
Published as a conference paper at ICLR 2021

INT: AN INEQUALITY BENCHMARK FOR EVALUATING
GENERALIZATION IN THEOREM PROVING

Yuhuai Wu∗, Albert Qiaochu Jiang∗, Jimmy Ba & Roger Grosse
University of Toronto & Vector Institute
{ywu, ajiang, jba, rgrosse}@cs.toronto.edu

ABSTRACT

In learning-assisted theorem proving, one of the most critical challenges is to gener-
alize to theorems unlike those seen at training time. In this paper, we introduce INT,
an INequality Theorem proving benchmark designed to test agents’ generalization
ability. INT is based on a theorem generator, which provides theoretically infinite
data and allows us to measure 6 different types of generalization, each reflecting a
distinct challenge, characteristic of automated theorem proving. In addition, INT
provides a fast theorem proving environment with sequence-based and graph-based
interfaces, conducive to performing learning-based research. We introduce base-
lines with architectures including transformers and graph neural networks (GNNs)
for INT. Using INT, we find that transformer-based agents achieve stronger test
performance for most of the generalization tasks, despite having much larger out-
of-distribution generalization gaps than GNNs. We further find that the addition of
Monte Carlo Tree Search (MCTS) at test time helps to prove new theorems.

1 INTRODUCTION

Advances in theorem proving can catalyze developments in fields including formal mathematics (Mc-
Cune, 1997), software verification (Darvas et al., 2005), and hardware design (Kern and Greenstreet,
1999). Following its recent success across other application domains, machine learning has sig-
nificantly improved the performance of theorem provers (Bansal et al., 2019; Bridge et al., 2014;
Gauthier et al., 2018; Huang et al., 2019; Irving et al., 2016; Kaliszyk et al., 2018; Lee et al., 2020;
Loos et al., 2017; Urban et al., 2011; Wang and Deng, 2020; Yang and Deng, 2019; Li et al., 2020;
Rabe et al., 2020; Polu and Sutskever, 2020). Two key factors that make theorem proving particularly
challenging for ML are data sparsity and that it requires out-of-distribution generalization.

Firstly, due to the difficulty of formalizing mathematics for humans, manually generated formal
proofs are necessarily expensive. Typical formal mathematics datasets contain thousands (Huang
et al., 2019) to tens-of-thousands (Yang and Deng, 2019) of theorems — orders of magnitude smaller
than datasets that enabled breakthroughs in areas such as vision (Deng et al., 2009) and natural
language processing (Rajpurkar et al., 2016). Secondly, the assumption frequently made in machine
learning that each data point is identically and independently distributed does not hold in general for
theorem proving: interesting problems we want to prove are non-trivially different from those we
have proofs for. Hence, the out-of-distribution generalization ability is crucial.

Synthetic datasets that rely on procedural generation provide a potentially unlimited amount of data.
Well-designed synthetic datasets have been shown to help understand the capabilities of machine
learning models (Johnson et al., 2017; Ros et al., 2016; Weston et al., 2016). With the goal of
alleviating the data scarcity problem and understanding out-of-distribution generalization for theorem
proving, we introduce INT. INT is a synthetic INequality Theorem proving benchmark designed for
evaluating generalization. It can generate a theoretically unlimited number of theorems and proofs in
the domain of algebraic equalities and inequalities. INT allows tweaking of its problem distribution
along 6 dimensions, enabling us to probe multiple aspects of out-of-distribution generalization. It
is accompanied by a fast proof assistant with sequence and graph-based interfaces. A common
reservation to hold for synthetic datasets is one of realism: can synthetic data help to prove realistic

∗: equal contribution

1

Published as a conference paper at ICLR 2021

theorems? Polu and Sutskever (2020) adopted our generation method and showed that augmentation
of 1% of synthetic theorems in training helped to complete 2.3% more proofs on Metamath (Megill
and Wheeler, 2019). This demonstrates the usefulness of INT in real mathematics.

Time and memory requirements for the proof assistant have often been an obstacle for using theorem
provers as RL environments. Most existing proof assistants require a large software library to define
numerous mathematical theorems, leading to slow simulation. Therefore, a key design objective for
INT was to be lightweight and swift. Taking advantage of the limited scope of inequality theorems,
we load a minimal library and achieve fast simulation. Reducing the simulation overhead allows for
experimentation with planning methods such as MCTS which requires many calls to a simulator.

We summarize the contributions of this paper as follows:

1. We make, to the best of our knowledge, the first attempt to investigate an important question
in learning-assisted theorem proving research, i.e., can theorem provers generalize to different
problem distributions? We introduce INT for evaluating six dimensions of generalization.

2. We introduce and benchmark baseline agents for the six types of generalization tasks in INT. We
find that transformer-based agents’ generalization abilities are superior when training and test data
are drawn from the same distribution and inferior in out-of-distribution tasks in INT, compared
to GNN-based agents. Surprisingly, despite larger generalization gaps, transformer-based agents
have favorable test success rates over GNN-based ones in most cases.

3. We find that searching with MCTS at test time greatly improves generalization.

2 RELATED WORKS

Automatic and Interactive Theorem Proving. Modern Automatic Theorem Provers (ATPs) such
as E (Schulz, 2013) and Vampire (Kovács and Voronkov, 2013) represent mathematical theorems in
first-order logic and prove them with resolution-based proof calculi. On the other hand, Interactive
Theorem Provers (ITPs) allow human formalization of proofs. This perhaps makes them more suitable
for biologically inspired methods such as machine learning. Famous ITPs include Isabelle (Paulson,
1986), Coq (Barras et al., 1999), LEAN (de Moura et al., 2015), and HOL Light (Harrison, 1996).

Learning-assisted Theorem Proving. Theorem provers have been improved by supervised learn-
ing (Urban et al., 2011; Bridge et al., 2014; Irving et al., 2016; Loos et al., 2017; Wang et al., 2017;
Rocktäschel and Riedel, 2017; Bansal et al., 2019; Gauthier et al., 2018; Huang et al., 2019; Yang and
Deng, 2019; Kaliszyk and Urban, 2015; Polu and Sutskever, 2020; Li et al., 2020; Rabe et al., 2020;
Jakubuv and Urban, 2019; Olsák et al., 2020; Jakubuv et al., 2020; Kaliszyk et al., 2015; Gauthier and
Kaliszyk, 2015). Wang et al. (2017) used graph embeddings to represent logic formulas and achieved
state-of-the-art classification accuracy on the HolStep dataset (Kaliszyk et al., 2017). Reinforcement
learning (RL) was employed in (Zombori et al., 2019; Gauthier, 2019; 2020). Kaliszyk et al. (2018)
combined MCTS with RL to prove theorems with connection tableau. Notably, GPT-f (Polu and
Sutskever, 2020) adopts our INT generation method for dataset augmentation.

Datasets for Theorem Proving. There have been many formal mathematical libraries (Megill and
Wheeler, 2019; Rudnicki, 1992; Gauthier, 2019). Formalized mathematical theorems include the
Feit-Thompson theorem (Gonthier et al., 2013) and the Kepler Conjecture (Hales et al., 2017). The
largest human formal reasoning dataset is IsarStep (Li et al., 2020), where they mined the archive
of formal proofs and brought together 143K theorems in total. These works rely on human efforts
to formalize theorems, which leads to small to moderate-sized datasets. There have been studies
on synthesizing theorems (Urban, 2007; Urban et al., 2008; Piotrowski and Urban, 2018; Gauthier
et al., 2017; 2016; Chvalovskỳ et al., 2019; Lenat, 1976; Fajtlowicz, 1988; Colton, 2012; Johansson
et al., 2014) It is worth mentioning that there have been a few approaches (Urban and Jakubv, 2020;
Wang and Deng, 2020) on neural theorem synthesizers. Our theorem generator INT is designed to
be capable of creating an infinite number of theorems, as well as benchmarking the generalization
ability of learning-assisted theorem provers.

3 THE INT BENCHMARK DATASET AND PROOF ASSISTANT

Our INT benchmark dataset provides mathematical theorems and a means to study the generalization
capability of theorem provers. For this purpose, we need control over the distribution of theorems:

2

Published as a conference paper at ICLR 2021

this is achieved by a highly customizable synthetic theorem generator. We used a set of ordered field
axioms (Dummit and Foote, 2004) to generate inequality theorems and a subset of it to generate
equality theorems. Details of the axiomization schemes can be found in Appendix A. The code
for generating theorems and conducting experiments is available at https://github.com/
albertqjiang/INT.

3.1 TERMINOLOGY

The axiom combination of a proof refers to the set of axioms used in constructing it. The sequence
of axioms applied in order in the proof is called the axiom order. For example, let A,B,C denote
three unique axioms, and their order of application in a proof be [B,B,A,C]. In this case, the
axiom combination is the set {A,B,C} and the axiom order is the sequence [B,B,A,C]. An initial
condition is a (usually trivial) logic statement (e.g. a = a) to initiate the theorem generation process.
The degree of an expression is the number of arithmetic operators used to construct it. For example,
degree(a) = 0 while degree(((a ∗ c) ∗ b)2) = 3.

3.2 INT ASSISTANT

(a) LEAN, rw stands for
rewrite

(b) INT, seq2seq interface

Original goal

a b

+ c

+

c a

+ b

+

= Addition Commutativity
Goal 1

a b

+c

+

c a

+ b

+

= Addition Associativity

a b

+c

+

=

a b

+c

+

Goal 2 (trivial)

Step 1 Step 2

(c) INT, graph interface

Figure 1: A proof of a+ b+ c = c+ a+ b in LEAN and INT, with seq2seq and graph interfaces.

We built a lightweight proof assistant to interact with theorem provers. It has two interfaces, providing
theorem provers with sequential and graph representations of the proof state, respectively.

A problem in INT is represented by a goal and a set of premises (e.g. a + 0 = a,∅), which are
mathematical propositions. The INT assistant maintains a proof state composed of the goal and the
proven facts. The proof state is initialized to be just the goal and premises of the theorem. A proof is a
sequence of axiom-arguments tuples (e.g. [(AdditionZero, [a+0])]). At each step of the proof, a tuple
is used to produce a logical relation in the form of assumptions→ conclusions (e.g. ∅→ a+0 = a).
Then, if the assumptions are in the proven facts, the conclusions are added to the proven facts; if the
conclusions include the goal, the unproven assumptions will become the new goal. The assistant
considers the theorem proven, if after all steps in the proof are applied, the goal is empty or trivial.

In Figure 1, we present the same proof in LEAN (de Moura et al., 2015) and INT assistants. They both
process proofs by simplifying the goal until it is trivial. The INT assistant’s seq2seq interface (Figure
1b) is very similar to that of LEAN (Figure 1a) with the rewrite tactic. An action is composed of
an axiom followed by argument names and their positions in the proof state. in obj indicates that
the arguments can be found in the objective. The graph interface (Figure 1c) of the INT assistant
allows theorem provers to chose axiom arguments from the computation graphs of the proof state by
node. We can view theorem proving with this interface as a graph manipulation task.

INT assistant provides fast simulation. To demonstrate this, we produced 10,000 typical proof steps
in both interfaces, 40-character-long on average. We executed them with HOL Light (Harrison, 1996)
and INT assistant. The average time it takes per step is 7.96ms in HOL Light and 1.28ms in INT,
resulting in a 6.2× speedup. The correctness of the proofs is ensured by a trusted core of fewer than
200 lines of code.

3

https://github.com/albertqjiang/INT
https://github.com/albertqjiang/INT

Published as a conference paper at ICLR 2021

3.3 THEOREM GENERATOR

One of the main contributions of this paper is to provide a generation algorithm that is able to
produce a distribution of non-trivial synthetic theorems given an axiom order. Generating theorems
by randomly sampling axiom and argument applications will often yield theorems with short proofs.
Instead, we write production rules for axioms in the form of transformation and extension rules. With
these production rules, we can find arguments and new premises required for longer proofs.

We provide the theorem generation algorithm in Algorithm 1. The general idea of the algorithm is to
morph a trivial logic statement into one that requires a non-trivial proof; we call this statement the
core logic statement. We initiate the core logic statement C0 to be one of the initial conditions. At
step t of the generation process, we are given an axiom at specified by the axiom order. We apply
the MORPH function associated with the axiom at to Ct−1 and derive a new logic statement Ct and
corresponding premises Pt. The key design idea in the MORPH function is to ensure that the newly

Algorithm 1 Theorem Generator
1: function GENERATE_THEOREM(initial conditions I, axiom order A)
2: Axiom order length L = len(A).
3: Initialize core logic statement C0 ∼ Uniform(I), and the set of premises P = {C0}.
4: for t← 1 to L do
5: Get axiom at ← A[t].
6: Get new logic statement and premises: Ct, Pt← MORPH (at, Ct−1).
7: Add new premises to the set of all premises: P ← P ∪ Pt.
8: end for
9: return CL, P

10: end function

generated logic statement and the premises form the implication Ct−1, at, Pt → Ct (see Appendix B
for details). Therefore, we can chain the implications from all steps together to obtain a proof whose
length is the axiom order: C0, {at, Pt}Lt=1 → CL, where L denotes the length. The last core logic
statement CL and its premises C0, {Pt}Lt=1 are returned as the theorem generated. Below we show a
step-by-step example of how a theorem is generated with our algorithm.

A worked example

Use Algorithm 1 to generate a theorem with initial conditions I: {a = a, b = b, c = c, d = d, e = e}
and axiom order A: [AdditionAssociativity (AA), AdditionCommutativity (AC), EquivalenceImplies-
DoubleInequality (EIDI), FirstPrincipleOfInequality (FPI)].

Core logic statement C0 ∼ Uniform(I) : a = a.
Step 1: a1 = AA. C1: a+ (b+ c) = (a+ b) + c, P1 = ∅.
Step 2: a2 = AC. C2: a+ (b+ c) = (b+ a) + c, P2 = ∅.
Step 3: a3 = EIDI. C3: a+ (b+ c) ≥ (b+ a) + c, P3 = ∅.
Step 4: a4 = FPI. C4: (a+ (b+ c)) + d ≥ ((b+ a) + c) + e, P4 = {d ≥ e}.

Theorem generated: Given d ≥ e, prove a+ (b+ c) + d ≥ b+ a+ c+ e.

With recorded axiom and argument applications, we can synthesize proofs to the theorems. The proofs
can be used for behavior cloning. Appendix E shows statistics of the generated proofs, including the
distribution of length of theorems in characters, the distribution of axioms, and the distribution of the
number of nodes in proof state graphs.

4 EXPERIMENTS

Our experiments are intended to answer the following questions:

1. Can neural agents generalize to theorems: 1) sampled from the same distribution as training
data, 2) with different initial conditions, 3) with unseen axiom orders, 4) with unseen axiom
combinations, 5) with different numbers of unique axioms, 6) with shorter or longer proofs?

4

Published as a conference paper at ICLR 2021

K3 L3 K3 L5 K3 L7 K5 L5 K5 L70.00

0.25

0.50

0.75

1.00
S

uc
ce

ss
 ra

te
Transformer

K3 L3 K3 L5 K3 L7 K5 L5 K5 L7

GNN
Train Test

K3 L3 K3 L5 K3 L7 K5 L5 K5 L70.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 ra
te

Transformer

K3 L3 K3 L5 K3 L7 K5 L5 K5 L7

GNN

Degree
0 1 2

Figure 2: Proof success rates on problems generated with different K and L parameters. Left: When
the IID assumption holds, the success rate decreases as the two generation parameters K and L are
increased. Right: All agents are trained on degree-0 problems and evaluated against problems of
degree 0, 1, and 2. We find that transformer-based agents deteriorate in performance as the test
problems become more complex than training problems. For GNN-based agents, there are no obvious
trends as to how the proof success rate changes as the degree of the initial entities is varied.

2. How do different architectures (transformer vs. GNN) affect theorem provers’ in-distribution and
out-of-distribution generalization?

3. Can search at test time help generalization?

4.1 EXPERIMENT DETAILS

In the following experiments, we used the proofs generated by the INT generator to perform behavior
cloning. We then evaluated the success rates of trained agents in a theorem proving environment. We
denote the cardinality of an axiom combination as K and the length of a proof as L. In the worked
example, K = 4 and L = 4. For each theorem distribution, we first generated a fixed test set of 1000
problems, and then produced training problems in an online fashion, while making sure the training
problems were different from the test ones. For each experiment, we generated 1000 problems and
performed 10 epochs of training before generating the next 1000. We ran 1500 such iterations in
total, with 1.5 million problems generated. We used the Adam optimizer (Kingma and Ba, 2015). We
searched over the learning rates {10−5, 3 · 10−5, 10−4, 3 · 10−4} in preliminary experiments and
found 10−4 to be the best choice, which was used for following experiments. We used one Nvidia
P100 or Tesla T4 GPU with 4 CPU cores for training. For each experiment, we ran 2 random seeds,
and picked the one with higher validation success rates for test evaluation. Since this paper focuses
on inequalities, all figures and tables in the main text are based on results from the ordered-field
axiomization. We also include results of GNN-based agents on equalities in Appendix G.

4.2 NETWORK ARCHITECTURES

K3 L3 K3 L5 K3 L7 K5 L5 K5 L70.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 ra
te

Architecture
Transformer GNN TreeLSTM Bag of Words

Figure 3: Proof success rates on test prob-
lems generated with K and L settings. Trans-
former and GNN perform well; TreeLSTM has
mediocre performance; and Bag-of-Words per-
forms poorly: it cannot prove more than 5% of
problems.

In this section, we introduce four baselines built
on commonly used architectures: Transform-
ers (Vaswani et al., 2017), Graph Neural Net-
works (GNNs), TreeLSTMs (Tai et al., 2015) and
Bag-of-Words (BoWs). In preliminary experi-
ments, we found Graph Isomorphism Networks
(GINs) (Xu et al., 2019) to have performed the
best among several representative GNN architec-
tures. So we used GIN as our GNN of choice.
Transformers interact with the INT proof assistant
through the seq2seq interface while the other base-
lines through the graph interface.

For sequence-to-sequence training, we used a
character-level transformer architecture with 6 en-
coding layers and 6 decoding layers. We used
512 embedding dimensions, 8 attention heads and
2048 hidden dimensions for position-wise feed-
forward layers. We used dropout with rate 0.1,
label smoothing with coefficient 0.1, and a maxi-
mum 2048 tokens per batch. The library fairseq (Ott et al., 2019) was used for its implementation.

5

Published as a conference paper at ICLR 2021

Table 1: Left: Average success rates (in %) of agents trained on different numbers of axiom orders.
Right: Average success rates (in %) of agents trained on different numbers of axiom combinations.

Axiom 100 500 2000 5000
orders Train Test Train Test Train Test Train Test

Transformer 93.2 10.0 93.4 62.8 93.6 87.9 93.7 91.8
GNN 87.6 21.1 86.6 53.6 79.0 70.4 75.7 74.7

Axiom 25 100 200 300
combinations Train Test Train Test Train Test Train Test

Transformer 96.1 29.3 96.0 71.8 95.4 88.4 94.4 91.3
GNN 79.1 47.5 76.6 68.0 72.6 72.4 72.8 71.9

For data in the graph form, each node in computation graphs corresponds to a character in the formula.
We first used a learnable word embedding of dimension 512 to represent each node. We then used
6 GIN layers to encode graph inputs into vector representations, each with 512 hidden dimensions.
The graph representation was obtained by taking the sum of all the node embeddings. For the
TreeLSTM and the BoW baselines, we used a bidirectional TreeLSTM with 512 hidden dimensions
and a BoW architecture to compute the graph representation vectors from node embeddings. The
hyper-parameters used were found to be optimal in preliminary experiments. We then proposed
axioms conditioned on the graph representations, with a two-layer MLP of hidden dimension 256.
Conditioning on the graph representation and axiom prediction, the arguments are selected in an
autoregressive fashion. Namely, the prediction of the next node is conditioned on the previous ones.
For each argument prediction, we used a one-layer MLP with a hidden size of 256. We used graph
neural network libraries Pytorch Geometric (Fey and Lenssen, 2019) for the GIN implementation,
and DGL (Wang et al., 2019) for the TreeLSTM implementation.

We trained agents based on architectures mentioned above by behavior cloning on theorems of various
length (L) and number of axioms (K). The success rates for proving 1000 test theorems are plotted
in Figure 3. As the BoW architecture did not utilize the structure of the state, it failed miserably at
proving theorems, indicating the significance of the structural information. TreeLSTM performed
worse than the graph neural network baseline. The transformer and the GNN baselines perform the
best among the architectures chosen and they take inputs in sequential and graph forms, respectively.
Thus, we used these two architectures in the following experiments to investigate generalization.

4.3 BENCHMARKING SIX DIMENSIONS OF GENERALIZATION

IID Generalization In this experiment, the training and test data are independently and identically
distributed (IID). The performances of our transformer-based and GNN-based agents are displayed
on the left in Figure 2. As can be seen, the performance of agents examined on train and test problems
are very similar. The largest difference between train and test success rates is 2% (K3L7). Notably,
transformer-based agents complete 15.3% more test proofs than GNN-based agents on average.

Initial Condition Consider two theorems: (1) (a+ b)2 = a2 + b2 + 2ab and (2) (a+ (b+ c))2 =
a2 + (b+ c)2 + 2a(b+ c). The two problems take the same axioms and the same number of steps
to prove. However, the axiom argument complexities are different, which can be seen as a result of
varying initial conditions. Can agents trained on problems like (1) prove theorems like (2)?

For an initial condition of the form X = X , we use the degree of the entity X to determine the
complexity. In this experiment, we trained agents on problems with initial conditions made up of
entities of degree 0, and evaluated them on ones of degrees 1 and 2. The results are presented in
Figure 2 (b) with various K and L. For transformer-based agents, the success rate drops 25.6% on
degree-1 problems and 31.5% on degree-2 problems on average. However, for GNN-based agents,
the largest generalization gap between training and test success rates is 3% (K3L5). This shows that
GNN agents can generalize to problems of higher complexities while transformer agents struggle.

Axiom Orders Let A and B represent two different axioms. There are multiple orders in which
they can be applied in a K2L3 problem. O1 = [A, A, B] and O2 = [B, A, B] are two examples. Can
an agent trained on problems generated with O1 prove theorems generated with O2?

For both architectures, we investigated how well agents can generalize to problems with different
axiom orders than those in training. We generated 100, 500, 2000, and 5000 axiom orders to use in
the training set for different K and L settings. We evaluated the test success rates on 1000 unseen
axiom orders with the corresponding K and L settings and averaged them. The results averaged over
different K and L settings are shown on the left of Table 1 (See Appendix G.5 for the full results).

It can be observed in the table that the test success rates rise when we increase the number of axiom
orders in the training set. We notice that transformer-based agents have worse generalization than

6

Published as a conference paper at ICLR 2021

K3 L7 K5 L7 K7 L70.00

0.25

0.50

0.75

1.00
S

uc
ce

ss
 ra

te
Transformer

K3 L7 K5 L7 K7 L7

GNN

Trained on
K3 L7 K5 L7 K7 L7

K3 L3 K3 L5 K3 L70.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 ra
te

Transformer

K3 L3 K3 L5 K3 L7

GNN

Trained on
K3 L3 K3 L5 K3 L7

Figure 4: Proof success rates on problems generated with different parameters. Left: We keep L
the same and vary K. The success rate is likely to decrease when the test problems have different
K from the training problems. Right: We keep K the same and vary L. For all agents, the proof
success rate is lower on theorems that require longer proofs.

GNN-based ones, as their average generalization gap is larger. This is particularly true when the
number of axiom orders in the training set is 100: transformer-based agents can prove only 10.0% of
test theorems. Remarkably, they still manage to complete more proofs than GNNs when the number
of axiom orders in the training set exceeds 500.

Axiom Combinations Consider three problems provable in the ordered field axiomization (Ap-
pendix A): (1) a2 ≥ 0, (2) a ∗ (b + c) = b ∗ a + a ∗ c, and (3) a2 + b2 − 2ab ≥ 0. Solving (1)
requires axiom SquareGEQZero (SGEQZ). Solving (2) requires axiom AdditionMultiplicationDistri-
bution (AMD) and axiom MultiplicationCommutativity (MC). Solving (3) requires axiom SGEQZ and
axiom AMD. Notice that all axioms used to prove (3) appear in the proofs of (1) and (2). We ask: can
an agent trained on theorems like (1) and (2) prove theorems like (3)?

In this set of experiments, we investigated how well theorem provers can generalize to problems with
different axiom combinations than those in training for both architectures. We used 25, 100, 200, and
300 axiom combinations to generate the training set with various K and L settings, and evaluated
the agents on test sets generated with 300 unseen combinations. The results averaged over different
K and L settings are displayed on the right in Table 1 (See Appendix G.5 for full results). As the
number of axiom combinations in training set increases, the generalization gap decreases and test
success rate improves. The transformer-based agents have larger generalization gaps than GNN-based
ones. This is particularly obvious when there are 25 axiom combinations: the generalization gap is
66.8% for transformers and 31.6% for GNNs. The test success rate of transformers is 18.2% lower
than that of GNNs in this setting. Yet when there are more than 100 axiom combinations in training,
transformers always perform better on the test sets, completing 3.8%− 19.6% more proofs. When
the data is diverse, transformers perform better; when it is insufficient, GNNs are better. This might
be due to the difference in the inductive bias used by both structures and might explain the choice of
neural architectures in deep learning practice.

Number of Axioms Here we investigated how well theorem provers could generalize to test
problems that were generated with a different number of axioms than at training time. For instance,
let A, B and C represent different axioms. Will agents trained on K2L3 axiom orders like [A,B,A]
and [C,C,B] be able to prove theorems generated with K3L3 axiom orders like [A,B,C]?

We trained the agents on problems that have the same proof length (L = 7) and varying Ks. The
results are on the left of Figure 4. It can be observed from the figure that in general, agents perform
the best on the K they were trained on and worse when K shifts away. Transformer-based agents
showed better performances in all K and L settings, completing 20.9% more proofs than GNN-based
ones on average. The success rates of transformer-based agents drop 5.6% on average when the test
K is shifted away by 1 from the training K. For GNN-based agents, this averages to 5.1%. This
shows that their generalization abilities to different number of axioms are similar.

Proof Length We tested the generalization ability of theorem provers over the dimension of proof
length of the theorems. To do this, we kept the cardinality of the axiom set to be the same (K = 3)
and varied the evaluated problems’ proof length (L = 3, 5, 7). The result is presented on the right of
Figure 4. For all of the agents trained, the success rate decreases as the length of the proof increases.
This is due to the natural difficulty of completing longer proofs. Observing the figure, we see that the
longer the training problems, the less they deteriorate in performance when proofs becomes longer:
agents trained onK3L3 problems complete 18.8% fewer proofs when L is increased by 1, while ones
trained on K3L7 complete 5.7% fewer. Furthermore, the performance of transformer-based agents

7

Published as a conference paper at ICLR 2021

Table 2: The behavior cloning (BC) agents versus the MCTS-assisted (search) agents. Left: The
average success rates (in %) of agents with and without MCTS over 1000 test theorems. Right: The
average length of successful proofs by agents with and without MCTS over 1000 test theorems. K
denotes the cardinality of the axiom combination of a proof, L denotes the length of the proof.

Train K3L3 K3L5 K3L7
Evaluation BC Search BC Search BC Search

K3 L3 92 98 91 97 81 96
K3 L5 50 64 80 92 70 92
K3 L7 25 40 64 78 58 81

Average 56 67 78 89 69 90

Train K3L3 K3L5 K3L7
Evaluation BC Search BC Search BC Search

K3 L3 3.83 3.33 4.00 3.52 5.00 3.67
K3 L5 7.54 6.82 6.2 5.52 6.84 5.56
K3 L7 9.05 8.54 8.01 7.53 8.39 7.50

Average 6.81 6.23 6.07 5.52 6.74 5.58

decreases by 12.2% when the test proof length increases by 1, compared to 10.7% for GNN-based
ones. This suggests that transformers have inferior proof length generalization abilities than GNNs.

4.4 GENERALIZING WITH SEARCH

We investigated whether performing search at test time can help agents generalize. Specifically,
we investigated the effectiveness of Monte-Carlo Tree Search (MCTS) in finding proofs for unseen
theorems with GNN-based agents. We chose GNN-based agents because they are better at out-
of-distribution generalization than transformer-based ones. Straightforward application of MCTS
is impractical: in our theorem proving environment, the action space can be as large as 1.3M in
size (see Appendix H). Hence, it would be infeasible to expand all possible actions when constructing
the MCTS trees. Thus, we only performed MCTS over the axiom space (18 distinct axioms in
total), and the arguments were proposed by the behavior cloning agents. Following AlphaGo
Zero/AlphaZero (Silver et al., 2017; 2018), we trained a value network to estimate the value of a
state. The value network is an MLP with two hidden layers of size 256, taking the GNN global
representations of graphs as input. It was trained on 1000 episodes of rollouts obtained by the
behavior cloning agents, with a learning rate of 3 · 10−6. We also followed AlphaZero for the choice
of the upper confidence bound, and the way that actions are proposed using visit counts. We used
200 simulations for constructing MCTS trees. More details can be found in Appendix F. We took
the agents trained on "K3L3", "K3L5", and "K3L7" from section 4.3, and evaluated the agents’
performance when boosted by MCTS.

Generalization The average success rates on 1000 test theorems are presented on the left in Table
2. We can see that search greatly improved the generalization results. It helped to solve 21%
more problems on average for the agent trained on theorem distribution K3L7. Remarkably, when
evaluating on K3L7 theorems, search helped the K3L3 agent improve its success rate from 25%
to 40%: a relative improvement of 60%. It is interesting to see the K3L7 behavior cloning agent
solved 9% fewer problems on average than the K3L5 agent. But search brought about much larger
improvement to theK3L7 agent and helped it to solve the largest proportion of problems on average –
90%. This indicates that skills learned through behavior cloning can be better exploited by searching.

The average proof length for 1000 problems is presented on the right in Table 2 (we count those
unsolved problem as 15, the step limit of an episode). We can see that by performing search, we are
able to discover proofs of length closer to the ground truth proof length. For test theorems requiring
3-step proofs, the K3L3 agent was able to prove them in 3.33 steps on average, with a gap of 0.33
steps to the optimal value. Similarly, for test theorems requiring 5-step proofs, the K3L5 agent was
able to prove them in 5.52 steps on average, with a gap of 0.52 steps; and for theorems requiring
7-step proofs, K3L7 agent achieved a gap of 0.5 steps.

4.5 DISCUSSION

Experimental results suggested that transformer-based agents can complete more proofs in the IID
generalization scenario but have larger out-of-distribution generalization gaps than GNN-based ones.
The larger gap may be due to the lack of constraints in the sequence-to-sequence framework, in which
the model can propose sequences that are invalid actions, whereas the graph interface constrains the
model to propose valid actions only. However, we still see that transformers are able to complete
more proofs overall. This shows the superiority of transformers in model capacity when applied
to theorem proving. This insight motivates us to explore the possibility of taking the best from
both worlds, combining both graph structural information and the strong transformer architecture to
improve learning-assisted theorem proving. We leave it for future work.

8

Published as a conference paper at ICLR 2021

5 CONCLUSION

We addressed the problem of diagnosing the generalization weaknesses in learning-assisted theorem
provers. We constructed INT, a synthetic benchmark of inequalities, to analyze the generalization of
machine learning methods. We evaluated transformer-based and GNN-based agents and a variation
of GNN-based agents with MCTS at test time. Experiments revealed that transformer-based agents
generalize better when the IID assumption holds while GNN-based agents generalize better in out-
of-distribution scenarios. We also showed that search can boost the generalization ability of agents.
We stress that proving theorems in INT is not an end in itself. A hard-coded expert system might
perform well on INT but not generalize to real-world mathematical theorems. Therefore, INT should
be treated as instrumental when diagnosing generalization of agents. The best practice is to use INT
in conjunction with real mathematical datasets.

We believe our benchmark can also be of interest to the learning community, facilitating research in
studying generalization beyond the IID assumption. The agents’ abilities to reason and to go beyond
the IID assumption are essential in theorem proving, and studying how to acquire these abilities is at
the frontier of learning research. In other domains requiring out-of-distribution generalization, such as
making novel dialogs (Chen et al., 2017) or confronting unseen opponents in Starcraft (Vinyals et al.,
2019), the requirements for data and computation forbid a generally affordable research environment.
The INT benchmark provides practical means of studying out-of-distribution generalization.

ACKNOWLEDGEMENTS

We thank Jay McClelland, Han Huang and Yuanhao Wang for helpful comments and discussions.
We also thank anonymous reviewers for valuable and constructive feedbacks. We are grateful to the
Vector Institute for providing computing resources. YW was supported by the Google PhD fellowship.
AQJ was supported by a Vector Institute research grant.

REFERENCES

Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and Stewart Wilcox. Holist:
An environment for machine learning of higher order logic theorem proving. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97
of Proceedings of Machine Learning Research, pages 454–463. PMLR, 2019. URL http:
//proceedings.mlr.press/v97/bansal19a.html.

Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Yann Coscoy, David Delahaye,
Daniel de Rauglaudre, Jean-Christophe Filliâtre, Eduardo Giménez, Hugo Herbelin, et al. The
Coq proof assistant reference manual. INRIA, version, 6(11), 1999.

James P. Bridge, Sean B. Holden, and Lawrence C. Paulson. Machine learning for first-order theorem
proving. Journal of automated reasoning, 53(2):141–172, 2014.

Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang Tang. A survey on dialogue systems: Recent
advances and new frontiers. Acm Sigkdd Explorations Newsletter, 19(2):25–35, 2017.

Karel Chvalovskỳ, Thibault Gauthier, and Josef Urban. First experiments with data driven con-
jecturing. AITP 2019, 2019. URL http://aitp-conference.org/2019/abstract/
AITP_2019_paper_27.pdf.

Simon Colton. Automated theory formation in pure mathematics. Springer Science & Business
Media, 2012.

Ádám Darvas, Reiner Hähnle, and David Sands. A theorem proving approach to analysis of secure
information flow. In International Conference on Security in Pervasive Computing, pages 193–209.
Springer, 2005.

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The
Lean theorem prover (system description). In International Conference on Automated Deduction,
pages 378–388. Springer, 2015.

9

http://proceedings.mlr.press/v97/bansal19a.html
http://proceedings.mlr.press/v97/bansal19a.html
http://aitp-conference.org/2019/abstract/AITP_2019_paper_27.pdf
http://aitp-conference.org/2019/abstract/AITP_2019_paper_27.pdf

Published as a conference paper at ICLR 2021

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA, pages 248–255. IEEE
Computer Society, 2009. doi: 10.1109/CVPR.2009.5206848. URL https://doi.org/10.
1109/CVPR.2009.5206848.

David Steven Dummit and Richard M Foote. Abstract algebra, volume 3. Wiley Hoboken, 2004.

Siemion Fajtlowicz. On conjectures of graffiti. In Annals of Discrete Mathematics, volume 38, pages
113–118. Elsevier, 1988.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. CoRR,
abs/1903.02428, 2019. URL http://arxiv.org/abs/1903.02428.

Thibault Gauthier. Deep reinforcement learning in HOL4. CoRR, abs/1910.11797, 2019. URL
http://arxiv.org/abs/1910.11797.

Thibault Gauthier. Deep reinforcement learning for synthesizing functions in higher-order logic. In
Elvira Albert and Laura Kovács, editors, LPAR 2020: 23rd International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, Alicante, Spain, May 22-27, 2020, volume 73
of EPiC Series in Computing, pages 230–248. EasyChair, 2020. URL https://easychair.
org/publications/paper/Tctp.

Thibault Gauthier and Cezary Kaliszyk. Sharing HOL4 and HOL light proof knowledge. In
Martin Davis, Ansgar Fehnker, Annabelle McIver, and Andrei Voronkov, editors, Logic for
Programming, Artificial Intelligence, and Reasoning - 20th International Conference, LPAR-
20 2015, Suva, Fiji, November 24-28, 2015, Proceedings, volume 9450 of Lecture Notes in
Computer Science, pages 372–386. Springer, 2015. doi: 10.1007/978-3-662-48899-7_26. URL
https://doi.org/10.1007/978-3-662-48899-7_26.

Thibault Gauthier, Cezary Kaliszyk, and Josef Urban. Initial experiments with statistical conjecturing
over large formal corpora. In Andrea Kohlhase, Paul Libbrecht, Bruce R. Miller, Adam Naumowicz,
Walther Neuper, Pedro Quaresma, Frank Wm. Tompa, and Martin Suda, editors, Joint Proceedings
of the FM4M, MathUI, and ThEdu Workshops, Doctoral Program, and Work in Progress at the
Conference on Intelligent Computer Mathematics 2016 co-located with the 9th Conference on
Intelligent Computer Mathematics (CICM 2016), Bialystok, Poland, July 25-29, 2016, volume
1785 of CEUR Workshop Proceedings, pages 219–228. CEUR-WS.org, 2016. URL http:
//ceur-ws.org/Vol-1785/W23.pdf.

Thibault Gauthier, Cezary Kaliszyk, and Josef Urban. Tactictoe: Learning to reason with HOL4
tactics. In Thomas Eiter and David Sands, editors, LPAR-21, 21st International Conference
on Logic for Programming, Artificial Intelligence and Reasoning, Maun, Botswana, May 7-
12, 2017, volume 46 of EPiC Series in Computing, pages 125–143. EasyChair, 2017. URL
https://easychair.org/publications/paper/WsM.

Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ramana Kumar, and Michael Norrish. Learning
to prove with tactics. CoRR, abs/1804.00596, 2018. URL http://arxiv.org/abs/1804.
00596.

Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen, François Garillot,
Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi Ould Biha, et al. A machine-checked
proof of the odd order theorem. In International Conference on Interactive Theorem Proving,
pages 163–179. Springer, 2013.

Thomas Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John Harrison, Hoang Le Truong, Cezary
Kaliszyk, Victor Magron, Sean McLaughlin, Tat Thang Nguyen, et al. A formal proof of the kepler
conjecture. In Forum of mathematics, Pi, volume 5. Cambridge University Press, 2017.

John Harrison. HOL Light: A tutorial introduction. In International Conference on Formal Methods
in Computer-Aided Design, pages 265–269. Springer, 1996.

10

https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
http://arxiv.org/abs/1903.02428
http://arxiv.org/abs/1910.11797
https://easychair.org/publications/paper/Tctp
https://easychair.org/publications/paper/Tctp
https://doi.org/10.1007/978-3-662-48899-7_26
http://ceur-ws.org/Vol-1785/W23.pdf
http://ceur-ws.org/Vol-1785/W23.pdf
https://easychair.org/publications/paper/WsM
http://arxiv.org/abs/1804.00596
http://arxiv.org/abs/1804.00596

Published as a conference paper at ICLR 2021

Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever. GamePad: A learning environment
for theorem proving. In 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.
net/forum?id=r1xwKoR9Y7.

Geoffrey Irving, Christian Szegedy, Alexander A. Alemi, Niklas Eén, François Chollet,
and Josef Urban. DeepMath - deep sequence models for premise selection. In
Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Ro-
man Garnett, editors, Advances in Neural Information Processing Systems 29: An-
nual Conference on Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pages 2235–2243, 2016. URL http://papers.nips.cc/paper/
6280-deepmath-deep-sequence-models-for-premise-selection.

Jan Jakubuv and Josef Urban. Hammering mizar by learning clause guidance (short paper). In
John Harrison, John O’Leary, and Andrew Tolmach, editors, 10th International Conference on
Interactive Theorem Proving, ITP 2019, September 9-12, 2019, Portland, OR, USA, volume 141 of
LIPIcs, pages 34:1–34:8. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi: 10.4230/
LIPIcs.ITP.2019.34. URL https://doi.org/10.4230/LIPIcs.ITP.2019.34.

Jan Jakubuv, Karel Chvalovský, Miroslav Olsák, Bartosz Piotrowski, Martin Suda, and Josef
Urban. ENIGMA anonymous: Symbol-independent inference guiding machine (system de-
scription). In Nicolas Peltier and Viorica Sofronie-Stokkermans, editors, Automated Rea-
soning - 10th International Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020,
Proceedings, Part II, volume 12167 of Lecture Notes in Computer Science, pages 448–463.
Springer, 2020. doi: 10.1007/978-3-030-51054-1_29. URL https://doi.org/10.1007/
978-3-030-51054-1_29.

Moa Johansson, Dan Rosén, Nicholas Smallbone, and Koen Claessen. Hipster: Integrating theory
exploration in a proof assistant. In International Conference on Intelligent Computer Mathematics,
pages 108–122. Springer, 2014.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2901–2910, 2017.

Cezary Kaliszyk and Josef Urban. Learning-assisted theorem proving with millions of lemmas. J.
Symb. Comput., 69:109–128, 2015. doi: 10.1016/j.jsc.2014.09.032. URL https://doi.org/
10.1016/j.jsc.2014.09.032.

Cezary Kaliszyk, Josef Urban, and Jirí Vyskocil. Lemmatization for stronger reasoning in large
theories. In Carsten Lutz and Silvio Ranise, editors, Frontiers of Combining Systems - 10th
International Symposium, FroCoS 2015, Wroclaw, Poland, September 21-24, 2015. Proceedings,
volume 9322 of Lecture Notes in Computer Science, pages 341–356. Springer, 2015. doi: 10.1007/
978-3-319-24246-0_21. URL https://doi.org/10.1007/978-3-319-24246-0_
21.

Cezary Kaliszyk, François Chollet, and Christian Szegedy. HolStep: A machine learning dataset for
higher-order logic theorem proving. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017. URL https://openreview.net/forum?id=ryuxYmvel.

Cezary Kaliszyk, Josef Urban, Henryk Michalewski, and Miroslav Olšák. Reinforcement learning of
theorem proving. In Advances in Neural Information Processing Systems, pages 8822–8833, 2018.

Christoph Kern and Mark R Greenstreet. Formal verification in hardware design: a survey. ACM
Transactions on Design Automation of Electronic Systems (TODAES), 4(2):123–193, 1999.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

11

https://openreview.net/forum?id=r1xwKoR9Y7
https://openreview.net/forum?id=r1xwKoR9Y7
http://papers.nips.cc/paper/6280-deepmath-deep-sequence-models-for-premise-selection
http://papers.nips.cc/paper/6280-deepmath-deep-sequence-models-for-premise-selection
https://doi.org/10.4230/LIPIcs.ITP.2019.34
https://doi.org/10.1007/978-3-030-51054-1_29
https://doi.org/10.1007/978-3-030-51054-1_29
https://doi.org/10.1016/j.jsc.2014.09.032
https://doi.org/10.1016/j.jsc.2014.09.032
https://doi.org/10.1007/978-3-319-24246-0_21
https://doi.org/10.1007/978-3-319-24246-0_21
https://openreview.net/forum?id=ryuxYmvel
http://arxiv.org/abs/1412.6980

Published as a conference paper at ICLR 2021

Laura Kovács and Andrei Voronkov. First-order theorem proving and Vampire. In International
Conference on Computer Aided Verification, pages 1–35. Springer, 2013.

Dennis Lee, Christian Szegedy, Markus N. Rabe, Sarah M. Loos, and Kshitij Bansal. Mathematical
reasoning in latent space. In 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://
openreview.net/forum?id=Ske31kBtPr.

Douglas B Lenat. Am: An artificial intelligence approach to discovery in mathematics as heuristic
search, sail aim-286. Artificial Intelligence Laboratory, Stanford University, 1976.

Wenda Li, Lei Yu, Yuhuai Wu, and Lawrence C. Paulson. Modelling high-level mathematical
reasoning in mechanised declarative proofs. CoRR, abs/2006.09265, 2020. URL https://
arxiv.org/abs/2006.09265.

Sarah M. Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk. Deep network guided
proof search. In Thomas Eiter and David Sands, editors, LPAR-21, 21st International Conference
on Logic for Programming, Artificial Intelligence and Reasoning, Maun, Botswana, May 7-
12, 2017, volume 46 of EPiC Series in Computing, pages 85–105. EasyChair, 2017. URL
https://easychair.org/publications/paper/ND13.

William McCune. Solution of the Robbins’ problem. Journal of Automated Reasoning, 19(3):
263–276, 1997.

Norman Megill and David A Wheeler. Metamath: A Computer Language for Mathematical Proofs.
Lulu. com, 2019.

Miroslav Olsák, Cezary Kaliszyk, and Josef Urban. Property invariant embedding for automated
reasoning. In Giuseppe De Giacomo, Alejandro Catalá, Bistra Dilkina, Michela Milano, Senén
Barro, Alberto Bugarín, and Jérôme Lang, editors, ECAI 2020 - 24th European Conference on
Artificial Intelligence, 29 August-8 September 2020, Santiago de Compostela, Spain, August
29 - September 8, 2020 - Including 10th Conference on Prestigious Applications of Artificial
Intelligence (PAIS 2020), volume 325 of Frontiers in Artificial Intelligence and Applications,
pages 1395–1402. IOS Press, 2020. doi: 10.3233/FAIA200244. URL https://doi.org/10.
3233/FAIA200244.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Waleed Ammar,
Annie Louis, and Nasrin Mostafazadeh, editors, Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Demonstrations, pages
48–53. Association for Computational Linguistics, 2019. doi: 10.18653/v1/n19-4009. URL
https://doi.org/10.18653/v1/n19-4009.

Lawrence C. Paulson. Natural deduction as higher-order resolution. The Journal of Logic Program-
ming, 3(3):237–258, 1986.

Bartosz Piotrowski and Josef Urban. Atpboost: Learning premise selection in binary setting with
ATP feedback. In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani, editors, Automated
Reasoning - 9th International Joint Conference, IJCAR 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, volume 10900 of Lecture
Notes in Computer Science, pages 566–574. Springer, 2018. doi: 10.1007/978-3-319-94205-6_37.
URL https://doi.org/10.1007/978-3-319-94205-6_37.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
CoRR, abs/2009.03393, 2020. URL https://arxiv.org/abs/2009.03393.

Markus N Rabe, Dennis Lee, Kshitij Bansal, and Christian Szegedy. Mathematical reasoning via
self-supervised skip-tree training. arXiv preprint arXiv:2006.04757, 2020.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+ questions for
machine comprehension of text. In Jian Su, Xavier Carreras, and Kevin Duh, editors, Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016,

12

https://openreview.net/forum?id=Ske31kBtPr
https://openreview.net/forum?id=Ske31kBtPr
https://arxiv.org/abs/2006.09265
https://arxiv.org/abs/2006.09265
https://easychair.org/publications/paper/ND13
https://doi.org/10.3233/FAIA200244
https://doi.org/10.3233/FAIA200244
https://doi.org/10.18653/v1/n19-4009
https://doi.org/10.1007/978-3-319-94205-6_37
https://arxiv.org/abs/2009.03393

Published as a conference paper at ICLR 2021

Austin, Texas, USA, November 1-4, 2016, pages 2383–2392. The Association for Computational
Linguistics, 2016. doi: 10.18653/v1/d16-1264. URL https://doi.org/10.18653/v1/
d16-1264.

Tim Rocktäschel and Sebastian Riedel. End-to-end differentiable proving. In Advances in Neural
Information Processing Systems, pages 3788–3800, 2017.

Germán Ros, Laura Sellart, Joanna Materzynska, David Vázquez, and Antonio M. López. The
SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban
scenes. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016, pages 3234–3243. IEEE Computer Society, 2016. doi:
10.1109/CVPR.2016.352. URL https://doi.org/10.1109/CVPR.2016.352.

Piotr Rudnicki. An overview of the mizar project. In Proceedings of the 1992 Workshop on Types for
Proofs and Programs, pages 311–330. Citeseer, 1992.

Stephan Schulz. System description: E 1.8. In International Conference on Logic for Programming
Artificial Intelligence and Reasoning, pages 735–743. Springer, 2013.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of Go
without human knowledge. Nature, 550(7676):354–359, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen
Simonyan, and Demis Hassabis. A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science, 362(6419):1140–1144, 2018. ISSN 0036-8075. doi:
10.1126/science.aar6404. URL https://science.sciencemag.org/content/362/
6419/1140.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved semantic representations
from tree-structured long short-term memory networks. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages 1556–1566, Beijing, China, July
2015. Association for Computational Linguistics. doi: 10.3115/v1/P15-1150. URL https:
//www.aclweb.org/anthology/P15-1150.

Josef Urban. Malarea: a metasystem for automated reasoning in large theories. In Geoff Sutcliffe,
Josef Urban, and Stephan Schulz, editors, Proceedings of the CADE-21 Workshop on Empirically
Successful Automated Reasoning in Large Theories, Bremen, Germany, 17th July 2007, volume
257 of CEUR Workshop Proceedings. CEUR-WS.org, 2007. URL http://ceur-ws.org/
Vol-257/05_Urban.pdf.

Josef Urban and Jan Jakubv. First neural conjecturing datasets and experiments. arXiv preprint
arXiv:2005.14664, 2020.

Josef Urban, Geoff Sutcliffe, Petr Pudlák, and Jirí Vyskocil. Malarea SG1- machine learner for
automated reasoning with semantic guidance. In Alessandro Armando, Peter Baumgartner, and
Gilles Dowek, editors, Automated Reasoning, 4th International Joint Conference, IJCAR 2008,
Sydney, Australia, August 12-15, 2008, Proceedings, volume 5195 of Lecture Notes in Computer
Science, pages 441–456. Springer, 2008. doi: 10.1007/978-3-540-71070-7_37. URL https:
//doi.org/10.1007/978-3-540-71070-7_37.

Josef Urban, Jiří Vyskočil, and Petr Štěpánek. MaLeCoP machine learning connection prover. In
International Conference on Automated Reasoning with Analytic Tableaux and Related Methods,
pages 263–277. Springer, 2011.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

13

https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.1109/CVPR.2016.352
https://science.sciencemag.org/content/362/6419/1140
https://science.sciencemag.org/content/362/6419/1140
https://www.aclweb.org/anthology/P15-1150
https://www.aclweb.org/anthology/P15-1150
http://ceur-ws.org/Vol-257/05_Urban.pdf
http://ceur-ws.org/Vol-257/05_Urban.pdf
https://doi.org/10.1007/978-3-540-71070-7_37
https://doi.org/10.1007/978-3-540-71070-7_37

Published as a conference paper at ICLR 2021

Oriol Vinyals, Igor Babuschkin, Wojciech Marian Czarnecki, Michaël Mathieu, Andrew Joseph
Dudzik, Junyoung Chung, Duck Hwan Choi, Richard W. Powell, Timo Ewalds, Petko Georgiev,
Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai,
John P. Agapiou, Max Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen,
Valentin Dalibard, David Budden, Yury Sulsky, James Molloy, Tom Le Paine, Caglar Gulcehre,
Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina
McKinney, Oliver Smith, Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis,
Chris Apps, and David Silver. Grandmaster level in StarCraft II using multi-agent reinforcement
learning. Nature, pages 1–5, 2019.

Mingzhe Wang and Jia Deng. Learning to prove theorems by learning to generate theorems. CoRR,
abs/2002.07019, 2020. URL https://arxiv.org/abs/2002.07019.

Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng. Premise selection for theorem proving by
deep graph embedding. In Advances in Neural Information Processing Systems, pages 2786–2796,
2017.

Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou, Qi Huang,
Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo Zhao, Jinyang Li, Alexander J.
Smola, and Zheng Zhang. Deep graph library: Towards efficient and scalable deep learning on
graphs. CoRR, abs/1909.01315, 2019. URL http://arxiv.org/abs/1909.01315.

Jason Weston, Antoine Bordes, Sumit Chopra, and Tomas Mikolov. Towards AI-complete question
answering: A set of prerequisite toy tasks. In Yoshua Bengio and Yann LeCun, editors, 4th
International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, 2016. URL http://arxiv.org/abs/1502.
05698.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?
id=ryGs6iA5Km.

Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting with proof assistants. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 6984–6994, Long Beach, California, USA, 09–15 Jun 2019. PMLR. URL http://
proceedings.mlr.press/v97/yang19a.html.

Zsolt Zombori, Adrián Csiszárik, Henryk Michalewski, Cezary Kaliszyk, and Josef Urban. Towards
finding longer proofs. CoRR, abs/1905.13100, 2019. URL http://arxiv.org/abs/1905.
13100.

14

https://arxiv.org/abs/2002.07019
http://arxiv.org/abs/1909.01315
http://arxiv.org/abs/1502.05698
http://arxiv.org/abs/1502.05698
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
http://proceedings.mlr.press/v97/yang19a.html
http://proceedings.mlr.press/v97/yang19a.html
http://arxiv.org/abs/1905.13100
http://arxiv.org/abs/1905.13100

Published as a conference paper at ICLR 2021

APPENDIX A AXIOM SPECIFICATIONS

Field axioms Definition

AdditionCommutativity (AC) → a+ b = b+ a

AdditionAssociativity (AA) → a+ (b+ c) = (a+ b) + c

AdditionSimplification (AS) a = b→ a+ (−b) = 0

MultiplicatoinCommutativity (MC) → a · b = b · a

MultiplicationAssociativity (MA) → a · (b · c) = (a · b) · c

MultiplicationSimplification (MS) (a 6= 0) ∧ (a = b)→ 1 = a · 1b

AdditionMultiplicationLeftDistribution (AMLD) → (a+ b) · c = a · c+ b · c

AdditionMultiplicationRightDistribution (AMRD) → a · (b+ c) = a · b+ a · c

SquareDefinition (SD) → a2 = a · a

MultiplicationOne (MO) → a · 1 = a

AdditionZero (AZ) → a+ 0 = a

PrincipleOfEquality (POE) (a = b) ∧ (c = d)→ a+ c = b+ d

EquMoveTerm(Helper axiom) (EMT) a+ b = c→ a = c+ (−b)

Ordered field axioms Definition

All field axioms

SquareGEQZero (SGEQZ) a = b→ a · b ≥ 0

EquivalenceImpliesDoubleInequality (EIDI) a = b→ (a ≥ b) ∧ (a ≤ b)

IneqMoveTerm (IMT) a+ b ≥ c→ a ≥ c+ (−b)

FirstPrincipleOfInequality (FPOI) (a ≥ b) ∧ (c ≥ d)→ a+ c ≥ b+ d

SecondPrincipleOfInequality (SPOI) (a ≥ b) ∧ (c ≥ 0)→ a · c ≥ b · c

Table 3

15

Published as a conference paper at ICLR 2021

APPENDIX B THE MORPH FUNCTION

We detail the morphing of C at each step as follows. For each theorem a, we define two symbolic
patterns: La and Ra, each represented by an expression (see Appendix C for full details). For
example, if a is AdditionCommutativity, we use La = x1 + x2 to denote any formula that is a sum
of two terms (x1 and x2 can be arbitrary terms). We check if one of the nodes in the computation
graph of C has the structure defined by La. If so, we then transform that node to a formula specified
by Ra. For example, if C is (p + q) + l = (p + (q + l)), p + q is a node that matches the pattern
specified by La, in which x1 = p and x2 = q. Let Ra = x2 + x1. We hence transform the node
p+ q to q+ p as specified byRa. As a result, C ′ becomes (q+ p) + l = (p+ (q+ l)). If there is no
node in the computation graph, we morph the core logic statement using the extension function E ,
defined in Appendix D . We sample nodes in available computation graphs and combine them with
C, coming up with C ′ and optionally a non-empty set of new premises Pnew.

Algorithm 2 Theorem Generator (complete)

1: function GENERATE_THEOREM(initial conditions I, axiom order A)
2: Axiom order length L = len(A).
3: Initialize core logic statement C0 ∼ Uniform(I), and the set of premises P = {C0}.
4: for t← 1 to L do
5: Get axiom at ← A[t].
6: Get new logic statement and premises: Ct, Pt ← MORPH (at, Ct−1).
7: Add new premises to the set of all premises: P ← P ∪ Pt.
8: end for
9: return CL, P

10: end function
function MORPH(axiom a, core logic statement C)

2: Collect Nt = {n| n is a node in C and matches the pattern specified by La}
if Nt 6= ∅ then

4: Sample node n ∼ Uniform(Nt).
Transform n into new node n′ using the mapping from La toRa.

6: C ′ ← Replace n with n′ in the graph of C. Pnew ← ∅.
else

8: Collect N , the set of all nodes in the graphs.
Extend C and get the set of premises: C ′, Pnew ← E(a,C,N).

10: end if
return C ′, Pnew.

12: end function

The reasons that we have two sets of rules for morphing are as follow: 1) Transformation rules can
only be applied when the axiom will produce an equality, while extension rules can be applied to any
axiom. So in order to generate theorems with all the axioms, we need the extension rules. 2) Almost
all the extension rules will complicate the core logic statement while none of the transformation rules
will. If we only have extension rules, the goal generated can be very complex even the proof is of
moderate length. In order to generate compact theorems (goal not too complicated) with long proofs,
the transformation rules are preferred. Therefore we only apply extension rules when transformation
rules are not applicable.

16

Published as a conference paper at ICLR 2021

APPENDIX C TRANSFORMATION RULES

The implementations of the transformation rules L andR.

Axiom (a) La Ra

AdditionCommutativity x1 + x2 x2 + x1

AdditionAssociativity x1 + (x2 + x3) (x1 + x2) + x3

AdditionSimplification x1 + (−x1) 0

MultiplicatoinCommutativity x1 · x2 x2 · x1

MultiplicationAssociativity x1 · (x2 · x3) (x1 · x2) · x3

MultiplicationSimplification x1 · 1
x1

1

AdditionMultiplicationLeftDistribution (x1 + x2) · x3 x1 · x3 + x2 · x3

AdditionMultiplicationRightDistribution x1 · (x2 + x3) x1 · x2 + x1 · x3

SquareDefinition x21 x1 · x1

MultiplicationOne x1 · 1 or 1 · x1 x1

AdditionZero x1 + 0 or 0 + x1 x1

SquareGEQZero NA NA

PrincipleOfEquality NA NA

EquMoveTerm NA NA

EquivalenceImpliesDoubleInequality NA NA

IneqMoveTerm NA NA

FirstPrincipleOfInequality NA NA

SecondPrincipleOfInequality NA NA

Table 4

17

Published as a conference paper at ICLR 2021

APPENDIX D EXTENSION FUNCTION

For these axioms, the core logic statement C needs to be of the form LHS(C) = RHS(C).

Axiom (a) Extension function E(C, a,N)

AdditionCommutativity Sample node n ∼ Uniform (N)
return RHS(C) +n = n+ LHS(C), ∅

AdditionAssociativity Sample nodes n1, n2 ∼ Uniform (N)
return RHS(C)+(n1 + n2) =LHS(C)+n1 + n2, ∅

AdditionSimplification return 0 =LHS(C)+(−RHS(C)), ∅

MultiplicatoinCommutativity Sample node n ∼ Uniform (N)
return RHS(C)·n = n·LHS(C), ∅

MultiplicationAssociativity Sample nodes n1, n2 ∼ Uniform (N)
return RHS(C)·(n1 · n2) =LHS(C)·n1 · n2, ∅

MultiplicationSimplification return 1 =LHS(C)· 1
RHS(C) , ∅

AdditionMultiplicationLeftDistribution
Sample nodes n1, n2 ∼ Uniform (N)
return (n1 + n2) · RHS(C) =

n1 · LHS(C) + n2 · LHS(C),∅

AdditionMultiplicationRightDistribution
Sample nodes n1, n2 ∼ Uniform (N)
return RHS(C) · (n1 + n2) =

LHS(C) · n1 + LHS(C) · n2,∅

SquareDefinition return LHS(C) · RHS(C) = LHS(C)2, ∅

MultiplicationOne return Uniform ({LHS(C) · 1 = RHS(C),
1 · LHS(C) = RHS(C) }), ∅

AdditionZero return Uniform ({LHS(C) + 0 = RHS(C),
0 + LHS(C) = RHS(C) }), ∅

SquareGEQZero return LHS(C) · RHS(C) ≥ 0, ∅

PrincipleOfEquality Sample nodes n1, n2 ∼ N , where n1 = n2
return LHS(C) + n1 = RHS(C) + n2, {n1 = n2}

EquMoveTerm Only execute when LHS(C) is of the form x+ y
return x = RHS(C) + (−y), ∅

EquivalenceImpliesDoubleInequality return LHS(C) ≥ RHS(C), ∅

Table 5

18

Published as a conference paper at ICLR 2021

For these axioms, the core logic statement C needs to be of the form LHS(C) ≥ RHS(C).

Axiom (a) Extension function E(C, a,N)

IneqMoveTerm Only execute when LHS(C) is of the form x+ y
return x ≥ RHS(C) + (−y), ∅

FirstPrincipleOfInequality Sample nodes n1, n2 ∼ N , where n1 ≥ n2
return LHS(C) + n1 ≥ RHS(C) + n2, {n1 ≥ n2}

SecondPrincipleOfInequality Sample node n ∼ N , where n ≥ 0
return LHS(C) ·n ≥ RHS(C) ·n, {n ≥ 0}

Table 6

19

Published as a conference paper at ICLR 2021

APPENDIX E DATASET STATISTICS

APPENDIX E.1 THEOREM LENGTH

We compare the length of the theorems generated in characters and plot their distributions in Figure
5. The length of the theorem in characters is a measure for how complicated it is. As is expected,
the more complicated the theorem is, the longer the proof(bigger L). It is also worth noting that as
L becomes bigger, the distribution of theorem length becomes less concentrated. This is likely a
consequence of a more spread-out theorem length range.

0 50 100 150 200
Problem length in characters

0.000

0.005

0.010

0.015

Pr
ob

ab
lit

y
de

ns
ity

Field axioms

0 50 100 150 200
Problem length in characters

0.000

0.005

0.010

0.015

Ordered-field axioms
K3 L3
K3 L5
K3 L7

Figure 5: The distribution of theorem length in characters for field axioms(left) and ordered-field
axioms(right) generated with parameters K3L3, K3L5, and K3L7. As the length of the proof
is increased, so is the number of characters in the theorem, while the distribution of latter is less
concentrated.

20

Published as a conference paper at ICLR 2021

APPENDIX E.2 AXIOM DISTRIBUTIONS

The frequency at which each axiom is applied influences the distribution of theorems our generator
is able to produce. In Figure 6, we present the proportions of axioms that are applied in generating
10,000 theorems. Their frequencies are a measure of how easy it is to satisfy the conditions to apply
them. For the field axioms, the PrincipleOfEquality axiom is the most frequently used(9.30%) and
the EquMoveTerm axiom is the most rarely used(2.38%). EquMoveTerm has a strict condition for
application: the left hand side of the core logic statement has to be of the form x+ y, therefore not
frequently applied. For the ordered-field axioms, the EquivalenceImpliesDoubleInequality axiom
is the most frequently used(10.18%). Since we start with a trivial equality in generation and want
to end up with an inequality, a transition from equality to inequality is needed. Among the ways of
transitioning, this conditions to apply this axiom is easiest to satisfy. Its popularity is followed by the
group of Field axioms, from MultiplicationCommutativity(4.69%) to AdditionAssociativity(5.98%).
The rest are ordered-field axioms which define the properties of inequalities, proportions ranging
from IneqMoveTerm(1.14%) to FirstPrincipleOfInequality(5.74%).

Eq
uM

ov
eT

er
m

 2
.3

8%

M
ul

tip
lic

at
io

nC
om

m
ut

at
iv

ity
 5

.5
6%

Sq
ua

re
De

fin
iti

on
 5

.9
2%

Ad
di

tio
nC

om
m

ut
at

iv
ity

 6
.1

0%

Ad
di

tio
nM

ul
tip

lic
at

io
nR

ig
ht

Di
st

rib
ut

io
n

 6
.4

4%

Ad
di

tio
nM

ul
tip

lic
at

io
nL

ef
tD

ist
rib

ut
io

n
 6

.4
9%

M
ul

tip
lic

at
io

nA
ss

oc
ia

tiv
ity

 6
.5

1%

M
ul

tip
lic

at
io

nL
ef

tO
ne

 7
.1

7%

M
ul

tip
lic

at
io

nR
ig

ht
On

e
 7

.1
7%

M
ul

tip
lic

at
io

nS
im

pl
ifi

ca
tio

n
 7

.2
4%

Ad
di

tio
nA

ss
oc

ia
tiv

ity
 7

.3
5%

Ad
di

tio
nS

im
pl

ifi
ca

tio
n

 7
.3

5%

Ad
di

tio
nL

ef
tZ

er
o

 7
.5

0%

Ad
di

tio
nR

ig
ht

Ze
ro

 7
.5

0%

Pr
in

cip
le

Of
Eq

ua
lit

y
 9

.3
0%

(a) Field axiom distribution

In
eq

M
ov

eT
er

m
 1

.1
4%

Eq
uM

ov
eT

er
m

 1
.5

4%

Sq
ua

re
GE

QZ
er

o
 2

.3
1%

Se
co

nd
Pr

in
cip

le
Of

In
eq

ua
lit

y
 2

.6
8%

M
ul

tip
lic

at
io

nC
om

m
ut

at
iv

ity
 4

.6
9%

Fi
rs

tP
rin

cip
le

Of
In

eq
ua

lit
y

 4
.7

4%

Ad
di

tio
nC

om
m

ut
at

iv
ity

 5
.0

5%

Sq
ua

re
De

fin
iti

on
 5

.2
6%

M
ul

tip
lic

at
io

nA
ss

oc
ia

tiv
ity

 5
.3

7%

Ad
di

tio
nM

ul
tip

lic
at

io
nL

ef
tD

ist
rib

ut
io

n
 5

.4
6%

M
ul

tip
lic

at
io

nS
im

pl
ifi

ca
tio

n
 5

.4
9%

Ad
di

tio
nR

ig
ht

Ze
ro

 5
.5

8%

Ad
di

tio
nL

ef
tZ

er
o

 5
.5

8%

Ad
di

tio
nM

ul
tip

lic
at

io
nR

ig
ht

Di
st

rib
ut

io
n

 5
.6

6%

Ad
di

tio
nS

im
pl

ifi
ca

tio
n

 5
.7

6%

M
ul

tip
lic

at
io

nL
ef

tO
ne

 5
.7

8%

M
ul

tip
lic

at
io

nR
ig

ht
On

e
 5

.7
8%

Pr
in

cip
le

Of
Eq

ua
lit

y
 5

.9
6%

Ad
di

tio
nA

ss
oc

ia
tiv

ity
 5

.9
8%

Eq
ui

va
le

nc
eI

m
pl

ie
sD

ou
bl

eI
ne

qu
al

ity
 1

0.
18

%

(b) Ordered-field axiom distribution

Figure 6

21

Published as a conference paper at ICLR 2021

APPENDIX E.3 NUMBER OF NODES

Since an action in the MDP consists of an axiom and a list of nodes as its arguments and the number
of axioms is fixed, the number of nodes available determines the size the action space. Therefore
it is interesting to investigate how many nodes are available in a proof. In Figure 7 we present the
average number of nodes in proofs of different length. It can be told from the figure that the longer
the proofs, the more nodes there will be, as expected. Comparing the axiom sets used, we find that
the average number of nodes for ordered-field axioms is larger than that of field axioms. This is
likely the consequence of ordered-field axioms, in generation, being more capable of producing new
premises(e.g. First Principle of Inequality will produce an inequality premise(see Table 6), thus
adding more nodes in the graphs).

1 2 3 4 5 6 7
Length

0

5

10

15

20

25

30

35

40

Av
er

ag
e

nu
m

be
r o

f n
od

es
Field axioms Ordered-field axioms

Figure 7

22

Published as a conference paper at ICLR 2021

APPENDIX F MORE EXPERIMENTAL DETAILS FOR GENERALIZATION WITH
SEARCH

We give more experimental details for the use of MCTS. Following (Silver et al., 2017), in the
selection step of the MCTS tree construction, we use the following formula to select the next action,

a∗ = argmaxa

(
Q(s, a) + cpuctP (s, a)

√∑
bN(s, b)

1 +N(s, a)

)
,

where Q(s, a) represents the action value function, N(s, a) denotes the visit counts, P (s, a) is the
prior probability, and cpuct is a constant hyperparameter. In all of our experiments, we used the
behavior cloning policy for computing P (s, a), and we used cpuct = 1. After the MCTS tree is built,
the action is sampled from the policy distribution π(a|s) = N(s, a)

1
τ , where τ is a hyperparameter

and was chosen as 1 in our experiments.

23

Published as a conference paper at ICLR 2021

APPENDIX G MORE TRAINING AND EVALUATION RESULTS

APPENDIX G.1 LEARNING CURVES OF GNN-BASED AGENTS

0.0 0.5 1.0 1.5
Datapoints 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Field axioms

0.0 0.5 1.0 1.5
Datapoints 1e7

Ordered-field axioms

Trained on
K3 L3
K3 L5
K3 L7

Figure 8: Proof success rates for field axioms(left) and ordered-field axioms(right) of GNN-based
agents trained on different K and L parameters. We keep the K the same and vary the L. The agents
converge slower and to a lower success rate when the proof length is increased. Also, the agents on
field axioms are easier to train than those on ordered-field axioms.

APPENDIX G.2 PERFORMANCE VARIATION OF TRAINED AGENTS

To verify that the experimental results are statistically significant, we ran the experiments on proof
length generalization in subsection 4.3 with 5 random seeds and tabled the results.

Table 7: Success rates of agents trained and tested on problems of different parameters (mean ± std)
in percentage.

Transformers Tested on K3 L3 K3 L5 K3 L7

Trained on
K3 L3 97.6 ± 0.9 31.5 ± 1.6 10.9 ± 1.0
K3 L5 97.2 ± 0.7 88.3 ± 1.2 59.5 ± 1.6
K3 L7 96.6 ± 1.2 87.0 ± 1.6 75.1 ± 1.2

GNNs Tested on K3 L3 K3 L5 K3 L7

Trained on
K3 L3 91.5 ± 0.5 45.6 ± 1.7 16.5 ± 0.8
K3 L5 86.4 ± 0.9 77.8 ± 0.9 58.4 ± 1.5
K3 L7 82.0 ± 1.3 71.4 ± 1.1 56.5 ± 1.5

APPENDIX G.3 GNN-BASED AGENTS ON IID GENERALIZATION

K3 L3 K3 L5 K3 L7 K5 L5 K5 L7
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 ra
te

Field axioms

K3 L3 K3 L5 K3 L7 K5 L5 K5 L7

Ordered-field axioms

Train Test

Figure 9: Proof success rates on problems generated with different K and L parameters (K denotes
the cardinality of the axiom combination of a proof, L denotes the length of the proof). When the IID
assumption holds, the success rate decreases as the two generation parameters K and L are increased.

24

Published as a conference paper at ICLR 2021

APPENDIX G.4 GNN-BASED AGENTS ON INITIAL CONDITION GENERALIZATION

K3 L3 K3 L5 K3 L7 K5 L5 K5 L7
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 ra
te

Field axioms

K3 L3 K3 L5 K3 L7 K5 L5 K5 L7

Ordered-field axioms

Degree
0 1 2

Figure 10: Proof success rates on problems generated with different K and L parameters (K denotes
the cardinality of the axiom combination of a proof, L denotes the length of the proof). When
generalizing to different initial conditions, there are no obvious trends as to how the proof success
rate changes as the degree of the initial entities is varied.

25

Published as a conference paper at ICLR 2021

APPENDIX G.5 FULL RESULTS ON AXIOM ORDERS AND COMBINATIONS GENERALIZATION

Table 8: Top: Proof success rates (in %) of agents trained on different numbers of axiom orders.
Bottom: Proof success rates (in %) of agents trained on different numbers of axiom combinations.
K denotes the cardinality of the axiom combination of a proof, L denotes the length of the proof.

Architecture Axiom 100 500 2000 5000
orders Train Test Train Test Train Test Train Test

Transformer

K3 L3 98.4 32.6 99.5 90.0 98.8 98.7 97.6 97.6
K3 L5 95.3 6.3 94.0 56.3 94.0 94.9 96.5 94.9
K3 L7 87.8 3.8 88.0 46.4 88.3 77.5 88.4 85.5
K5 L5 94.7 5.6 97.0 72.9 97.4 93.1 97.5 96.9
K5 L7 89.7 1.8 88.6 48.6 89.3 75.2 88.6 84.0

Average 93.2 10.0 93.4 62.8 93.6 87.9 93.7 91.8

GNN

K3 L3 84.3 38.6 94.4 73.9 93.7 89.0 90.5 92.3
K3 L5 92.7 17.1 86.3 60.0 84.4 72.9 77.7 77.1
K3 L7 82.4 14.1 82.4 33.8 68.6 57.7 70.2 63.5
K5 L5 91.0 23.0 89.7 61.2 81.8 75.0 78.3 80.8
K5 L7 87.5 12.9 80.2 39.0 66.5 57.4 61.6 60.0

Average 87.6 21.1 86.6 53.6 79.0 70.4 75.7 74.7

Architecture Axiom 25 100 200 300
combos Train Test Train Test Train Test Train Test

Transformer

K3 L3 99.2 34.1 99.0 72.8 99.5 96.1 98.6 98.2
K3 L5 97.8 29.3 98.6 66.3 97.5 89.5 94.3 90.4
K3 L7 93.6 25.0 91.9 55.9 91.5 80.0 91.9 85.9
K5 L5 98.5 27.4 98.4 87.6 97.0 93.6 97.3 94.9
K5 L7 91.2 30.5 92.2 76.3 91.7 82.9 90.0 87.0

Average 96.1 29.3 96.0 71.8 95.4 88.4 94.4 91.3

GNN

K3 L3 96.3 61.6 96.0 90.1 92.7 91.2 95.3 92.0
K3 L5 82.1 43.4 80.3 68.9 78.5 74.9 76.5 76.1
K3 L7 72.1 34.3 68.1 57.2 62.3 63.7 62.5 62.0
K5 L5 77.8 61.6 78.9 71.0 74.5 78.4 72.8 74.9
K5 L7 67.2 36.8 59.7 52.7 54.9 54.0 56.7 54.5

Average 79.1 47.5 76.6 68.0 72.6 72.4 72.8 71.9

26

Published as a conference paper at ICLR 2021

APPENDIX G.6 GNN-BASED AGENTS ON AXIOM NUMBER GENERALIZATION

K3 L7 K5 L7 K7 L7
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 ra
te

Field axioms

K3 L7 K5 L7 K7 L7

Ordered-field axioms

Trained on
K3 L7 K5 L7 K7 L7

Figure 11: Proof success rates on problems generated with different parameters ((K denotes the
cardinality of the axiom combination of a proof, L denotes the length of the proof). We keep
parameter L the same and vary parameter K. The success rate is likely to decrease when an agent is
evaluated on problems that have different K than the problems it is trained on.

APPENDIX G.7 GNN-BASED AGENTS ON PROOF LENGTH GENERALIZATION

K3 L3 K3 L5 K3 L7
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 ra
te

Field axioms

K3 L3 K3 L5 K3 L7

Ordered-field axioms

Trained on
K3 L3 K3 L5 K3 L7

Figure 12: Proof success rates on problems generated with different parameters ((K denotes the
cardinality of the axiom combination of a proof, L denotes the length of the proof). We keep
parameter K the same and vary parameter L. For all agents, the proof success rate is lower on
theorems that require longer proofs. The best-performing agent for problems of a given length is
usually the agent trained on problems of the same length.

27

Published as a conference paper at ICLR 2021

APPENDIX H THEOREM PROVING AS A MARKOV DECISION PROCESS (MDP)

We model theorem proving as a Markov Decision Process. A state s in the MDP is the proof state
maintained by the assistant, namely, the goal, the premises and the proven facts, represented by
computation graphs. An action a is a tuple of an axiom and a sequence of arguments. We denote the
axiom space as X and the argument space, the set of all the nodes in available computation graphs, as
N . The maximum number of arguments for one axiom within our axiomizations is 3, therefore the
action space is A = X ×N 3. The assistant ignores redundant arguments if fewer than 3 are needed
for the axiom considered. We show in Appendix E.3 the distribution of the number of nodes for proofs
of different length. The size of the discrete action space can be as large as 18× 423 ≈ 1.33× 106.
The deterministic state transition function P (s, a) is implicitly determined by the proof assistant.
When the proof assistant deems the proof complete and the theorem proven, the episode terminates
and a reward of one is given. Otherwise, the reward is zero at each step. When the step limit for a
proof is exhausted, the episode terminates with a reward of zero. For experiments in this paper, we
used a step limit of 15.

28

Published as a conference paper at ICLR 2021

APPENDIX I EXAMPLE PROBLEMS

Equality theorems
Theorem 1
Goal: ((0 · 1) · ((−(a2)) · c)) = (((−(a2)) · ((a · a) + (−(a2)))) · c)

Theorem 2
Goal: (((((0 + c) + a) · a) · 1) · (b · (0 + c))) = ((((c · a) + (a · a)) · (0 + c)) · b)

Theorem 3
Goal: 0 = ((((c+ 0) · (a+ a)) · (1

((c·a)+(c·a)))) + (−(0 + 1)))

Theorem 4
Premises: (b+ d) = b

Goal: (1 + (−((b+ b) · (1
((b+(b+d))·1))))) = (0 + 0)

Theorem 5
Premises: (a+ d) = b

Goal: 1 = (((d · ((a+ d) + ((c+ (a+ d)) + 0))) · ((d · (a+ d)) + (d · (c+ b)))) · (1
((d·((a+d)+((c+(a+d))+0)))2)))

Theorem 6
Premises: ((b · b) + d) = (b · b)
Goal: (0 + ((b · b) + d)) = (((1 · ((b+ b) · b)) + (−(((b · b) + (b · b)) · 1))) + (b · b))

Theorem 7
Goal: ((a · (a+ 0)) + ((−(0 + a)) · (a+ 0))) = ((a · 0) + (0 · 0))

Theorem 8
Goal: (((c · c) + c) · ((c2) · 1)) = (((c · c) · (0 + (c · c))) + (c · (0 + (c · c))))

Theorem 9
Goal: 1 = ((((a · c) + ((b · (a · b)) · c)) · (a+ (a · c))) · (1

((((a+((b·a)·b))·c)·(a·c))+(((a+((b·a)·b))·c)·a))))

Theorem 10
Goal: ((((b · c) + (c · c)) + (−(0 + ((b+ c) · c)))) · (c · c)) = ((c2) · 0)

Theorem 11
Goal: (1 · (b+ a)) = ((0 + (a+ b)) + 0)

Theorem 12
Goal: (((−c) · (−c)) + (((−c) · c) + ((−c) · (−c)))) = (((−c) · (−c)) + (0 · (−c)))

Theorem 13
Goal: (((a2) · (a · (a+ 0))) + (a · (a · (a+ 0)))) = ((((a2) · (a2)) + (a · (a2))) + 0)

Theorem 14
Goal: ((((b · 1) · (a · c)) · (b · a)) + (((b · 1) · (a · c)) · (b · a))) = (((((b · a) · c) · (b · a)) + (((b · a) · c) · (b · a))) · 1)

Theorem 15
Goal: 1 = ((1

((1
(b+0)

)·b)) · 1)

Theorem 16

29

Published as a conference paper at ICLR 2021

Goal: 0 = ((0 + (−((a · b) + (−(b · a))))) + (−(0 · 1)))

Theorem 17
Premises: (a+ d) = c; ((b+ c) + e) = (a+ d)

Goal: (((b · d) + (b · (b+ (a+ d)))) + ((b+ c) + e)) = ((((b · d) + (b · (b+ c))) · 1) + (a+ d))

Theorem 18
Goal: ((((1b) · b) · b) · 1) = ((b · 1) · 1)

Theorem 19
Goal: (((1 · (b · (c+ a))) + (b · a)) + 1) = (1 · ((1 · ((b · c) + (b · a))) + ((b · a) + 1)))

Theorem 20
Premises: (b+ d) = c; ((1 · a) + e) = a

Goal: (((a+ (b+ d)) · (1
((1·a)+c))) + ((1 · a) + e)) = ((1 · 1) + a)

Theorem 21
Goal: ((((c2) · ((c2) · c)) + (−(((c · c) · (c2)) · c))) + (b+ b)) = ((1 · ((0 + b) + b)) + (−0))

Theorem 22
Premises: (b+ d) = (a · b)
Goal: (1·((((c+c)·(((a·b)·c)+(c+c)))+((c+c)·(c+c)))+(a·b))) = (((((c+c)·((((a·(b·c))+c)+c)+(c+c)))+(b+d))·1)+0)

Theorem 23
Premises: ((0 · 1) + d) = (1 · 0)
Goal: (((((a+(0·1))·(1·0))+(−b))+(1·0))+(1·0)) = (((((a·(1·0))+((b+(−b))·(1·0)))+((−b)+(1·0)))+((0·1)+d))+0)

Theorem 24
Premises: (a+ d) = (1 + c)

Goal: (((((1 ·b)+(c ·b))+(1+c))2) ·((1+c) ·b)) = ((((((1 ·b)+(c ·b))+(1+c)) ·(((b ·(1+(1 ·c)))+(a+d)) ·1)) ·(1+c)) ·b)

Theorem 25
Premises: (a+ d) = (b · 1)
Goal: 0 = ((b+ (a+ d)) + (−((b · 1) + (b · 1))))

Theorem 26
Premises: (c+ d) = a

Goal: (0 + ((((a+ a) · 1) + a) · 1)) = (1 · ((1 · ((a+ (c+ d)) + 0)) + (1 · a)))

Theorem 27
Premises: (c+ d) = (b+ c)

Goal: (1 · ((((b+ c) · c) + (b · (b+ c))) + (c+ d))) = ((((b+ c)2) + (b+ c)) · 1)

Theorem 28
Premises: ((1 · b) + d) = b

Goal: (((((1 · b) + b) · (a · 1)) · (((b+ ((1 · b) + d)) · a) · 1)) + 0) = ((((b+ (1 · b)) · (a · 1))2) · 1)

Theorem 29
Goal: (((b · 1) + 0) · (1 · 0)) = (((b · 1) · ((−(0 + b)) + (1 · b))) + (0 · ((−(0 + b)) + (1 · b))))

Theorem 30

30

Published as a conference paper at ICLR 2021

Goal: (1 · 1) = (((((a · (c+ c)) + 0) · (b · (c+ c))) · (1
((((a·c)+(a·c))·b)·(c+c)))) + 0)

Theorem 31
Goal: ((1 · (b · b)) · b) = (1 · (0 + (((0 + b) · b) · b)))

Theorem 32
Goal: (((c · (c · 1)) + 0) · 1) = (((c · c) + 0) · 1)

Theorem 33
Goal: 1 = (1 · (1

((1+0)·(1

((b·(1
b
))+0)

))
))

Theorem 34
Goal: (((((((c+a) ·a) · (c+a)) · c) · (a+ c)) · (c+a)) · (c+a)) = (((((((a+ c) · (c+a)) ·a) · c) · (a+ c)) · (c+a)) · (c+a))

Theorem 35
Goal: 0 = ((−(1 · 0)) + ((−(c+ c)) + ((1 · c) + c)))

Theorem 36
Goal: 1 = (1 · (1

(a·(1
(((a+c)+a)+(−(c+a)))

))
))

Theorem 37
Premises: (a+ d) = a; ((1c) + e) = b

Goal: (((1 · (1 · (1
(c·(1

c))
))) + a) + b) = (1 · (((1 · 1) + (a+ d)) + ((1c) + e)))

Theorem 38
Goal: 0 = ((b · (b+ (−b))) + (−(((0 + 0) · b) + 0)))

Theorem 39
Goal: (((1 · c) + (−(1 · (c · 1)))) · 1) = ((0 · 1) · 1)

Theorem 40
Goal: ((a+ b) · (1 · ((b · c) + (c · c)))) = ((a · ((c · c) + (b · c))) + (b · ((c · c) + (b · c))))

Theorem 41
Goal: (0 + ((0 + ((c+ c) · c)) · (a · b))) = (0 + ((((c · c) · a) + ((c · c) · a)) · b))

Theorem 42
Premises: (0 + d) = 1

Goal: ((((1 · 0) + (a+ (a · 1))) + 0) + d) = (((((1 · a) + (−(a · 1))) + a) + (a · 1)) + 1)

Theorem 43
Premises: (b+ d) = 0

Goal: 0 = ((((((0 + b) · 0) + ((0 + b) · b)) · 1) + 0) + (−((((b · 0) + (b · b)) + (b+ d)) · 1)))

Theorem 44
Goal: ((0 + c) · ((−c) + (((c · 1) + 0) + (−c)))) = (((0 + c) · (−c)) + ((0 + c) · 0))

Theorem 45
Goal: 0 = (0+(−(((0 ·0)+(a ·0))+(−(((((((a ·b)+(a ·b))+((b+b)+b))+(−(((a ·(b+b))+(b+b))+b)))+a) ·0) ·1)))))

Theorem 46

31

Published as a conference paper at ICLR 2021

Premises: ((a+ b) + d) = (a+ b); (b+ e) = a

Goal: (a · a) = (1 · (a · a))

Theorem 47
Premises: (c+ d) = c

Goal: ((b · (1 + 0)) + (b · (c+ d))) = (0 + (b · ((0 + (1 · (1
((b+(c+d))·(1

(b+c)
))
))) + (c+ d))))

Theorem 48
Goal: ((b+ ((((a+ a) · 1) · a) + 0)) · a) = ((b · a) + ((((a · a) · 1) + (a · (a · 1))) · a))

Theorem 49
Goal: (((1 + b) · (((a · ((c · 1) + (c2))) + 1) + b)) + ((1 + b) · (((a · ((c · 1) + (c2))) + 1) + b))) = ((((1 + b) + (1 + b)) ·
((((a · (c · 1)) + (a · (c · (c · 1)))) + (1 + b)) · 1)) · 1)

Theorem 50
Goal: 0 = (((((0+(((c ·c)+(c ·c))+((c+c)+(c ·c))))+0)+c) ·a)+(−(((0+((((c+c) ·c)+(c+c))+(c ·c))) ·a)+(c ·a))))

Inequality theorems
Theorem 1
Premises: (1 + d) ≥ 0; (b+ e) ≥ 0

Goal: ((((1 + 1) · (a · (1a))) · (1 + d)) + (b+ e)) ≥ ((((1 · 1) + (1 · 1)) · (1 + d)) + 0)

Theorem 2
Goal: (b2) ≥ (0 + (b · (1 · b)))

Theorem 3
Premises: ((c+ 0) + d) ≥ 0; (d+ e) ≥ b

Goal: ((c · ((c+ 0) + d)) + (d+ e)) ≥ (((0 + c) · ((c+ 0) + d)) + b)

Theorem 4
Goal: (b+ 0) ≥ ((((0 + b) + c) + c) + (−(c+ c)))

Theorem 5
Premises: (1 + d) ≥ 0

Goal: ((((c · c) + c) + a) · (1 + d)) ≥ ((((c2) + (c+ a)) · 1) · (1 + d))

Theorem 6
Premises: (b+ d) = b

Goal: 1 ≥ ((((a+ b) + (−(b+ d))) · ((a+ b) + b)) · (1
((a·(a+b))+(a·b))))

Theorem 7
Premises: ((0 + a) + d) = 0

Goal: (((0 + a) · a) + ((0 + a) + d)) ≥ ((a2) + 0)

Theorem 8
Premises: (b+ d) = a

Goal: ((c · b) + (b · b)) ≥ (1 · ((((c+ a) + (−(b+ d))) + b) · b))

32

Published as a conference paper at ICLR 2021

Theorem 9
Goal: (1 · ((((b · (1b)) · a) · (1 · 1)) + a)) ≥ ((1 · ((1 · 1) · (a · (1 · 1)))) + (1 · a))

Theorem 10
Premises: (c+ d) ≥ 0

Goal: (b · (c+ d)) ≥ ((((b+ b) + 0) + (−b)) · (c+ d))

Theorem 11
Goal: (((b+ 0) + (b+ c)) + 0) ≥ (((b+ b) + c) + 0)

Theorem 12
Goal: ((c · (c+ 0)) + 0) ≥ ((c2) + 0)

Theorem 13
Goal: (1 · (b · 1)) ≥ ((1 · b) · 1)

Theorem 14
Goal: 1 ≥ ((((b · (1b)) + (1b)) + 1) · (1

((1+(1
b))+1)

))

Theorem 15
Goal: 1 ≥ ((1

((c·a)·(1
(a·c)))

) · 1)

Theorem 16
Goal: ((c · (a · a)) + (((a · a) + (c · a)) · (a · a))) ≥ (0 + ((c+ (0 + ((a+ c) · a))) · (a · a)))

Theorem 17
Goal: (((c · b) + a) · ((c · b) + (c · b))) ≥ ((a · ((c · b) + (c · b))) + ((c · b) · ((c · b) + (c · b))))

Theorem 18
Goal: ((a · b) · 1) ≥ ((((a · 1) · b) · 1) · 1)

Theorem 19
Goal: a ≥ ((a+ c) + (−c))

Theorem 20
Goal: ((c · b) · b) ≥ (b · (b · c))

Theorem 21
Premises: (a+ d) = a; ((a+ d) + e) ≥ 0; (b+ f) ≥ (0 · 0)
Goal: ((((((c ·0)+(0 ·0))+(a+d)) ·((0+((c+0) ·(a+(−a))))+a)) ·((a+d)+e))+(b+f)) ≥ ((0 ·((a+d)+e))+(0 ·0))

Theorem 22
Premises: (c+ d) ≥ 0; ((0 + 0) + e) ≥ (0 + 0)

Goal: ((((((0 + (c+ (−c))) · (−c)) · (1
((0·(−c))+(0·(−c))))) · (0 + 1)) · (c+ d)) + ((0 + 0) + e)) ≥ ((0 · (c+ d)) + (0 + 0))

Theorem 23
Premises: ((a2) + d) ≥ 0

Goal: ((((a · a) + c) · (0 + (1 · (a · a)))) · ((a2) + d)) ≥ ((((a · a) · ((a2) + 0)) + (c · ((a2) + 0))) · ((a2) + d))

Theorem 24
Premises: (c+ d) = c; ((0 + a) + e) ≥ a

33

Published as a conference paper at ICLR 2021

Goal: ((((a+ b) · (((a+ (−a)) + (a+ b)) + (c+ d))) · (((((0 + a) + b) + c) · (a+ b)) · 1)) + ((0 + a) + e)) ≥ (0 + a)

Theorem 25
Goal: 1 ≥ ((a · (c+ b)) · (1

((a·c)+(a·b))))

Theorem 26
Premises: (a+ d) ≥ b

Goal: ((0·((((((a+c)+a)·(a·c))·(a·c))+((a·c)·(a·c)))+(−((((((a+(c+a))·a)·c)+(a·c))·(a·c))+0))))+(a+d)) ≥ (0+b)

Theorem 27
Premises: ((c · b) + d) = (b · b); ((b · b) + e) ≥ a

Goal: ((((b+ b) + (b+ b)) · ((((c · (b · b)) + b) + b) + (b2))) + ((b · b) + e)) ≥ ((((b+ b) · ((((c · b) · b) + (b+ b)) + ((c · b) +
d))) + ((b+ b) · ((((c · b) · b) + (b+ b)) + ((c · b) + d)))) + a)

Theorem 28
Premises: ((b · 0) + d) ≥ c

Goal: ((((b+ (((0 + c) + (0 + c)) + 0)) · 0) · ((b · 0) + (((0 + c) + (0 + c)) · 0))) + ((b · 0) + d)) ≥ (0 + c)

Theorem 29
Premises: (a+ d) ≥ 0

Goal: ((0 · ((((c · c) + (c · 0)) · a) + (−(((c+ 0) · ((c+ 0) · a)) · 1)))) + (a+ d)) ≥ (0 + 0)

Theorem 30
Premises: (a+ d) ≥ c

Goal: (((b · (b · 1)) + (b · c)) + (a+ d)) ≥ ((0 + (b · ((b · 1) + c))) + c)

Theorem 31
Goal: (0 + (0 + (c+ b))) ≥ (0 + ((b+ c) + 0))

Theorem 32
Goal: (a+ (a+ 0)) ≥ ((((0 + a) + 0) + a) + 0)

Theorem 33
Premises: ((c+ c) + d) ≥ a; (d+ e) ≥ 0; ((c+ c) + f) ≥ (0 + a); (b+ g) ≥ 0

Goal: (((((((c+c)+(c+c))·((c+c)+(c+c)))+((c+c)+d))+(d+e))+((c+c)+f))+(b+g)) ≥ ((((0+a)+0)+(0+a))+0)

Theorem 34
Goal: (((0 + b) + c) + a) ≥ (0 + (0 + (b+ (c+ a))))

Theorem 35
Premises: (a+ d) ≥ 0; (a+ e) ≥ (c · c); (e+ f) ≥ 0; (c+ g) ≥ 0; (c+ h) ≥ (c+ g); (c+ i) ≥ 0

Goal: (((((((c · c) · (a+ d)) + (a+ e)) · (e+ f)) · (c+ g)) + (c+ h)) · (c+ i)) ≥ ((((((0 · (a+ d)) + (c · c)) · (e+ f)) · (c+
g)) + (c+ g)) · (c+ i))

Theorem 36
Goal: (1 · (1 · (1 · a))) ≥ (1 · ((a+ 0) + 0))

Theorem 37
Premises: (b+ d) ≥ b; ((c+ b) + e) ≥ c; (b+ f) ≥ a; (e+ g) ≥ (b+ f)

Goal: (((c+ (b+ d)) + (b+ f)) + (e+ g)) ≥ (((((c+ b) + c) + (−((c+ b) + e))) + a) + (b+ f))

34

Published as a conference paper at ICLR 2021

Theorem 38
Goal: ((a+ (((b+ c) · (b+ c)) + ((c+ b) · b))) · ((c+ b) + (c+ b))) ≥ ((((((b+ c) · (c+ b)) + ((b+ c) · b)) + a) · (c+ b)) +

(((((b+ c) · (c+ b)) + ((b+ c) · b)) + a) · (c+ b)))

Theorem 39
Premises: (c+ d) = b; ((c+ b) + e) = (c+ d); (a+ f) ≥ 0; (0 + g) ≥ 0; (g + h) ≥ 0; (d+ i) ≥ 0

Goal: ((((((c+(c+d))+((c+b)+e))·(a+f))·(0+g))·(g+h))·(d+i)) ≥ ((((((c+b)+(c+d))·(a+f))·(0+g))·(g+h))·(d+i))

Theorem 40
Goal: ((((c+ a) · b) · b) + (a+ c)) ≥ ((a+ c) + (((a+ c) · b) · b))

Theorem 41
Goal: (((c+ b) + (a+ (c+ b))) · (1

((((1·c)+b)+a)+(c+b)))) ≥ (1 · 1)

Theorem 42
Premises: (c+ d) = b

Goal: (((((c·b)+(c2))·((b+c)·(c·b)))+(c+d))·(((((c·(b+c))·(b+c))·c)·b)+b)) ≥ (((((c·b)+(c2))·((b+c)·(c·b)))+(c+d))2)

Theorem 43
Premises: (a+ d) = b; (d+ e) = a; (c+ f) ≥ 0; ((b+ b) + g) ≥ 0

Goal: ((1 · (c+ f)) · ((b+ b) + g)) ≥ (((((b+ b) + a) · (1
(0+((b+(a+d))+(d+e))))) · (c+ f)) · ((b+ b) + g))

Theorem 44
Goal: (((((a · 1) · a) · 1) · b) + (((a · 1) · (a · 1)) · (a · a))) ≥ (1 · ((((a · a) · 1) · b) + (((a · a) · 1) · (a · a))))

Theorem 45
Premises: ((c+ 0) + d) ≥ b; (1 + e) ≥ a

Goal: ((0 + ((c+ 0) + d)) + (1 + e)) ≥ (((0 + (−((c · 1) + (−(c+ 0))))) + b) + a)

Theorem 46
Premises: (c+ d) ≥ (a · c)
Goal: (((1 · (1 · (a · (a · c)))) · ((1 · ((a · a) · c)) + 0)) + (c+ d)) ≥ (0 + (a · c))

Theorem 47
Premises: (c+ d) ≥ c

Goal: ((c · (0 + c))2) ≥ (((0 + ((c · (0 + c)) · (c2))) + c) + (−(c+ d)))

Theorem 48
Premises: (a+ d) = b

Goal: (1 · ((b+ b) + (−(1 · (b+ (a+ d)))))) ≥ (1 · (0 · 1))

Theorem 49
Premises: ((c · b) + d) = a; ((c · b) + e) ≥ b

Goal: (((b · b) · (a · (c · b))) + ((c · b) + e)) ≥ ((((b · b) · a) · (c · b)) + b)

Theorem 50
Goal: (((a+ c) · (c+ a)) + ((a · (c+ a)) + ((c · c) + (c · a)))) ≥ (((a+ c) · ((c+ a) + (c+ a))) · 1)

35

	Introduction
	Related Works
	The INT Benchmark Dataset and Proof Assistant
	Terminology
	INT Assistant
	Theorem Generator

	Experiments
	Experiment Details
	Network Architectures
	Benchmarking Six Dimensions of Generalization
	Generalizing with Search
	Discussion

	Conclusion
	Axiom Specifications
	The morph Function
	Transformation Rules
	Extension Function
	Dataset Statistics
	Theorem Length
	Axiom Distributions
	Number of Nodes

	More Experimental Details for Generalization with Search
	More Training and Evaluation Results
	learning curves of GNN-based agents
	Performance variation of trained agents
	GNN-based agents on IID Generalization
	GNN-based agents on initial condition generalization
	Full Results on Axiom Orders and Combinations Generalization
	GNN-based agents on axiom number generalization
	GNN-based agents on Proof Length Generalization

	Theorem Proving as a Markov Decision Process (MDP)
	Example problems

