
CItruS : Chunked Instruction-aware State Eviction
for Long Sequence Modeling

Anonymous ACL submission

Abstract

Long sequence modeling has gained broad in-001
terest as large language models (LLMs) con-002
tinue to advance. Recent research has identi-003
fied that a large portion of hidden states within004
the key-value caches of Transformer models005
can be discarded (also termed evicted) without006
affecting the perplexity performance in gen-007
erating long sequences. However, we show008
that these methods, despite preserving perplex-009
ity performance, often drop information that010
is important for solving downstream tasks, a011
problem which we call information neglect.012
To address this issue, we introduce Chunked013
Instruction-aware State Eviction (CItruS), a014
novel modeling technique that integrates the015
attention preferences useful for a downstream016
task into the eviction process of hidden states.017
In addition, we design a method for chunked se-018
quence processing to further improve efficiency.019
Our training-free method exhibits superior per-020
formance on long sequence comprehension and021
retrieval tasks over several strong baselines un-022
der the same memory budget, while preserving023
language modeling perplexity.024

1 Introduction025

Recent advances in large language models (LLMs)026

have raised interest in long sequence modeling (Qin027

et al., 2023; Xiao et al., 2023). Several studies have028

found that information relevant to the next token029

prediction task often accumulates in the hidden030

representations of just a few tokens, and the atten-031

tion distributions tend to focus sparsely on these032

tokens (Liu et al., 2024; Bai et al., 2024; Wang033

et al., 2023b). This observation has resulted in034

methods that model longer sequences by evicting035

unnecessary key-value caches during the language036

modeling process (Zhang et al., 2024b; Oren et al.,037

2024), mostly based on the attention weights each038

token receives from the following context.039

However, these methods achieve limited perfor-040

mance on downstream tasks that require specific041

Figure 1: One sample from attention distributions in
the 16th layer of the Mistral 7B Instruct model applied
to the Qasper dataset. The attention distributions are
calculated from a document context and an instruction
text to the key-value cache. The x-axis represents dif-
ferent positions within the key-value cache, while the
y-axis represents the attention weights. The positions
are reordered by descending attention weights from the
context, and positions with low attention weights are
omitted for clarity.

information from long documents (e.g., question 042

answering), suggesting that they struggle to retain 043

the detailed information necessary for such tasks. 044

We refer to this condition as the information ne- 045

glect problem. This issue arises because the cache 046

acquired through state eviction is based only on the 047

local document context. There is no explicit signal 048

for the model to ensure that it is useful for solving 049

downstream tasks. Consider Figure 1, which shows 050

two attention distributions—one from a document 051

context and one from an instruction prompt—when 052

applying the Mistral 7B Instruct model to a sample 053

from the Qasper dataset. Note that the two differ 054

substantially in their weighting of positions, sug- 055

gesting that the document context-derived attention 056

weights may not capture well the task specified by 057

the instructions.1 058

In this paper, we propose to address this in- 059

formation neglect issue by incorporating the in- 060

struction text into the state eviction process. Our 061

method, Chunked Instruction-aware State Evic- 062

1More details are provided in Section 3.

1

tion (CItruS), decomposes long sequence process-063

ing into two different subprocesses: language mod-064

eling and task solving. For the language model-065

ing process, we propose chunked state eviction,066

splitting the long sequence input into large chunks067

while maintaining a cache that only stores the most068

important key-value states, which we show allows069

the model to efficiently and effectively encode long070

documents. As for the task-solving process, we071

propose an instruction-aware cache, either indepen-072

dent of or shared with the language modeling cache,073

which maintains the specific detailed information074

required to generate responses in downstream set-075

tings. The instruction-aware cache is then used to076

generate the final response for solving the task. Our077

approach can be seen as analogous to ideas from078

cognitive science that language and thought can079

be disentangled in human language processing (Fe-080

dorenko and Varley, 2016),081

We evaluate CItruS on three tasks: long docu-082

ment reading comprehension, knowledge retrieval,083

and language modeling. Our approach improves084

downstream task performance over several strong085

baselines by large margins and enables the retrieval086

of desired information hidden within a long doc-087

ument of up to one million tokens. Furthermore,088

the model maintains high language modeling per-089

formance with a low perplexity. Notably, CItruS090

is applicable to all the transformer-based decoder-091

only model without any further training, improving092

the model’s ability to conduct downstream tasks093

for input sequences with arbitrary lengths.094

Overall, our contributions are summarized as095

follows: 1) We define and demonstrate the infor-096

mation neglect problem in state-eviction methods.097

2) We propose CItruS, a state eviction method de-098

signed for long sequence downstream tasks, which099

incorporates an instruction-aware cache for task-100

solving and a chunked state eviction process for101

efficient language modeling. 3) Experiments on102

long document reading comprehension, knowledge103

retrieval, and language modeling show that CItruS104

improves performance on downstream tasks involv-105

ing long sequence by large margins while maintain-106

ing low language modeling perplexity. Code and107

data will be released in the camera-ready version.108

2 Related Work109

2.1 Long Sequence Processing110

Long sequence processing has long been a key re-111

search area in natural language processing (Tiezzi112

et al., 2024). Various approaches have been ex- 113

plored to address this challenge, including Long- 114

former and State Space Models (Beltagy et al., 115

2020; Gu et al., 2022; Gu and Dao, 2023). Ad- 116

ditionally, memory-augmented models use exter- 117

nal memory to handle long sequences (Kuhn and 118

De Mori, 1990; Wu et al., 2022; Bertsch et al., 119

2024; Lu et al., 2024), while recurrent-based trans- 120

formers have been designed for long-sequence 121

tasks (Dai et al., 2019; Li et al., 2023; Peng et al., 122

2023). More related work about long sequences is 123

further provided in Appendix J. 124

Except for LONGHEADS, a memory-augmented 125

method which requires storing all the past key- 126

value states, all the above methods require fur- 127

ther training of the model to handle long sequence 128

processing. Our approach is an inference-time 129

method and eliminates the need for further training, 130

working directly with any open-source transformer- 131

based language model and requiring significantly 132

fewer resources than the methods mentioned. 133

Our work is also similar to retrieval-augmented 134

generation (RAG) methods (Gao et al., 2023; Zhao 135

et al., 2024), which incorporates knowledge from 136

external databases to enhance the generation. How- 137

ever, RAG research mainly focuses on the retrieval 138

process in order to better leverage the documents 139

that could support the response generation, whereas 140

CItruS is a method that more generally focuses on 141

performing various long sequence tasks. It could 142

be a good option to be applied to the RAG pro- 143

cess. In fact, our testing includes long-document 144

question answering and retrieval as primary tasks. 145

2.2 State Eviction for Large Language Models 146

Liu et al. (2024) explore the persistence of impor- 147

tance hypothesis for the key-value cache of large 148

language models, which states that the position 149

of the cache that are useful for language model- 150

ing tend to remain consistent over time. Based on 151

this, various methods that evict the key-value cache 152

during language modeling have been proposed for 153

improving the efficiency of LLM inference. Zhang 154

et al. (2024b) use accumulative attention scores 155

to evict unnecessary key-value cache states. Oren 156

et al. (2024) use the attention of the last token as a 157

metric for evicting hidden states. Ge et al. (2023) 158

profile all the attention heads and maintain differ- 159

ent hidden states for different heads. Ren and Zhu 160

(2024) propose determining the eviction scope by 161

evaluating the standard variance of the attention 162

weights received by individual tokens, and they test 163

2

Context 1 Document

Instruction text

Context 2

Instruction text

Top-k states

Top-k states

Calculate
intersection

Context 2

Context 1

Attend Select

SelectAttend

Figure 2: The illustration of our experiments that apply
intersection calculation to explore the information ne-
glect problem in state eviction models.

the efficiency improvement of state eviction meth-164

ods using small text chunks of size 16, which we165

scale up to 768 in our work. Yang and Hua (2024)166

bring the preference of future tokens into the state167

eviction process. Xiao et al. (2023) propose that168

“attention sinks” exist during LLM sequence pro-169

cessing. By keeping the key-value states of the170

initial tokens, and evicting the key-value states out171

of a sliding window maintained for recent tokens,172

their model could maintain the perplexity while173

processing 4 million tokens.174

We propose that these previous methods suffer175

from the information neglect problem; that is, they176

fail to preserve specific information related to the177

instruction text, therefore might lower the perfor-178

mance on down-stream tasks.179

3 The Information Neglect Problem180

In this section, we demonstrate the information ne-181

glect problem of existing state eviction methods.182

State eviction methods have two basic elements:183

a key-value cache C that maintains the most im-184

portant hidden states for language modeling and a185

strategy S to evict unnecessary states from the key-186

value cache, thereby making room for new states.187

By iteratively evicting the most unnecessary tokens188

from the cache, the model achieves the capability189

to model long sequences of arbitrary lengths. S is190

usually based on the attention weight a cache state191

receives from tokens later in the sequence.192

The information neglect problem stems from193

the observation that the preserved states useful for194

language modeling are not necessarily the ones195

for a downstream task (e.g., answering a specific196

question). We demonstrate this by measuring the197

difference between the top-k states selected by a198

document context compared to those selected by a199

specific instruction text (Figure 2). Specifically, we200

select one context and encode it to acquire a cache201

Figure 3: The difference between the top-k hidden states
selected by the instruction text and the document context
with the k set as 20, conducted with Mistral 7B Instruct.
Context-instruction intersection represents the overlap
between the top-k hidden states selected by the attention
distribution from one piece of the context in the long
document and the instruction text to a key-value cache.

that could be evicted (i.e, Context 1 in Figure 2). 202

Then, we use another piece of context (i.e., Context 203

2 in Figure 2) and the instruction text, both with the 204

same length, to evict the cache separately, retaining 205

the top-k most important hidden states. By com- 206

puting the overlap of the differently evicted caches, 207

we draw conclusions about the information neglect 208

scenarios during the eviction-based language mod- 209

eling process. More experimental setup for these 210

experiments is shown in Appendix A. We use the 211

same setting to acquire the results in Figure 1. 212

We conduct this experiment on the full test set 213

of the Qasper dataset (Dasigi et al., 2021). We 214

use the averaged attention score of all the tokens 215

from one piece of text to the cache to select the 216

most important states, which is further described 217

in Section 4.1. As shown in Figure 3, the hidden 218

states focused on by the document context and the 219

downstream instruction text are remarkably differ- 220

ent, reflected by an intersection ratio lower than 0.2 221

in the middle layers. 222

Supported by the above experiments, we claim 223

that if only the attention distribution of the con- 224

text chunk is used to select the key-value states 225

relevant to language modeling, some information 226

specifically related to the final instruction text will 227

be discarded during the encoding of the document, 228

possibly decrease the task performance. 229

A similar line of work that models long sequence 230

with sliding-window-based methods (Xiao et al., 231

2023; Han et al., 2023) also suffers from informa- 232

tion neglect problems, where we provide detailed 233

description in Appendix D. 234

4 Methods 235

To address the problem of information neglect, we 236

propose to decompose the inference procedure of 237

3

Long Document

Instruction or
Question

Language
Modeling

Task Solving

Maintain fluency

Encode document

Seek for information

Generate response

Input Subprocess Role

Figure 4: The illustration of our proposed different
subprocesses for task-specific long sequence modeling.
Each process serves as different roles.

large language models into two different subpro-238

cesses: the language modeling process and the task239

solving process, shown in Figure 4. For the lan-240

guage modeling process, we propose to use chun-241

ked state eviction methods to make the modeling242

process more efficient. For the task solving process,243

we propose instruction-aware state eviction, us-244

ing the hidden states of the final instruction prompt245

as an additional instruction-aware query to extract246

and preserve the task-related information in a key-247

value cache. Then, we utilize this key-value cache248

to generate a task-specific response.249

For downstream tasks with a long document in-250

put D and a final instruction I (a piece of text251

that prompt the model to conduct the downstream252

tasks), our proposed method generates a corre-253

sponding response R according to I .254

4.1 Chunked State Eviction (CSE)255

In this section, we propose our standard state evic-256

tion method which chunks the input text during257

the language modeling process to enable the LLMs258

encoding the long document D more efficiently.259

Overall process: Given a document D, we di-260

vide it into chunks D = {s1, s2, . . . , sn}, where n261

denotes the number of chunks. Each chunk s has a262

length of ls except for the final chunk sn. As illus-263

trated in Figure 5(a), the Standard Chunked State264

Eviction (Standard CSE) process includes three265

steps: 1) given a cache C, we encode the current266

text chunk s with an LLM; 2) evict the unimportant267

hidden states in C according to the attention distri-268

bution from s to C; 3) put all the new hidden states269

of s into the cache. This iterative process starts270

with putting the first text chunk into the cache C271

and ends when the document has been fully pro-272

cessed. After the whole encoding process, the final273

chunk (maybe shorter than the length of ls) is put274

into the cache, which leads to possible information275

Instruction Text

Cache Current
Chunk

Instruction
Cache

② Evict hidden states

Evict hidden states

Current
ChunkCache

Instruction Text
Evict hidden states

Encode ⑤

③

③

②

Individual Cache for Chunked Instruction-aware State Eviction

Shared Cache for Chunked Instruction-aware State Eviction

①
Put the current
chunk into

Encode
①

Put the current
chunk into

Standard Chunked State Eviction

Current
ChunkCache

Evict hidden states

③

②

Encode
①

Put the current
chunk into

Put into cache④

(a)

(b)

(c)

Figure 5: The illustration of different cache designs for
our proposed Standard CSE and CItruS.

bias towards this chunk. To alleviate this bias, we 276

use the instruction text as a new text chunk to evict 277

the cache C one more time. The resulting cache 278

C is then used to encode the instruction text and 279

generate the final response. 280

State eviction based on chunked averaged atten- 281

tion score: For state eviction, we use the atten- 282

tion score from all the tokens in the current text 283

chunk s to a state c in the cache C as a metric of 284

the state’s importance: 285

Imp(s, c) =
1

|s|
∑
t∈s

exp

(
QtK

T
c√

dk

)
∑

c′∈C exp

(
QtK

T
c′√

dk

) (1) 286

where Imp(s, c) represents the importance score of 287

state c with chunk s, dk is the dimensionality of the 288

key vector, Qt and Kc is the query vector of token 289

t and the key vector of state c, respectively. 290

We preserve the states with the k highest impor- 291

tance scores while evicting the other states: 292

I(x) =

{
1, if x in Setselection

0, otherwise
(2) 293

294
Ĉ = {c ∈ C | I(c) = 1} (3) 295

where Setselection is the hidden states with the k 296

highest importance scores Imp(s, c) from the cur- 297

rent chunk s, and Ĉ represents the cache after the 298

eviction. We execute the eviction in a layer-wise 299

manner, which means that the hidden states re- 300

tained in different layers could belong to different 301

tokens. This design allows more flexibility since 302

4

different layers could be responsible for different303

functions and semantics. We choose to not apply a304

finer-grained head-wise eviction to our model since305

it performed worse in our initial experiments.306

4.2 Instruction-aware State Eviction307

Next, we introduce chunked instruction-aware state308

eviction (CItruS) that aims to preserve information309

relevant to the task-solving process. We propose310

two kinds of cache design to achieve this goal. First,311

we propose to maintain a separate individual in-312

struction cache CI during the standard chunked313

state eviction process, which retains information314

related to the instruction text. Second, we propose315

a variant with a common shared cache for CI and316

C to reduce the computational cost. Illustrations of317

the two proposed methods are shown in Figure 5.318

Individual cache We use an individual instruc-319

tion cache CI to specifically store the hidden states320

related to the instruction text, in addition to C.321

Specifically, after the eviction on C, we conduct322

another eviction process on CI with the final in-323

struction text, and then put the key-value states324

of the current text chunk s into CI . The eviction325

process is shown as follows:326

II(x) =

{
1, if x in SetIselection

0, otherwise
(4)327

328
ĈI = {cI ∈ CI | II(cI) = 1} (5)329

where SetIselection is the key-value cache states with330

k highest importance scores of Imp(I, cI).331

Shared cache Using individual caches will dou-332

ble the memory usage for a fixed cache size.333

Guided by the persistence of importance hypothe-334

sis (Liu et al., 2024), where the hidden states use-335

ful for maintaining the perplexity are attended by336

most of the following tokens, we hypothesize that337

the intersection between states selected by con-338

text and instruction texts, mentioned in Section 3,339

could be responsible for maintaining the perplex-340

ity. Hence, we suppose that we could further re-341

duce the memory cost of CI by sharing it with342

the language modeling process. Specifically, the343

top-k state Setselection of the shared cache is de-344

termined based on the attention-based importance345

score Imp(I, c), which measures the attention from346

the final instruction I to a cache state c. Shown in347

Figure 5(c), we directly use this key-value cache348

evicted by Imp(I, c) to encode the current chunk s.349

The rest of the eviction process follows the same350

procedure as described in Eq. (2) and (3).351

4.3 Overall Process 352

In this section, we summarize the overall process 353

for applying CItruS to downstream tasks. As de- 354

scribed in Section 4.1, the model starts by itera- 355

tively encoding the chunked document D. Unlike 356

the Standard CSE model, CItruS introduces the in- 357

struction text to evict either an individual or shared 358

instruction-aware cache. As mentioned, we use the 359

instruction text to evict these caches again after pro- 360

cessing the entire document, selecting the k most 361

important key-value states for each layer. We use 362

these k states to encode the final instruction and 363

generate the response, thereby setting the size of 364

each cache for all models to k during this period2. 365

5 Experimental Setup 366

5.1 Tasks 367

We compare the models using the following 368

tasks. Detailed information about dataset statis- 369

tics, prompts, and the divisions of document and 370

instruction are provided in Appendices B and E. 371

Long document reading comprehension This 372

task involves testing the ability of the models to 373

answer a designated question based on a long doc- 374

ument that exceeds the typical input length used 375

during the pretraining of the large language models. 376

In this task, we use the datasets of Qasper (Dasigi 377

et al., 2021), MultifieldQA-en (Bai et al., 2023), 378

HotpotQA (Yang et al., 2018), and TriviaQA (Joshi 379

et al., 2017). We also include two other long few- 380

shot tasks, Trec (Li and Roth, 2002) and Sam- 381

Sum (Gliwa et al., 2019), which focus on classifica- 382

tion and dialogue summarization, respectively. We 383

follow Bai et al. (2023) to adapt these datasets into 384

long-document tasks. Instead of reporting the aver- 385

age scores in the main paper, we choose to report 386

the average rank each model performs to avoid the 387

variance differences among the datasets. Detailed 388

results on each dataset is provided in Appendix C. 389

Long document knowledge retrieval We use 390

two tasks to test if the model could preserve the 391

important information during the whole language 392

modeling process: passkey retrieval3 (Mohtashami 393

and Jaggi, 2023) and needle-in-a-haystack 4 tasks. 394

2The cache size of our standard CSE and shared cache
CItruS during the encoding is ls + k while the individual
cache CItruS requires a cache size of 2× (ls + k).

3https://huggingface.co/datasets/lvwerra/
needle-llama3-16x524k

4https://github.com/gkamradt/LLMTest_
NeedleInAHaystack

5

https://huggingface.co/datasets/lvwerra/needle-llama3-16x524k
https://huggingface.co/datasets/lvwerra/needle-llama3-16x524k
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack

The passkey retrieval task tests if the model can395

retrieve a single passkey (e.g., a five-digit number)396

inserted in a synthetic long document made up by397

repetitive simple sentences. We conduct this task398

on the documents with lengths up to 1 million to-399

kens. The needle-in-a-haystack task replaces the400

passkey with a more general text fact and inserts401

them in real long documents. An example of the402

fact and the information of the documents can be403

found in Appendix F. The maximum length of doc-404

uments for needle-in-a-haystack is set to 12,000.405

We use accuracy in the passkey retrieval task and406

the ROUGE metric (Lin, 2004) for the needle-in-a-407

haystack task to award partial correctness.408

Long-range language modeling We report per-409

plexity scores on long-range language modeling to410

estimate how well our models maintain fluency in411

generation (Xiao et al., 2023). We used PG19 (Rae412

et al., 2019) dataset.413

5.2 Baselines414

Streaming LLM always keeps the initial few415

tokens and uses a sliding window to model the416

long sequence (Xiao et al., 2023). This model is417

known for its ability of modeling long sequences418

with lengths up to 4 million tokens.419

TOVA frames transformers as multi-state RNNs420

by using the attention distribution of the last token421

to identify which token should be evicted (Oren422

et al., 2024). This model could be seen as a special423

case of our standard CSE model with the ls as 1.424

H2O uses the accumulative attention score each425

token received to determine whether the token426

should be evicted (Zhang et al., 2024b).427

RoCo uses averaged attention probability from428

future tokens and determines the eviction scope by429

evaluating the standard variance of the attention430

weights one token receives (Ren and Zhu, 2024).431

LONGHEAD (Lu et al., 2024) is another method432

that does not require further training. However,433

it requires large excessive memory cost (although434

could be offloaded to cpu memory, but that would435

cost more time) compared to our methods. Hence436

we choose to omit this model from our baselines to437

maintain a fair comparison.438

Note that our proposed chunked instruction-439

aware state eviction is uncoupled with the eviction440

strategies used by the above models, hence it could441

be applied to all the above methods to achieve even442

Settings Mistral 7B Instruct Llama 2 7B Chat Llama 2 13B Chat

0-4k 4k-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+

Streaming LLM 2.83 3.17 3.50 2.50 3.00 4.17 1.67 3.17 3.83
TOVA 2.67 3.00 2.67 3.67 4.00 3.50 3.83 4.00 4.33
RoCo 3.67 2.67 2.83 3.00 3.17 2.00 4.00 1.33 2.33
H2O 4.00 3.50 4.17 4.17 2.50 2.67 3.33 3.50 4.83

Standard CSE 3.33 3.67 3.00 3.67 4.17 4.17 5.00 3.50 2.00
+ Individual Cache 7.17 8.00 7.00 6.50 7.00 6.67 6.50 7.33 6.33
+ Shared Cache 6.50 6.67 7.00 6.83 7.33 7.33 6.50 7.33 6.33

H2O + Shared Cache 5.17 5.17 5.50 5.33 4.83 5.50 4.67 5.17 5.83

Table 1: The averaged reversed rank results among all
the 8 models on six different reading comprehension
tasks, where 8 is the highest score and 1 is the low-
est score. Results are presented by grouping text with
lengths of 0-4k, 4k-8k, and 8k+. Best results are bolded.

better results. Due to the limitation of the compu- 443

tational cost, we only experiment the instruction- 444

aware state eviction with our proposed chunked 445

average attention score strategy and the accumula- 446

tive attention score strategy used by H2O (denoted 447

as H2O + Shared Cache) in our paper. All baselines 448

are reimplemented with public repositories56. For 449

all baseline models, we apply the same encoding 450

and generation process described in Section 4.3 for 451

fair comparison. 452

5.3 Hyperparameters 453

We applied the position shift mechanism leveraged 454

by Xiao et al. (2023), which always use the same 455

positional embeddings for the caches containing 456

different hidden states, to make the models process 457

long documents better. We also apply this tech- 458

nique to all the baselines to enhance their ability 459

of processing long sequences. We use the Llama 460

2 Chat model (Touvron et al., 2023) with 7 billion 461

and 13 billion parameters and the 7 billion parame- 462

ter Mistral Instruct model (Jiang et al., 2023) as the 463

backbone models. k is set as 768 and ls is set as 464

256, resulting a cache size of 1,024 during model- 465

ing the document. This setting is also applied to all 466

the baseline models. We apply 8 bit quantization on 467

the 13 billion parameter model. Results are inferred 468

on one A100 80G GPU. All the hyperparameters 469

are selected using the validation sets. 470

6 Results 471

6.1 Long document reading comprehension 472

The results of the long document reading com- 473

prehension tasks aggregated over six datasets are 474

shown in Table 1, while the dataset-specific results 475

are shown in Appendix C. First, our Standard CSE 476

method achieves performance comparable to all the 477

5https://github.com/mit-han-lab/streaming-llm
6https://github.com/DRSY/EasyKV

6

https://github.com/mit-han-lab/streaming-llm
https://github.com/DRSY/EasyKV

Figure 6: The results of the passkey retrieval task with Llama 2 7B Chat, Mistral 7B Instruct, and Llama 2 13B Chat.

Settings
Llama 2 7B Chat Mistral 7B Instruct

R-1 R-2 R-L R-1 R-2 R-L

ls = 256, k = 768

Standard CSE 19.87 5.74 17.52 15.17 6.34 13.94
+ Individual Cache 24.72 7.87 24.53 59.05 51.22 59.10
+ Shared Cache 23.73 7.46 23.44 63.47 55.33 63.43

ls = 1,024, k = 1,024

Standard CSE 18.86 7.52 18.04 30.21 14.18 29.23
+ Individual Cache 33.28 17.52 32.76 56.12 51.20 56.08
+ Shared Cache 31.95 18.41 31.47 57.15 51.60 56.97

Table 2: Results of the needle-in-a-haystack task. Best
results are bolded. R-1, R-2, and R-L represent ROUGE-
1, ROUGE-2, and ROUGE-L, respectively.

Figure 7: The language modeling results on the Llama
2 7B chat and Mistral 7B Instruct model. The line chart
is smoothed with a window size of 4096 for clarity.

baselines, demonstrating the effectiveness of our478

basic framework. Both variants of CItruS consis-479

tently outperform all baselines and Standard CSE.480

As mentioned in Section 5.2, our method could also481

be applied on different eviction policies. Hence, we482

further included a variant of the H2O model (H2O483

+ Shared Cache) and show that it achieves better484

performance over the H2O model in all cases.485

We find models with a shared cache achieve the486

same level of performance as their corresponding487

model with separate caches. This suggests that the488

overlapping tokens between the context and the489

instruction text might be sufficient to support lan-490

guage modeling, while the shared cache also main-491

tains the information useful for the downstream492

tasks. We will further discuss this in Section 6.3.493

6.2 Long document knowledge retrieval494

The main results of long document knowledge re-495

trieval are shown in Figure 6 and Table 2. Our496

proposed CItruS retrieves all the passkeys using 497

Llama 2 7B and Mistral 7B while still outperform- 498

ing the Standard CSE for Llama 2 13B7, which 499

shows the superiority of CItruS for long document 500

knowledge retrieval. For the needle-in-a-haystack 501

task, our method outperforms the standard state 502

eviction methods across different large language 503

models and lengths. 504

6.3 Long-range language modeling 505

We compare our model with the long-range lan- 506

guage modeling model, Streaming LLM. Specifi- 507

cally, we evaluate the standard CSE as well as the 508

shared cache version of our proposed CItruS. For 509

CItruS with a shared cache, we randomly sample 510

10 different instructions including different ques- 511

tions from Qasper and HotpotQA dataset. We show 512

the results using one instruction here and append 513

the rest of the results in the Appendix G. Results in 514

Figure 7 show that our standard CSE could main- 515

tain the perplexity when processing long sequences 516

as low as the Streaming LLM. Meanwhile, al- 517

though showing a slight increase in perplexity with 518

the Llama 2 7B Chat model, CSE with a shared 519

cache achieves consistent perplexity results with- 520

out exploding as described by Xiao et al. (2023). 521

This shows that introducing the instruction text as 522

the query to evict hidden states would not affect 523

the text perplexity of the large language models. 524

A more detailed discussion about the roles of the 525

standard cache and the instruction-aware cache in 526

our model is provided in Appendix H. 527

6.4 Analysis 528

In this section, we provide analyses on the hyper- 529

parameters of our model, the effect of chunk size, 530

and the position bias in the knowledge retrieval 531

tasks. We also provide an analysis on the effect 532

of the initial tokens in Appendix I. We report the 533

averaged results in this section since all the models 534

7We omit 5 outlier data points from all the 38 data points
for Llama 2 13B Chat in the passkey retrieval tasks where all
the models performs with an accuracy of 0%.

7

Param. Settings
Llama 2 7B Chat Mistral 7B Instruct

0-4k 4-8k 8k+ 0-4k 4-8k 8k+

ls = 256
k = 768

Standard CSE 36.72 37.07 38.36 34.52 30.57 20.92
+ Individual Cache 43.45 43.26 45.93 45.15 45.11 41.55
+ Shared Cache 43.22 44.07 46.37 43.96 41.56 36.61

ls = 512
k = 512

Standard CSE 36.92 34.51 35.07 33.98 28.36 21.92
+ Individual Cache 41.02 41.52 41.81 45.13 43.38 41.66
+ Shared Cache 41.17 41.79 43.57 44.65 40.06 35.51

ls = 768
k = 256

Standard CSE 32.59 31.04 29.57 30.60 23.19 21.44
+ Individual Cache 34.73 33.79 33.88 40.82 36.67 33.04
+ Shared Cache 36.12 35.67 34.61 38.89 32.50 28.77

Table 3: Results of the hyperparameters under the same
memory budget. Best results are bolded. “Param.”
stands for hyperparameters.

Param. Settings
Llama 2 7B Chat Mistral 7B Instruct

0-4k 4-8k 8k+ 0-4k 4-8k 8k+

ls = 64
k = 768

Standard CSE 36.70 35.83 38.12 32.37 28.46 20.72
+ Individual Cache 43.78 43.86 47.48 45.88 44.01 40.20
+ Shared Cache 43.09 42.82 43.24 43.81 38.89 34.36

ls = 256
k = 768

Standard CSE 36.72 37.07 38.36 34.52 30.57 20.92
+ Individual Cache 43.45 43.26 45.93 45.15 45.11 41.55
+ Shared Cache 43.22 44.07 46.37 43.96 41.56 36.61

ls = 512
k = 768

Standard CSE 38.17 37.49 37.71 31.99 27.90 24.39
+ Individual Cache 43.04 43.18 46.71 42.79 42.09 40.58
+ Shared Cache 42.60 42.89 46.25 42.43 40.05 35.16

ls = 768
k = 768

Standard CSE 39.41 38.25 38.39 33.35 25.74 20.51
+ Individual Cache 42.27 43.45 42.26 42.31 39.76 37.37
+ Shared Cache 42.09 42.61 43.76 42.76 38.72 33.56

Table 4: Results of the different chunk size ls. Best
results are bolded. “Param.” stands for hyperparameters.

perform similarly in the analyses across all the535

datasets. The full results are shown in Appendix C.536

6.4.1 Hyperparameter analysis537

Given a fixed memory budget, there is a trade off538

between ls and k. A larger k can preserve more539

information, potentially leading to a better perfor-540

mance, and ls affects the encoding efficiency. In541

this section, we probe our model by adjusting dif-542

ferent hyperparameters to demonstrate that our pro-543

posed CItruS is insensitive to them.544

Table 3 shows that with a fixed budget, CItruS545

consistently outperforms the Standard CSE models,546

showing that our method is not sensitive to the547

choices of k and ls, and the instruction-aware cache548

methods are the best when considering both the549

efficiency and the down-stream task performance.550

6.4.2 Analysis of the chunk size551

We provide a comparison of models using chunk552

sizes ranging from 64 to 768. The inference time553

of each model decreases linearly as ls increases.554

As shown in Table 4, the performance fluctua-555

tion when using different chunk sizes is very lim-556

ited, while the efficiency is significantly improved.557

Our CItruS model extends the chunk size beyond558

that of previous methods and demonstrates a sub-559

stantial improvement in efficiency for conducting560

long-sequence downstream tasks.561

Figure 8: The position-wise results from CItruS with
shared cache (ls = 1,024, k = 1,024) on needle-in-the-
haystack using Mistral 7B Instruct. The x-axis repre-
sents the position where the needle is inserted, while
the y-axis represents the length of the documents. The
color of the grid represents the ROUGE-1 score.

6.4.3 Position bias in knowledge retrieval 562

Liu et al. (2023) propose that large language mod- 563

els tend to pay less attention to the middle parts of 564

long documents. In this section, we test our model 565

to determine if this issue persists with our proposed 566

instruction-aware cache method. 567

We use the needle-in-a-haystack task as the ba- 568

sic task and evaluate the ROUGE results when the 569

fact is inserted at different positions in the docu- 570

ment. As shown in Figure 8, we demonstrate that 571

the CItruS model still prefers to attend to the in- 572

formation at the beginning and the end, leaving 573

future work to address this lost-in-the-middle issue 574

in eviction-based long-sequence methods. 575

7 Conclusion 576

We have proposed CItruS, an inference-time state 577

eviction method for large language models (LLMs) 578

that improves their performance on long sequence 579

downstream tasks. It features a large chunked se- 580

quence processing procedure and an instruction- 581

aware cache that helps with solving downstream 582

tasks. Experiments on long document reading 583

comprehension, knowledge retrieval, and language 584

modeling show the utility of our method compared 585

to strong baselines. 586

Our work demonstrates the possibility of gener- 587

alizing standard LLMs trained on text constrained 588

to certain lengths to processing longer sequences 589

without any parameter adjustments. Our evalua- 590

tion mainly focuses on retrieving task-related infor- 591

mation from a long document. Future work may 592

consider extending more high-level abilities (e.g., 593

multi-hop and compositional reasoning) to the long 594

sequence regime. Moreover, trainable components 595

can be further introduced to facilitate this process. 596

8

Limitations597

We only tested our methods with Llama 2 and Mis-598

tral models, leaving performance on other datasets599

to be evaluated. The instruction-aware cache is600

only applied to our Standard CSE and the H2O601

models, it could be further applied to models using602

other state eviction policies to possibly further en-603

hance the performance. Our work only uses one604

instruction for each task to conduct all the exper-605

iments. It would be interesting to show whether606

better instruction texts exist that are specifically de-607

signed for conducting long sequence down-stream608

tasks. Future work might consider optimizing the609

query, or even use soft prompt optimization tech-610

nique to select the hidden states.611

Ethical Considerations612

The associated risks with this work include using a613

model trained on vast amounts of text, which likely614

contains gender, racial, and cultural bias. Another615

concern is the potential misuse of the model for616

generating misleading or harmful content when ap-617

plying our method to generate text. Meanwhile,618

cache-based methods could be more effective for619

malicious applications like jailbreaking or reveal-620

ing private information, since it breaks the standard621

usage of the hidden states in large language models.622

9

References623

Sotiris Anagnostidis, Dario Pavllo, Luca Biggio,624
Lorenzo Noci, Aurelien Lucchi, and Thomas Hof-625
mann. 2024. Dynamic context pruning for efficient626
and interpretable autoregressive transformers. Ad-627
vances in Neural Information Processing Systems,628
36.629

Yu Bai, Heyan Huang, Cesare Spinoso-Di Piano, Marc-630
Antoine Rondeau, Sanxing Chen, Yang Gao, and631
Jackie Chi Kit Cheung. 2024. Analyzing task-632
encoding tokens in large language models. arXiv633
preprint arXiv: 2401.11323.634

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,635
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao636
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,637
and Juanzi Li. 2023. Longbench: A bilingual, mul-638
titask benchmark for long context understanding.639
arXiv preprint arXiv: 2308.14508.640

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.641
Longformer: The long-document transformer. arXiv642
preprint arXiv:2004.05150.643

Amanda Bertsch, Uri Alon, Graham Neubig, and644
Matthew Gormley. 2024. Unlimiformer: Long-range645
transformers with unlimited length input. Advances646
in Neural Information Processing Systems, 36.647

Shouyuan Chen, Sherman Wong, Liangjian Chen, and648
Yuandong Tian. 2023. Extending context window of649
large language models via positional interpolation.650
arXiv preprint arXiv: 2306.15595.651

Zihang Dai, Zhilin Yang, Yiming Yang, J. Car-652
bonell, Quoc V. Le, and R. Salakhutdinov. 2019.653
Transformer-xl: Attentive language models beyond a654
fixed-length context. Annual Meeting of the Associa-655
tion for Computational Linguistics.656

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan,657
Noah A. Smith, and Matt Gardner. 2021. A dataset of658
information-seeking questions and answers anchored659
in research papers. North American Chapter of the660
Association for Computational Linguistics.661

Evelina Fedorenko and Rosemary Varley. 2016. Lan-662
guage and thought are not the same thing: evidence663
from neuroimaging and neurological patients. Annals664
of the New York Academy of Sciences, 1369(1):132–665
153.666

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-667
sive language models can be accurately pruned in668
one-shot. In International Conference on Machine669
Learning, pages 10323–10337. PMLR.670

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,671
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang,672
and Haofen Wang. 2023. Retrieval-augmented gen-673
eration for large language models: A survey. arXiv674
preprint arXiv: 2312.10997.675

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, 676
Jiawei Han, and Jianfeng Gao. 2023. Model tells you 677
what to discard: Adaptive kv cache compression for 678
llms. arXiv preprint arXiv:2310.01801. 679

Bogdan Gliwa, Iwona Mochol, M. Biesek, and 680
A. Wawer. 2019. Samsum corpus: A human- 681
annotated dialogue dataset for abstractive summariza- 682
tion. Conference on Empirical Methods in Natural 683
Language Processing. 684

Albert Gu and Tri Dao. 2023. Mamba: Linear-time 685
sequence modeling with selective state spaces. arXiv 686
preprint arXiv: 2312.00752. 687

Albert Gu, Karan Goel, and Christopher Ré. 2022. Effi- 688
ciently modeling long sequences with structured state 689
spaces. ICLR. 690

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, 691
Yu Chen, Heng Ji, and Sinong Wang. 2023. Lm- 692
infinite: Zero-shot extreme length generalization 693
for large language models. arXiv preprint arXiv: 694
2308.16137. 695

Roee Hendel, Mor Geva, and Amir Globerson. 2023. 696
In-context learning creates task vectors. 697

Eduard Hovy, Laurie Gerber, Ulf Hermjakob, Chin- 698
Yew Lin, and Deepak Ravichandran. 2001. Toward 699
semantics-based answer pinpointing. In Proceedings 700
of the First International Conference on Human Lan- 701
guage Technology Research. 702

Dongseong Hwang, Weiran Wang, Zhuoyuan Huo, 703
Khe Chai Sim, and Pedro Moreno Mengibar. 2024. 704
Transformerfam: Feedback attention is working 705
memory. arXiv preprint arXiv:2404.09173. 706

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 707
sch, Chris Bamford, Devendra Singh Chaplot, Diego 708
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 709
laume Lample, Lucile Saulnier, Lélio Renard Lavaud, 710
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, 711
Thibaut Lavril, Thomas Wang, Timothée Lacroix, 712
and William El Sayed. 2023. Mistral 7b. arXiv 713
preprint arXiv: 2310.06825. 714

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke 715
Zettlemoyer. 2017. Triviaqa: A large scale distantly 716
supervised challenge dataset for reading comprehen- 717
sion. Annual Meeting of the Association for Compu- 718
tational Linguistics. 719

Sehoon Kim, Sheng Shen, David Thorsley, Amir Gho- 720
lami, Woosuk Kwon, Joseph Hassoun, and Kurt 721
Keutzer. 2022. Learned token pruning for transform- 722
ers. In Proceedings of the 28th ACM SIGKDD Con- 723
ference on Knowledge Discovery and Data Mining, 724
pages 784–794. 725

R. Kuhn and R. De Mori. 1990. A cache-based natural 726
language model for speech recognition. IEEE Trans- 727
actions on Pattern Analysis and Machine Intelligence, 728
12(6):570–583. 729

10

https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/V1/2021.NAACL-MAIN.365
https://doi.org/10.18653/V1/2021.NAACL-MAIN.365
https://doi.org/10.18653/V1/2021.NAACL-MAIN.365
https://doi.org/10.18653/V1/2021.NAACL-MAIN.365
https://doi.org/10.18653/V1/2021.NAACL-MAIN.365
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
http://arxiv.org/abs/2310.15916
https://www.aclweb.org/anthology/H01-1069
https://www.aclweb.org/anthology/H01-1069
https://www.aclweb.org/anthology/H01-1069
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.1109/34.56193
https://doi.org/10.1109/34.56193
https://doi.org/10.1109/34.56193

Kuang-Huei Lee, Xinyun Chen, Hiroki Furuta, John730
Canny, and Ian Fischer. 2024. A human-inspired731
reading agent with gist memory of very long contexts.732
arXiv preprint arXiv: 2402.09727.733

Xianming Li, Zongxi Li, Xiaotian Luo, Haoran Xie,734
Xing Lee, Yingbin Zhao, Fu Lee Wang, and Qing735
Li. 2023. Recurrent attention networks for long-text736
modeling. In Findings of the Association for Com-737
putational Linguistics: ACL 2023, pages 3006–3019,738
Toronto, Canada. Association for Computational Lin-739
guistics.740

Xin Li and Dan Roth. 2002. Learning question clas-741
sifiers. In COLING 2002: The 19th International742
Conference on Computational Linguistics.743

Chin-Yew Lin. 2004. ROUGE: A package for auto-744
matic evaluation of summaries. In Text Summariza-745
tion Branches Out, pages 74–81, Barcelona, Spain.746
Association for Computational Linguistics.747

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-748
jape, Michele Bevilacqua, F. Petroni, and Percy749
Liang. 2023. Lost in the middle: How language750
models use long contexts. Transactions of the Asso-751
ciation for Computational Linguistics.752

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao753
Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyril-754
lidis, and Anshumali Shrivastava. 2024. Scis-755
sorhands: Exploiting the persistence of importance756
hypothesis for llm kv cache compression at test time.757
Advances in Neural Information Processing Systems,758
36.759

Yi Lu, Xin Zhou, Wei He, Jun Zhao, Tao Ji, Tao Gui,760
Qi Zhang, and Xuanjing Huang. 2024. Longheads:761
Multi-head attention is secretly a long context pro-762
cessor. arXiv preprint arXiv:2402.10685.763

Hongyin Luo, Shang-Wen Li, Mingye Gao, Seunghak764
Yu, and James Glass. 2021. Cooperative self-training765
of machine reading comprehension. arXiv preprint766
arXiv:2103.07449.767

Amirkeivan Mohtashami and Martin Jaggi. 2023. Land-768
mark attention: Random-access infinite context769
length for transformers. Neural Information Pro-770
cessing Systems.771

Tsendsuren Munkhdalai, Manaal Faruqui, and Sid-772
dharth Gopal. 2024. Leave no context behind:773
Efficient infinite context transformers with infini-774
attention. arXiv preprint arXiv:2404.07143.775

Piotr Nawrot, Adrian Łańcucki, Marcin Chochowski,776
David Tarjan, and Edoardo M. Ponti. 2024. Dynamic777
memory compression: Retrofitting llms for acceler-778
ated inference. arXiv preprint arXiv: 2403.09636.779

Matanel Oren, Michael Hassid, Yossi Adi, and Roy780
Schwartz. 2024. Transformers are multi-state rnns.781
arXiv preprint arXiv:2401.06104.782

Bo Peng, Eric Alcaide, Quentin G. Anthony, Alon Al- 783
balak, Samuel Arcadinho, Stella Biderman, Huanqi 784
Cao, Xin Cheng, Michael Chung, Matteo Grella, 785
G. Kranthikiran, Xuming He, Haowen Hou, Przemys- 786
law Kazienko, Jan Kocoń, Jiaming Kong, Bartlomiej 787
Koptyra, Hayden Lau, Krishna Sri Ipsit Mantri, Fer- 788
dinand Mom, Atsushi Saito, Xiangru Tang, Bolun 789
Wang, J. S. Wind, Stansilaw Wozniak, Ruichong 790
Zhang, Zhenyuan Zhang, Qihang Zhao, P. Zhou, Jian 791
Zhu, and Rui Zhu. 2023. Rwkv: Reinventing rnns 792
for the transformer era. Conference on Empirical 793
Methods in Natural Language Processing. 794

Guanghui Qin, Yukun Feng, and Benjamin Van Durme. 795
2023. The NLP task effectiveness of long-range 796
transformers. In Proceedings of the 17th Conference 797
of the European Chapter of the Association for Com- 798
putational Linguistics, pages 3774–3790, Dubrovnik, 799
Croatia. Association for Computational Linguistics. 800

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, 801
and Timothy P Lillicrap. 2019. Compressive trans- 802
formers for long-range sequence modelling. arXiv 803
preprint arXiv:1911.05507. 804

Siyu Ren and Kenny Q Zhu. 2024. On the efficacy 805
of eviction policy for key-value constrained gen- 806
erative language model inference. arXiv preprint 807
arXiv:2402.06262. 808

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, 809
Wen Bo, and Yunfeng Liu. 2024. Roformer: En- 810
hanced transformer with rotary position embedding. 811
Neurocomputing, 568:127063. 812

Matteo Tiezzi, Michele Casoni, Alessandro Betti, Tom- 813
maso Guidi, Marco Gori, and Stefano Melacci. 2024. 814
On the resurgence of recurrent models for long se- 815
quences - survey and research opportunities in the 816
transformer era. arXiv preprint arXiv: 2402.08132. 817

Eric Todd, Millicent L. Li, Arnab Sen Sharma, Aaron 818
Mueller, Byron C. Wallace, and David Bau. 2023. 819
Function vectors in large language models. 820

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 821
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 822
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 823
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton 824
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 825
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 826
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 827
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 828
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 829
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 830
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 831
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 832
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 833
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 834
stein, Rashi Rungta, Kalyan Saladi, Alan Schel- 835
ten, Ruan Silva, Eric Michael Smith, Ranjan Sub- 836
ramanian, Xiaoqing Ellen Tan, Binh Tang, Ross 837
Taylor, Adina Williams, Jian Xiang Kuan, Puxin 838
Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, An- 839
gela Fan, Melanie Kambadur, Sharan Narang, Aure- 840
lien Rodriguez, Robert Stojnic, Sergey Edunov, and 841

11

https://doi.org/10.18653/v1/2023.findings-acl.188
https://doi.org/10.18653/v1/2023.findings-acl.188
https://doi.org/10.18653/v1/2023.findings-acl.188
https://aclanthology.org/C02-1150
https://aclanthology.org/C02-1150
https://aclanthology.org/C02-1150
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.48550/arXiv.2305.16300
https://doi.org/10.48550/arXiv.2305.16300
https://doi.org/10.48550/arXiv.2305.16300
https://doi.org/10.48550/arXiv.2305.16300
https://doi.org/10.48550/arXiv.2305.16300
https://doi.org/10.48550/arXiv.2305.13048
https://doi.org/10.48550/arXiv.2305.13048
https://doi.org/10.48550/arXiv.2305.13048
https://doi.org/10.18653/v1/2023.eacl-main.273
https://doi.org/10.18653/v1/2023.eacl-main.273
https://doi.org/10.18653/v1/2023.eacl-main.273
https://doi.org/https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/https://doi.org/10.1016/j.neucom.2023.127063
http://arxiv.org/abs/2310.15213

Thomas Scialom. 2023. Llama 2: Open foundation842
and fine-tuned chat models. arXiv preprint arXiv:843
2307.09288.844

Hongjie Wang, Bhishma Dedhia, and Niraj K. Jha.845
2023a. Zero-tprune: Zero-shot token prun-846
ing through leveraging of the attention graph in847
pre-trained transformers. arXiv preprint arXiv:848
2305.17328.849

Junxiong Wang, J. Yan, Albert Gu, and Alexander M.850
Rush. 2022. Pretraining without attention. Confer-851
ence on Empirical Methods in Natural Language852
Processing.853

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou,854
Fandong Meng, Jie Zhou, and Xu Sun. 2023b. Label855
words are anchors: An information flow perspective856
for understanding in-context learning. Conference on857
Empirical Methods in Natural Language Processing.858

Jason Weston and Sainbayar Sukhbaatar. 2023. System859
2 attention (is something you might need too). arXiv860
preprint arXiv: 2311.11829.861

Yuhuai Wu, Markus N Rabe, DeLesley Hutchins, and862
Christian Szegedy. 2022. Memorizing transformers.863
arXiv preprint arXiv:2203.08913.864

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song865
Han, and Mike Lewis. 2023. Efficient streaming866
language models with attention sinks. arXiv preprint867
arXiv:2309.17453.868

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang,869
Prajjwal Bhargava, Rui Hou, Louis Martin, Rashi870
Rungta, Karthik Abinav Sankararaman, Barlas Oguz,871
et al. 2023. Effective long-context scaling of founda-872
tion models. arXiv preprint arXiv:2309.16039.873

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,874
William W. Cohen, R. Salakhutdinov, and Christo-875
pher D. Manning. 2018. Hotpotqa: A dataset for876
diverse, explainable multi-hop question answering.877
Conference on Empirical Methods in Natural Lan-878
guage Processing.879

Zi Yang and Nan Hua. 2024. Attendre: Wait to attend by880
retrieval with evicted queries in memory-based trans-881
formers for long context processing. arXiv preprint882
arXiv: 2401.04881.883

Deming Ye, Yankai Lin, Yufei Huang, and Maosong884
Sun. 2021. Tr-bert: Dynamic token reduction885
for accelerating bert inference. arXiv preprint886
arXiv:2105.11618.887

Jungmin Yun, Mihyeon Kim, and Youngbin Kim. 2023.888
Focus on the core: Efficient attention via pruned889
token compression for document classification. In890
Findings of the Association for Computational Lin-891
guistics: EMNLP 2023, pages 13617–13628, Singa-892
pore. Association for Computational Linguistics.893

Zhenyu Zhang, Runjin Chen, Shiwei Liu, Zhewei Yao, 894
Olatunji Ruwase, Beidi Chen, Xiaoxia Wu, and 895
Zhangyang Wang. 2024a. Found in the middle: 896
How language models use long contexts better via 897
plug-and-play positional encoding. arXiv preprint 898
arXiv:2403.04797. 899

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong 900
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan- 901
dong Tian, Christopher Ré, Clark Barrett, et al. 2024b. 902
H2o: Heavy-hitter oracle for efficient generative in- 903
ference of large language models. Advances in Neu- 904
ral Information Processing Systems, 36. 905

Jing Zhao, Junwei Bao, Yifan Wang, Yongwei Zhou, 906
Youzheng Wu, Xiaodong He, and Bowen Zhou. 907
2021. Ror: Read-over-read for long document 908
machine reading comprehension. arXiv preprint 909
arXiv:2109.04780. 910

Penghao Zhao, Hailin Zhang, Qinhan Yu, Zhen- 911
gren Wang, Yunteng Geng, Fangcheng Fu, Ling 912
Yang, Wentao Zhang, Jie Jiang, and Bin Cui. 2024. 913
Retrieval-augmented generation for ai-generated con- 914
tent: A survey. arXiv preprint arXiv: 2402.19473. 915

Yimeng Zhuang and Huadong Wang. 2019. Token-level 916
dynamic self-attention network for multi-passage 917
reading comprehension. In Proceedings of the 57th 918
Annual Meeting of the Association for Computational 919
Linguistics, pages 2252–2262, Florence, Italy. Asso- 920
ciation for Computational Linguistics. 921

12

https://doi.org/10.48550/arXiv.2212.10544
https://doi.org/10.48550/arXiv.2305.14160
https://doi.org/10.48550/arXiv.2305.14160
https://doi.org/10.48550/arXiv.2305.14160
https://doi.org/10.48550/arXiv.2305.14160
https://doi.org/10.48550/arXiv.2305.14160
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/2023.findings-emnlp.909
https://doi.org/10.18653/v1/2023.findings-emnlp.909
https://doi.org/10.18653/v1/2023.findings-emnlp.909
https://doi.org/10.18653/v1/P19-1218
https://doi.org/10.18653/v1/P19-1218
https://doi.org/10.18653/v1/P19-1218
https://doi.org/10.18653/v1/P19-1218
https://doi.org/10.18653/v1/P19-1218

A Details for the Intersection Probing922

Experiments923

The goal of the intersection probing experiment is924

to determine whether the document context selects925

a different set of top-k states with the highest at-926

tention scores within the cache compared to the927

instruction text. This difference could lead to the928

document context overlooking crucial information929

required by the final instruction.930

For this purpose, we use all the 416 documents931

in the test split of the Qasper dataset (Dasigi et al.,932

2021). For each document, we randomly select a933

chunk, referred to as Context 1, consisting of 200934

tokens from the first 1
4 document to simulate the935

cache C during the eviction process. If the first936
1
4 document contains fewer than 200 tokens, we937

use the entire first 1
4 as Context 1. Then, we ran-938

domly select a second chunk, referred to as Context939

2, from the final 1
4 document to ensure sufficient940

distance between Context 1 and Context 2, avoid-941

ing recency bias and placing Context 2 close to the942

final instruction text. To ensure a fair comparison,943

we also make sure that the length of Context 2 is944

the same as that of the instruction text for each945

document.946

We send the concatenation of Context 1 and Con-947

text 2 to the Mistral 7B Instruct model to obtain the948

simulated cache C, which consists of all the key-949

value states of Context 1. We could also acquire950

the attention distribution from Context 2 to Con-951

text 1 through this step. At each model layer l, we952

define the importance of the jth state in Context 1953

as the average of alij , the attention score from each954

position i in Context 2 to the jth state in Context955

1. We keep the top-k states in Context 1 with the956

highest average attention scores as Setselection, and957

compute the final evicted cache Ĉcontext 2 following958

Equ. (2) and (3). Similarly, we use the same model959

to encode the concatenation of Context 1 and the in-960

struction text to get the attention distribution from961

the instruction text to Context 1, and follow the962

same steps as described above to obtain the final963

evicted cache Ĉinstruction from the instruction text.964

In this experiment, we set k to 20, which is 1
10 of965

length of the first context.966

We compute the intersection ratio between the967

Ĉcontext 2 and Ĉinstruction as |Ĉcontext 2∩Ĉinstruction|
|Ĉinstruction|

, and968

average the intersection ratio over all the 416 doc-969

uments for each layer. As shown in Figure 3, the970

intersection ratio is particularly low in the middle971

layers of the model, supporting our hypothesis that972

the document context neglects a significant amount 973

of information considered important by the final 974

instruction. This discrepancy may be attributed to 975

the remarkably different semantics of the instruc- 976

tion text and the document context, despite their 977

close proximity. 978

B Statistics for Each Dataset 979

Qasper (Dasigi et al., 2021) consists of 5049 980

questions from 1585 NLP research papers. The 981

questions are created by practitioners who read 982

only the title and abstract, and answered by an- 983

other group, who also provide supporting evidence. 984

We use all available questions for each of the 224 985

documents selected by (Bai et al., 2023) from this 986

dataset to evaluate model performance. When do- 987

ing the intersection probing experiments, we use 988

all 416 documents from the test split of Qasper. We 989

randomly choose one question as the instruction 990

text for each document. 991

MultifieldQA (Bai et al., 2023) consists of long 992

articles from about 10 sources, including Latex pa- 993

pers, judicial documents, government work reports, 994

and PDF documents indexed by Google. For each 995

long article, several PhD and master students are 996

invited to annotate. Each annotator is asked to pro- 997

pose questions with definitive answers as much as 998

possible. We only use the English version of this 999

dataset in our experiments. It contains 150 long 1000

documents. 1001

HotpotQA (Yang et al., 2018) is a dataset with 1002

113,000 question-answer pairs based on Wikipedia. 1003

This dataset requires multi-document reasoning to 1004

answer questions, and the questions are quite di- 1005

verse and not tied to specific knowledge bases. Hot- 1006

potQA has been adapted by (Bai et al., 2023) for 1007

long context evaluation, by concatenating the evi- 1008

dence text containing the answer along with several 1009

distracting articles. We use all 150 documents from 1010

the adapted HotpotQA for our experiments. 1011

TriviaQA (Joshi et al., 2017) is a reading com- 1012

prehension dataset containing over 650K question- 1013

answer-evidence triples. Averagely, six evidence 1014

documents are collected for each question. We use 1015

all 300 document-question pairs selected by (Bai 1016

et al., 2023), where each document consists of the 1017

concatenation of all available evidence documents 1018

for that question. 1019

TREC (Li and Roth, 2002) is a question type 1020

13

Settings Llama 2 7B Chat Llama 2 13B Chat Mistral 7B Instruct

0-4k 4k-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+

Streaming LLM 33.78 34.92 37.11 37.39 37.95 36.54 34.26 31.00 27.21
TOVA 35.60 33.98 35.80 40.71 37.59 35.52 31.67 27.54 22.17
RoCo 32.46 25.70 20.64 40.30 31.02 25.89 32.67 25.28 19.83
H2O 34.47 29.54 27.26 38.68 35.24 35.96 34.60 25.37 23.08

Standard CSE 36.72 37.07 38.36 43.68 39.18 30.74 34.52 30.57 20.92
+ Individual Cache 43.45 43.26 45.93 46.43 46.61 40.80 45.15 45.11 41.55
+ Shared Cache 43.22 44.07 46.37 46.66 46.91 41.53 43.96 41.56 36.61

H2O + Shared Cache 38.26 39.19 40.27 42.00 41.54 42.30 40.28 36.23 32.45

Table 5: The averaged results on six different long sequence tasks. Results are separately presented by grouping text
with different source lengths. Best results are bolded.

Models Settings
Qasper MultifieldQA HotpotQA Trec TriviaQA SamSum

0-4k 4k-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+

Llama 2
7B Chat

Streaming LLM 8.36 10.54 27.77 23.51 22.07 17.34 25.56 23.81 26.13 47.00 52.00 40.00 61.96 66.64 71.37 36.31 34.47 40.07
TOVA 9.81 13.01 25.00 22.44 23.99 16.06 35.16 29.15 29.66 50.00 57.00 50.00 63.95 53.78 63.03 32.23 26.94 31.06
RoCo 10.82 15.71 7.89 27.39 15.74 12.43 30.99 27.74 20.48 49.00 59.00 56.00 53.20 28.20 21.53 23.35 7.79 5.53
H2O 9.31 12.61 14.54 31.08 21.66 23.52 46.92 35.22 32.74 50.00 54.00 43.00 62.45 48.06 45.76 7.06 5.67 4.00
Standard CSE 8.43 14.84 27.08 23.19 22.67 15.06 33.30 24.68 35.27 49.00 55.00 52.00 70.10 75.05 71.99 36.27 30.17 28.77

+ Individual Cache 20.71 16.80 28.77 36.65 28.69 24.67 43.04 38.95 41.75 55.00 62.00 65.00 67.44 80.30 82.10 37.87 32.84 33.26
+ Shared Cache 20.78 17.48 29.02 38.43 30.81 24.90 43.21 40.59 42.88 56.00 63.00 63.00 64.14 80.05 83.50 36.74 32.48 34.93

H2O + Shared Cache 16.91 14.87 33.52 40.59 31.80 25.78 44.00 38.32 36.07 45.00 53.00 49.00 75.27 73.26 66.71 7.76 23.88 30.55

Llama 2
13B Chat

Streaming LLM 12.48 12.86 19.81 24.36 24.61 14.22 28.66 30.12 31.88 52.00 58.00 44.00 76.09 77.91 75.22 30.76 24.19 34.12
TOVA 17.18 13.76 23.20 26.75 24.34 14.23 40.79 29.56 36.59 56.00 59.00 49.00 80.05 84.22 76.43 23.51 14.66 13.69
RoCo 16.09 12.86 24.41 26.85 17.48 10.08 39.09 26.26 15.84 57.00 58.00 45.00 82.41 69.71 59.27 20.34 1.79 0.72
H2O 15.72 12.92 27.03 30.28 26.01 22.00 35.36 35.95 30.66 56.00 53.00 52.00 80.93 78.37 77.33 13.77 5.20 6.73
Standard CSE 17.92 15.88 4.91 27.75 22.52 9.09 44.46 29.74 30.65 55.00 51.00 42.00 80.68 83.61 70.48 36.24 32.34 27.29

+ Individual Cache 16.67 25.07 9.06 39.58 34.79 15.19 43.27 37.91 40.38 57.00 60.00 58.00 84.70 86.32 86.52 37.36 35.57 35.66
+ Shared Cache 19.52 25.75 15.47 38.22 34.36 22.34 45.78 37.83 40.54 55.00 63.00 56.00 85.30 87.79 83.89 36.11 32.70 30.96

H2O + Shared Cache 22.02 23.99 28.04 35.96 32.21 43.04 34.49 35.38 39.70 54.00 58.00 49.00 84.80 89.32 82.36 20.71 10.32 11.67

Mistral
7B Instruct

Streaming LLM 26.90 20.21 13.59 38.51 27.72 17.17 29.71 24.94 27.42 48.00 55.00 44.00 49.06 45.27 49.39 13.39 12.84 11.70
TOVA 27.82 21.95 13.86 38.70 28.07 18.04 32.68 25.01 23.52 47.00 54.00 37.00 36.96 27.96 28.93 6.84 8.22 11.68
RoCo 28.35 26.06 18.43 45.18 27.45 17.84 47.24 35.26 26.77 45.00 48.00 44.00 22.74 8.32 6.86 7.53 6.57 5.05
H2O 27.02 22.67 14.60 48.68 32.12 31.21 49.16 35.36 31.83 48.00 49.00 47.00 21.97 3.00 1.00 12.76 10.06 12.85
Standard CSE 27.73 21.08 7.61 42.01 28.17 19.78 37.74 34.01 27.14 46.00 55.00 33.00 31.16 21.36 16.02 22.50 23.79 21.97

+ Individual Cache 29.93 27.66 14.93 55.10 40.75 45.48 45.88 46.10 32.07 50.00 64.00 57.00 61.99 61.69 65.64 27.99 30.44 34.19
+ Shared Cache 30.93 27.14 19.18 54.34 40.53 45.96 45.71 45.37 35.53 50.00 59.00 52.00 56.19 48.16 35.69 26.61 29.15 31.30

H2O + Shared Cache 29.41 23.47 18.85 53.28 38.04 42.23 45.99 45.70 34.21 48.00 62.00 52.00 57.83 43.32 42.67 7.17 4.87 4.72

Table 6: The detailed results on six different long sequence tasks, where ls = 256, k = 768 for all methods. Results
are separately presented by grouping text with different source lengths.

classification dataset collected from 4500 English1021

questions published by USC (Hovy et al., 2001)1022

together with 500 manually constructed questions1023

for a few rare question types. This dataset has also1024

been adapted for long context evaluation (Bai et al.,1025

2023). This is achieved by sampling several cases1026

from the training set to create few-shot examples1027

as long context. We use all 300 examples from the1028

adapted TREC.1029

SamSum (Gliwa et al., 2019) includes around1030

16K messenger-like conversations with summaries,1031

created by English-fluent linguists. These conver-1032

sations mirror the topics and styles of real-life mes-1033

senger interactions, ranging from informal to for-1034

mal, and may include slang, emoticons, and typos.1035

Each conversation is annotated with a third-person1036

summary, providing a concise overview of the dis-1037

cussion. This dataset has been adapted for long1038

context evaluation as well in the same manner as1039

the TREC dataset, and we use all 300 examples1040

from this adaptation.1041

PG19 (Rae et al., 2019) includes a set of books 1042

extracted from the Project Gutenberg books library, 1043

that were published before 1919. We concatenate 1044

several selected books from this dataset to form a 1045

super long document and test the language model- 1046

ing ability of our proposed methods on this docu- 1047

ment to up to 400K tokens in length. 1048

C Detailed Results for Each Dataset 1049

In this section, we provide the dataset results for all 1050

the experiments. In Table 5, we show the averaged 1051

results of all the baseline models and the CItruS 1052

model, while the detailed results containing differ- 1053

ent datasets are shown in Table 6. Dataset-wise 1054

experiment results using different hyperparameters 1055

are shown in Table 7, Table 8, Table 9. Table 10, 1056

Table 14, and Table 15. 1057

14

Models Settings
Qasper MultifieldQA HotpotQA Trec TriviaQA SamSum

0-4k 4k-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+

Llama 2
7B Chat

Standard CSE 11.70 14.56 25.00 22.51 19.57 8.63 29.64 24.84 34.76 48.00 48.00 42.00 74.15 73.14 73.13 35.49 26.95 26.87
+ Individual Cache 18.46 12.47 31.89 36.58 29.15 14.87 39.26 38.63 38.60 46.00 57.00 58.00 68.07 80.72 79.66 37.73 31.15 27.81
+ Shared Cache 19.48 11.82 34.78 35.49 31.19 14.34 41.13 37.29 40.58 49.00 55.00 54.50 64.71 84.09 87.52 37.22 31.33 29.67

Llama 2
13B Chat

Standard CSE 17.57 12.26 3.13 29.76 15.33 6.94 37.94 23.75 13.13 52.00 47.00 41.00 84.62 69.46 41.09 34.39 20.98 13.63
+ Individual Cache 19.29 23.11 1.69 38.49 20.53 10.49 38.26 26.90 22.27 53.00 59.00 55.00 85.48 79.79 81.49 34.71 28.20 20.33
+ Shared Cache 20.36 21.80 5.90 38.89 21.18 12.75 40.20 27.66 22.26 54.00 61.00 49.00 85.39 78.56 69.72 33.15 24.04 14.97

Mistral
7B Instruct

Standard CSE 27.48 21.83 9.61 38.67 28.22 17.08 37.20 28.43 25.93 42.00 44.00 29.00 32.82 26.86 28.51 25.69 20.80 21.36
+ Individual Cache 28.93 25.32 14.08 53.46 36.87 47.70 52.38 45.48 38.90 44.00 55.00 53.00 61.55 64.69 64.02 30.46 32.94 32.25
+ Shared Cache 29.83 25.22 18.90 53.68 37.75 46.49 50.84 45.40 35.89 42.00 53.00 46.00 60.27 45.66 32.02 31.28 33.34 33.75

Table 7: The detailed results on six different long sequence tasks, where ls = 512, k = 512 for all methods. Results
are separately presented by grouping text with different source lengths.

Models Settings
Qasper MultifieldQA HotpotQA Trec TriviaQA SamSum

0-4k 4k-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+

Llama 2
7B Chat

Standard CSE 10.26 10.42 29.17 24.05 20.45 8.13 31.03 23.94 24.82 33.00 35.50 28.00 71.38 74.90 68.84 25.82 21.00 18.44
+ Individual Cache 15.22 11.09 28.19 28.43 21.79 18.14 44.69 28.28 36.19 31.00 49.00 40.00 58.09 73.99 66.09 30.96 18.57 14.64
+ Shared Cache 17.50 13.23 35.97 30.51 22.44 9.29 44.98 34.58 34.14 30.00 47.00 37.00 62.56 76.12 68.62 31.14 20.63 22.61

Llama 2
13B Chat

Standard CSE 11.76 4.74 5.72 21.47 8.90 5.64 19.25 4.87 11.98 41.00 41.00 28.00 69.39 35.10 35.48 24.52 3.98 2.67
+ Individual Cache 18.02 10.93 12.26 32.66 20.36 15.97 28.30 23.30 26.32 44.00 48.00 41.00 84.61 78.51 81.02 26.34 7.97 7.29
+ Shared Cache 17.27 10.20 10.85 37.06 22.92 17.46 26.75 26.69 26.45 42.00 49.00 37.00 84.08 78.79 76.02 26.76 8.72 6.33

Mistral
7B Instruct

Standard CSE 25.59 20.65 18.20 32.87 26.97 19.38 34.74 22.01 25.67 27.00 25.00 19.00 38.67 24.65 25.08 24.72 19.83 21.33
+ Individual Cache 26.13 20.69 18.89 48.67 37.45 47.71 48.60 41.52 33.23 33.00 48.00 33.00 57.99 43.55 42.02 30.51 28.78 23.36
+ Shared Cache 25.67 21.22 17.88 50.88 36.95 41.19 45.26 41.69 36.48 33.00 46.00 31.00 47.63 21.22 19.52 30.90 27.91 26.56

Table 8: The detailed results on six different long sequence tasks, where ls = 768, k = 256 for all methods. Results
are separately presented by grouping text with different source lengths.

D Information Neglect of the Sliding1058

Window Methods1059

As pointed out by Jiang et al. (2023), the sliding1060

window method with a window size of w would1061

make the ith token representation hli in a specific1062

layer l access tokens from the input layer at a dis-1063

tance of up to l × w. This is due to the inherent1064

design of attention mechanism, where the represen-1065

tations of a former token in one layer could only be1066

aggregated to the representations of a following to-1067

ken in the next layer. We describe this phenomenon1068

more specifically by analyzing the equation of the1069

sliding window attention mechanism for the token1070

ti with index i in a specific layer l,1071

alij =

exp

(
qli·klj√
dk

)
∑i

j′=i−w exp

(
qli·klj′√

dk

) (6)1072

1073

Attentionli =

i∑
j=i−w

alij · vlj (7)1074

where dk is the dimension of the hidden states, i1075

and j are the the indexes of the query token and1076

the tokens whose information are aggregated, re-1077

spectively. As all the tokens are processed paral-1078

lelly in one layer, the hidden states vj and kj could1079

only contain their aggregated information from the1080

previous layer, acquired by Attentionl−1
j . Consid-1081

ering qi could only attend to {vi−w, . . . , vi} and1082

{ki−w, . . . , ki} in one layer, the information ag- 1083

gregation range r(i, j, l, l′) for ti from layer l′ to l 1084

is, 1085

r(i, j, l, l′) =

l⋃
l∗=l′

i⋃

i∗=i−(l−l∗)×w

Attentionl
∗
i∗

(8) 1086

Hence, the information of token ti in the layer 1087

0 (i.e., the embedding layer) would completely dis- 1088

appear in layer l after l×w time steps. Considering 1089

the effect that LLM would use specific layers to 1090

process the specifc information (e.g., syntax, task 1091

vector, etc) (Hendel et al., 2023; Todd et al., 2023), 1092

the specific information for one token might disap- 1093

pear merely after a few window lengths. 1094

E Prompt for Each Task 1095

We show all of the prompts we used for each task 1096

in Table 11. 1097

F Setup for the Needle-in-a-Haystack 1098

Task 1099

Due to the computational cost limitation, we used 1100

one fact to conduct this task. The fact is “The 1101

best thing to do in San Francisco is eat a sandwich 1102

and sit in Dolores Park on a sunny day.” and the 1103

question input is “What is the best thing to do in 1104

San Francisco?”. The document is concatenated 1105

from documents from Paul Graham Essays. We cut 1106

the first 7 tokens where the model always generate 1107

15

Models Settings
Qasper MultifieldQA HotpotQA Trec TriviaQA SamSum

0-4k 4k-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+

Llama 2
7B Chat

Standard CSE 10.15 13.93 25.00 25.91 21.59 16.65 32.68 31.54 33.44 55.00 56.00 51.00 71.75 73.64 73.72 33.52 28.26 26.42
+ Individual Cache 19.97 14.91 29.33 32.87 28.94 24.18 43.58 39.46 42.37 53.00 61.00 64.00 68.72 81.19 85.60 37.44 31.83 32.00
+ Shared Cache 19.63 15.07 30.28 33.19 30.11 27.17 41.13 38.12 43.18 57.00 60.00 63.00 69.41 82.80 86.93 37.90 33.00 29.70

Mistral
7B Instruct

Standard CSE 22.96 20.93 20.94 41.62 27.26 18.66 33.26 26.06 19.30 46.00 55.00 45.00 33.71 22.68 24.65 14.41 15.45 17.76
+ Individual Cache 28.76 25.26 14.45 55.43 36.75 43.01 39.75 41.59 34.00 48.00 59.00 54.00 56.79 57.22 63.82 28.02 32.70 34.20
+ Shared Cache 29.15 25.13 15.74 54.55 37.05 37.78 43.19 43.81 32.15 46.00 57.00 52.00 53.79 45.32 40.52 27.92 31.97 32.76

Table 9: The detailed results on six different long sequence tasks, where ls = 512, k = 768 for all methods. Results
are separately presented by grouping text with different source lengths..

Models Settings
Qasper MultifieldQA HotpotQA Trec TriviaQA SamSum

0-4k 4k-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+

Llama 2
7B Chat

Standard CSE 8.82 14.12 29.17 26.33 21.70 16.74 34.49 33.97 33.62 58.00 52.00 53.00 75.62 78.95 73.62 33.17 28.76 24.21
+ Individual Cache 22.65 16.52 25.05 34.04 30.62 18.85 38.23 36.64 40.67 53.00 61.00 59.00 69.16 82.77 82.37 36.55 33.17 27.59
+ Shared Cache 20.52 15.11 24.83 33.33 27.58 20.70 37.96 37.94 42.66 53.00 63.00 60.00 70.13 81.68 84.47 37.59 30.34 29.89

Mistral
7B Instruct

Standard CSE 26.24 22.10 17.73 42.75 26.37 16.64 35.25 26.72 19.11 48.00 51.00 38.00 31.18 15.87 16.21 16.66 12.35 15.37
+ Individual Cache 28.28 23.91 16.08 54.69 36.15 35.06 41.04 38.40 29.53 45.00 59.00 54.00 56.79 50.32 56.02 28.03 30.79 33.54
+ Shared Cache 28.99 23.95 15.14 55.93 37.74 35.83 42.36 39.44 29.61 47.00 56.00 52.00 53.79 44.82 39.69 28.46 30.34 29.11

Table 10: The detailed results on six different long sequence tasks, where ls = 768, k = 768 for all methods.
Results are separately presented by grouping text with different source lengths.

“The best thing to do in San Francisco is” to avoid1108

the miscalculation of the information overlap. The1109

template we used is shown in Table 11.1110

G Results of Perplexity with Other1111

Instructions1112

We used 10 different instructions, shown in Ta-1113

ble 12. We show the perplexity of models of CItruS1114

with Shared cache when using these ten different1115

instructions in Figure 9, Figure 10, Figure 11, and1116

Figure 12. As these results demonstrate, the per-1117

plexity of our Shared Cache CSE remains consis-1118

tent across a wide variety of instructions, similar to1119

the standard CSE and streaming LLM methods.1120

H Discussion1121

In this paper, we argue that the cache used in stan-1122

dard chunked state eviction (CSE) is primarily re-1123

sponsible for maintaining the perplexity of lan-1124

guage models, whereas an instruction-aware cache1125

offers advantages for long-sequence downstream1126

tasks. This claim is supported by the following1127

observations from our experiments: (1) perplexity1128

evaluations and previous work on state eviction1129

methods (Zhang et al., 2024b; Oren et al., 2024)1130

indicate that the basic cache effectively maintains1131

language model perplexity; (2) performance im-1132

provements are observed when using an instruction-1133

aware cache, which is only information that the1134

model could access when generating the response1135

during the task-solving thread. It is important to1136

note that it is not solely the case that the standard1137

cache only impacts perplexity while the instruction-1138

aware cache solely affects task performance; there1139

is potential overlapping, as demonstrated in our 1140

intersection calculation experiments discussed in 1141

Section 3. However, the primary focus of these two 1142

types of caches remains distinct. 1143

I Analysis on initial tokens 1144

Xiao et al. (2023) show that the initial tokens play 1145

a critical role in long-sequence language model- 1146

ing by serving as “attention sinks”. Although our 1147

proposed method does not specifically process the 1148

initial tokens, we assert that it can adaptively re- 1149

tain the hidden states of these tokens because they 1150

consistently receive a large proportion of attention 1151

weights. In this section, we conduct experiments 1152

that always preserve the first 4 initial tokens during 1153

the eviction process. 1154

Shown in Table 13 and Table 15, we demonstrate 1155

that the difference between our methods with and 1156

without the initial tokens are limited, showing the 1157

capability of keeping the “attention sink” tokens 1158

using our method. 1159

J More Related Work 1160

J.1 Long Sequence Processing 1161

Long sequence language modeling have attracted 1162

more and more research interests in recent 1163

years (Tiezzi et al., 2024). Various long docu- 1164

ment processing tasks are proposed to evaluate the 1165

long sequence modeling of language models (Zhao 1166

et al., 2021; Luo et al., 2021; Bai et al., 2023). 1167

Longformer, leveraging sparse self-attention pat- 1168

tern, save the memory cost to make the model pro- 1169

cess long document (Beltagy et al., 2020). Mem- 1170

16

Datasets Prompt

Qasper You are given a scientific article and a question. Answer the
question as concisely as you can, using a single phrase or sentence
if possible. If the question cannot be answered based on the
information in the article, write “unanswerable”. If the question
is a yes/no question, answer “yes”, “no”, or “unanswerable”. Do
not provide any explanation.\n\nArticle: {context}\n\nAnswer
the question based on the above article as concisely as you can,
using a single phrase or sentence if possible. If the question
cannot be answered based on the information in the article, write
“unanswerable”. If the question is a yes/no question, answer “yes”,
“no”, or “unanswerable”. Do not provide any explanation.\n\n
Question: {input}\n\n Answer:

MultifieldQA Read the following text and answer briefly.\n\n{context}\n\nNow,
answer the following question based on the above text, only give
me the answer and do not output any other words.\n\nQuestion:
{input}\n Answer:

HotpotQA Answer the question based on the given passages. Only give me
the answer and do not output any other words.\n\nThe following
are given passages.\n\n{context}\n\n Answer the question based
on the given passages. Only give me the answer and do not output
any other words.\n\nQuestion: {input}\n Answer:

TriviaQA Answer the question based on the given passage. Only give
me the answer and do not output any other words. The follow-
ing are some examples.\n\n\n\n{context}\n\n\n\n Question: {in-
put}\n\n\n\nAnswer:

TREC Please determine the type of the question below. Here are some
examples of questions.\n\n\n\n{context}\n\n{input}

SamSum Summarize the dialogue into a few short sentences. The following
are some examples.\n\n\n\n{context}\n\n\n\n{input}

Passkey Retrieval There is an important info hidden inside a lot of irrelevant text.
Find it and memorize them. I will quiz you about the important
information there.{context}\n\n\n\nWhat is the pass key? The pass
key is

needle-in-a-haystack system: You are a helpful AI bot that answers questions for a user.
Keep your response short and direct \n\n user: {context}\n\nuser:
{Question} Don’t give information outside the document or repeat
your findings\n\n system:

Table 11: The prompt used in our experiments. Text in
blue represents the context while text in red represents
the instruction we used.

orizing transformer uses a external memory to1171

save the information during the long sequence1172

modeling process (Wu et al., 2022). Mistral ap-1173

plied Pre-fill and chunking sliding window meth-1174

ods to model longer sequences (Jiang et al.,1175

2023). State space models and their variations1176

are also popular recently (Gu et al., 2022; Gu1177

and Dao, 2023; Wang et al., 2022). Unlimited-1178

former wraps pretrained encoder-decoder trans-1179

former, and offloads the cross-attention computa-1180

tion to a single k-nearest-neighbor index, while1181

the returned kNN distances are the attention dot-1182

product scores (Bertsch et al., 2024). Nawrot et al.1183

(2024) propose to compress the key-value cache to1184

make the model process longer sequences. Xiong1185

et al. (2023) conduct continual pretraining from1186

Llama 2 (Touvron et al., 2023) with longer training1187

sequences and on a dataset where long texts are1188

upsampled. Rotary Position Embedding and the1189

positional interpolation based on it are also used1190

enable the model process longer sequences (Su1191

et al., 2024; Chen et al., 2023). ReadAgent are1192

proposed by using a large language model agent to1193

process long sequences (Lee et al., 2024). LONG-1194

HEADS enhances the long-context processing of1195

Datasets Prompt

Instruction 1 Answer the question based on the given passages. Only give me
the answer and do not output any other words.\n\nQuestion: How
is the ground truth for fake news established?\nAnswer:

Instruction 2 Answer the question based on the given passages. Only give me
the answer and do not output any other words.\n\nQuestion: What
architecture does the encoder have?\nAnswer:

Instruction 3 Answer the question based on the given passages. Only give
me the answer and do not output any other words.\n\nQuestion:
Which case was brought to court first Miller v. California or Gates
v. Collier ?\nAnswer:

Instruction 4 Answer the question based on the given passages. Only give
me the answer and do not output any other words.\n\nQuestion:
What occupation is shared by both Marge Piercy and Richard
Aldington?\nAnswer:

Instruction 5 Answer the question based on the given passages. Only give me
the answer and do not output any other words.\n\nQuestion: What
is their definition of tweets going viral?\nAnswer:

Instruction 6 Answer the question based on the given passages. Only give me
the answer and do not output any other words.\n\nQuestion: Were
any of these tasks evaluated in any previous work?\nAnswer:

Instruction 7 Answer the question based on the given passages. Only give me
the answer and do not output any other words.\n\nQuestion: What
sentiment classification dataset is used?\nAnswer:

Instruction 8 Answer the question based on the given passages. Only give me
the answer and do not output any other words.\n\nQuestion: The
historical Nimavar school in the Nimavar Bazaar, or bazar, is
located in which country?\nAnswer:

Instruction 9 Answer the question based on the given passages. Only give me
the answer and do not output any other words.\n\nQuestion: For
what type of work is the production company for The Year Without
a Santa Claus best known?\nAnswer:

Instruction 10 Answer the question based on the given passages. Only give me
the answer and do not output any other words.\n\nQuestion: The
physicist who is responsible for identifying the Rabi cycle won
what award?\nAnswer:

Table 12: The instruction used in the perplexity experi-
ments.

Param. Settings
Llama 2 7B Mistral 7B

0-4k 4-8k 8k+ 0-4k 4-8k 8k+

Start size = 0
Standard CSE 36.72 37.07 38.36 34.52 30.57 20.92
+ Individual Cache 43.45 43.26 45.93 45.15 45.11 41.55
+ Shared Cache 43.22 44.07 46.37 43.96 41.56 36.61

Start size = 4
Standard CSE 36.30 34.80 37.42 31.44 28.51 21.10
+ Individual Cache 43.48 43.89 46.36 45.69 44.55 42.22
+ Shared Cache 43.44 43.65 46.97 44.22 41.74 36.05

Table 13: Results of the different start sizes averaged
on six different long sequence tasks. Best results are
bolded. “Param.” stands for hyperparameters.

large language models by allowing multi-head 1196

attention to attend to selected important context 1197

chunks within the trained length (Lu et al., 2024). 1198

Infini-Transformer leverage a compressive mem- 1199

ory between different context segment to achieve 1200

modeling long range text (Munkhdalai et al., 2024). 1201

Hwang et al. (2024) propose TransformerFAM, a 1202

novel architecture with a feedback loop for attend- 1203

ing to latent representations, enables Transformers 1204

to process indefinitely long sequences without addi- 1205

tional weights. Zhang et al. (2024a) leverage plug- 1206

and-play positional encoding to make the model 1207

better collect the information in the middle of the 1208

document. 1209

Except LONGHEADS which requires storing all 1210

17

Models Settings
Qasper MultifieldQA HotpotQA Trec TriviaQA SamSum

0-4k 4k-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+

Llama 2
7B Chat

Standard CSE 10.30 12.43 25.00 23.86 21.75 14.50 34.14 28.58 34.09 47.00 50.00 42.00 68.88 71.73 79.50 36.00 30.49 33.61
+ Individual Cache 20.43 18.82 29.64 39.99 32.17 37.79 43.87 36.28 43.36 57.00 64.00 63.00 63.32 77.14 77.19 38.06 34.72 33.89
+ Shared Cache 20.14 18.07 27.49 40.00 33.69 37.06 43.47 41.77 44.26 56.00 63.00 55.00 61.42 66.59 58.91 37.50 33.81 36.72

Mistral
7B Instruct

Standard CSE 24.95 19.05 8.49 36.36 27.86 17.88 34.95 27.88 23.47 47.00 46.00 28.50 33.18 34.75 34.96 17.75 15.24 11.02
+ Individual Cache 32.00 28.45 15.80 57.42 39.76 47.02 47.02 41.63 30.00 51.00 64.00 56.00 59.43 61.32 67.01 28.40 28.90 25.38
+ Shared Cache 32.08 24.10 19.48 56.78 39.69 47.58 45.67 50.20 38.66 51.00 61.00 58.00 54.19 31.49 24.52 23.12 26.83 17.90

Table 14: The detailed results on six different long sequence tasks, where ls = 64, k = 768 for all methods. Results
are separately presented by grouping text with different source lengths.

Models Settings
Qasper MultifieldQA HotpotQA Trec TriviaQA SamSum

0-4k 4k-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+

Llama 2
7B Chat

Standard CSE 9.27 11.22 25.00 26.15 23.38 15.26 31.11 31.17 33.44 49.00 53.00 54.00 67.46 61.89 65.32 34.83 28.11 31.52
+ Individual Cache 21.32 17.49 28.47 37.21 29.16 28.08 42.19 39.02 40.40 54.00 65.00 65.00 69.07 80.10 81.60 37.06 32.56 34.61
+ Shared Cache 21.33 15.70 33.19 38.19 30.76 25.46 44.36 37.93 42.21 56.00 65.00 64.00 64.14 80.05 82.28 36.60 32.43 34.66

Mistral
7B Instruct

Standard CSE 25.91 21.99 9.25 41.60 28.47 19.17 32.04 28.17 21.81 44.00 47.00 34.00 29.55 30.22 27.04 15.52 15.22 15.35
+ Individual Cache 30.37 27.09 15.30 56.32 40.28 47.21 47.74 45.98 33.80 49.00 64.00 56.00 61.99 59.69 66.14 28.73 30.26 34.87
+ Shared Cache 30.39 25.59 19.49 54.85 40.90 44.92 44.88 44.63 36.72 51.00 62.00 51.00 57.43 47.16 35.19 26.78 30.17 28.97

Table 15: The detailed results on six different long sequence tasks, where the start size is set to 4 and ls = 256, k =
768 for all methods. Results are separately presented by grouping text with different source lengths.

the past key-value states, all the above needs further1211

training to make the model able to handle the long1212

sequence processing task. Our work do not need1213

any training and can be applied directly to any open-1214

source transformer-based large language models.1215

J.2 State Eviction for Large Language Models1216

Liu et al. (2024) explore the persistence of impor-1217

tance hypothesis for the key-value cache of large1218

language models. They establish that the key-value1219

cache that useful for large language modeling are1220

consistent for all the following text. Based on this,1221

various methods that evicts the key-value cache1222

during the language modeling has been proposed1223

for improving the efficiency of the LLM inference.1224

Xiao et al. (2023) propose that “attention sink” ex-1225

ists during the sequence processing of large lan-1226

guage models. By keeping the key-value states of1227

the initial tokens, and evict the key-value states out1228

of a sliding window maintained for recent tokens,1229

the model could maintain the perplexity while pro-1230

cessing 1 million tokens. Zhang et al. (2024b) use1231

accumulative attention scores to evict the unnec-1232

essary key-value cache states. Oren et al. (2024)1233

uses the attention of the last token as a metric to1234

evict the hidden states. Ge et al. (2023) profile all1235

the attention heads and maintain different hidden1236

states for different heads. Attendre (Yang and Hua,1237

2024) brings the preference of future tokens into1238

the state eviction process.1239

Besides inference-only state-eviction, a lot of1240

methods also explore to learn to prune tokens dur-1241

ing the training process in computer vision (Wang1242

et al., 2023a; Kim et al., 2022; Ye et al., 2021) or1243

natural language processing (Zhuang and Wang, 1244

2019; Frantar and Alistarh, 2023; Yun et al., 2023; 1245

Anagnostidis et al., 2024). There is also work that 1246

delete tokens from the discrete prompt (Weston and 1247

Sukhbaatar, 2023). 1248

Compared to this paper, the previous work rarely 1249

focuses the state eviction technique on the long 1250

sequence modeling scenario and does not related 1251

to the specific optimization for the down-stream 1252

tasks. 1253

18

Figure 9: The language modeling results on the Llama 2 7B chat model. The instructions 1 to 5 listed in table 12 are
used for the Shared Cache CSE method, respectively. The line chart is smoothed with a window size of 4096 for
better visibility.

Figure 10: The language modeling results on the Llama 2 7B chat model. The instructions 6 to 10 listed in table 12
are used for the Shared Cache CSE method, respectively. The line chart is smoothed with a window size of 4096 for
better visibility.

19

Figure 11: The language modeling results on the Mistral 7B Instruct model. The instructions 1 to 5 listed in table 12
are used for the Shared Cache CSE method, respectively. The line chart is smoothed with a window size of 4096 for
better visibility.

Figure 12: The language modeling results on the Mistral 7B Instruct model. The instructions 6 to 10 listed in table
12 are used for the Shared Cache CSE method, respectively. The line chart is smoothed with a window size of 4096
for better visibility.

20

	Introduction
	Related Work
	Long Sequence Processing
	State Eviction for Large Language Models

	The Information Neglect Problem
	Methods
	Chunked State Eviction (CSE)
	Instruction-aware State Eviction
	Overall Process

	Experimental Setup
	Tasks
	Baselines
	Hyperparameters

	Results
	Long document reading comprehension
	Long document knowledge retrieval
	Long-range language modeling
	Analysis
	Hyperparameter analysis
	Analysis of the chunk size
	Position bias in knowledge retrieval

	Conclusion
	Details for the Intersection Probing Experiments
	Statistics for Each Dataset
	Detailed Results for Each Dataset
	Information Neglect of the Sliding Window Methods
	Prompt for Each Task
	Setup for the Needle-in-a-Haystack Task
	Results of Perplexity with Other Instructions
	Discussion
	Analysis on initial tokens
	More Related Work
	Long Sequence Processing
	State Eviction for Large Language Models

