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Figure 1. Comparison of existing point cloud encoding approaches. We present a Fourier-based colored point cloud encoding method that
explicitly leverages amplitude and phase to represent the color and geometric attributes of the point cloud. This encoding enables effective
processing across various point cloud tasks, including classification, part segmentation, and style transfer.

Abstract

While 3D point clouds are widely used in vision applica-
tions, their irregular and sparse nature make them challeng-
ing to handle. In response, numerous encoding approaches
have been proposed to capture the rich semantic informa-
tion of point clouds. Yet, a critical limitation persists: a
lack of consideration for colored point clouds, which serve
as more expressive 3D representations encompassing both
color and geometry. While existing methods handle color
and geometry separately on a per-point basis, this leads to a
limited receptive field and restricted ability to capture rela-
tionships across multiple points. To address this, we pioneer
a colored point cloud encoding methodology that leverages
3D Fourier decomposition to disentangle color and geo-
metric features while extending the receptive field through
spectral-domain operations. Our analysis confirms that our
approach effectively separates feature components, where
the amplitude uniquely captures color attributes and the
phase encodes geometric structure, thereby enabling inde-
pendent learning and utilization of both attributes. We val-
idate our colored point cloud encoding approach on clas-
sification, segmentation, and style transfer tasks, achieving
state-of-the-art results on the DensePoint dataset. All the

attached source code will be made publicly available.

1. Introduction

Point clouds have gained increasing attention with the ad-
vancement of fields such as autonomous driving [11, 30]
and augmented reality [8, 27], due to their effectiveness
in representing 3D information. In response, various
deep learning tasks leveraging point clouds (e.g., classifi-
cation [5, 46, 48], segmentation [15, 20, 39], and upsam-
pling [14, 19, 33]) have been extensively explored. How-
ever, unlike 2D images that consist of discrete grids, point
clouds represent sparse sets of points in continuous space.
This irregularity has introduced challenges in processing
point clouds.

Typically, a point cloud is represented as an N X ¢y ma-
trix, where N is the number of points and cy denotes the
input channels. Each point is initially represented by Carte-
sian coordinates (x, y, z), but ¢y can be extended to include
additional attributes such as RGB color values (r, g, b) or
surface normals (n,,n,,n.). Building on this representa-
tion, early deep learning methods [28, 29] employ shared
multi-layer perceptrons (MLPs) to extract features from the
co channels of each point (Fig. 1(a)). While this approach
ensures permutation invariance and mitigates certain irreg-



ularities, it does not account for the unique characteristics
of colored point clouds, which contain rich information for
both geometric and color attributes within the input chan-
nels. This leads to a failure in distinguishing these indepen-
dent attributes, treating them as a single, entangled feature.
Hence, it often failed to sufficiently capture the semantic
information of the colored point cloud.

To facilitate the learning of colored point cloud features,
prior works [2, 26] have independently handled geomet-
ric and color attributes through split-based point cloud en-
coding (Fig. 1(b)), which partitions the colored point cloud
(N x 6) into two separate groups: one containing the XYZ
coordinates (N x 3) and the other containing the RGB val-
ues (N x 3). Each group is then fed into a separate feature
extractor. However, as feature extractors used in this ap-
proach extract features on a per-point basis, it inherently
suffers from a limited receptive field, making it challenging
to capture context-rich features that emerge when consid-
ering neighboring points. Therefore, the development of
a proper encoding method that not only handles the two
attributes independently but also incorporates neighboring
points for feature extraction remains a crucial research di-
rection in the field of colored point cloud processing.

In response to this direction, we pioneer a colored point
cloud encoding method that utilizes amplitude and phase
readily obtained through a newly devised 3D Fourier de-
composition (Fig. 1(c)). We have discovered that ampli-
tude preserves the point cloud’s color information, whereas
phase encodes its geometric attributes. Since both compo-
nents reside in the spectral domain, operations applied to
them influence the entire point cloud globally [17], result-
ing in a large receptive field. Leveraging this property, we
employ amplitude and phase as explicit representations, fa-
cilitating independent learning and effective utilization of
the point cloud’s color and geometric features, making them
a suitable encoding method for colored point clouds.

To demonstrate the practical utility of our findings, we
apply them to three key tasks: (i) classification, (ii) part
segmentation, and (iii) style transfer. For classification and
segmentation, our approach achieves state-of-the-art perfor-
mance on the DensePoint [1] dataset. In style transfer, we
utilize the amplitude within an optimization-based frame-
work to modify the style of a point cloud, achieving more
effective style transfer compared to existing method.

Contributions. In this work, we introduce a Fourier-
based colored point cloud encoding that employs the com-
ponents obtained through Fourier decomposition as explicit
representations. Our main contributions are:

* We are the first to analyze colored point clouds using 3D
Fourier decomposition, uncovering a key insight: ampli-
tude uniquely preserves detailed color attributes, while
phase represents the intrinsic geometric structure.

* We present a Fourier-based colored point cloud encoding
framework that disentangles color and geometric features
from the colored point cloud. This framework enables the
independent utilization of color and geometric attributes,
with achieving a large receptive field.

* We demonstrate the utility of our findings through its ap-
plication to classification, part segmentation, and style
transfer.  The proposed methods perform favorably
against other methods on the DensePoint dataset.

2. Related Work

Point Cloud Encoding Approaches. Early approaches
for processing 3D point clouds made significant efforts to
effectively handle their irregular nature (i.e., unordered sets
of points). Various methods have been proposed, including
multi-view projections [4, 16], which project point clouds
onto multiple image planes, and voxel-based networks that
quantize point clouds into voxel grids [6, 12, 32]. How-
ever, these approaches often fail to capture fine geometric
details [21, 35]. To overcome these limitations, pointwise-
processing methods [28, 29] address permutation invari-
ance by employing shared MLPs and a symmetric func-
tion (e.g., max pooling). PointNet [28] processes each
point independently to capture global features, while Point-
Net++ [29] introduces set abstraction, which utilizes hi-
erarchical grouping, to capture both local and global fea-
tures. Transformer-based methods [42, 43, 52] employ self-
attention with pointwise operations for efficient local and
global feature extraction. While these studies have effec-
tively addressed the geometric attributes of 3D point clouds,
they have largely overlooked the color and style-related at-
tributes, which are as crucial as geometry in the case of col-
ored point clouds. Our work fills this gap by analyzing col-
ored point clouds and introducing explicit representations
containing geometry and style attributes.

Fourier-based Analysis on 2D Image. In the 2D im-
age domain, the Fourier Transform has been widely ap-
plied to tasks such as domain adaptation and generaliza-
tion, leveraging the insight that the amplitude captures
domain-specific attributes. FACT [47] enhances domain
generalization by interpolating amplitude spectra, whereas
FDA [49] transfers style from a target image by swap-
ping low-frequency amplitude components. Similarly, TF-
Cal [53] calibrates the amplitude at test time to handle vari-
ations in style. In image restoration [18, 36], methods uti-
lizing the Fourier Transform to address image degradation
have also emerged. Fourmer [54] exploited the disentangle-
ment of degradation elements through Fourier Transform,
confirming that its phase preserves the underlying seman-
tic structure while its amplitude encodes domain-specific
appearance. Despite these successes in 2D images, where



data is organized as uniform grids of discrete pixels, ap-
plying Fourier Transform to 3D point clouds is challenging
due to their sparse and unstructured nature. Although stud-
ies [13, 25, 38] have applied the Graph Fourier Transform
to 3D point clouds, they rely on graphs constructed from
point clouds rather than the raw point clouds in their en-
tirety, thus lacking analysis of the pure attributes that can
be derived from the complete structure of the point cloud
in 3D space. Our work addresses this challenge by being
the first to implement Fourier decomposition for colored
point clouds, demonstrating that the resulting amplitude and
phase can be employed as explicit representations that cap-
ture semantic information in point clouds.

3. Fourier-based Colored Point Cloud Encod-
ing

In this section, we present the newly devised Fourier de-
composition and reconstruction tailored for point cloud,
which are fundamental to our encoding approach, and pro-
vide an in-depth analysis of the resulting amplitude and
phase. We first detail the adaptation of the Fourier Trans-
form for irregular point cloud structures (Sec. 3.1). Next,
we analyze the specific information encoded in each com-
ponent (Sec. 3.2). A theoretical rationale for the inherent
property of each component is provided in the supplemen-
tary.

3.1. Fourier Decomposition and Reconstruction

To perform Fourier decomposition and Fourier reconstruc-
tion (Fig. 2) of point cloud data, which sparsely resides in
a continuous space, we propose an implementation method
that accounts for the sparse distribution of point clouds.

3D Fourier Decomposition. The Discrete Fourier Trans-
form is typically designed to operate on data arranged in
fixed arrays such as 2D images. To extend the Fourier
Transform to point cloud, which is irregular data represen-
tation, we map the point cloud P onto a structured 3D grid
through voxelization. The boundaries of the voxel grid are
defined by computing the smallest (Zyin, Ymin, Zmin) and
largest (Tmax, Ymax, Zmax) Values along the x, y, and z axes
and define the voxel grid’s extent accordingly. To preserve
as many points as possible by assigning the minimum num-
ber of points per voxel, we set a sufficiently small voxel size
v. Using the voxel size and the boundaries, we compute the
shape of the voxel grid (W, H, D) as

W, H, D = T~ Tmin Ymax = Yoin Zmex = Zmwin ()

v v ’ v

Considering the sparse nature of point clouds (i.e., not
all voxels contain points), we introduce a probabilistic oc-
cupancy channel 7, to represent the probability of a point
being present in each voxel. For voxels containing points,
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Figure 2. Detailed process of 3D Fourier decomposition and re-
construction. (a) The point cloud is voxelized and decomposed via
Fourier Transform into amplitude and phase. An additional chan-
nel 7 represents the probability of a point existing in each voxel.
(b) The inverse Fourier Transform reconstructs voxel, removing
low-7 voxels to reduce amplitude-phase misalignment noise.

the 7 value is assigned as 1, while for voxels without points,
the 7 value is set to 0. This channel is stacked with the RGB
channels, forming a voxel grid of size W x H x D x4, where
the four channels correspond to R, G, B, and 7. We then ap-
ply a 3D Discrete Fourier Transform to the voxel data V' to
obtain the Fourier coefficients V as follows:
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V(k,1,m) = —2mi( - H+ ) 2)

From tl}ese Fourier coefﬁcients,A we derive the amplitude
A = |V| and phase P = arg(V), thereby constructing a
frequency-domain representation of the point cloud data.

3D Fourier Reconstruction. To reconstruct a point cloud
from the four channels (R, G, B, 7) of amplitude and phase
obtained through 3D Fourier decomposition, we apply the
inverse Discrete Fourier Transform to convert these compo-
nents into a single voxel representation on a 3D grid. If the
amplitude-phase pair originates from the same point cloud
without any modifications, the voxelized representation of
the original point cloud, generated during Fourier decom-
position, is accurately restored. However, when any alter-
ations are made to the amplitude or phase pair, their align-
ment is disrupted, leading to a reconstructed voxel data that
deviates from an ideal structure and introduces significant
noise. To eliminate this noise (i.e., outliers), we leverage
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Figure 3. An experimental investigation into Fourier decomposition in point clouds reveals the distinct roles of amplitude and phase.
Performing Fourier decomposition separately on two point clouds and exchanging their amplitude components before reconstruction results
in a transfer of color attributes. In contrast, exchanging phase components alters the geometric structure, indicating that amplitude primarily
encodes color information, whereas phase captures the underlying spatial arrangement.

the 7 channel to selectively determine the final points for
reconstruction. Similar to the RGB channels, the © chan-
nel is processed through both the Fourier Transform and
its inverse, encoding the probability of a point’s presence
within each voxel. If a voxel’s 7 value falls below a prede-
fined threshold, indicating a low probability of containing a
point, it is treated as empty space in the continuous domain
and we generate no points in the corresponding spatial re-
gion. Conversely, if the 7 value exceeds the threshold, the
voxel is determined to contain a valid point, and the corre-
sponding RGB values are retained for reconstruction in the
continuous space.

3.2. Intrinsic Analysis of Amplitude and Phase

To verify the type of information encoded in the ampli-
tude and phase obtained through Fourier decomposition, we
swap either the amplitude or phase between two different
point clouds, as illustrated in Fig. 3. Given two distinct
point clouds, P; and Ps, we perform Fourier decomposi-
tion F to obtain their respective amplitude .4 and phase P
components as

A, Pi =F(P;), i=12. 3)
Amplitude Swap. With the given amplitude and phase in
Eq. (3), we swap the amplitude to demonstrate that ampli-
tude encodes the color attributes of the point cloud. Specifi-
cally, we replace the amplitude of one point cloud with that
of another while keeping the phase unchanged, then recon-
struct the point clouds using Fourier reconstruction F~* as

PP — Tl (A Py, i=1,2. @

As illustrated in Fig. 3(a), this swapping process results
in an exchange of color-related attributes between the two
point clouds, despite their structural information remain-
ing unchanged (see supplementary for more examples).
This demonstrates that the amplitude component extracted
through Fourier decomposition primarily encodes color at-
tributes in the point cloud representation.

Phase Swap. We investigate the inherent property of the
phase component by swapping it between two point clouds
while keeping the amplitude unchanged. The point clouds
are then reconstructed using 7~ as

PPV _ Fol( A Py, =12, (%)

As shown in Fig. 3(b), this operation leads to an exchange
of geometry-related attributes while preserving the original
color characteristics. In contrast to the amplitude-swapping
experiment, where only color information was transformed,
swapping the phase alters the structural properties of the
point cloud. The phase component obtained via Fourier de-
composition mainly represents geometric attributes, as con-
firmed by this. Additional results on amplitude and phase
swapping can be found in the supplementary material.

4. Downstream Applications

In this section, we introduce downstream applications of our
encoding method, which leverages the intrinsic properties
of amplitude and phase (introduced in Sec. 3). Specifically,
we outline its potential use in three representative tasks: (i)
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Figure 4. An overview of our classification and segmentation
model using Fourier-based point encoding. Input points are de-
composed into amplitude and phase through Fourier decomposi-
tion, then separately processed by a color encoder £ capturing
color attributes and a geometry encoder &, capturing geometric
attributes. The resulting feature vectors are concatenated and pro-
cessed through a fusion module My to generate the final feature
representation ffna1, which is then utilized in both classification and
part segmentation.

classification (Sec. 4.1), (ii) part segmentation (Sec. 4.2),
and (iii) style transfer (Sec. 4.3).

4.1. Point Cloud Classification

To demonstrate the effectiveness of our colored point cloud
encoding, we design a classification model for colored point
clouds based on the proposed Fourier-based encoding ap-
proach, as shown in Fig. 4. Notably, we adopt a simple
model architecture, integrating the Fourier-based encoding
with a few learnable layers, highlighting that strong perfor-
mance can be achieved without complex designs. First, we
apply Fourier decomposition into input point cloud, sepa-
rating it into amplitude A and phase P components. We
encode these components into feature vectors that capture
color and geometric attributes. Specifically, a color en-
coder & extracts a feature vector from the amplitude, de-
fined as f.y = Eo(A) € RPA, while a geometry en-
coder &y, derives a feature vector from the phase, given
by foeo = Eeeo(P) € RPP. Here, D 4 and Dp denote the
dimensions of each feature. These two feature vectors are
concatenated and processed through a fusion module M
to generate the final feature representation f5,,. The entire
classification model is then trained using cross-entropy loss.

This dual-branch training strategy, which employs &
and &y, to encode the amplitude and phase from a col-
ored point cloud, allows the model to process color and
geometric attributes independently. Furthermore, based on
the spectral convolution theorem [17] in Fourier theory, the

operations performed by the encoders inherently affect the
entire point cloud, leading to a large receptive field with a
global influence. Additional details on the model’s archi-
tecture and implementation are in the supplementary.

4.2. Point Cloud Part Segmentation

As with the design of the classification model architecture,
we construct a simple PointNet++-based model [29] to val-
idate the effectiveness of our approach. When the colored
point cloud is fed into the PointNet++ encoder, it passes
through the Set Abstraction blocks to generate features. For
each point’s features entering these blocks, we concatenate
the feature representation fg,, extracted using our encoding
method, incorporating it into the block’s input. The archi-
tecture then proceeds through the PointNet++ decoder, ulti-
mately determining the part to which each point belongs.

4.3. Point Cloud Style Transfer

We show the applicability of our encoding method by em-
ploying it in the style transfer task. While simply swapping
amplitude allows us to transform a point cloud’s color (i.e.,
style) to resemble those of another, this approach struggled
to achieve high-quality style transfer when the two point
clouds had significantly different structures or colors. To
enable style transfer between more disparate point clouds,
we propose a simple pipeline that combines Fourier decom-
position with optimization-based style transfer [2, 10].

Overall Style Transfer Pipeline. Given a content point
cloud P copeene and a style point cloud Pgyie, the goal of this
task is to transfer the style (i.e., color attribute) of Py onto
P content- As shown in Sec. 3.2, Fourier decomposition sepa-
rates a point cloud into amplitude and phase, where the am-
plitude encodes color attributes, and the phase captures ge-
ometric information. Based on this analysis, we design the
style transfer pipeline as illustrated in Fig. 5. The process
of style transfer is as follows: (1) Fourier decomposition is
applied to both the content and style point clouds, yielding
amplitude Acopent and phase Peoptene from P ogpeent, and am-
plitude Ay and phase Pyyie from Pgyie. (2) The amplitude
Asiytized and phase Pyyiizea Of the output point cloud (i.e., the
stylized point cloud) is initialized by setting Piyiizeq to the
phase of P onent, and initializing Astylized through a linear
interpolation of Aconient and Agyie as

-Astylized = (1 — 7)Acontent + 7Astyle~ 6)

Here, ~ balances the ratio of the amplitudes, determining
the intensity of the stylization effect. Utilizing these fea-
tures, we iteratively update the amplitude Agyiizeq accord-
ing to the proposed loss formulation, optimizing it into the
ideal amplitude of stylized point cloud. Ultimately, the up-
dated amplitude Agyiica undergoes Fourier reconstruction
alongside the phase Pgyiized to form the point cloud. The
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differences in style transfer results based on the v value are
provided in the supplementary material.

Loss Formulation. Our pipeline updates the amplitude of
the stylized point cloud through amplitude loss L. This
loss encourages the amplitude of the stylized point cloud to
incorporate the color attributes of both the content and style
point clouds. Accordingly, we compute Lyy, by combin-
ing the two loss terms, Leontent and Ly, With a weight o,
yielding Lamp = Leontent + @Listyle- The loss terms Leontent
and Lyl measure the discrepancy between the amplitudes
of the stylized point cloud and those of the content and style
point clouds, respectively, and are defined as

Lcontent = E

1€{2,4,7,8}

Lstyle = Z

1€{2,4,7,8}

2

||5é01(-Acontent) - 5éol(Astylized)H , (D

2

chlol(-Aslyle) - géol(Astylized)H . (8)

Here, £ | denotes the feature maps taken from the I-th layer
of the color encoder. Through this formulation, the am-
plitude of the stylized point cloud is iteratively refined to
semantically align with the amplitude features of both the
content and style point clouds. An analysis of the results

with respect to the « is provided in the supplementary.

Style Transfer from Image. This pipeline extends be-
yond style transfer between two point clouds and enables
the transfer of the style of an image onto a point cloud.
Since images are represented on a 2D pixel grid, adapting
them to our style transfer framework requires transforma-
tion into a format analogous to the voxel grid obtained from

Stylized Point Cloud Pgyy;
Phase y: stylized

the Fourier decomposition of a point cloud. To ensure com-
patibility with &, the image is resized to match the width
W and height H determined during the voxelization of the
point cloud. The resulting 2D array is then stacked along
the depth dimension D, forming a structure similar to a
voxel grid. Fourier decomposition is subsequently applied
to extract the amplitude, which is used as Agyi. within the
pipeline, facilitating the transfer of the image’s style onto
the content point cloud.

5. Experiments

In this section, we first describe the experimental settings,
including implementation details and datasets (Sec. 5.1).
Then, we discuss the experiments for classification
(Sec. 5.2), part segmentation (Sec. 5.2), and style transfer
(Sec. 5.3), followed by their results and analysis. See the
supplementary material for additional details.

5.1. Experimental Setup

Dataset. We evaluate the performance of our point
cloud encoding methodology across various tasks using
the DensePoint dataset [1], which is an extension of
ShapeNet [3] and ShapeNetPart [50]. DensePoint consists
of 16 classes and is the only dataset specifically suited for
colored object point cloud, comprising a total of 10,454 col-
ored point clouds. We adhere to the official train-test split of
DensePoint. However, since the number of point clouds per
class in the training set is imbalanced, we randomly select
300 samples for classes with a larger number of instances,
such as tables and chairs, to ensure a more balanced dis-
tribution. Additionally, all point clouds are normalized to
fit within the range of [—1,1]. Although commonly used



Table 1. Quantitative comparisons of our model against other methods in classification and part segmentation.

Classification Part Segmentation

Method Venue OA(T) mAcc(l) Cls mloU(P) Ins mloU () ' rarams
PointNet [28] CVPR 2017 97.25 95.82 81.84 84.11 3.5M
PointNet++ [29] NeurIPS 2017 97.54 97.28 82.06 84.26 1.5SM
PointConv [41] CVPR 2019 97.54 96.01 83.13 84.90 19.6M
DGCNN [40] TOG 2019 98.26 97.56 82.27 84.54 1.8M
PointTransformer [52] CVPR 2021 97.36 96.43 83.85 85.38 9.6M
CurveNet [45] ICCV 2021 97.40 96.48 83.46 85.79 2.1M
PointMLP [23] ICLR 2022 97.97 97.85 83.43 85.94 13.2M
PointNeXt [31] NeurIPS 2022 98.13 97.72 83.91 86.16 46.1M
PointVector [7] CVPR 2023 97.81 96.27 84.63 86.80 24.1M
PointMeta [22] CVPR 2023 98.11 97.58 84.87 87.61 15.3M
Interpretable3D [9] AAATI 2024 97.87 96.53 85.44 87.31 2.6M
DeepLA [51] CVPR 2025 98.21 97.85 85.89 88.08 6.4M
Ours 98.43 97.92 86.03 88.21 3.5M
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Figure 6. Qualitative part segmentation results on DensePoint [1].
The regions marked with red squares indicate areas of significant
performance improvement.

in point cloud research, datasets such as ModelNet40 [44],
which contain only uncolored point clouds, were not em-
ployed in our evaluation, as they are unsuitable for assess-
ing the performance of our method specifically designed for
encoding colored point clouds.

Implementation Details. We utilize a single NVIDIA
RTX A6000 for all experiments. In our voxelization process
for Fourier decomposition, a voxel size of v = 0.01 was em-
ployed. For classification and segmentation task, we train a
model for 100 epochs with a batch size of 64, using an ini-
tial learning rate of 0.001 and the Adam optimizer. For the
style transfer task, the amplitude of the stylized point cloud
is updated over 5,000 iterations with an initial learning rate
of 0.01 and is optimized using the Adam optimizer. For the
amplitude loss (L,mp) computation, we set the weighting
factor v to 10. In the initialization process of the amplitude
of the stylized point cloud, we set «y to 1, ensuring that the
style of the style point cloud is maximally reflected.

5.2. Classification and Part Segmentation

Metrics and Baselines. To evaluate the performance of
our classification and segmentation models incorporating

4

J

F .

(a) fge, from Phase Component (b) f,y, from XYZ Coordinates

0%
%

Figure 7. t-SNE visualization of features extracted from the phase
component (fgo) and XYZ coordinates (fx,.). Our point cloud en-
coding method produces fy,, which more effectively represents
the structural information that defines the semantic class of a point
cloud, demonstrating clearer class separation compared to fiy,.

our encoding approach (described in Secs. 4.1 and 4.2), we
employ overall accuracy (OA, %), mean per-class accuracy
(mAcc, %), and mean intersection over union (mloU, %)
in both class-wise (Cls.) and instance-wise (Ins.) forms as
evaluation metrics. As there exists no prior work proposing
an encoding approach specifically tailored for colored point
clouds like ours, we compare our method against widely
used point cloud processing models that commonly serve
as backbone architectures across various tasks.

Evaluation Results. As shown in Table 1, our classifi-
cation and segmentation models, despite its simple archi-
tecture, performs favorably against other point cloud pro-
cessing methods. Our model achieved the highest OA of
98.43% and the highest mAcc of 97.92% in classification,
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Figure 8. Qualitative comparison of point cloud-to-point cloud
style transfer results between PSNet [2] and our method.

while demonstrating superior performance in part segmen-
tation with a class mIoU of 86.03% and an instance mloU
of 88.21%. As shown in Fig. 6, the qualitative results also
demonstrate the superiority of our approach. These re-
sults demonstrate the superior effectiveness of our colored
point cloud encoding methodology compared to existing
approaches. Moreover, unlike conventional voxelization-
based approaches [24, 34] that incur significant memory
costs, our classification model effectively utilizes voxeliza-
tion while maintaining a relatively lower number of param-
eters compared to other methods.

Analysis Through t-SNE Visualization. To verify that
our approach encodes geometric attributes more effectively
than split-based point cloud encoding approach, we com-
pared the feature f,y,, generated by processing raw XYZ
coordinates into a PointNet [28] encoder, with fg, using t-
SNE visualization [37]. When visualizing f,., (Fig. 7(a)),
we observe that point clouds belonging to the same class
tend to form distinct clusters, demonstrating that fy., effec-
tively captures class-relevant geometric features. In con-
trast, the visualization of f,, (Fig. 7(b)) reveals significant
overlap between point clouds of different classes, indicat-
ing less distinct separation among them. This implies that
foco incorporates the semantic information essential for de-
termining the class of a 3D object more effectively than f,,.

5.3. Point Cloud Style Transfer

As there are no standardized metrics for evaluating point
cloud style transfer, we assess the effectiveness of our
method through qualitative analysis. Specifically, we evalu-
ate how effectively the color attributes of a style point cloud
or image are transferred to different content point clouds.

Style

Content

¥ ¥ b
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Figure 9. Qualitative comparison of image-to-point cloud style
transfer results between PSNet [2] and our method.

Qualitative Results. We compare our method against
PSNet [2], which stands as the sole established model
specifically designed for colored point cloud style transfer.
PSNet optimizes both point positions and colors in the point
cloud through a dual-encoder framework, but its limited
receptive field and lack of consideration for neighboring
points constrain its ability to capture and transfer the global
contextual color patterns of the style images. In contrast,
our approach utilizes phase and amplitude information, en-
abling style transfer with an expanded receptive field. Con-
sequently, as shown in Figs. 8 and 9, our method preserves
the global color patterns of the style image or point cloud
in the transferred point cloud. This comparison shows the
advantage of using Fourier decomposition for explicit dis-
entanglement of color and geometric attributes, resulting in
improved stylization quality in colored point clouds. Addi-
tional style transfer results are in the supplementary.

6. Conclusion

In this paper, we introduce a colored point cloud encoding
method leveraging 3D Fourier decomposition to explicitly
represent color and geometric attributes. By decomposing
point clouds into amplitude and phase, our approach in-
dependently captures color (via amplitude) and geometry
(via phase), while benefiting from a wide receptive field en-
sured by the spectral convolution theorem. Our method im-
proves classification, part segmentation, and style transfer,
achieving SOTA performance on DensePoint. These find-
ings show our approach’s effectiveness in capturing color
and geometry, laying the foundation for future 3D vision
research.
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