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ABSTRACT

We propose a novel framework for diffusion-based novel view synthesis, harnessing
the rich semantic and geometric representations provided by VGGT, a transformer
foundation model for geometry prediction. Unlike existing methods that either rely
on explicit 3D models or monocular depth estimates, our approach reformulates
view synthesis as a warping-and-inpainting task: first, features from reference views
are geometrically warped into a target pose; then, a diffusion model generates the
final image by attending to both warped features for accurate reconstruction of
visible regions and semantically similar cues for plausible inpainting of occluded
areas. Through an empirical analysis of various diffusion foundation models such
as DINOv2, CroCo, and VGGT, we demonstrate that VGGT’s multiscale attention
consistently delivers superior geometric correspondence and semantic coherence.
Building on these insights, we design a multi-view synthesis architecture, named
ReNoV, achieving Representation-guided Novel View synthesis through dedicated
warping-and-conditioning modules that inject VGGT features into the diffusion
process. Our experiments show that this design yields marked improvements in
both reconstruction fidelity and inpainting quality, outperforming prior diffusion-
based novel-view methods on standard benchmarks and enabling robust synthesis
from sparse, unposed image collections.

1 INTRODUCTION

Novel view synthesis—predicting scene appearance from target camera viewpoints—has long been a
fundamental challenge in computer vision. Recent diffusion models enable novel view generation
without explicit 3D representations such as Neural Radiance Fields (Mildenhall et al., 2021) or 3D
Gaussian Splatting (Kerbl et al., 2023).

Recent advances in diffusion-based novel view synthesis have introduced warping-and-inpainting
methods (Chung et al., 2023; Seo et al., 2024) as an emerging approach. These approaches typi-
cally employ off-the-shelf geometry estimation modules—such as monocular depth predictors or
DUSt3R (Wang et al., 2024)—to first estimate camera poses and scene geometry from a reference
image. The predicted geometric information guides spatial cross-attention within generation diffusion
models by conditioning target viewpoint generation with warped reference coordinates (Seo et al.,
2024), thereby enhancing geometric consistency between generated and the reference image.

This motivates a critical question: what qualities characterize an optimal representation for warping-
and-inpainting novel view synthesis? We observe that inpainting from partially warped information
divides novel view synthesis into two distinct tasks: faithful reconstruction of visible regions that can
be warped from reference viewpoint, and plausible inpainting of regions occluded in the reference
image. Through empirical analysis, we find that warping-and-inpainting diffusion models (Seo et al.,
2024) exhibit spatial attention behaviors consistent with this insight: during reconstruction, the model
seeks precise geometric correspondences with locations in the reference image, whereas during
inpainting, it attends to semantically relevant features that guide generation to remain consistent with
the reference view.

This distinction suggests that representation choice significantly impacts both reconstruction quality
and inpainting coherence. We conduct in-depth analysis of major features (Oquab et al., 2023;
Weinzaepfel et al., 2022; Wang et al., 2025) regarding their semantic and geometric feature awareness,
as well as their novel view reconstruction capabilities from warped geometry. Our analysis reveals the
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impressive capabilities of VGGT (Wang et al., 2025), a recent transformer-based geometry prediction
model whose rich, multiview-consistent, semantic and geometric features make it suitable for novel
view conditioning and generation from multiple reference images.

In this light, we introduce a novel architecture that leverages VGGT’s powerful geometric and
semantic features for novel view image prediction. We design a multi-view synthesis architecture
where a reference network extracts features from multiple source views, which are then aggre-
gated with the target-view generation features via attention in a generation network. To enhance
reconstruction and inpainting performance at target viewpoint generation, we introduce a feature
warping-and-conditioning paradigm, which geometrically warps VGGT-extracted reference features
to the novel viewpoint, providing conditioning guidance to improve the diffusion model’s synthesis
quality, and propose ReNoV (Representation-guided Novel View synthesis). Extensive experiments
on RealEstate10K and zero-shot evaluation on DTU demonstrate that our method shows competitive
results to state-of-the-art feedforward novel view synthesis approaches across both interpolation and
extrapolation settings, with ablation studies confirming the effectiveness of our integrated semantic
and geometric conditioning approach.

2 RELATED WORK

Diffusion-based 3D generation models. Prior efforts in generative 3D and multi-view synthesis
have largely focused on leveraging diffusion models to bridge the gap between 2D image priors and 3D
scene representations. DreamFusion (Poole et al., 2022) first demonstrated text-to-3D generation by
optimizing a Neural Radiance Field with a pretrained 2D diffusion prior, while ProlificDreamer (Wang
et al., 2023) extended this paradigm by distilling multi-view diffusion signals into a feed-forward
geometry network for faster inference. In the multi-view setting, MVDream (Shi et al., 2023)
proposes a view-consistent denoising pipeline that jointly refines color and depth across posed
images, and Zero123 (Liu et al., 2023) tackles single-image to novel-view synthesis via a conditioned
diffusion model that hallucinates plausible viewpoints. More recently, Marigold (Ke et al., 2024)
integrates implicit surface representations with diffusion-based image priors to yield high-fidelity
3D reconstructions from sparse views. While these methods have achieved impressive visual quality,
they either require costly per-scene optimization, rely on known camera poses, or struggle with large
pose extrapolation.

Feedforward 3D regression models. Feed-forward approaches to novel-view synthesis and 3D
reconstruction bypass costly per-scene optimization by learning rich geometric priors from large-scale
training. PixelNeRF (Yu et al., 2021) first demonstrated how to condition a NeRF on input views via
local CNN features, and IBRNet (Wang et al., 2021) built on this by fusing multi-view depth and
appearance cues in a self-supervised stereo framework. MVSplat (Chen et al., 2024) further refines
this paradigm by estimating 3D Gaussians through cost-volume–based depth prediction, achieving
high-fidelity volumetric representations from sparse inputs. More recently, transformer-based systems
such as DUSt3R (Wang et al., 2024) and MASt3R (Leroy et al., 2024) have learned to predict
point-maps and camera poses directly from unposed images, while Noposplat (Ye et al., 2024) unifies
pose estimation with 3D Gaussian fitting in a single feed-forward pass. Concurrently, single-image
methods like ShapeFormer (Yan et al., 2022) exploit transformer architectures to hallucinate novel
views and coarse geometry from one shot. Despite their efficiency, these feed-forward models remain
fundamentally limited by reference-view visibility, often failing to extrapolate to unseen angles or
complete occluded structures without explicit inpainting or geometry completion.

3 MOTIVATION AND ANALYSIS

As discussed in Sec.2, novel view synthesis approaches fall into several categories. Non-generative
approaches—e.g., MVSplat(Chen et al., 2024) and NopoSplat (Ye et al., 2024)—do not exploit
generative models and therefore cannot infer geometry or appearance in regions unseen or occluded
in the reference images. In contrast, diffusion-based generative methods can extrapolate to viewpoints
distant from the inputs; however, as these methods condition the diffusion models on target camera
pose as a feature embedding, they remain confined to the pose distribution encountered during
training, precluding truly arbitrary novel-pose synthesis.
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We interpret novel view synthesis as a warping-and-inpainting problem, akin to GenWarp (Seo
et al., 2024), requiring models to excel at two tasks: accurate reconstruction of visible regions and
consistent inpainting of occluded regions. Within diffusion-based frameworks, both reconstruction
and inpainting are achieved by implicitly aggregating features from reference viewpoints through
the U-Net’s spatial attention modules, driven by conditioning features that establish cross-view
correspondences. This naturally leads to the question: what properties should an ideal conditioning
feature possess for effective novel view generation?

Figure 1: Cross-view attention maps of the denoising net-
work (Seo et al., 2024). A query pixel (blue dot) is chosen
in the warped target view, and the resulting cross-attention
weights on two reference images are visualized. In the Inpaint-
ing: the wheel is absent in the warped view, so attention shifts
to the corresponding wheels in the references. Reconstruction:
the suitcase edge is visible, so attention concentrates on the
geometrically aligned edges to refine the reconstruction.

To this end, we examine diffusion-
model attention during novel-view
synthesis and uncover a consistent
pattern (Fig. 1): regions visible in
the reference views—those requir-
ing reconstruction—attend sharply
to their geometric correspondences,
whereas regions needing inpainting
attend broadly to semantically sim-
ilar locations in the references. This
can be intuitively understood, as re-
construction performance hinges on
pinpointing exact correspondences,
while inpainting relies on semanti-
cally related context to synthesize
unseen areas coherently. This moti-
vates the search for a conditioning
representation that simultaneously
encodes semantic awareness and ge-
ometric correspondence. In the next section, we evaluate several representations (Oquab et al., 2023;
Weinzaepfel et al., 2022; He et al., 2022; Wang et al., 2025) to identify the representation that best
balances semantic awareness with geometric correspondence, and offer a comprehensive analysis. To
identify the optimal conditioning feature for our warping-and-inpainting diffusion framework, we
compare several widely-used representations—DINOv2 (Oquab et al., 2023), CroCo (Weinzaepfel
et al., 2022), and VGGT (Wang et al., 2025).

DINOv2CroCoTarget Image

(b)

Source Image

(a)

(c)

VGGT-11VGGT-4 VGGT-17 VGGT-23

Figure 2: Visualization of feature similarity map. The leftmost column shows the source image
with a query point (blue dot), followed by the target image. Cosine similarity is computed between
the query and all target patch features to assess semantic encoding. Early VGGT layers (4, 11) retain
strong semantic signals, effectively highlighting fine-grained regions (e.g., wheel, headlight, eye),
while deeper layers (17, 23) lose semantic focus. DINOv2 captures rich semantics but with less
precise localization. CroCo fails to capture meaningful cues, often highlighting irrelevant regions.

Semantic consistency. VGGT is a transformer-based model that infers 3D scene geometry from
multiple reference views. Specifically, its architecture is composed of a series of attention layers,
of which features from four of the layers (4th, 11th, 17th and 23th) are aggregated and put into a
DPT (Ranftl et al., 2021) model for geometry prediction. We hypothesize that VGGT’s ability to
establish rich inter-view correspondences endows it with the semantic and geometric properties
essential for effective novel-view conditioning. To evaluate the extent to which semantic information
is captured within the learned representations of VGGT (Wang et al., 2025), we conduct an analysis
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Figure 3: Geometric correspondence evaluation. A query point (blue dot) is selected in Frame 1, and
cosine similarity maps are computed in Frame 2 and Frame 3. The scene contains repeated structures
(e.g., identical windows), allowing assessment of whether the model can localize the geometrically
corresponding instance. Deeper layers of VGGT (e.g., VGGT-23) and CroCo accurately identify the
correct window aligned with the query point, while earlier layers (VGGT-4, VGGT-11) and DINOv2
attend to incorrect but semantically similar windows. This illustrates that deeper layers of VGGT, as
well as CroCo, capture geometric structure more reliably than others.

of its ability to establish semantically meaningful correspondences across pairs of images. As
VGGT (Wang et al., 2025) was not explicitly trained to predict inter-image correspondences, its
ability to match semantically consistent pixels across diverse exemplars reveals the emergent semantic
properties captured by its learned representations.

Specifically, given a source–target image pair Isrc and Itgt from different categories, we acquire
feature tensors fsrc ∈ RH

P ×W
P ×C and ftgt ∈ RH

P ×W
P ×C through the VGGT model. We then locate a

single query point in fsrc, and compute its feature’s cosine similarity between every feature vector in
ftgt, yielding a similarity map of size H/P ×W/P . We qualitatively evaluate the similarity maps
across different layers of VGGT using the SPair-71k (Min et al., 2019) dataset. Our observations
show that early layers in VGGT retain strong semantic signals. For example, as shown in Fig. 2a),
when the query point is located on the front wheel of a car, VGGT layer 4 and 11 features successfully
identify the corresponding front wheel in the target image, whereas layer 17 and 23 fail to do so.
DINOv2 (Oquab et al., 2023) also encodes rich semantic representations; however, it lacks spatial
awareness, often failing to distinguish directional context (e.g., incorrectly capturing the back wheel
instead of the front). In contrast, CroCo (Weinzaepfel et al., 2022) fails to capture meaningful semantic
information, frequently highlighting irrelevant or inconsistent regions. The initial layers of VGGT
demonstrate a notable capacity to capture fine-grained semantic information.

Geometric consistency. We evaluate the extent to which each model captures geometric corre-
spondence using a triplet of images from the same scene. A query point is selected in the first frame,
and similarity maps are computed across the second and third frames. Each scene includes multiple
instances of the same semantic object—for example in Fig 3, several identical windows arranged side
by side—allowing us to evaluate whether the model can precisely localize the object instance that
corresponds geometrically to the query point. We find that the deeper layers of VGGT (layers 11 and
23) effectively capture geometric structure, attending to the correct window that is spatially aligned
with the query point in subsequent frames. In contrast, earlier layers often attend to an incorrect but
visually similar window farther along the wall, suggesting they rely more on semantic similarity
than spatial alignment. In this setting, CroCo (Weinzaepfel et al., 2022) demonstrates strong geo-
metric consistency, accurately identifying the correct object, whereas DINOv2 (Oquab et al., 2023)
frequently fails to disambiguate between repeated structures, revealing a lack of geometric awareness.
VGGT processes multiple frames jointly and leverages its global attention mechanism to capture
geometric structure consistently across views, enabling precise localization of the corresponding
object instance even in the presence of repeated or ambiguous patterns.

Model PSNR ↑ SSIM ↑
1 view 2 view 3 view 1 view 2 view 3 view

CroCo Weinzaepfel et al. (2022) 15.28 15.37 15.47 0.440 0.434 0.435
DINOv2 Oquab et al. (2023) 14.95 15.35 15.37 0.537 0.532 0.527
VGGT Wang et al. (2025) 15.81 16.01 16.13 0.552 0.540 0.534

Table 1: Quantitative evaluation for feature analysis. We
evaluate reconstruction NVS capability of each feature.

Feature reconstruction probing.
We have shown the fused VGGT fea-
ture can effectively encode semantic
as well as geometric information. We
assume that these properties play a
pivotal role in conditioning warping-
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and-inpainting approach. To verify the hypothesis, we train a shallow MAE (He et al., 2022) decoder
to predict a target view image from warped feature of reference view image. The optimal feature
representation should encapsulate multi-view semantic and geometric information, enabling the
model to accurately reconstruct visible regions while effectively inpainting occluded areas.

Figure 4: Qualitative results for feature analysis.
We warp the extracted features using a predicted
point cloud, resulting in feature-level holes that
requiring inpainting at the feature level. VGGT
feature synthesizes target view images with most
accurate structure and color.

For DINOv2 (Oquab et al., 2023) and
CroCo (Weinzaepfel et al., 2022), we probe the
encoder output, whereas for VGGT we extract
features from the 4th, 11th, 17th, and 23rd trans-
former layers and use all of them in our analy-
sis. To facilitate feature warping, we employ an
off-the-shelf geometry prediction model (Wang
et al., 2025) to obtain the pointmaps and camera
poses. The token-level features are re-projected
into the target view; patches without valid pro-
jections are replaced by learnable mask tokens,
and training is supervised with a mean-squared-
error objective.

For quantitative results, we evaluate each model
for different number of reference view using
PSNR and SSIM metric. Table 1 show that
VGGT feature consistently achieves the highest
results across all metrics and inference settings.
As the number of reference view is increase, the
reconstruction capability is also improved. In the qualitative result, Fig. 4 demonstrates that the
generated images using VGGT feature are most visually accurate with the target view images.
Notably, VGGT outperforms other models in terms of preserving geometric structures and achieving
realistic pixel colors, indicating its superior effectiveness for warping-and-inpainting approach.

4 METHOD

4.1 OVERVIEW

Our objective is to predict novel view image Itgt for target viewpoint πtgt, combining the diffusion
model’s generative capabilities for consistent and realistic novel-view prediction and VGGT feature’s
powerful semantic and geometric correspondence capabilities. We assume N unposed and sparse
reference images are given, so that Iref = {In ∈ RH×W×3}Nn=1. Our framework, following (Seo
et al., 2024), is composed a reference U–Net and a denoising U–Net, an architecture that resembles
ControlNet (Zhang et al., 2023). Likewise, the generative denoising network is conditioned by features
extracted from reference network, which in this corresponds to features from reference images.

The reference U–Net processes the input images, geometry and VGGT feature to extract multiview
features, while the denoising U–Net generates the target image by refining a noisy latent, guided by
warped features and geometric priors from the reference network.

4.2 REFERENCE CONDITIONING

Geometry conditioning. We begin by leveraging an off-the-shelf geometry prediction
model (Wang et al., 2025) to estimate a set of camera poses {πn ∈ R4×4}Nn=1 and correspond-
ing pointmaps {Pn ∈ RH×W×3}Nn=1, where each Pn is a 2D grid of 3D points representing the
predicted world coordinates for the pixels of the reference image In. To incorporate geometric
priors into our model, we apply a positional embedding function γ(·) to each pointmap, resulting in
Fourier-encoded features γ(Pn).

VGGT feature conditioning. We begin by jointly processing the N reference images through
the VGGT network, extracting features from the 4th, 11th, 17th, and 23rd transformer layers. For
each reference image In, we obtain both local and global features at each selected layer, denoted as
tl,n and tg,n ∈ RH/P×W/P×1024, respectively. These features are concatenated along the channel
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Figure 5: Model architecture. Reference network (upper path): N reference images are passed
through VGGT, producing layer–wise visual features, per–pixel point-maps, and camera pose esti-
mates. These outputs are fused by a lightweight reference U–Net to form a multiview reference feature.
Projection: the features and point-maps are re-projected to the target camera frustum, yielding a
warped RGB image and aligned feature planes. Denoising network (lower path): a denoising U–Net
receives a noisy latent together with the warped image and projected feature planes; at each timestep
it mixes the feature from reference network with its own generation features through cross-attention,
progressively refining the latent to synthesize the novel target view.

dimension to form a unified representation Tn = [tg,n; tl,n] ∈ RH/P×W/P×2048. Yet, the obtained
feature is high-dimensional, exceeding what the reference U–Net can efficiently process. To address
this, Tn is passed through a convolutional network.

Analogous to the pointmap conditioning, we apply a positional embedding function γ(·) to the
extracted features Tn, resulting in the Fourier-encoded representation γ(Tn). The final reference
condition cn is obtained by concatenating the encoded image features and pointmaps:

cn = [γ(Pn); γ(Tn)].

Following the approach of Hu et al. (Hu, 2024), each condition vector cn is passed through a shallow
convolutional network and then added to the image latents prior to input to the reference U–Net.

4.3 GEOMETRY-AWARE FEATURE PROJECTION AND CONDITIONING

To enhance the fidelity of reconstruction and inpainting in novel view synthesis, we incorporate a
geometry-driven conditioning mechanism based on warping. Specifically, we project the reference
pointmaps {P1, . . . , PN} and the corresponding VGGT-derived features {T1, . . . , TN} into the target
viewpoint πtgt. These projected signals provide spatial priors that guide the diffusion model toward
higher-quality generation results. First, the set of reference pointmaps {P1, . . . , PN}, expressed in
a global coordinate frame, can be directly aggregated to form a unified point cloud:Pref. This point
cloud Pref ∈ R(N×H×W )×3 is then projected onto the target viewpoint πtgt:

PΠ
tgt = Π(Pref, πtgt). (1)

When multiple points are projected to the same pixel, only the one closest to the target image plane is
retained, following the standard point cloud rasterization procedure (Seo et al., 2024). The resulting
projected pointmap PΠ

tgt serves as a sparse geometric condition that guides the generation of Itgt from
the reference views.

Given the multiview-consistent nature of VGGT features, we unproject them into 3D space by
anchoring each pixel-level feature to its corresponding 3D coordinate from the predicted pointmap
Pn ∈ RH×W×3, forming a 3D feature point cloud. This pointcloud is then projected into the target
view, yielding a spatially aligned warped feature map. The projected features TΠ

tgt and projected
pointmap XΠ

tgt are provided as input conditions to the denoising network.
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Following the same design as in the reference network, we encode XΠ
tgt and TΠ

tgt using a positional
embedding function γ(·), and concatenate their Fourier embeddings with a binary visibility mask Mtgt,
which indicates grid pixels where no 3D point was projected. This forms the target correspondence
condition cdtgt:

cdtgt = [γ(XΠ
tgt), γ(T

Π
tgt),Mtgt].

The condition cdtgt is then processed by a shallow convolutional network and added to the noise
latent before being passed into the denoising U–Net. As discussed in Sec. 3, providing the warped
feature TΠ

tgt to the denoising U–Net serves two key purposes: it supplies semantic priors for unseen
or occluded regions by leveraging multiview-consistent features, and it delivers accurate geometric
information for regions visible in the reference views. This guidance enables the model to generate
more structurally faithful outputs at the target view πtgt.

4.4 NOVEL-VIEW IMAGE GENERATION

Following this, we conduct integrated self-and-cross attention between reference and target features,
allowing the model to leverage other viewpoints, similar to (Seo et al., 2024). Specifically, from the
denoising U-Net, we extract key and value features of the target view, F k

tgt, F
v
tgt ∈ R1×C×(W×H),

obtained from spatial self-attention layers. from spatial self-attention layers. These are concatenated
along the viewpoint dimension with key and value features from N reference views, so that the
query feature q = F q

tgt, is aggregated over attention map acquired with expanded key feature k =

[F k
tgt, F

k
1 , . . . , F

k
N ] and value feature v = [F k

tgt, F
v
1 , . . . , F

k
N ]. where k,v ∈ R(N+1)×C×(W×H).

The aggregated attention is then computed as:

Attention(q,k,v) = softmax
(
qkT

√
dk

)
v, (6)

where dk denotes the dimensionality of the key features. Through this architecture, the generating
U-Net can leverage features extracted from reference networks via attention aggregation, enabling
novel view synthesis from multiple viewpoints.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Method Far-view Setting Near-view Setting
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

PixelSplat† (Charatan et al., 2024) 13.03 0.486 0.414 11.57 0.330 0.634
MVSplat† (Chen et al., 2024) 12.22 0.416 0.423 13.94 0.473 0.385
NopoSplat (Ye et al., 2024) 13.58 0.393 0.545 14.04 0.414 0.503

ReNoV (Ours) 15.45 0.584 0.297 15.38 0.599 0.274

Table 2: Zero-shot evaluation on the DTU (Jensen et al., 2014). †

denotes methods that require camera poses of the reference images.

For our image synthesis
pipeline, we initialize from
the pre-trained Stable Dif-
fusion 2.1 model (Rombach
et al., 2022). The reference
feature extraction networks
share identical architecture
with the denoising U-Net
but exclude timestep em-
beddings, as they are designed solely for semantic feature extraction rather than denoising operations.
Training is conducted on three multi-view datasets: RealEstate10K (Zhou et al., 2018) for diverse in-
door/outdoor scenes, Co3D (Reizenstein et al., 2021a) for object-centric captures, and MVImgNet (Yu
et al., 2023) for extensive multi-view imagery. We generate pseudo ground-truth geometry using
VGGT (Wang et al., 2025), which provides both depth maps and normal predictions to establish
reliable geometric supervision. During training, reference pointmaps enable three key operations:
spatial warping of reference RGB images to target coordinates, explicit warping of VGGT-derived
high-dimensional features between viewpoints, and establishment of geometric conditioning signals
that guide generation. At inference, VGGT serves as our geometry estimation module, producing
camera poses and pointmaps for target viewpoint projection. Additionally, VGGT provides rich
semantic and geometric features that undergo geometry-aware warping, ensuring proper transfer
of spatial and semantic information across viewpoints while maintaining geometric consistency
throughout synthesis.
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Reference Images MVSplat [4] NoPoSplat [28]PixelSplat [3] VGGT [26]OursGround Truth

Figure 6: Qualitative comparison on extrapolative setting. Qualitative results demonstrate our
model’s extrapolative capabilities to plausibly generate locations not seen in reference images while
faithfully reconstructing the known regions.

Referecne Images MVSplat [4] NoPoSplat [28]PixelSplat [3] VGGT [26]OursGround Truth

Figure 7: Qualitative comparison on extrapolative setting. Qualitative results demonstrate our
model’s extrapolative capabilities to plausibly generate locations not seen in reference images while
faithfully reconstructing the known regions.

5.2 EXPERIMENT RESULTS

Comparison with non-generative novel view synthesis models. We compare our method with
non-generative novel view synthesis models (Charatan et al., 2024; Chen et al., 2024; Ye et al., 2024)
on RealEstate10K (Zhou et al., 2018) using a challenging far-view setting that requires extensive
inpainting of missing regions. We evaluate on three target views conditioned on two reference views,
with target cameras positioned far from reference cameras to create large unknown areas. As shown
in Table 3, our method outperforms state-of-the-art approaches even without camera pose access.
Non-generative methods struggle in this extrapolative setting due to their inability to generate unseen
regions, being limited to fusing existing input views. In contrast, our diffusion-based approach enables
strong performance on both interpolation and extrapolation tasks. The qualitative results (Fig. 6)
demonstrate semantically plausible inpainting and accurate geometry reconstruction, attributed to
features that incorporate both geometric and semantic information.

Zero-shot evaluation. We evaluate the generalization capability of our method using the
DTU (Jensen et al., 2014) dataset, which was not seen during training. To comprehensively as-
sess the generalization performance, we conduct evaluations under both near-view and far-view
settings. For near-view, we follow the setting from MVSplat (Chen et al., 2024), while the far-view
setting is constructed by selecting the farthest view as the target. Table 2 shows that our method
outperforms previous methods (Charatan et al., 2024; Chen et al., 2024; Ye et al., 2024) across both
settings. The qualitative results from Fig. 7 show that our method produces accurate geometry and
semantically consistent inpainting, even in challenging target viewpoint of the out-of-domain data.
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Figure 8: Qualitative results for ablation study. Top row (bear): Both (a) and (b) fail to reconstruct
structurally consistent outputs, exhibiting misaligned body parts such as the arms, legs, and hat.
In contrast, (c) effectively preserves both semantic consistency and structural integrity, producing
coherent reconstructions aligned with the ground truth. Bottom row (bicycle): Both (a) and (b) exhibit
noticeable distortions in the wheel structure and fail to inpaint occluded background. Meanwhile, (c)
achieves more accurate structural reconstruction and background inpainting, demonstrating superior
semantic and geometric consistency.

5.3 ABLATION

Method PSNR↑ SSIM↑ LPIPS↓
PixelSplat† (Charatan et al., 2024) 14.01 0.582 0.384

MVSplat† (Chen et al., 2024) 12.13 0.534 0.380
NopoSplat (Ye et al., 2024) 14.36 0.538 0.389

ReNoV (Ours) 17.49 0.598 0.265

Table 3: Experimental result a far-view setting.
† denotes methods that require camera poses of the
reference images.

We explore how semantic and geometric condi-
tioning features affect the performance of novel
view synthesis. Specifically, we evaluate three
configurations: (a) Baseline, utilizing semantic
information from reference views via aggregated
attention only; (b) Baseline with explicit geomet-
ric guidance using predicted pointmaps; and (c)
our final model conditioned on implicit semantic
and geometric information by VGGT features.
Quantitatively, Table 4 shows that explicit geom-
etry conditioning through pointmaps in (b) improves overall performance compared to the baseline.
Furthermore, conditioning VGGT features in (c) results in significant performance gains, highlighting
the effectiveness of implicit geometric and semantic conditioning for extrapolative synthesis.

Components PSNR↑ SSIM↑ LPIPS↓
(a) Baseline 16.551 0.559 0.260
(b) (a) + Pointmap condition 16.930 0.594 0.243
(c) (b) + VGGT Feature 17.497 0.598 0.247

Table 4: Quantitative results for ablation study.
Evaluation results shows that leveraging the
pointmaps and VGGT features enhances novel
view synthesis performance.

In the qualitative evaluation (Fig. 8), the baseline
model (a) exhibits clear limitations in synthesiz-
ing structurally coherent novel views, resulting
in perceptually distorted shapes and inconsis-
tent reconstructions. Although explicit pointmap
conditioning in (b) reduces geometric distor-
tions, it still suffer from inaccurate inpainting
due to insufficient semantic guidance. In con-
trast, our final configuration (c) utilizes VGGT
features, which implicitly encode both semantic
and geometric correspondences. This integrated conditioning allows the model to learn semantically
consistent inpainting in challenging occluded regions, as well as structurally aligned reconstruction.

6 CONCLUSION

We introduce a diffusion-based novel-view synthesis framework that leverages VGGT’s multi-view
geometry features to unify precise reconstruction and semantically coherent inpainting. By reformu-
lating synthesis as a warping-and-inpainting task and injecting VGGT features into a conditioned
diffusion U-Net, our method achieves state-of-the-art fidelity on both visible and occluded regions,
outperforming existing diffusion-based approaches across standard benchmarks. These results under-
score the value of rich geometric priors in guiding generative models, and open avenues for future
extensions toward dynamic scenes and real-time applications.
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APPENDIX

In Sec. B, we provide additional implementation details for our proposed method. In Sec. C, we
present the results of additional analysis experiments to validate our approach. In Sec. D, we provide
additional comparison to other baselines as well as additional qualitative ablation results and analysis.

A THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) in this study served solely as tools for linguistic enhancement
and editorial refinement of the written manuscript. LLM assistance was limited to sub-sentence
and sentence-level modifications, including correction of grammatical mistakes and restructuring
of specific phrases to improve brevity and scholarly presentation of content originally authored
by the research team. The conceptual framework, research methodology, experimental procedures,
data analysis, and scientific interpretations were conceived and executed entirely by the authors
without computational language model input. LLMs played no role in generating research concepts,
developing methodological approaches, or analyzing experimental outcomes. The authors assume
complete accountability for all manuscript content, including portions that received LLM-based
linguistic assistance.

B ADDITIONAL DETAILS

B.1 TRAINING DETAILS

In our training procedure, we initialize the image denoising U-Net from the Stable Diffusion 2.1
model and fine-tune it on a combination of large-scale datasets including RealEstate10K Zhou et al.
(2018), Co3D Reizenstein et al. (2021b), and MVImgNet Yu et al. (2023). The reference networks,
which are architecturally identical to the image denoising U-Net (albeit without timestep embeddings),
share the same initial weights and are trained solely to extract high-level semantic features from the
input images. Ground-truth geometry is generated using an off-the-shelf geometry predictor, and
only pointmaps from selected reference views are used during training for warping and proximity-
based mesh conditioning. This strategy ensures that our model learns to synthesize both image and
geometric representations in a mutually reinforcing manner.

To further stabilize training, we perform cross-modal attention instillation in a one-on-one fashion
before combining the networks for joint training. This separate instillation phase allows the image and
geometry branches to initially learn robust representations independently. Later, during simultaneous
training, the geometry networks benefit from the deterministic cues provided by the image denoising
network, which significantly improves consistency in geometry prediction. Our training schedule
includes careful hyperparameter tuning, data augmentation, and regularization to mitigate overfitting
while ensuring that the network generalizes well to unseen viewpoints.

C ADDITIONAL ANALYSIS

C.1 SEMANTIC CORRESPONDENCE

Qualitative. Additional qualitative results are presented in Figure 9, further illustrating that the early
layers of VGGT Wang et al. (2025) encode rich semantic information, which gradually diminishes in
deeper layers. These early layers also exhibit an ability to capture geometrically consistent semantics.
For instance, in Figure 9(g), when the query point is placed on the left horn of a cow, VGGT
accurately identifies the corresponding left horn in the target image. In contrast, DINOv2 Oquab
et al. (2023) matches the right horn, ignoring spatial alignment, while CroCo Weinzaepfel et al.
(2022) fails to capture meaningful semantic correspondence and highlights irrelevant regions. Similar
patterns appear throughout Figure 9(c), (f) and (j), where early VGGT layers demonstrate direction-
aware and spatially accurate semantic matching, often outperforming DINOv2 in both precision and
structure-awareness.
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DINOv2CroCoTarget ImageSource Image VGGT-11VGGT-4 VGGT-17 VGGT-23

(a)

/

/mnt/data1/minkyung/
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Figure 9: Visualization of feature similarity map. The leftmost column shows the source image
with a query point (blue dot), followed by the target image. Cosine similarity is computed between
the query and all target patch features to assess semantic encoding. Early VGGT layers (4th, 11th)
retain strong semantic signals, effectively highlighting fine-grained regions (e.g., wing, beak, wheel,
ear, etc.), while deeper layers (17th, 23rd) lose semantic focus. DINOv2 captures rich semantics but
with less precise localization. CroCo fails to capture meaningful cues, often highlighting irrelevant
regions.

C.2 GEOMETRIC CORRESPONDENCE

Additional qualitative results are presented in Figure 10, highlighting that the deeper layers of
VGGT Wang et al. (2025) better capture geometric structure, whereas the early layers often fail
to establish accurate geometric correspondences. In scenes containing multiple instances of the
same object—such as Figure 10(c), where several identical windows appear—features from layer 23
correctly match the query point above the first window across both frame 2 and frame 3. In contrast,
earlier layers tend to match the query point to arbitrary windows, indicating a lack of geometric
specificity. Similar trends are observed in Figures 10(a) through (g), where deeper layers consistently
attend to the correct geometric location, while early layers often respond to semantically similar but
spatially incorrect regions. Among baselines, CroCo Weinzaepfel et al. (2022) demonstrates strong
geometric consistency, whereas DINOv2 Oquab et al. (2023) struggles to disambiguate repeated
structures within the scene.
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Figure 10: Geometric correspondence evaluation. A query point (blue dot) is selected in Frame
1, and cosine similarity maps are computed in Frame 2 and Frame 3. Each scene contains repeated
structures (e.g., identical windows, mountains, frames, and columns), enabling evaluation of geometric
alignment. Deeper layers of VGGT (e.g., VGGT-23) and CroCo accurately identify the correct
window aligned with the query point, while earlier layers (VGGT-4, VGGT-11) and DINOv2 attend
to incorrect but semantically similar position. This illustrates that deeper layers of VGGT, as well as
CroCo, capture geometric structure more reliably than others.
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Figure 11: Proving analysis qualitative results. The leftmost column shows warped images, where
features are warped using the same predicted pointmaps, resulting in corresponding feature-level
holes. VGGT features yield the most accurate reconstruction in visible regions and demonstrate
superior inpainting quality within occluded areas.

C.3 FEATURE RECONSTRUCTION PROBING

To provide additional experimental validation of this hypothesis through systematic probing, we
provide additional experimental results on probing, using a shallow MAE He et al. (2022) decoder
trained to predict target view images from warped reference view features, as given in the main
paper. The additional experimental results from this probing analysis offer further empirical evidence
supporting our feature representation choices and their effectiveness in the warping-and-inpainting
framework.

Qualitative results. Fig. 11 shows additional qualitative results for different features-Croco Weinza-
epfel et al. (2022), DINOv2 Oquab et al. (2023), and VGGT Wang et al. (2025). Among them, images
generated using VGGT features exhibit the highest geometric and semantic fidelity to the ground
truth, highlighting VGGT’s ability to effectively encode both multi-view geometric correspondences
and rich semantic context.

Ablation. We conduct an ablation study to investigate the representational capability of
VGGT Wang et al. (2025) features extracted from different layers. Specifically, we train a shal-
low MAE He et al. (2022) decoder on features from the 4th, 11th, 17th, and 23rd layers, and evaluate
their generation performance qualitatively. Fig. 12 demonstrates that deeper layers tend to capture
more geometric structure but offer less semantic detail. In contrast, aggregating features across all
layers results in the most visually plausible image, indicating effective reconstruction fidelity and
more semantically coherent inpainting.
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Figure 12: Per-layer probing qualitative results. We visualize generation results using VGGT
features extracted from individual layers and their combination. Early layers (4th, 11th) retain rich
semantic information, producing semantically coherent images with accurate color and texture. In
contrast, deeper layers (17th, 23rd) emphasize geometric structure but lack semantic detail. Combining
features across all layers yields the most faithful reconstructions, achieving both structurally accurate
and semantically realistic outputs.

D ADDITIONAL RESULTS

D.1 ADDITIONAL COMPARISON

Methods PSNR↑ SSIM↑ LPIPS↓
LucidDreamer Chung et al. (2023) 12.96 0.248 0.385
GenWarp Seo et al. (2024) 8.69 0.253 0.597
ReNoV (Ours) 12.63 0.443 0.261

Table 5: Comparison with other warping-and-
inpainting models. We compare our model against
LucidDreamer Chung et al. (2023) (using SD-
Inpainting Rombach et al. (2022)) and Gen-
Warp Seo et al. (2024).

We compare our method against warping-and-
inpainting approaches using single reference im-
age, specifically LucidDreamer (Chung et al.,
2023) and GenWarp Seo et al. (2024). Evalua-
tion is conducted on the DTU dataset (Jensen
et al., 2014), which was excluded from training
for all methods, thereby demonstrating zero-shot
generalization capabilities. To ensure fair com-
parison, all warping-and-inpainting methods uti-
lize VGGT Wang et al. (2025) as the shared
geometry prediction model. Quantitative results in Table 5 demonstrate that our framework achieves
superior performance in SSIM and LPIPS, maintaining competitive results in PSNR.

D.2 ABLATION STUDY

Qualitative results. Fig. 13 shows additional ablation results for three configurations: (a) baseline
with semantic-only conditioning; (b) baseline + explicit geometric guidance via pointmaps; (c)
ours with implicit semantic and geometric conditioning using VGGT Wang et al. (2025) features.
Conditioning on VGGT features enables the model to achieve more accurate reconstructions and
plausible inpainting by leveraging rich implicit geometric and semantic information. In contrast,
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Figure 13: Qualitative ablation results. (a) Baseline: Lacks geometric guidance, resulting in mis-
aligned structures (e.g., distorted chair, missing bicycle wheel, and incomplete teddy bear). (b)
Baseline + pointmap: Improves geometric alignment but suffers from distortion due to noisy geom-
etry and inaccurate inpainting (e.g., deformed chair seat). (c) Ours with VGGT features: Implicit
semantic and geometric conditioning enables accurate reconstruction of visible regions and plausible
inpainting of occluded areas.

(a) and (b) exhibit noticeable geometric distortions and incomplete inpainting, highlighting the
limitations of lacking or noisy geometric cues.

Attention map visualization. We further analyze the cross-view attention maps of the denoising U-
Net trained under configurations (a), (b), and (c). As shown in Fig. 14, the baseline model (a) attends
to geometrically and semantically misaligned regions in the reference images, leading to inaccurate
reconstruction and inpainting. Explicit geometric guidance via pointmaps (b) partially reduces this
misalignment but remains insufficient due to noisy and incomplete geometric correspondences. In
contrast, our final model conditioned on VGGT Wang et al. (2025) features (c) accurately attends
to geometrically and semantically consistent regions in the reference views, significantly enhancing
the quality of synthesized images. This confirms that VGGT features effectively guide cross-view
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Figure 14: Attention map visualization for ablation study. The leftmost column shows a query point
(blue dot) in the warped image, with corresponding cross-attention maps over reference images shown
on the right. Configurations (a) and (b) attend to incorrect regions for both reconstruction (e.g., teddy
bear’s ear, bicycle handle) and inpainting (e.g., chair seat), due to limited or noisy geometric guidance.
In contrast, VGGT-based conditioning (c) guides attention to geometrically and semantically aligned
regions, accurately distinguishing fine structures such as the correct ear of the teddy bear.

attention toward optimal reference positions by implicitly encoding comprehensive geometric and
semantic correspondences.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

REFERENCES

David Charatan, Sizhe Lester Li, Andrea Tagliasacchi, and Vincent Sitzmann. pixelsplat: 3d gaussian splats
from image pairs for scalable generalizable 3d reconstruction. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 19457–19467, 2024.

Yuedong Chen, Haofei Xu, Chuanxia Zheng, Bohan Zhuang, Marc Pollefeys, Andreas Geiger, Tat-Jen Cham, and
Jianfei Cai. Mvsplat: Efficient 3d gaussian splatting from sparse multi-view images. In European Conference
on Computer Vision, pp. 370–386. Springer, 2024.

Jaeyoung Chung, Suyoung Lee, Hyeongjin Nam, Jaerin Lee, and Kyoung Mu Lee. Luciddreamer: Domain-free
generation of 3d gaussian splatting scenes. arXiv preprint arXiv:2311.13384, 2023.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders
are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 16000–16009, 2022.

Li Hu. Animate anyone: Consistent and controllable image-to-video synthesis for character animation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8153–8163,
2024.

Rasmus Jensen, Anders Dahl, George Vogiatzis, Engil Tola, and Henrik Aanæs. Large scale multi-view stereopsis
evaluation. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 406–413. IEEE, 2014.

Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Metzger, Rodrigo Caye Daudt, and Konrad Schindler.
Repurposing diffusion-based image generators for monocular depth estimation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9492–9502, 2024.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for
real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

Vincent Leroy, Yohann Cabon, and Jérôme Revaud. Grounding image matching in 3d with mast3r. In European
Conference on Computer Vision, pp. 71–91. Springer, 2024.

Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick. Zero-1-to-3:
Zero-shot one image to 3d object. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 9298–9309, 2023.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthesis. Communications of the ACM, 65(1):99–106,
2021.

Juhong Min, Jongmin Lee, Jean Ponce, and Minsu Cho. Spair-71k: A large-scale benchmark for semantic
correspondence. arXiv prepreint arXiv:1908.10543, 2019.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual features without
supervision. arXiv preprint arXiv:2304.07193, 2023.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d diffusion.
arXiv preprint arXiv:2209.14988, 2022.

René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 12179–12188, 2021.

Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler, Luca Sbordone, Patrick Labatut, and David Novotny.
Common objects in 3d: Large-scale learning and evaluation of real-life 3d category reconstruction. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 10901–10911, 2021a.

Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler, Luca Sbordone, Patrick Labatut, and David Novotny.
Common objects in 3d: Large-scale learning and evaluation of real-life 3d category reconstruction. In
International Conference on Computer Vision, 2021b.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 10684–10695, 2022.

Junyoung Seo, Kazumi Fukuda, Takashi Shibuya, Takuya Narihira, Naoki Murata, Shoukang Hu, Chieh-Hsin
Lai, Seungryong Kim, and Yuki Mitsufuji. Genwarp: Single image to novel views with semantic-preserving
generative warping. arXiv preprint arXiv:2405.17251, 2024.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li, and Xiao Yang. Mvdream: Multi-view diffusion for
3d generation. arXiv preprint arXiv:2308.16512, 2023.

Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David Novotny. Vggt:
Visual geometry grounded transformer. arXiv preprint arXiv:2503.11651, 2025.

Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P Srinivasan, Howard Zhou, Jonathan T Barron, Ricardo
Martin-Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet: Learning multi-view image-based rendering.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 4690–4699,
2021.

Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r: Geometric 3d
vision made easy. In CVPR, 2024.

Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Prolificdreamer: High-
fidelity and diverse text-to-3d generation with variational score distillation. Advances in Neural Information
Processing Systems, 36:8406–8441, 2023.

Philippe Weinzaepfel, Vincent Leroy, Thomas Lucas, Romain Brégier, Yohann Cabon, Vaibhav Arora, Leonid
Antsfeld, Boris Chidlovskii, Gabriela Csurka, and Jérôme Revaud. Croco: Self-supervised pre-training for 3d
vision tasks by cross-view completion. Advances in Neural Information Processing Systems, 35:3502–3516,
2022.

Xingguang Yan, Liqiang Lin, Niloy J Mitra, Dani Lischinski, Daniel Cohen-Or, and Hui Huang. Shapeformer:
Transformer-based shape completion via sparse representation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 6239–6249, 2022.

Botao Ye, Sifei Liu, Haofei Xu, Xueting Li, Marc Pollefeys, Ming-Hsuan Yang, and Songyou Peng. No
pose, no problem: Surprisingly simple 3d gaussian splats from sparse unposed images. arXiv preprint
arXiv:2410.24207, 2024.

Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural radiance fields from one or
few images. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
4578–4587, 2021.

Xianggang Yu, Mutian Xu, Yidan Zhang, Haolin Liu, Chongjie Ye, Yushuang Wu, Zizheng Yan, Chenming
Zhu, Zhangyang Xiong, Tianyou Liang, et al. Mvimgnet: A large-scale dataset of multi-view images. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 9150–9161, 2023.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 3836–3847, 2023.

Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification: Learning
view synthesis using multiplane images. arXiv preprint arXiv:1805.09817, 2018.

20


	Introduction
	Related work
	Motivation and Analysis
	Method
	Overview
	Reference conditioning
	Geometry-aware feature projection and conditioning
	Novel-view image generation

	Experiments
	Implementation details
	Experiment results
	Ablation

	Conclusion
	The use of large language models
	Additional details
	Training details

	Additional Analysis
	Semantic Correspondence
	Geometric Correspondence
	Feature Reconstruction Probing

	Additional Results
	Additional Comparison
	Ablation Study


