiaoran Liu, Chengqi Lv,
Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma,
Wenchang Ning, Linke Ouyang, Jiantao Qiu, Yuan
Qu, Fukai Shang, Yunfan Shao, Demin Song, Zi-
fan Song, Zhihao Sui, Peng Sun, Yu Sun, Huanze
Tang, Bin Wang, Guoteng Wang, Jiaqi Wang, Ji-
ayu Wang, Rui Wang, Yudong Wang, Ziyi Wang,
Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong
Xiong, Chao Xu, Ruiliang Xu, Hang Yan, Yirong
Yan, Xiaogui Yang, Haochen Ye, Huaiyuan Ying, Jia
Yu, Jing Yu, Yuhang Zang, Chuyu Zhang, Li Zhang,
Pan Zhang, Peng Zhang, Ruijie Zhang, Shuo Zhang,
Songyang Zhang, Wenjian Zhang, Wenwei Zhang,
Xingcheng Zhang, Xinyue Zhang, Hui Zhao, Qian
Zhao, Xiaomeng Zhao, Fengzhe Zhou, Zaida Zhou,
Jingming Zhuo, Yicheng Zou, Xipeng Qiu, Yu Qiao,
and Dahua Lin. 2024. Internlm?2 technical report.
Preprint, arXiv:2403.17297.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and
Yuandong Tian. 2023. Extending context window of
large language models via positional interpolation.
CoRR, abs/2306.15595.

https://doi.org/10.48550/ARXIV.2307.11088
https://doi.org/10.48550/ARXIV.2307.11088
https://doi.org/10.48550/ARXIV.2307.11088
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://arxiv.org/abs/2403.17297
https://doi.org/10.48550/ARXIV.2306.15595
https://doi.org/10.48550/ARXIV.2306.15595
https://doi.org/10.48550/ARXIV.2306.15595

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and
Dangi Chen. 2023. Adapting language models to
compress contexts. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3829-3846.

Contributors. 2023a. Needle in a haystack - pressure
testing llms. https://github.com/gkamradt/
LLMTest_NeedleInAHaystack.

LMDeploy Contributors. 2023b. Lmdeploy: A toolkit
for compressing, deploying, and serving llm. https:
//github.com/InternLM/1mdeploy.

OpenCompass Contributors. 2023c. Opencompass:
A universal evaluation platform for foundation
models. https://github.com/open-compass/
opencompass.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-x1: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2978-2988.

Tri Dao. 2023. Flashattention-2: Faster attention with

better parallelism and work partitioning. CoRR,
abs/2307.08691.

DeepSeek-Al 2024. Deepseek-v2: A strong, economi-
cal, and efficient mixture-of-experts language model.
Preprint, arXiv:2405.04434.

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang,
Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan Yang,
and Mao Yang. 2024. Longrope: Extending Ilm con-
text window beyond 2 million tokens. arXiv preprint
arXiv:2402.13753.

Harry Dong, Xinyu Yang, Zhenyu Zhang, Zhangyang
Wang, Yuejie Chi, and Beidi Chen. 2024. Get
more with less: Synthesizing recurrence with kv
cache compression for efficient 1lm inference. arXiv
preprint arXiv:2402.09398.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang,
Jiawei Han, and Jianfeng Gao. 2023a. Model tells
you what to discard: Adaptive kv cache compression
for llms. arXiv preprint arXiv:2310.01801.

Tao Ge, Jing Hu, Xun Wang, Si-Qing Chen, and Furu
Wei. 2023b. In-context autoencoder for context com-
pression in a large language model. arXiv preprint
arXiv:2307.06945.

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng
Ji, and Sinong Wang. 2023. Lm-infinite: Simple
on-the-fly length generalization for large language
models. CoRR, abs/2308.16137.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh,
Michael W Mahoney, Yakun Sophia Shao, Kurt
Keutzer, and Amir Gholami. 2024. Kvquant:
Towards 10 million context length llm inference
with kv cache quantization. arXiv preprint
arXiv:2401.18079.

10

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng
Ji, and Lu Wang. 2021. Efficient attentions for long
document summarization. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1419-1436.

Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng
Jiang, Zirui Liu, Chia-Yuan Chang, Huiyuan Chen,
and Xia Hu. 2024. LIm maybe longlm: Self-extend
IIm context window without tuning. arXiv preprint
arXiv:2401.01325.

Tomas Kocisky, Jonathan Schwarz, Phil Blunsom, Chris
Dyer, Karl Moritz Hermann, Gabor Melis, and Ed-
ward Grefenstette. 2018. The narrativeqa reading
comprehension challenge. Transactions of the Asso-
ciation for Computational Linguistics, 6:317-328.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Ef-
ficient memory management for large language
model serving with pagedattention. arXiv preprint
arXiv:2309.06180.

Hao Liu, Wilson Yan, Matei Zaharia, and Pieter
Abbeel. 2024a. World model on million-length video
and language with ringattention. arXiv preprint
arXiv:2402.08268.

Xiaoran Liu, Hang Yan, Shuo Zhang, Chenxin An,
Xipeng Qiu, and Dahua Lin. 2023. Scaling laws
of rope-based extrapolation. CoRR, abs/2310.05209.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen,
and Xia Hu. 2024b. Kivi: A tuning-free asymmet-
ric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750.

Yi Lu, Xin Zhou, Wei He, Jun Zhao, Tao Ji, Tao Gui,
Qi Zhang, and Xuanjing Huang. 2024. Longheads:
Multi-head attention is secretly a long context pro-
cessor. arXiv preprint arXiv:2402.10685.

Al Meta. 2024. Introducing meta llama 3: The most
capable openly available 1lm to date. Meta AL

Amirkeivan Mohtashami and Martin Jaggi. 2024.
Random-access infinite context length for transform-
ers. Advances in Neural Information Processing Sys-
tems, 36.

Eliakim H Moore. 1920. On the reciprocal of the gen-
eral algebraic matrix. Bulletin of the american math-
ematical society, 26:294-295.

Jesse Mu, Xiang Li, and Noah Goodman. 2024. Learn-
ing to compress prompts with gist tokens. Advances
in Neural Information Processing Systems, 36.

Piotr Nawrot, Adrian Lancucki, Marcin Chochowski,
David Tarjan, and Edoardo M Ponti. 2024. Dynamic
memory compression: Retrofitting 1lms for acceler-
ated inference. arXiv preprint arXiv:2403.09636.

https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/InternLM/lmdeploy
https://github.com/InternLM/lmdeploy
https://github.com/InternLM/lmdeploy
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://doi.org/10.48550/ARXIV.2307.08691
https://doi.org/10.48550/ARXIV.2307.08691
https://doi.org/10.48550/ARXIV.2307.08691
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://doi.org/10.48550/ARXIV.2308.16137
https://doi.org/10.48550/ARXIV.2308.16137
https://doi.org/10.48550/ARXIV.2308.16137
https://doi.org/10.48550/ARXIV.2308.16137
https://doi.org/10.48550/ARXIV.2308.16137
https://doi.org/10.48550/ARXIV.2310.05209
https://doi.org/10.48550/ARXIV.2310.05209
https://doi.org/10.48550/ARXIV.2310.05209

OpenAl 2023. Gpt-4 technical report. Technical report.

Jianhui Pang, Fanghua Ye, Derek F Wong, and Longyue
Wang. 2024. Anchor-based large language models.
arXiv preprint arXiv:2402.07616.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and En-
rico Shippole. 2023. Yarn: Efficient context win-
dow extension of large language models. CoRR,
abs/2309.00071.

Runyu Peng, Yunhua Zhou, Qipeng Guo, Yang Gao,
Hang Yan, Xipeng Qiu, and Dahua Lin. 2024. Data-
freeweight compress and denoise for large language
models. arXiv preprint arXiv:2402.16319.

Ofir Press, Noah A. Smith, and Mike Lewis. 2022. Train
short, test long: Attention with linear biases enables
input length extrapolation. In The Tenth International

Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar,
and Timothy P Lillicrap. 2019. Compressive trans-
formers for long-range sequence modelling. arXiv
preprint arXiv:1911.05507.

Siyu Ren, Qi Jia, and Kenny Zhu. 2023. Context com-
pression for auto-regressive transformers with sen-
tinel tokens. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 12860-12867.

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley,
Charlie Blake, Carlo Luschi, and Douglas Orr. 2023.
Sparq attention: Bandwidth-efficient 1lm inference.
arXiv preprint arXiv:2312.04985.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet,
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-
las Usunier, Thomas Scialom, and Gabriel Synnaeve.
2023. Code llama: Open foundation models for code.
CoRR, abs/2308.12950.

Noam Shazeer. 2019. Fast transformer decoding:
One write-head is all you need. arXiv preprint
arXiv:1911.02150.

Jianlin Su. 2023. Rerope: Rectified rotary position
embeddings.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng
Liu. 2021. Roformer: Enhanced transformer with
rotary position embedding. CoRR, abs/2104.09864.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui
Wang, Shuming Ma, Quanlu Zhang, Jianyong Wang,
and Furu Wei. 2024. You only cache once: Decoder-
decoder architectures for language models. arXiv
preprint arXiv:2405.05254.

11

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models. CoRR, abs/2307.09288.

Szymon Tworkowski, Konrad Staniszewski, Mikotaj
Pacek, Yuhuai Wu, Henryk Michalewski, and Pi-
otr Mitos. 2023. Focused transformer: Con-
trastive training for context scaling. arXiv preprint
arXiv:2307.03170.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998—6008.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao,
Yankai Lin, Zhengyan Zhang, Zhiyuan Liu, Song
Han, and Maosong Sun. 2024. Infllm: Unveiling the
intrinsic capacity of llms for understanding extremely
long sequences with training-free memory. arXiv
preprint arXiv:2402.04617.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao
Wu, Julien Demouth, and Song Han. 2023a.
Smoothquant: Accurate and efficient post-training
quantization for large language models. In Inter-
national Conference on Machine Learning, pages
38087-38099. PMLR.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2023b. Efficient streaming
language models with attention sinks. arXiv preprint
arXiv:2309.17453.

https://doi.org/10.48550/ARXIV.2309.00071
https://doi.org/10.48550/ARXIV.2309.00071
https://doi.org/10.48550/ARXIV.2309.00071
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://doi.org/10.48550/ARXIV.2308.12950
https://github.com/bojone/rerope
https://github.com/bojone/rerope
https://github.com/bojone/rerope
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang,
Prajjwal Bhargava, Rui Hou, Louis Martin, Rashi
Rungta, Karthik Abinav Sankararaman, Barlas Oguz,
et al. 2023. Effective long-context scaling of founda-
tion models. arXiv preprint arXiv:2309.16039.

Howard Yen, Tianyu Gao, and Danqi Chen. 2024. Long-
context language modeling with parallel context en-
coding. arXiv preprint arXiv:2402.16617.

Yuxuan Yue, Zhihang Yuan, Haojie Duanmu, Sifan
Zhou, lJianlong Wu, and Ligiang Nie. 2024.
Wkvquant: Quantizing weight and key/value cache
for large language models gains more. arXiv preprint
arXiv:2402.12065.

Peitian Zhang, Zheng Liu, Shitao Xiao, Ninglu Shao,
Qiwei Ye, and Zhicheng Dou. 2024a. Soaring from
4k to 400k: Extending llm’s context with activation
beacon. arXiv preprint arXiv:2401.03462.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zi-
hang Xu, Junhao Chen, Moo Khai Hao, Xu Han,
Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, et al.
2024b. Inifinitebench: Extending long context
evaluation beyond 100k tokens. arXiv preprint
arXiv:2402.13718.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Ré, Clark Barrett, et al. 2024c.
H2o0: Heavy-hitter oracle for efficient generative in-
ference of large language models. Advances in Neu-
ral Information Processing Systems, 36.

A Appendix

The detailed results of LightCache on LongBench
are shown in Table6.

12

Single-

Multi-

Doc QA Doc QA Sum Few-shot Syn. Code Text Avg.

LLaMA2-7B Dynamic NTK 16.14 7.89 11.61 50.58 368 6334 18.77 28.15
StreamingLLM 14.03 7.85 11.03 46.91 331 61.69 17.37 26.70

vx1/2 16.61 8.61 11.19 49.71 456 62.64 18.88 28.09

kx1/8 16.53 8.33 12.79 50.52 4.14 63.60 19.25 28.58

kx1/8, vx1/2 16.67 8.01 11.56 50.18 454 62779 1894 28.17

kx1/16 16.46 8.55 12.62 50.41 531 64.02 1941 28.80

kx1/16,vx1/2 15.87 8.21 11.15 50.24 4.05 63.08 18.67 28.02

LLaMA3-8B Dynamic NTK 16.28 11.59 17.74 58.14 8.58 4696 2329 28.27
StreamingLLM 13.65 9.04 16.25 56.94 570 70.58 21.18 31.58

vx1/2 15.63 9.93 20.11 61.50 742 70.02 23.84 33.56

kx1/8 14.10 9.70 18.96 60.82 8.52 70.10 23.27 33.13

kx1/8,vx1/2 14.46 9.71 18.64 60.20 745 7032 2297 3294

kx1/16 14.15 9.48 18.81 59.20 740 70.15 22.67 32.67

kx1/16,vx1/2 14.30 9.64 18.62 58.61 6.65 7057 2246 32.58

InternLM2-7B bfloatl6 41.62 35.21 22.88 57.30 34.67 59.61 3848 4293
int8 40.02 36.68 23.59 60.28 40.33 6279 40.18 44.94

int4 39.27 36.13 23.57 60.58 33.00 62.38 3879 43.76

vx1/2 41.62 35.00 22.83 56.18 33.00 5942 3792 4245

kx1/8 41.58 34.89 22.73 56.57 33.17 59.58 37.98 42.53

kx1/8, vx1/2 41.52 34.16 22.76 56.34 3333 5999 3780 4247

kx1/16 41.29 34.92 22.84 56.23 33.00 59.53 37.86 4242

kx1/16,vx1/2 41.01 34.28 22.54 56.66 3350 59.80 37.77 4241

InternLM2-1B bfloatl6 29.74 25.58 20.20 51.10 341 5496 27.16 33.01
int8 27.44 26.13 20.29 51.13 344 5478 2685 3273

int4 27.44 24.08 19.95 50.44 3.54 5462 2621 32.19

vx1/2 28.89 24.82 20.17 50.43 365 5496 26.72 32.66

kx1/8 28.90 25.21 20.04 50.62 365 5496 2681 32.74

kx1/8, vx1/2 28.94 24.95 20.16 50.42 3.62 5492 2675 32.68

kx1/16 28.81 25.27 20.09 50.43 3.61 5493 2677 32770

kx1/16,vx1/2 28.79 24.92 20.05 50.40 3.61 5494 26.68 32.63

Qwenl.5-7B bfloat16 37.64 22.52 24.68 60.85 650 6845 31.62 39.37
int8 22.37 14.38 22.21 59.89 460 6779 2579 34.63

int4 21.50 14.02 22.18 59.90 497 6748 2560 3441

vx1/2 36.62 22.34 24.58 60.84 6.39 68.22 3134 39.10

kx1/8 36.65 22.32 24.42 60.67 6.50 6823 31.28 39.06

kx1/8, vx1/2 36.51 22.35 24.38 60.78 6.50 68.16 31.28 39.04

kx1/16 36.73 22.42 24.30 60.77 633 6823 31.29 39.07

kx1/16,vx1/2 36.59 22.25 24.25 60.96 6.33 68.28 31.26 39.05

Qwenl.5-1B bfloat16 24.77 15.22 20.41 44.35 3.00 5445 2250 29.22
int8 13.60 8.37 18.84 42.04 3.50 54.18 18.05 25.66

int4 12.68 8.36 18.29 40.99 374 5099 17.56 24.60

vXx1/2 24.76 15.18 20.39 44.19 299 5455 2244 29.20

kx1/8 24.79 15.26 20.31 43.83 3.00 5438 2237 29.11

kx1/8, vx1/2 24.78 15.13 20.31 44.24 3.00 5453 2244 29.19

kx1/16 24.77 15.04 20.32 44.46 299 5431 2246 29.16

kx1/16,vx1/2 24.77 15.17 20.32 44.34 3.00 5445 2246 29.20

Table 6: Citation commands supported by the style file. The style is based on the natbib package and supports all
natbib citation commands. It also supports commands defined in previous ACL style files for compatibility.

13

	Introduction
	Method
	Parameter-Aware Compression
	Full-Context Selection
	Training-Free Integration

	Experiments
	Setup
	Main Results
	Efficiency

	Analysis
	Case Study
	Discussion

	Related Work
	KV Cache Optimization
	Length Extrapolation

	Conclusion
	Appendix

