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Abstract

Dialogue State Tracking (DST) is an essential001
component of task-oriented dialogue systems.002
Few-shot DST effectively reduces the reliance003
on large-scale annotated data, but suffers from004
insufficient training. In this work, we propose a005
novel training method called Generation Space006
Preference Optimization (GSPO) to mitigate007
insufficient training for few-shot DST, which008
extends preference optimization to DST and009
generates preference data by the model’s gen-010
eration space and the reuse of supervised fine-011
tuned (SFT) data, free of extra reward models012
and additional preference data. Experimental013
results demonstrate that our method achieves014
competitive performance compared to those015
using 100 B-scale LLMs and shows better per-016
formance with over 5% of the whole training017
data (400 training samples).018

1 Introduction019

As a key component in Task-Oriented Dialogue020

(TOD) systems, Dialogue State Tracking (DST)021

serves to extract the user’s intentions and goals022

throughout the conversation, which is common in023

restaurant reservation, ticket booking, and so on.024

DST is responsible for tracking the value of prede-025

fined domain-specific slots and forming the struc-026

tured dialogue state for the subsequent response027

generation. Many recent works (Wu et al., 2019;028

Heck et al., 2020) have proposed various methods029

that show notable performance in the DST task030

with a large amount of annotated training data.031

However, large-scale annotation of training data032

is time-consuming and labor-intensive. Moreover,033

considering the diversity of conversation scenarios,034

we often utilize specific DST models for different035

scenarios and adopt incremental training for new036

scenarios. Therefore, researchers have begun to037

explore few-shot DST.038

In general, few-shot DST has the following three039

main directions: (1) Design universal structures040

Answer is 8.

Answer is 8.

Answer is 8.

Answer is 4.

Circular teaching Maybe 4 or 8.

system: I searched for 4 people. Shall we try 8?
user: I need a hotel for four nights, and eight people please.

Question? How many people are staying at the hotel？

Answer is 8 not 4.

Answer is 8.

Adaptive teaching

Figure 1: Examples of different ways of learning. The
left is learning with circular teaching. The right is adap-
tive teaching, that learning by correcting and enhancing
based on existing ability.

suitable for various conversations, such as copy 041

mechanisms or copy strategies (Wu et al., 2019; 042

Heck et al., 2020). (2) Generate large amounts 043

of synthetic data or utilize related task data for 044

training (Lin et al., 2021a; Shin et al., 2022). (3) 045

Adopt powerful LLMs to solve the DST task with 046

task-specific fine-tuning or in-context learning (Hu 047

et al., 2022; Feng et al., 2023). However, these 048

works overlook that the fundamental problem of 049

few-shot learning is insufficient training caused by 050

limited training data. We observe that many correct 051

answers exist beyond the model’s top-1 prediction. 052

In this work, we leverage the non-top-1 correct 053

answers in the model’s generation space to mitigate 054

the influence of insufficient training. 055

Data scaling law (Kaplan et al., 2020; Bahri et al., 056

2024) shows that the model performs better as the 057

amount of data scales up. However, in this work, 058

we prefer studying training with limited data. Take 059

the example of student learning shown in Figure 1, 060

we want the student to acquire the ability to an- 061

swer some questions. In an ideal scenario, we can 062
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continue teaching students different examples until063

they master the methodology for solving similar064

problems. However, due to the limited number065

of available examples, the students are often com-066

pelled to memorize specific cases through circular067

learning in real scenarios. This method of enforced068

memorization is far from actual mastery. Similarly,069

excessive training on limited data offers little bene-070

fit for the generalization to unseen data. In fact, the071

students may master parts after each learning and072

have the possibility to solve the problem. If we can073

instruct them based on their current ability, it may074

help them master their ability more effectively.075

In this work, we extend the use of prefer-076

ence optimization to the DST task and propose077

a novel training method called Generation Space078

Preference Optimization (GSPO) for the few-shot079

DST task. It’s a two-stage training method: (1) In080

the first stage, we utilize the limited data to train081

the model through standard instruction tuning. (2)082

In the second stage, we first analyze the ability of083

the trained model on the training data, then con-084

struct preference data based on the trained model’s085

generation space and the reuse of training data.086

Finally, we optimize the trained model with pref-087

erence optimization to correct errors and enhance088

weaknesses. The analysis of the trained model’s089

generation space and the reuse of supervised fine-090

tuned (SFT) data ensures that we neither rely on091

the extra reward models nor additional preference092

data during preference optimization. We believe093

that the preference optimization of the second stage094

can further improve the model’s ability and stim-095

ulate its performance under limited data training.096

We conduct extensive experiments on MultiWOZ097

2.1 and MultiWOZ 2.4. The experimental results098

show the effectiveness of our proposed method. In099

summary, the main contributions of our work are100

as follows:101

• We extend preference optimization to tasks102

characterized by unique and deterministic103

ground truth, and find that it efficiently miti-104

gates the influence of insufficient training.105

• We propose a novel two-stage training method106

called generation space preference optimiza-107

tion (GSPO), which constructs preference108

data by analyzing the model’s generation109

space and reusing SFT data, free of extra re-110

ward models and additional preference data.111

• We conduct extensive experiments on Multi-112

WOZ 2.1 and MultiWOZ 2.4 to validate the 113

proposed method’s effectiveness and achieve 114

competitive performance over compared base- 115

lines. 116

2 Related Work 117

2.1 Dialogue State Tracking 118

Few-shot dialogue state tracking has primarily 119

evolved along three main directions. First, re- 120

searchers have explored the design of specialized 121

model architectures that can learn to identify dia- 122

logue states from limited training samples. Sev- 123

eral studies (Zhong et al., 2018; Wu et al., 2019; 124

Heck et al., 2020) propose copy mechanisms or 125

copy strategies to extract dialogue states directly 126

from the dialogue history. However, the perfor- 127

mance of such methods tends to degrade signifi- 128

cantly when training data is scarce. Second, data 129

augmentation-based approaches have been intro- 130

duced to alleviate the data sparsity problem. For 131

example, Shin et al. (2022) reformulates DST as a 132

dialogue summarization task and generates large- 133

scale synthetic data through template-guided sum- 134

marization. Lin et al. (2021a) enhances training 135

data by employing cross-task transfer learning tech- 136

niques. Third, with the rapid advancement of large 137

language models (LLMs), numerous approaches 138

have leveraged their capabilities to improve DST 139

performance. Some works (Hosseini-Asl et al., 140

2020; Lin et al., 2021b; Feng et al., 2023) achieve 141

strong results by fine-tuning LLMs. Others (Hu 142

et al., 2022; Heck et al., 2023; King and Flanigan, 143

2023) utilize the in-context learning (ICL) abilities 144

of LLMs, optimizing the selection of retrieval ex- 145

amples to boost DST performance. Despite their 146

effectiveness, fine-tuning-based methods remain 147

sensitive to the size of the training dataset, whereas 148

prompt-based methods heavily rely on the inher- 149

ent capabilities of the underlying LLM, typically 150

requiring models with a very large number of pa- 151

rameters to perform well. Similar to fine-tuning- 152

based approaches, our method involves an initial 153

stage of instruction tuning on a base model. How- 154

ever, to further enhance performance, we introduce 155

a second stage based on preference optimization, 156

which encourages the model to generate more ac- 157

curate dialogue states by learning from pairwise 158

comparisons. 159

2.2 Preference Optimization 160

LLMs pre-trained on large-scale data have demon- 161

strated powerful capabilities across various tasks 162
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with few-shot prompts (Radford et al., 2019; Brown163

et al., 2020), and their performance on downstream164

tasks can be significantly enhanced through instruc-165

tion tuning (Mishra et al., 2022; Sanh et al., 2021).166

However, human judgment of the quality is more167

meaningful than fixed metrics. As a result, some168

works (Kreutzer et al., 2018; Ziegler et al., 2019;169

Ouyang et al., 2022) aim to fine-tune LLMs using170

human preference datasets to further enhance their171

usability. These works need an extra well-trained172

reward model to assess the human preference for173

a given output, then fine-tune a language model174

to maximize the reward using reinforcement learn-175

ing, commonly through TRPO (Schulman, 2015),176

PPO (Schulman et al., 2017), GRPO (Shao et al.,177

2024), and others. However, a well-trained reward178

model is very important to the final performance179

and usually requires specific data for training to180

better distinguish between different preferences.181

To simplify the process of reinforcement learning,182

some single-stage policy learning approaches have183

been proposed, such as DPO (Rafailov et al., 2024),184

CPO (Xu et al., 2024), KTO (Ethayarajh et al.,185

2024), and so on. Though these single-stage policy186

learning approaches eliminate the need for extra187

reward models, they usually need additional prefer-188

ence data for preference optimization. Similar to189

single-stage policy learning approaches, our pro-190

posed GSPO is also free of extra reward models.191

Apart from that, our method requires no additional192

preference data because we construct preference193

data from the model’s generation space and the194

reuse of SFT data.195

3 Preliminary196

Dialogue State Tracking (DST) aims to monitor197

the evolving state of a conversation by maintaining198

a structured representation known as the dialogue199

state. This dialogue state is typically represented200

as a set of triples in the format "domain-slot-value",201

such as "hotel-area-centre". Both the domain and202

slot in the triple are predefined manually. The do-203

main denotes the topic of the dialogue, while the204

slot corresponds to specific attributes associated205

with that domain. For ease of reference, we treat206

"slot" as a "domain-slot" pair throughout the rest207

of the paper. The value of the dialogue state can208

be of two types: enumerable and non-enumerable.209

An enumerable slot has a predefined set of possible210

values (e.g., "hotel-pricerange"), whereas a non-211

enumerable slot takes dynamic values that emerge212

during the conversation (e.g., "hotel-name"). In 213

brief, the only task of DST is to predict the value 214

of the slot based on the conversation. 215

Formally, a dialogue D with T turns can be rep- 216

resented as {(R1, U1), (R2, U2), · · · , (RT , UT )}, 217

where R represents system response and U rep- 218

resents user utterance. Given all predefined slots 219

S = {S1, S2, · · · , SN}, we predict the correspond- 220

ing value of the slots as V = {V1, V2, · · · , VN}. 221

For some slots, the value may not exist and is de- 222

fined as "none". The belief state B is defined as a 223

set {(Si, Vi) | Vi ̸= none}. In short, DST problem 224

is defined as (D,S) → B. 225

To track the dialogue state throughout a con- 226

versation, two primary approaches are commonly 227

used: state refresh and state change. State refresh 228

regenerates the entire dialogue state at each turn by 229

leveraging the full dialogue history. State change 230

updates the dialogue state incrementally using the 231

current turn’s dialogue context and the previous 232

dialogue state. Formally, state refresh is defined 233

as (D,S) → Bt, and state change is defined as 234

(Dt,S,Bt−1) → Bt. In general, state refresh can 235

mitigate error propagation by treating each turn in- 236

dependently, potentially correcting earlier mistakes. 237

However, for complex and lengthy dialogues, using 238

the entire dialogue history may introduce unneces- 239

sary complexity and hinder comprehension. State 240

change reduces these problems by focusing only 241

on the current turn and the previously tracked state. 242

In this work, we adopt the state change paradigm 243

due to its efficiency and practical effectiveness. 244

4 Methodology 245

Figure 2 shows an overview of our proposed 246

method. It consists of the following two stages: 247

1. In the first stage, we utilize standard instruc- 248

tion tuning to improve the LLM’s ability to 249

solve DST. 250

2. In the second stage, we construct preference 251

data based on the generation space of the 252

tuned model and the reuse of SFT data, and 253

then perform preference optimization on the 254

tuned model to correct errors and strengthen 255

weaknesses. 256

4.1 Instruction Tuning 257

We utilize standard instruction tuning (Wei et al., 258

2021) to improve the LLM’s ability on the DST 259

task. Unlike other fine-tuning approaches, instruc- 260

tion tuning provides more explicit and detailed 261
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# Instruction
# Current Dialogue
# Previous Dialogue States
# Slot Information
# Answer

LLM ❄

Instruction Tuning 
LoRA 🔥

Preference Optimization
LoRA 🔥

Generation Space (Results and Probabilities)

Stage 2

Stage 1

Preference Data

Positive Negative

Correction

Enhancement

Figure 2: An illustration of our proposed method, which consists of two stages: (1) Instruction Tuning and (2)
Preference Optimization. In the first stage, we apply standard instruction tuning with LoRA to enhance the model’s
ability in DST. In the second stage, we construct preference data based on the model’s generation space and the
reuse of SFT data, and then apply preference optimization for further improvement.

prompts to guide the model in solving the task,262

and the design of prompts has a significant im-263

pact on model performance. An illustration of the264

instruction tuning prompt is shown in Figure 6.265

The prompt consists of three parts: (1) instruction266

prompt, (2) input prompt, (3) output prompt.267

Instruction Prompt In this work, a fixed instruc-268

tion is used as the instruction prompt to explain the269

goal of the DST task. Since our work focuses solely270

on the DST task, using a fixed instruction prompt is271

acceptable and easy to implement, although some272

studies (Wei et al., 2021; Chung et al., 2024) have273

indicated that diverse instruction prompts can im-274

prove the performance and robustness of the model275

across various tasks.276

Input Prompt Input prompt consists of three277

components: current dialogue information, previ-278

ous dialogue state, and slot information. We rep-279

resent the dialogue history using the previous dia-280

logue state for lower costs and easier status track-281

ing. The previous dialogue state includes all active282

slots from earlier turns, rather than only the current283

slot. If there are no active slots in the previous284

dialogue state, it will be stated in the prompt. The285

slot information includes the slot name along with286

a detailed description. For enumerable slots, all287

possible values will be listed. If no relevant slot in-288

formation is present in the current turn, the model289

will be instructed to output "none". In each dia-290

logue turn, we will construct the input prompt for 291

all possible slots. 292

Output Prompt Output prompt is the desired 293

value of the slot, which can be selected from the val- 294

ues enumerated in the slot information or derived 295

from the dialogue information. 296

For cost efficiency, we adopt parameter-efficient 297

fine-tuning (PEFT) to train the model. Specifi- 298

cally, we utilize Low-Rank Adaptaion (LoRA) (Hu 299

et al., 2021). Unlike traditional full-parameter fine- 300

tuning, LoRA freezes the parameters of the base 301

model and injects trainable low-rank decomposi- 302

tion modules into each layer of the model. In tradi- 303

tional fine-tuning, the trainable parameters consist 304

of a weight matrix W0 ∈ Rd×k, which can be di- 305

rectly updated based on the gradient. In LoRA, 306

the trainable modules are two weight matrices: 307

A ∈ Rd×r, B ∈ Rr×k, and the weight is updated 308

by ∆W = BA. In brief, the weight update is 309

represented as W = W0 + ∆W = W0 + BA, 310

where W0 remains frozen and BA is trainable. For 311

the original output h = W0x, the forward pass of 312

LoRA is as follows: 313

h = W0x+∆Wx = W0x+BAx (1) 314

During the training process, we concatenate the 315

three prompts mentioned above and generate the 316

output prompt from the concatenation of the in- 317

struction prompt and input prompt in an autoregres- 318
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sive way. We employ teacher forcing to train the319

model and utilize cross-entropy loss to minimize320

the negative log-likelihood of the correct output321

prompt:322

L1 = −
N∑
j

Lj∑
i

log p(vij |I,Dt,Bt−1, Sj) (2)323

where N represents the number of all slots, Lj324

represents the length of Vj , vij represents the i-325

th word in the value Vj , I represents instruction326

prompt.327

4.2 Preference Data Construction328

In stage 2, we perform additional preference opti-329

mization on the instruction-tuned model. Unlike330

previous works (Stiennon et al., 2020; Ouyang331

et al., 2022; Song et al., 2024) that focus on human332

preferences, which are subjective and vary from333

person to person. The preferences in our work are334

clear and fixed. Given the goal of the DST task,335

the preference for this task is only the correct dia-336

logue state. Specifically, the preference in this work337

refers to the correct value for each corresponding338

slot.339

We construct positive and negative pairs to repre-340

sent preferences. The positive is the correct value,341

and the negative is the incorrect value. The cor-342

rect value is unique and can be obtained from the343

annotation, whereas the incorrect value is diverse344

and hard to select. To address this, we select the345

incorrect value from the model’s generation space346

to limit the uncertainty of the incorrect value. We347

utilize beam search to express the model’s genera-348

tion space and select the incorrect value with high349

probability from this generation space.350

The positive and negative pairs consist of two351

types of data: (1) Correction: The value with352

the highest probability is incorrect, but the cor-353

rect value is in the expressed generation space. (2)354

Enhancement: The value with the highest proba-355

bility is correct, but its probability is significantly356

lower than the other correct values. The first type357

of data is mainly used for correction, focusing on358

exploring the correct candidates within the gener-359

ation space that are not ranked as the top-1 candi-360

date. The second is mainly used for enhancement,361

aiming to reinforce the correct value’s position as362

the highest-probability candidate within the gen-363

eration space. The correction data can be easily364

constructed by checking the generation space, tak-365

ing the correct value as the positive sample and the366

highest-probability incorrect value as the negative 367

sample. For the enhancement data, we utilize a 368

one-sided confidence interval to identify correct 369

values with low probabilities. If the generation 370

probability of a top-1 correct candidate falls out- 371

side the confidence interval, we regard it as a target 372

for enhancement. The formulation of the one-sided 373

confidence interval is as follows: 374

P ∈ [p− Zα
2

σ√
n
, 0) (3) 375

where p represents the mean probability of the cor- 376

rect values, σ represents the standard deviation of 377

the correct value probabilities, α represents the con- 378

fidence level, and Zα
2

represents the corresponding 379

Z-value obtained from the standard normal distri- 380

bution table. 381

4.3 Preference Optimization 382

In this work, we utilize preference optimization 383

to refine the model’s generation space by increas- 384

ing the generation probability of the correct values 385

while suppressing the generation probability of in- 386

correct ones. Specifically, Direct Preference Opti- 387

mization (DPO) (Rafailov et al., 2024) is employed 388

for model training in stage 2. The loss function 389

used in DPO is formulated as follows: 390

LDPO(πθ, πref ) = −E(x,ypos,yneg) [log σ(
β log

πθ(ypos|x)
πref (ypos|x)

−β log
πθ(yneg|x)
πref (yneg|x)

)] (4) 391

where πθ represents the model to be trained, πref 392

represents the reference model obtained from stage 393

1, and πθ is initialized from πref . 394

For some data used for error correction, the prob- 395

ability of the positive sample is significantly lower 396

than that of the negative sample. To accelerate 397

model convergence and improve training stability, 398

we incorporate an extra auxiliary loss for the pos- 399

itive sample in addition to the original DPO loss. 400

The auxiliary loss is the same as the one used in 401

instruction tuning described above. The final loss 402

function is defined as follows: 403

L2 = Lpos
1 + LDPO (5) 404

5 Experiments 405

5.1 Datasets 406

Our experiments are conducted on a widely 407

used task-oriented dialogue dataset, MultiWOZ 408
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Model Size MultiWOZ2.1 MultiWOZ2.4
1% 5% 10% 1% 5% 10%

TRADE (Wu et al., 2019)
1B

12.58 31.17 36.18 - - -
DS2-BART (Shin et al., 2022) 28.25 37.71 40.29 30.55 42.53 41.73

DS2-T5 (Shin et al., 2022) 33.76 44.20 45.38 36.76 49.89 51.05

IC-DST CodeGen (Hu et al., 2022)
10B

20.72 29.62 33.81 21.87 33.16 37.45
SM2-11b (Chen et al., 2023) 38.36 44.64 46.02 40.03 51.14 51.97

LDST (Feng et al., 2023) - - - 46.77 56.48 62.45

IC-DST Codex-davinc (Hu et al., 2022)
100B

43.13 47.08 48.67 48.35 55.43 56.88
RefPyDST (King and Flanigan, 2023) 47.30 49.60 50.80 55.20 62.30 62.50

Ours (GSPO) 10B 42.89 49.96 53.25 47.76 64.00 65.75

Table 1: Few-shot results averaged over three runs on MultiWOZ 2.1 and MultiWOZ 2.4 with 1%, 5%, and 10% of
the training data. All results are reported in joint goal accuracy (%), with the best results highlighted in bold.

(Budzianowski et al., 2018). MultiWOZ is a409

large-scale, multi-domain human-to-human dia-410

logue dataset that contains over 8k dialogues across411

seven different domains, with detailed turn-level412

annotations. In this work, we utilize two versions413

of the MultiWOZ dataset series: MultiWOZ 2.1414

and MultiWOZ 2.4. MultiWOZ 2.1 (Eric et al.,415

2020) addresses the issue of noisy state annota-416

tions in the training data of the original MultiWOZ417

dataset. MultiWOZ 2.4 (Ye et al., 2022) refines the418

annotations in the validation and test sets based on419

MultiWOZ 2.1, with the training set annotations420

remaining the same as MultiWOZ 2.1.421

5.2 Metrics422

DST is typically evaluated using two metrics: Slot423

Accuracy (SA) and Joint Goal Accuracy (JGA).424

SA measures the prediction accuracy for each slot,425

including those with a value of none. JGA is a426

turn-level metric that evaluates the prediction ac-427

curacy for all slots at each turn. For JGA, a turn is428

considered correct only if the values of all slots at429

that turn are predicted accurately. To keep in line430

with previous work (Wu et al., 2019; Feng et al.,431

2023), we utilize JGA as the primary metric.432

5.3 Baselines433

Our method is compared with the following base-434

lines. TRADE (Wu et al., 2019) proposes a trans-435

ferable dialogue state generator that leverages a436

copy mechanism to facilitate knowledge sharing437

across different domains during dialogue state gen-438

eration. DS2 (Shin et al., 2022) reformulates dia-439

logue state tracking as a dialogue summarization440

task. It generates synthetic, template-based sum- 441

maries using specific rules to train a summariza- 442

tion model and recovers dialogue states from sum- 443

maries. SM2 (Chen et al., 2023) strengthens the 444

model’s robustness across diverse prompts using a 445

meta-learning scheme and introduces an effective 446

retrieval strategy to find ideal examples to improve 447

the LLM’s ability in in-context learning. LDST 448

(Feng et al., 2023) proposes a LLM-driven DST 449

framework based on instruction-tuned foundation 450

models. IC-DST (Hu et al., 2022) formulates DST 451

as a text-to-SQL task and utilizes an in-context 452

learning method to retrieve dialogue states using a 453

prompt that includes some examples. RefPyDST 454

(King and Flanigan, 2023) reformulates DST as 455

a Python Programming task and improves the in- 456

context learning performance by retrieving diverse 457

relevant examples. 458

5.4 Settings 459

Our method is implemented with Transformers 460

(Wolf et al., 2020) and TRL (von Werra et al., 2020) 461

libraries based on the PyTorch framework. We uti- 462

lize Llama-3.1-8B (Dubey et al., 2024) as the base 463

model and fine-tune it with LoRA (Hu et al., 2021) 464

in a parameter-efficient way. The target modules 465

trained with LoRA are qproj , kproj , vproj , oproj in 466

each layer. The rank r of LoRA is 8, and the 467

dropout rate is 0.05. The learning rate for the first 468

stage is 1e-4, and 1e-6 for the second stage. The 469

batch size for both stages is 16, with gradient ac- 470

cumulation. All inference and data generation pro- 471

cesses are implemented with the VLLM (Kwon 472

et al., 2023) framework. We conduct all experi- 473
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ments with one NVIDIA A100 (40GB) GPU.474

6 Results and Analysis475

6.1 Main Results476

Table 1 shows the results of our proposed method477

on MultiWOZ 2.1 and MultiWOZ 2.4 on 1%, 5%,478

and 10% few-shot settings. As mentioned in Sec-479

tion 5.1, MultiWOZ 2.4 refines the annotations in480

both the validation and test sets, leading to gen-481

erally higher performance for all methods on this482

version. Our method outperforms all baseline meth-483

ods with fewer than 100B parameters. Compared484

with the best method of similar parameter scale485

on MultiWOZ 2.4, our method achieves improve-486

ments of 0.99% on the 1% setting, 7.52% on the487

5% setting, and 5.30% on the 10% setting. Com-488

pared to methods with over 100B parameters, our489

method underperforms RefPyDST on the 1% set-490

ting. However, our method achieves better per-491

formance on both 5% and 10% settings, indicat-492

ing that our method benefits more from increased493

training data. We attribute this phenomenon to the494

inherent differences between fine-tuning and in-495

context learning paradigms. In few-shot scenarios,496

in-context learning methods generally yield good497

performance with limited data, showing a higher498

lower bound. In contrast, fine-tuning methods are499

more effective at scaling with increased data, thus500

achieving a higher performance upper bound.501

6.2 Comparison of Top-k Candidate Hit Rate502

within Generation Space503

1 2 3 4 5 6 7 8 9 10
Top-k Candidates

98.6

98.8

99.0

99.2

99.4

99.6

99.8

100.0

SA

Top-k Hit Rate on Training Data

1%-Stage 1
1%-Stage 2
5%-Stage 1
5%-Stage 2
10%-Stage 1
10%-Stage 2

(a) Slot accuracy of training.

1 2 3 4 5 6 7 8 9 10
Top-k Candidates

92

93

94

95

96

97

98

SA

Top-k Hit Rate on Test Data

1%-Stage 1
1%-Stage 2
5%-Stage 1
5%-Stage 2
10%-Stage 1
10%-Stage 2

(b) Slot accuracy of test.

Figure 3: Comparison of the top-k hit rate for correct
slot predictions within the model’s generation space on
both training and test data.

To analyze the influence of preference optimiza-504

tion, we conduct a comparative study of the gener-505

ation space between two stages. We utilize beam506

search to decode the model outputs, and select the507

top-10 highest-probability candidates to approxi-508

mate the model’s generation space. As shown in509

Figure 3, we compare the top-k correct value hit510

rate within the generation space on both the training 511

and test data. We find that models trained on larger 512

datasets tend to perform worse on the training set 513

but better on the test set. This is because smaller 514

training sets require more iterations to converge. 515

The results show an improved Top-1 hit rate with 516

preference optimization, although the overall hit 517

rate within the generation space drops slightly. This 518

suggests that the model becomes more confident in 519

generating the correct Top-1 value, potentially at 520

the cost of hit rate in its output candidates. Since 521

only the Top-1 result is used for prediction, it is rea- 522

sonable to prioritize its accuracy even if it slightly 523

reduces the overall hit rate of the generation space. 524

6.3 Correct Value Probability Distribution 525

To verify the effectiveness of our method in in- 526

creasing correct value probabilities, we present the 527

distribution of their generation probabilities in Fig- 528

ure 4. We observe consistent gains in the generation 529

probability of correct values across different data 530

ratio settings, with mean increases of 1.0006 (1%), 531

0.0137 (5%), and 0.0109 (10%). In addition, im- 532

provements in the model’s stability and robustness 533

in generating correct values are observed, with the 534

standard deviation of probabilities increasing by 535

0.0038, 0.0311, and 0.0340 for the 1%, 5%, and 536

10% settings, respectively. In general, preference 537

optimization in stage 2 enhances the model’s confi- 538

dence and stability in generating correct answers. 539

6.4 Ablation Study 540

1% 5% 10%

Stage 1 40.98 (-1.91) 46.54 (-3.42) 51.70 (-1.55)

Stage 2 42.89 49.96 53.25
w/o aux loss 43.00 (+0.11) 48.01 (-1.95) 53.01 (-0.24)
w/o enhance 42.01 (-0.88) 46.37 (-3.59) 51.79 (-1.46)
w/o filter 41.83 (-1.06) 47.45 (-2.51) 51.43 (-1.82)

Table 2: Ablation study of the two-stage preference
optimization, auxiliary loss, and preference data con-
struction on MultiWOZ 2.1. Results are reported in
joint goal accuracy (%).

Table 2 presents ablation studies on MultiWOZ 541

2.1 from three aspects: (1) Effectiveness of two- 542

stage preference optimization, (2) Influence of aux- 543

iliary loss, (3) Method of preference data construc- 544

tion. 545

Effectiveness of two-stage preference optimiza- 546

tion Experimental results demonstrate that the 547

Stage 2 model outperforms Stage 1 by 1.91%, 548
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Figure 4: Correct value probability distribution of two stages.

3.42%, and 1.55% on the 1%, 5%, and 10% set-549

tings, respectively, indicating that the instruction-550

tuned model can be further improved via preference551

optimization. Preference optimization on positive552

(correct) and negative (incorrect) pairs in the gen-553

eration space enhances the model’s ability to dis-554

tinguish between candidate values and generate the555

most probable correct value.556

Influence of auxiliary loss Without additional aux-557

iliary loss, the result on the 1% setting slightly558

decreases by 0.11%, while the results of both 5%559

and 10% settings show an increase by 1.95% and560

0.24%, respectively. Our goal of additional auxil-561

iary loss is to increase the probability of the correct562

value with low probability. However, the model563

requires more iterations to converge on the 1% set-564

ting. This results in a better fit of the model on565

the training data, which in turn results in less er-566

ror correction in the preference data, causing the567

ineffectiveness of auxiliary loss on the 1% setting.568

Method of preference data construction We com-569

pare the other two methods of preference data570

construction. Compared to preference data con-571

taining only error correction without enhancement,572

our preference data construction shows higher and573

more stable improvement. If there is no filtering574

of enhancement preference data, too much data575

does not lead to greater improvement, but rather a576

decline by 1.06%, 2.51%, 1.82% on the 1%, 5%,577

10% settings, respectively. These all indicate that578

the quality of preference data is the most important,579

and reasonable selection and filtering are necessary.580

6.5 Error Analysis581

As shown in Figure 5, we compare the slot errors582

between two stages. We categorize slot errors into583

three types: common error, stage 1 error, and stage584

2 error. The common error exists in both stages,585

and the other two only exist in their respective586
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5390
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Stage 1 error Common error Stage 2 error

Figure 5: Slot error comparsion between two stages.

stages. There are a large number of common errors 587

in both stages, which can be improved by more 588

training data. As the amount of training data in- 589

creases from 1% to 10%, the common errors de- 590

crease from 7091 to 4738, a reduction of 33.2%. 591

Although we have added some preference data for 592

enhancement during preference optimization, some 593

correct slots in stage 1 are wrong in stage 2. In gen- 594

eral, although the preference optimization brings 595

some slot errors, it shows a certain improvement in 596

the overall slot accuracy. 597

7 Conclusion 598

In this paper, we propose a novel two-stage train- 599

ing method called generation space preference op- 600

timization (GSPO) for the few-shot DST task. Un- 601

like other preference optimization methods, our 602

method is free from extra reward models or pref- 603

erence data. We generate preference data from the 604

model’s generation space and reuse of SFT data, 605

and can even customize it based on the capabilities 606

of the model. Experimental results demonstrate the 607

effectiveness of our method. 608
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Limitations609

In this paper, we mainly focus on the few-shot DST610

task. We conduct experiments to validate the effec-611

tiveness of our method under limited training data612

settings, in which the amount of training data lim-613

its the model’s performance. However, we haven’t614

explored the effectiveness of our method when the615

amount of training data is not the main bottleneck616

of the performance. Besides, our method is a two-617

stage process, and the training data of the first stage618

is necessary, though it’s free of extra reward models619

and additional preference data.620
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A Illustration of Instruction Tuning841

Prompt842

An example of an instruction tuning prompt is843

shown in Figure 6. The prompt consists of three844

parts: (1) Instruction Prompt, (2) Input Prompt, (3)845

Output Prompt.846

B Case Study847

As illustrated in Figure 7, we summarize all the848

error types into four categories: (1) Partial Pre-849

diction indicates that the DST model misses some850

dialogue status during the conversation, which of-851

ten occurs in information-intensive conversations.852

(2) Over Prediction indicates that the DST model853

overinterprets some dialogue states during the con-854

versation, which often occurs between related slots.855

(3) Error Prediction indicates that the DST model856

predicts some similar but wrong slot values, which857

is often caused by the conversation involving rare858

information. (4) Goal Change indicates that the859

user changes their goals during the conversation,860

while the DST model doesn’t or partially discovers861

that and inherits the previous dialogue states.862

As shown in Figure 8, we analyze the improve-863

ment of four error types between the two stages. In864

general, the DST model shows improvement on all865

four error types after the preference optimization866

of the second stage. The main improvement lies867

in partial prediction and over prediction, account-868

ing for more than 75% of the overall improvement,869

which indicates that the preference optimization870

is beneficial to improve the model’s sensitivity to871

related slot information and limit the free interpre-872

tation of the model. Goal change also shows great873

improvement, accounting for 11% to 22% of the874

overall improvement, which shows that the model’s875

flexibility to handle goal changes is effectively en-876

hanced. Due to the strong ability of current LLMs,877

there are fewer cases of error prediction, account- 878

ing for less than 5% of the whole improvement. 879
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Instruction Prompt

Input Prompt

Output Prompt

Fixed Instruction

Current Dialogue

Previous Dialogue
State

Slot Information

Value

<|begin_of_text|>Track the value of the slot based on the following dialogue.

Here is the dialogue
system
What information are you looking for?
user
Does such a place exist? If so, I would like some information on it, like the postcode.

Here are the related previous dialogue states:
hotel name: rosas bed and breakfast
attraction name: club salsa
attraction type: night club

Now you need to track the value of hotel people, it indicates number of people for the hotel booking.
This slot is categorical and you can choose from the following available values: 1, 2, 3, 4, 5, 6, 7, 8, 9.
If the slot is not mentioned in the dialogue, return none.

hotel people: none

Figure 6: Illustration of instruction tuning prompt. The prompts of instruction tuning consist of three parts: (1)
Instruction Prompt, (2) Input Prompt, (3) Output Prompt.

system: There are nine guesthouse hotels in various areas. What part of
town are you hoping for?

user: Nothing in particular. I just need it booked for 6 people for a
total of 4 nights starting from sunday. I'd also like the reference
number, please.

hotel stay: 4
hotel people: 6
hotel day: sunday
hotel parking: yes
hotel internet: yes
hotel type: guesthouse
hotel pricerange: cheap

hotel stay: 4
hotel day: sunday
hotel parking: yes
hotel internet: yes
hotel type: guesthouse
hotel pricerange: cheap

hotel parking: yes
hotel internet: yes
hotel type: guesthouse
hotel pricerange: cheap

Dialogue

Previous Dialogue States Stage 1 Dialogue States Stage 2 Dialogue States

Partial Prediction

(a) Illustration of partial prediction.

system: I have a vast array of restaurants.  What type of food would you like, how much do you
want to spend and what area would you like?

user: Im looking for the peking restaurant what type of food does it serve and i also need the
address.

restaurant name: peking restaurantrestaurant food: chinese
restaurant name: peking restaurant

Dialogue

Previous Dialogue States Stage 1 Dialogue States Stage 2 Dialogue States

Over Prediction

(b) Illustration of over prediction.

system: The phone number is 01223566188. Is there anything else I can help you with today?

user: Yes, I'm also looking for a train departing after 8:45 to Bishops Stortford.

train leaveAt: 08:45
restaurant area: centre
restaurant food: chinese
restaurant pricerange: moderate
restaurant name: jinling noodle bar
train destination: bishops stortford

train leaveAt: 08:45
restaurant area: centre
restaurant food: chinese
restaurant pricerange: moderate
restaurant name: jinling noodbar
train destination: bishops stortford

restaurant area: centre
restaurant food: chinese
restaurant pricerange: moderate
restaurant name: jinling noodle bar

Dialogue

Previous Dialogue States Stage 1 Dialogue States Stage 2 Dialogue States

Error Prediction

(c) Illustration of error prediction.

system: I'm sorry, but there are no welsh restaurants in all of cambridge.

user: Can you change my food preference to Chinese then? I still want to be in the
cheap range and center of town.

restaurant area: centre
restaurant food: chinese
restaurant pricerange: cheap

restaurant area: north
restaurant food: chinese
restaurant pricerange: cheap

restaurant area: north
restaurant food: weish
restaurant pricerange: cheap

Dialogue

Previous Dialogue States Stage 1 Dialogue States Stage 2 Dialogue States

Goal Change

(d) Illustration of goal change.

Figure 7: Illustration of four error types.
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(a) 1% setting
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Figure 8: The error improvement distribution of the four types.
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