Generation Space Preference Optimization for Few Shot Dialogue State
Tracking

Anonymous ACL submission

Abstract

Dialogue State Tracking (DST) is an essential
component of task-oriented dialogue systems.
Few-shot DST effectively reduces the reliance
on large-scale annotated data, but suffers from
insufficient training. In this work, we propose a
novel training method called Generation Space
Preference Optimization (GSPO) to mitigate
insufficient training for few-shot DST, which
extends preference optimization to DST and
generates preference data by the model’s gen-
eration space and the reuse of supervised fine-
tuned (SFT) data, free of extra reward models
and additional preference data. Experimental
results demonstrate that our method achieves
competitive performance compared to those
using 100 B-scale LLMs and shows better per-
formance with over 5% of the whole training
data (400 training samples).

1 Introduction

As a key component in Task-Oriented Dialogue
(TOD) systems, Dialogue State Tracking (DST)
serves to extract the user’s intentions and goals
throughout the conversation, which is common in
restaurant reservation, ticket booking, and so on.
DST is responsible for tracking the value of prede-
fined domain-specific slots and forming the struc-
tured dialogue state for the subsequent response
generation. Many recent works (Wu et al., 2019;
Heck et al., 2020) have proposed various methods
that show notable performance in the DST task
with a large amount of annotated training data.
However, large-scale annotation of training data
is time-consuming and labor-intensive. Moreover,
considering the diversity of conversation scenarios,
we often utilize specific DST models for different
scenarios and adopt incremental training for new
scenarios. Therefore, researchers have begun to
explore few-shot DST.

In general, few-shot DST has the following three
main directions: (1) Design universal structures

system: I searched for 4 people. Shall we try 82
user: I need a hotel for four nights, and eight people please.

Question? How many people are staying at the hotel?

Answer is 8. @ Answer is 8. @

Circular teaching &D Maybe 4 or 8.

Answer is 4. }‘ .

20
&b Answeris8. < &b

Figure 1: Examples of different ways of learning. The
left is learning with circular teaching. The right is adap-
tive teaching, that learning by correcting and enhancing
based on existing ability.

Adaptive teaching

Answer is 8 not 4. @

Answer is 8.

suitable for various conversations, such as copy
mechanisms or copy strategies (Wu et al., 2019;
Heck et al., 2020). (2) Generate large amounts
of synthetic data or utilize related task data for
training (Lin et al., 2021a; Shin et al., 2022). (3)
Adopt powerful LLMs to solve the DST task with
task-specific fine-tuning or in-context learning (Hu
et al., 2022; Feng et al., 2023). However, these
works overlook that the fundamental problem of
few-shot learning is insufficient training caused by
limited training data. We observe that many correct
answers exist beyond the model’s top-1 prediction.
In this work, we leverage the non-top-1 correct
answers in the model’s generation space to mitigate
the influence of insufficient training.

Data scaling law (Kaplan et al., 2020; Bahri et al.,
2024) shows that the model performs better as the
amount of data scales up. However, in this work,
we prefer studying training with limited data. Take
the example of student learning shown in Figure 1,
we want the student to acquire the ability to an-
swer some questions. In an ideal scenario, we can

continue teaching students different examples until
they master the methodology for solving similar
problems. However, due to the limited number
of available examples, the students are often com-
pelled to memorize specific cases through circular
learning in real scenarios. This method of enforced
memorization is far from actual mastery. Similarly,
excessive training on limited data offers little bene-
fit for the generalization to unseen data. In fact, the
students may master parts after each learning and
have the possibility to solve the problem. If we can
instruct them based on their current ability, it may
help them master their ability more effectively.

In this work, we extend the use of prefer-
ence optimization to the DST task and propose
a novel training method called Generation Space
Preference Optimization (GSPO) for the few-shot
DST task. It’s a two-stage training method: (1) In
the first stage, we utilize the limited data to train
the model through standard instruction tuning. (2)
In the second stage, we first analyze the ability of
the trained model on the training data, then con-
struct preference data based on the trained model’s
generation space and the reuse of training data.
Finally, we optimize the trained model with pref-
erence optimization to correct errors and enhance
weaknesses. The analysis of the trained model’s
generation space and the reuse of supervised fine-
tuned (SFT) data ensures that we neither rely on
the extra reward models nor additional preference
data during preference optimization. We believe
that the preference optimization of the second stage
can further improve the model’s ability and stim-
ulate its performance under limited data training.
We conduct extensive experiments on MultiwWOZ
2.1 and MultiWOZ 2.4. The experimental results
show the effectiveness of our proposed method. In
summary, the main contributions of our work are
as follows:

* We extend preference optimization to tasks
characterized by unique and deterministic
ground truth, and find that it efficiently miti-
gates the influence of insufficient training.

* We propose a novel two-stage training method
called generation space preference optimiza-
tion (GSPO), which constructs preference
data by analyzing the model’s generation
space and reusing SFT data, free of extra re-
ward models and additional preference data.

* We conduct extensive experiments on Multi-

WOZ 2.1 and MultiWOZ 2.4 to validate the
proposed method’s effectiveness and achieve
competitive performance over compared base-
lines.

2 Related Work
2.1 Dialogue State Tracking

Few-shot dialogue state tracking has primarily
evolved along three main directions. First, re-
searchers have explored the design of specialized
model architectures that can learn to identify dia-
logue states from limited training samples. Sev-
eral studies (Zhong et al., 2018; Wu et al., 2019;
Heck et al., 2020) propose copy mechanisms or
copy strategies to extract dialogue states directly
from the dialogue history. However, the perfor-
mance of such methods tends to degrade signifi-
cantly when training data is scarce. Second, data
augmentation-based approaches have been intro-
duced to alleviate the data sparsity problem. For
example, Shin et al. (2022) reformulates DST as a
dialogue summarization task and generates large-
scale synthetic data through template-guided sum-
marization. Lin et al. (2021a) enhances training
data by employing cross-task transfer learning tech-
niques. Third, with the rapid advancement of large
language models (LLMs), numerous approaches
have leveraged their capabilities to improve DST
performance. Some works (Hosseini-Asl et al.,
2020; Lin et al., 2021b; Feng et al., 2023) achieve
strong results by fine-tuning LLMs. Others (Hu
et al., 2022; Heck et al., 2023; King and Flanigan,
2023) utilize the in-context learning (ICL) abilities
of LLMs, optimizing the selection of retrieval ex-
amples to boost DST performance. Despite their
effectiveness, fine-tuning-based methods remain
sensitive to the size of the training dataset, whereas
prompt-based methods heavily rely on the inher-
ent capabilities of the underlying LLM, typically
requiring models with a very large number of pa-
rameters to perform well. Similar to fine-tuning-
based approaches, our method involves an initial
stage of instruction tuning on a base model. How-
ever, to further enhance performance, we introduce
a second stage based on preference optimization,
which encourages the model to generate more ac-
curate dialogue states by learning from pairwise
comparisons.

2.2 Preference Optimization

LLMs pre-trained on large-scale data have demon-
strated powerful capabilities across various tasks

with few-shot prompts (Radford et al., 2019; Brown
et al., 2020), and their performance on downstream
tasks can be significantly enhanced through instruc-
tion tuning (Mishra et al., 2022; Sanh et al., 2021).
However, human judgment of the quality is more
meaningful than fixed metrics. As a result, some
works (Kreutzer et al., 2018; Ziegler et al., 2019;
Ouyang et al., 2022) aim to fine-tune LL.Ms using
human preference datasets to further enhance their
usability. These works need an extra well-trained
reward model to assess the human preference for
a given output, then fine-tune a language model
to maximize the reward using reinforcement learn-
ing, commonly through TRPO (Schulman, 2015),
PPO (Schulman et al., 2017), GRPO (Shao et al.,
2024), and others. However, a well-trained reward
model is very important to the final performance
and usually requires specific data for training to
better distinguish between different preferences.
To simplify the process of reinforcement learning,
some single-stage policy learning approaches have
been proposed, such as DPO (Rafailov et al., 2024),
CPO (Xu et al., 2024), KTO (Ethayarajh et al.,
2024), and so on. Though these single-stage policy
learning approaches eliminate the need for extra
reward models, they usually need additional prefer-
ence data for preference optimization. Similar to
single-stage policy learning approaches, our pro-
posed GSPO is also free of extra reward models.
Apart from that, our method requires no additional
preference data because we construct preference
data from the model’s generation space and the
reuse of SFT data.

3 Preliminary

Dialogue State Tracking (DST) aims to monitor
the evolving state of a conversation by maintaining
a structured representation known as the dialogue
state. This dialogue state is typically represented
as a set of triples in the format "domain-slot-value",
such as "hotel-area-centre". Both the domain and
slot in the triple are predefined manually. The do-
main denotes the topic of the dialogue, while the
slot corresponds to specific attributes associated
with that domain. For ease of reference, we treat
"slot" as a "domain-slot" pair throughout the rest
of the paper. The value of the dialogue state can
be of two types: enumerable and non-enumerable.
An enumerable slot has a predefined set of possible
values (e.g., "hotel-pricerange"), whereas a non-
enumerable slot takes dynamic values that emerge

during the conversation (e.g., "hotel-name"). In
brief, the only task of DST is to predict the value
of the slot based on the conversation.

Formally, a dialogue D with 7" turns can be rep-
resented as {(R1,U1), (Re,Us), -, (Rr,Ur)},
where R represents system response and U rep-
resents user utterance. Given all predefined slots
S = {51,852, ,Sn}, we predict the correspond-
ing value of the slots as V = {V;, V5, -+, Vy}.
For some slots, the value may not exist and is de-
fined as "none". The belief state 15 is defined as a
set {(Si, Vi) | Vi # none}. In short, DST problem
is defined as (D, S) — B.

To track the dialogue state throughout a con-
versation, two primary approaches are commonly
used: state refresh and state change. State refresh
regenerates the entire dialogue state at each turn by
leveraging the full dialogue history. State change
updates the dialogue state incrementally using the
current turn’s dialogue context and the previous
dialogue state. Formally, state refresh is defined
as (D,S) — B, and state change is defined as
(D¢, S, Bi—1) — B;. In general, state refresh can
mitigate error propagation by treating each turn in-
dependently, potentially correcting earlier mistakes.
However, for complex and lengthy dialogues, using
the entire dialogue history may introduce unneces-
sary complexity and hinder comprehension. State
change reduces these problems by focusing only
on the current turn and the previously tracked state.
In this work, we adopt the state change paradigm
due to its efficiency and practical effectiveness.

4 Methodology

Figure 2 shows an overview of our proposed
method. It consists of the following two stages:

1. In the first stage, we utilize standard instruc-
tion tuning to improve the LLM’s ability to
solve DST.

2. In the second stage, we construct preference
data based on the generation space of the
tuned model and the reuse of SFT data, and
then perform preference optimization on the
tuned model to correct errors and strengthen
weaknesses.

4.1 Instruction Tuning

We utilize standard instruction tuning (Wei et al.,
2021) to improve the LLM’s ability on the DST
task. Unlike other fine-tuning approaches, instruc-
tion tuning provides more explicit and detailed

{Gener‘aﬂon Space (Results and Probabi Ii‘ries)}

Stage 1

Instruction

Current Dialogue

Previous Dialogue States

Slot Information

Answer

Instruction Tuning
LoRA &

Vi2

LLM

Preference Data

Stage 2

Positive Negative

Correction

Preference Optimization
LoRA &

Enhancement

v

V2 : 1z
;LE ;.
N/

Figure 2: An illustration of our proposed method, which consists of two stages: (1) Instruction Tuning and (2)
Preference Optimization. In the first stage, we apply standard instruction tuning with LoRA to enhance the model’s
ability in DST. In the second stage, we construct preference data based on the model’s generation space and the
reuse of SFT data, and then apply preference optimization for further improvement.

prompts to guide the model in solving the task,
and the design of prompts has a significant im-
pact on model performance. An illustration of the
instruction tuning prompt is shown in Figure 6.
The prompt consists of three parts: (1) instruction
prompt, (2) input prompt, (3) output prompt.
Instruction Prompt In this work, a fixed instruc-
tion is used as the instruction prompt to explain the
goal of the DST task. Since our work focuses solely
on the DST task, using a fixed instruction prompt is
acceptable and easy to implement, although some
studies (Wei et al., 2021; Chung et al., 2024) have
indicated that diverse instruction prompts can im-
prove the performance and robustness of the model
across various tasks.

Input Prompt Input prompt consists of three
components: current dialogue information, previ-
ous dialogue state, and slot information. We rep-
resent the dialogue history using the previous dia-
logue state for lower costs and easier status track-
ing. The previous dialogue state includes all active
slots from earlier turns, rather than only the current
slot. If there are no active slots in the previous
dialogue state, it will be stated in the prompt. The
slot information includes the slot name along with
a detailed description. For enumerable slots, all
possible values will be listed. If no relevant slot in-
formation is present in the current turn, the model
will be instructed to output "none". In each dia-

logue turn, we will construct the input prompt for
all possible slots.

Output Prompt Output prompt is the desired
value of the slot, which can be selected from the val-
ues enumerated in the slot information or derived
from the dialogue information.

For cost efficiency, we adopt parameter-efficient
fine-tuning (PEFT) to train the model. Specifi-
cally, we utilize Low-Rank Adaptaion (LoRA) (Hu
et al., 2021). Unlike traditional full-parameter fine-
tuning, LoRA freezes the parameters of the base
model and injects trainable low-rank decomposi-
tion modules into each layer of the model. In tradi-
tional fine-tuning, the trainable parameters consist
of a weight matrix Wy € R%**, which can be di-
rectly updated based on the gradient. In LoRA,
the trainable modules are two weight matrices:
A € R B € R™F, and the weight is updated
by AW = BA. In brief, the weight update is
represented as W = Wy + AW = Wy + BA,
where W, remains frozen and B A is trainable. For
the original output h = Wy, the forward pass of
LoRA is as follows:

h=Wyx + AWz = Woz + BAx Q)

During the training process, we concatenate the
three prompts mentioned above and generate the
output prompt from the concatenation of the in-
struction prompt and input prompt in an autoregres-

sive way. We employ teacher forcing to train the
model and utilize cross-entropy loss to minimize
the negative log-likelihood of the correct output
prompt:

N Lj
£1=->" > logp(vi|T. D1, Bi1,S)) ()
7 7

where N represents the number of all slots, L;
represents the length of Vj, v represents the i-
th word in the value Vj, 7 represents instruction

prompt.

4.2 Preference Data Construction

In stage 2, we perform additional preference opti-
mization on the instruction-tuned model. Unlike
previous works (Stiennon et al., 2020; Ouyang
et al., 2022; Song et al., 2024) that focus on human
preferences, which are subjective and vary from
person to person. The preferences in our work are
clear and fixed. Given the goal of the DST task,
the preference for this task is only the correct dia-
logue state. Specifically, the preference in this work
refers to the correct value for each corresponding
slot.

We construct positive and negative pairs to repre-
sent preferences. The positive is the correct value,
and the negative is the incorrect value. The cor-
rect value is unique and can be obtained from the
annotation, whereas the incorrect value is diverse
and hard to select. To address this, we select the
incorrect value from the model’s generation space
to limit the uncertainty of the incorrect value. We
utilize beam search to express the model’s genera-
tion space and select the incorrect value with high
probability from this generation space.

The positive and negative pairs consist of two
types of data: (1) Correction: The value with
the highest probability is incorrect, but the cor-
rect value is in the expressed generation space. (2)
Enhancement: The value with the highest proba-
bility is correct, but its probability is significantly
lower than the other correct values. The first type
of data is mainly used for correction, focusing on
exploring the correct candidates within the gener-
ation space that are not ranked as the top-1 candi-
date. The second is mainly used for enhancement,
aiming to reinforce the correct value’s position as
the highest-probability candidate within the gen-
eration space. The correction data can be easily
constructed by checking the generation space, tak-
ing the correct value as the positive sample and the

highest-probability incorrect value as the negative
sample. For the enhancement data, we utilize a
one-sided confidence interval to identify correct
values with low probabilities. If the generation
probability of a top-1 correct candidate falls out-
side the confidence interval, we regard it as a target
for enhancement. The formulation of the one-sided
confidence interval is as follows:

Pe[p- 25— =.0) 3)

vn

where p represents the mean probability of the cor-
rect values, o represents the standard deviation of
the correct value probabilities, v represents the con-
fidence level, and Z o represents the corresponding
Z-value obtained from the standard normal distri-
bution table.

4.3 Preference Optimization

In this work, we utilize preference optimization
to refine the model’s generation space by increas-
ing the generation probability of the correct values
while suppressing the generation probability of in-
correct ones. Specifically, Direct Preference Opti-
mization (DPO) (Rafailov et al., 2024) is employed
for model training in stage 2. The loss function
used in DPO is formulated as follows:

£DPO (71'9, 7T7“€f) = _E(zyypos 7yneg) [log g
9 (Ypos|T)

<ﬂ tog Tref (ypos |l‘) “)
_Blog 71-Q(yneg‘%) >:|

Tref (yneg‘x)

where 7y represents the model to be trained, 7, f
represents the reference model obtained from stage
1, and 7y is initialized from 7.

For some data used for error correction, the prob-
ability of the positive sample is significantly lower
than that of the negative sample. To accelerate
model convergence and improve training stability,
we incorporate an extra auxiliary loss for the pos-
itive sample in addition to the original DPO loss.
The auxiliary loss is the same as the one used in
instruction tuning described above. The final loss
function is defined as follows:

Lo =LY + Lppo (5

S Experiments

5.1 Datasets

Our experiments are conducted on a widely
used task-oriented dialogue dataset, MultiwOZ

Model Siz MultiwOZ2.1 Multiw0Z2.4
ode “l 1% 5% 10% | 1% 5% 10%

TRADE (Wu et al., 2019) 1258 31.17 3618 | - - -
DS2-BART (Shin et al., 2022) 1B | 2825 37.71 4029 |30.55 4253 41.73
DS2-T5 (Shin et al., 2022) 3376 4420 4538 |36.76 49.89 51.05
IC-DST CodeGen (Hu et al., 2022) 2072 29.62 33.81 | 21.87 33.16 37.45
SM2-11b (Chen et al., 2023) 10B | 3836 44.64 46.02 | 40.03 51.14 5197
LDST (Feng et al., 2023) - - - | 4677 56.48 62.45
IC-DST Codex-davine (Hu etal., 2022) | | oo | 43.13 47.08 4867 | 48.35 5543 56.88
RefPyDST (King and Flanigan, 2023) 47.30 49.60 50.80 | 55.20 6230 62.50
Ours (GSPO) | 10B | 42.89 49.96 53.25|47.76 64.00 65.75

Table 1: Few-shot results averaged over three runs on MultiWOZ 2.1 and MultiWOZ 2.4 with 1%, 5%, and 10% of
the training data. All results are reported in joint goal accuracy (%), with the best results highlighted in bold.

(Budzianowski et al., 2018). MultiWOZ is a
large-scale, multi-domain human-to-human dia-
logue dataset that contains over 8k dialogues across
seven different domains, with detailed turn-level
annotations. In this work, we utilize two versions
of the MultiWwOZ dataset series: MultiwOZ 2.1
and MultiwOZ 2.4. MultiwOZ 2.1 (Eric et al.,
2020) addresses the issue of noisy state annota-
tions in the training data of the original MultiWOZ
dataset. MultiWOZ 2.4 (Ye et al., 2022) refines the
annotations in the validation and test sets based on
MultiWwOZ 2.1, with the training set annotations
remaining the same as MultiwOZ 2.1.

5.2 Maetrics

DST is typically evaluated using two metrics: Slot
Accuracy (SA) and Joint Goal Accuracy (JGA).
SA measures the prediction accuracy for each slot,
including those with a value of none. JGA is a
turn-level metric that evaluates the prediction ac-
curacy for all slots at each turn. For JGA, a turn is
considered correct only if the values of all slots at
that turn are predicted accurately. To keep in line
with previous work (Wu et al., 2019; Feng et al.,
2023), we utilize JGA as the primary metric.

5.3 Baselines

Our method is compared with the following base-
lines. TRADE (Wu et al., 2019) proposes a trans-
ferable dialogue state generator that leverages a
copy mechanism to facilitate knowledge sharing
across different domains during dialogue state gen-
eration. DS2 (Shin et al., 2022) reformulates dia-
logue state tracking as a dialogue summarization

task. It generates synthetic, template-based sum-
maries using specific rules to train a summariza-
tion model and recovers dialogue states from sum-
maries. SM2 (Chen et al., 2023) strengthens the
model’s robustness across diverse prompts using a
meta-learning scheme and introduces an effective
retrieval strategy to find ideal examples to improve
the LLM’s ability in in-context learning. LDST
(Feng et al., 2023) proposes a LLM-driven DST
framework based on instruction-tuned foundation
models. IC-DST (Hu et al., 2022) formulates DST
as a text-to-SQL task and utilizes an in-context
learning method to retrieve dialogue states using a
prompt that includes some examples. RefPyDST
(King and Flanigan, 2023) reformulates DST as
a Python Programming task and improves the in-
context learning performance by retrieving diverse
relevant examples.

5.4 Settings

Our method is implemented with Transformers
(Wolf et al., 2020) and TRL (von Werra et al., 2020)
libraries based on the PyTorch framework. We uti-
lize Llama-3.1-8B (Dubey et al., 2024) as the base
model and fine-tune it with LoRA (Hu et al., 2021)
in a parameter-efficient way. The target modules
trained with LoRA are g5, kproj, Uproj, Oproj In
each layer. The rank r of LoRA is 8, and the
dropout rate is 0.05. The learning rate for the first
stage is le-4, and le-6 for the second stage. The
batch size for both stages is 16, with gradient ac-
cumulation. All inference and data generation pro-
cesses are implemented with the VLLM (Kwon
et al., 2023) framework. We conduct all experi-

ments with one NVIDIA A100 (40GB) GPU.

6 Results and Analysis
6.1 Main Results

Table 1 shows the results of our proposed method
on MultiwOZ 2.1 and MultiwWOZ 2.4 on 1%, 5%,
and 10% few-shot settings. As mentioned in Sec-
tion 5.1, MultiwOZ 2.4 refines the annotations in
both the validation and test sets, leading to gen-
erally higher performance for all methods on this
version. Our method outperforms all baseline meth-
ods with fewer than 100B parameters. Compared
with the best method of similar parameter scale
on MultiWOZ 2.4, our method achieves improve-
ments of 0.99% on the 1% setting, 7.52% on the
5% setting, and 5.30% on the 10% setting. Com-
pared to methods with over 100B parameters, our
method underperforms RefPyDST on the 1% set-
ting. However, our method achieves better per-
formance on both 5% and 10% settings, indicat-
ing that our method benefits more from increased
training data. We attribute this phenomenon to the
inherent differences between fine-tuning and in-
context learning paradigms. In few-shot scenarios,
in-context learning methods generally yield good
performance with limited data, showing a higher
lower bound. In contrast, fine-tuning methods are
more effective at scaling with increased data, thus
achieving a higher performance upper bound.

6.2 Comparison of Top-k Candidate Hit Rate
within Generation Space

(a) Slot accuracy of training.

(b) Slot accuracy of test.

Figure 3: Comparison of the top- hit rate for correct
slot predictions within the model’s generation space on
both training and test data.

To analyze the influence of preference optimiza-
tion, we conduct a comparative study of the gener-
ation space between two stages. We utilize beam
search to decode the model outputs, and select the
top-10 highest-probability candidates to approxi-
mate the model’s generation space. As shown in
Figure 3, we compare the top-k correct value hit

rate within the generation space on both the training
and test data. We find that models trained on larger
datasets tend to perform worse on the training set
but better on the test set. This is because smaller
training sets require more iterations to converge.
The results show an improved Top-1 hit rate with
preference optimization, although the overall hit
rate within the generation space drops slightly. This
suggests that the model becomes more confident in
generating the correct Top-1 value, potentially at
the cost of hit rate in its output candidates. Since
only the Top-1 result is used for prediction, it is rea-
sonable to prioritize its accuracy even if it slightly
reduces the overall hit rate of the generation space.

6.3 Correct Value Probability Distribution

To verify the effectiveness of our method in in-
creasing correct value probabilities, we present the
distribution of their generation probabilities in Fig-
ure 4. We observe consistent gains in the generation
probability of correct values across different data
ratio settings, with mean increases of 1.0006 (1%),
0.0137 (5%), and 0.0109 (10%). In addition, im-
provements in the model’s stability and robustness
in generating correct values are observed, with the
standard deviation of probabilities increasing by
0.0038, 0.0311, and 0.0340 for the 1%, 5%, and
10% settings, respectively. In general, preference
optimization in stage 2 enhances the model’s confi-
dence and stability in generating correct answers.

6.4 Ablation Study

1% 5% 10%
Stage 1 4098 (-1.91) 46.54 (-3.42) 51.70 (-1.55)
Stage 2 42.89 49.96 53.25
w/o aux loss 43.00 (+0.11) 48.01 (-1.95) 53.01 (-0.24)
w/o enhance 42.01 (-0.88) 46.37 (-3.59) 51.79 (-1.46)
w/o filter 41.83 (-1.06) 47.45(-2.51) 51.43(-1.82)

Table 2: Ablation study of the two-stage preference
optimization, auxiliary loss, and preference data con-
struction on MultiwOZ 2.1. Results are reported in
joint goal accuracy (%).

Table 2 presents ablation studies on MultiWwOZ
2.1 from three aspects: (1) Effectiveness of two-
stage preference optimization, (2) Influence of aux-
iliary loss, (3) Method of preference data construc-
tion.

Effectiveness of two-stage preference optimiza-
tion Experimental results demonstrate that the
Stage 2 model outperforms Stage 1 by 1.91%,

Count

(a) 1% data probability distribution.

1400

1200

1000

800

600

4004 H

Correct Value Probability Distribution on 1% Setting

04
~0.00010 —-0.00008

=3 Stage 1 mean:-0.0106 std:0.0611
[Stage 2 mean:-0.0100 std:0.0573

L
=<
M |
oAl
1 l
|
i

~0.00006 -0.00004 —0.00002

Count

(b) 5% data probability distribution.

5000

4000

3000

2000

1000

oL b
~0.00010

Correct Value Probability Distribution on 5% Setting

3 Stage 1 mean:-0.0181 std:0.0712
[0 Stage 2 mean:-0.0041 std:0.0401

|
11 il ‘

s n||||||||||||

00006 —0.00004 —0.00002

‘h..

(c) 10% data probability distribution.

Correct Value Probability Distribution on 10% Setting

=3 Stage 1 mean:-0.0130 std:0.0643
[stage 2 mean:-0.0021 std:0.0303

it ‘ L ||..

0
000010 -0, ODDUB ~0.00006 -0.00004 —0.00002

YII
f I |.
" 11"‘“ ‘ I
- |Il.l.l|!.|m

Figure 4: Correct value probability distribution of two stages.

3.42%, and 1.55% on the 1%, 5%, and 10% set-

tings, respectively, indicating that the instruction-
tuned model can be further improved via preference
optimization. Preference optimization on positive 01
(correct) and negative (incorrect) pairs in the gen-
eration space enhances the model’s ability to dis-
tinguish between candidate values and generate the

most probable correct value.

Influence of auxiliary loss Without additional aux-
iliary loss, the result on the 1% setting slightly
decreases by 0.11%, while the results of both 5%

Slot error comparison between two stages

Data Ratio
o
o
w

0.01

mmm Stage 1 error

mmm Common error ~ WEE Stage 2 error

and 10% settings show an increase by 1.95% and
0.24%, respectively. Our goal of additional auxil-

iary loss is to increase the probability of the correct

value with low probability. However, the model

requires more iterations to converge on the 1% set-
ting. This results in a better fit of the model on
the training data, which in turn results in less er-
ror correction in the preference data, causing the
ineffectiveness of auxiliary loss on the 1% setting.
Method of preference data construction We com-
pare the other two methods of preference data
construction. Compared to preference data con-
taining only error correction without enhancement,
our preference data construction shows higher and
more stable improvement. If there is no filtering

of enhancement preference data, too much data

does not lead to greater improvement, but rather a

decline by 1.06%, 2.51%, 1.82% on the 1%, 5%,

10% settings, respectively. These all indicate that
the quality of preference data is the most important,
and reasonable selection and filtering are necessary.

6.5 Error Analysis

As shown in Figure 5, we compare the slot errors
between two stages. We categorize slot errors into
three types: common error, stage 1 error, and stage
2 error. The common error exists in both stages,
and the other two only exist in their respective

7 Conclusion

T T
6000 8000

T
4000
Count of Slot Error

Figure 5: Slot error comparsion between two stages.

stages. There are a large number of common errors
in both stages, which can be improved by more
training data. As the amount of training data in-
creases from 1% to 10%, the common errors de-
crease from 7091 to 4738, a reduction of 33.2%.
Although we have added some preference data for
enhancement during preference optimization, some
correct slots in stage 1 are wrong in stage 2. In gen-
eral, although the preference optimization brings
some slot errors, it shows a certain improvement in
the overall slot accuracy.

In this paper, we propose a novel two-stage train-
ing method called generation space preference op-
timization (GSPO) for the few-shot DST task. Un-
like other preference optimization methods, our
method is free from extra reward models or pref-
erence data. We generate preference data from the
model’s generation space and reuse of SFT data,
and can even customize it based on the capabilities
of the model. Experimental results demonstrate the
effectiveness of our method.

Limitations

In this paper, we mainly focus on the few-shot DST
task. We conduct experiments to validate the effec-
tiveness of our method under limited training data
settings, in which the amount of training data lim-
its the model’s performance. However, we haven’t
explored the effectiveness of our method when the
amount of training data is not the main bottleneck
of the performance. Besides, our method is a two-
stage process, and the training data of the first stage
is necessary, though it’s free of extra reward models
and additional preference data.

References

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jachoon
Lee, and Utkarsh Sharma. 2024. Explaining neural
scaling laws. Proceedings of the National Academy
of Sciences, 121(27):¢2311878121.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Pawel Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iiiigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasic. 2018. Multiwoz-a large-
scale multi-domain wizard-of-oz dataset for task-
oriented dialogue modelling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 5016-5026.

Derek Chen, Kun Qian, and Zhou Yu. 2023. Stabi-
lized in-context learning with pre-trained language
models for few shot dialogue state tracking. In Find-
ings of the Association for Computational Linguistics:
EACL 2023, pages 1551-1564.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2024. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25(70):1-53.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi,
Sanchit Agarwal, Shuyang Gao, Adarsh Kumar, Anuj
Goyal, Peter Ku, and Dilek Hakkani-Tur. 2020. Mul-
tiwoz 2.1: A consolidated multi-domain dialogue
dataset with state corrections and state tracking base-
lines. In Proceedings of the Twelfth Language Re-
sources and Evaluation Conference, pages 422—428.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,
Dan Jurafsky, and Douwe Kiela. 2024. Kto: Model
alignment as prospect theoretic optimization. arXiv
preprint arXiv:2402.01306.

Yujie Feng, Zexin Lu, Bo Liu, Liming Zhan, and Xiao-
Ming Wu. 2023. Towards llm-driven dialogue state
tracking. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 739-755.

Michael Heck, Nurul Lubis, Benjamin Ruppik, Renato
Vukovic, Shutong Feng, Christian Geishauser, Hsien-
Chin Lin, Carel van Niekerk, and Milica Gasic. 2023.
Chatgpt for zero-shot dialogue state tracking: A so-
lution or an opportunity? In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
936-950.

Michael Heck, Carel van Niekerk, Nurul Lubis, Chris-
tian Geishauser, Hsien-Chin Lin, Marco Moresi, and
Milica Gasic. 2020. Trippy: A triple copy strategy
for value independent neural dialog state tracking.
In Proceedings of the 21th Annual Meeting of the
Special Interest Group on Discourse and Dialogue,
pages 35-44.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu,
Semih Yavuz, and Richard Socher. 2020. A simple
language model for task-oriented dialogue. Advances
in Neural Information Processing Systems, 33:20179-
20191.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Yushi Hu, Chia-Hsuan Lee, Tianbao Xie, Tao Yu,
Noah A Smith, and Mari Ostendorf. 2022. In-context
learning for few-shot dialogue state tracking. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2022, pages 2627-2643.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Brendan King and Jeffrey Flanigan. 2023. Diverse
retrieval-augmented in-context learning for dialogue
state tracking. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 5570-
5585.

Julia Kreutzer, Joshua Uyheng, and Stefan Riezler. 2018.
Reliability and learnability of human bandit feedback
for sequence-to-sequence reinforcement learning. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1777-1788.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Zhaojiang Lin, Bing Liu, Andrea Madotto, Seungwhan
Moon, Zhenpeng Zhou, Paul A Crook, Zhiguang
Wang, Zhou Yu, Eunjoon Cho, Rajen Subba, et al.
2021a. Zero-shot dialogue state tracking via cross-
task transfer. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 7890-7900.

Zhaojiang Lin, Bing Liu, Seungwhan Moon, Paul A
Crook, Zhenpeng Zhou, Zhiguang Wang, Zhou Yu,
Andrea Madotto, Eunjoon Cho, and Rajen Subba.
2021b. Leveraging slot descriptions for zero-shot
cross-domain dialogue statetracking. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 5640-5648.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2022. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3470-3487.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730-27744.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun
Raja, et al. 2021. Multitask prompted training en-

ables zero-shot task generalization. arXiv preprint
arXiv:2110.08207.

John Schulman. 2015. Trust region policy optimization.
arXiv preprint arXiv:1502.05477.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

10

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, et al. 2024. Deepseekmath:
Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300.

Jamin Shin, Hangyeol Yu, Hyeongdon Moon, Andrea
Madotto, and Juneyoung Park. 2022. Dialogue sum-
maries as dialogue states (ds2), template-guided sum-
marization for few-shot dialogue state tracking. In
Findings of the Association for Computational Lin-

guistics: ACL 2022, pages 3824-3846.

Feifan Song, Bowen Yu, Minghao Li, Haiyang Yu, Fei
Huang, Yongbin Li, and Houfeng Wang. 2024. Pref-
erence ranking optimization for human alignment.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 18990-18998.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008—
3021.

Leandro von Werra, Younes Belkada, Lewis Tunstall,
Edward Beeching, Tristan Thrush, Nathan Lambert,
Shengyi Huang, Kashif Rasul, and Quentin Gal-
louédec. 2020. Trl: Transformer reinforcement learn-
ing. https://github.com/huggingface/trl.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-Asl,
Caiming Xiong, Richard Socher, and Pascale Fung.
2019. Transferable multi-domain state generator for
task-oriented dialogue systems. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 808—819.

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan,
Lingfeng Shen, Benjamin Van Durme, Kenton Mur-
ray, and Young Jin Kim. 2024. Contrastive prefer-
ence optimization: Pushing the boundaries of 1lm
performance in machine translation. arXiv preprint
arXiv:2401.08417.

https://github.com/huggingface/trl
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

Fanghua Ye, Jarana Manotumruksa, and Emine Yilmaz.
2022. Multiwoz 2.4: A multi-domain task-oriented
dialogue dataset with essential annotation corrections
to improve state tracking evaluation. In Proceedings
of the 23rd Annual Meeting of the Special Interest
Group on Discourse and Dialogue, pages 351-360.

Victor Zhong, Caiming Xiong, and Richard Socher.
2018. Global-locally self-attentive dialogue state
tracker. arXiv preprint arXiv:1805.09655.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-
guage models from human preferences. arXiv
preprint arXiv:1909.08593.

A TIllustration of Instruction Tuning
Prompt

An example of an instruction tuning prompt is
shown in Figure 6. The prompt consists of three
parts: (1) Instruction Prompt, (2) Input Prompt, (3)
Output Prompt.

B Case Study

As illustrated in Figure 7, we summarize all the
error types into four categories: (1) Partial Pre-
diction indicates that the DST model misses some
dialogue status during the conversation, which of-
ten occurs in information-intensive conversations.
(2) Over Prediction indicates that the DST model
overinterprets some dialogue states during the con-
versation, which often occurs between related slots.
(3) Error Prediction indicates that the DST model
predicts some similar but wrong slot values, which
is often caused by the conversation involving rare
information. (4) Goal Change indicates that the
user changes their goals during the conversation,
while the DST model doesn’t or partially discovers
that and inherits the previous dialogue states.

As shown in Figure 8, we analyze the improve-
ment of four error types between the two stages. In
general, the DST model shows improvement on all
four error types after the preference optimization
of the second stage. The main improvement lies
in partial prediction and over prediction, account-
ing for more than 75% of the overall improvement,
which indicates that the preference optimization
is beneficial to improve the model’s sensitivity to
related slot information and limit the free interpre-
tation of the model. Goal change also shows great
improvement, accounting for 11% to 22% of the
overall improvement, which shows that the model’s
flexibility to handle goal changes is effectively en-
hanced. Due to the strong ability of current LLMs,

11

there are fewer cases of error prediction, account-
ing for less than 5% of the whole improvement.

<|begin_of_text|>Track the value of the slot based on the following dialogue.

Instruction Prompt Fixed Instruction

Here is the dialogue

system
What information are you looking for?
| Current Dialogue user

Does such a place exist? If so, I would like some information on it, like the postcode.

Here are the related previous dialogue states:
hotel name: rosas bed and breakfast
attraction name: club salsa

attraction type: night club

Previous Dialogue

Input Prompt State

Slot Information
Now you need to track the value of hotel people, it indicates number of people for the hotel booking.

This slot is categorical and you can choose from the following available values: 1,2, 3,4,5,6,7,8,9.
If the slot is not mentioned in the dialogue, return none.

Figure 6: Illustration of instruction tuning prompt. The prompts of instruction tuning consist of three parts: (1)
Instruction Prompt, (2) Input Prompt, (3) Output Prompt.

Output Prompt

hotel people: none

Partial Prediction
Dialogue

system: There are nine guesthouse hotels in various areas. What part of
town are you hoping for?

user: Nothing in particular. I just need it booked for 6 people for a
total of 4 nights starting from sunday. I'd also like the reference
ntmbar, please.

Over Prediction

Previous Dialogue States Stage 1 Dialogue States Stage 2 Dialogue States Dialogue

(ystem: I have a vast array of restaurants. What type of food would you like, how much do you
hotel stay: 4 otel stay: 4 ant to spend and what area would you like?
o hotel people: 6

hotel day: sunday "

ina: hotel day: sunday
hotel parking: yes hotel parking:
hotel infernet: yes holal P‘]: '"Q'T.Y"'s
hotel type: guesthouse ofel infernet: yes

y hotel type: guesthouse
L hotel pricerange: cheap otel ;Z?cer%nge: chea

hotel parking: yes
hotel internet: yes
hotel type: guesthouse
hotel pricerange: cheap|

iser: Im looking for the peking restaurant what type of food does it serve and i also need the
laddress.

Previous Dialogue States Stage 1 Dialogue States
[restaurant food: chinese
-estaurant name: peking restaurant

(b) Illustration of over prediction.

Stage 2 Dialogue States

restaurant name: peking restaurant

(a) Illustration of partial prediction.

Goal Change

Dialogue

Error Prediction (.] .
Dialogue Isystem: I'm sorry, but there are no welsh restaurants in all of cambridge.

[system: The phone number is 01223566188, Ts there anything else T can help you with foday? J

luser: Can you change my food preference to Chinese then? I still want to be in the
cheap range and center of town.

_

luser: Yes, I'm also looking for a train departing after 8:45 to Bishops Stortford.

Previous Dialogue States

Stage 1 Dialogue States

Stage 2 Dialogue States

estaurant area: centre
estaurant food: chinese

-estaurant pricerange: moderate.
estaurant name: jinling noodle bar

frrain leavet: 08:45

Irestaurant area: centre

Irestaurant food: chinese

[restaurant pricerange: moderate
estaurant name: jinling noodbar

{train destination: bishops stortford

frrain leaveAt: 08:45
Irestaurant area: centre
[restaurant food: chinese
Irestaurant pricerange: moderate
estaurant name: jinling noodle bar

{trein destination: bishops stortford

|restaurant area: north
|restaurant food: weish
|restaurant pricerange: cheap

Previous Dialogue States Stage 1 Dialogue States Stage 2 Dialogue States

-
|restaurant area: north
[restaurant food: chinese
|restaurant pricerange: cheap

|restaurant area: centre
|restaurant food: chinese
|restaurant pricerange: cheap

(c) Mlustration of error prediction. (d) Illustration of goal change.

Figure 7: Illustration of four error types.

Improvement of Different Errors on 1% Setting Improvement of Different Errors on 5% Setting Improvement of Different Errors on 10% Setting

Partial Prediction

Partial Prediction

= partal Prediction) = Partial Prediction = partial Prediction
= Over Prediction Partial Prediction = Over Prediction = Over Prediction
== Eror Prediction == Error Prediction == Error Prediction
= Goal Change = Goal Change mm Goal Change

Over Prediction

Over Prediction Goal Change

Goal Change

Goal Change Error Prediction

Error Prediction Over Prediction

Error Prediction

(a) 1% setting (b) 5% setting (c) 10% setting

Figure 8: The error improvement distribution of the four types.

12

	Introduction
	Related Work
	Dialogue State Tracking
	Preference Optimization

	Preliminary
	Methodology
	Instruction Tuning
	Preference Data Construction
	Preference Optimization

	Experiments
	Datasets
	Metrics
	Baselines
	Settings

	Results and Analysis
	Main Results
	Comparison of Top-k Candidate Hit Rate within Generation Space
	Correct Value Probability Distribution
	Ablation Study
	Error Analysis

	Conclusion
	Illustration of Instruction Tuning Prompt
	Case Study

