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ABSTRACT

In learning-assisted theorem proving, one of the most critical challenges is to gener-
alize to theorems unlike those seen at training time. In this paper, we introduce INT,
an INequality Theorem proving benchmark designed to test agents’ generalization
ability. INT is based on a theorem generator, which provides theoretically infinite
data and allows us to measure 6 different types of generalization, each reflecting a
distinct challenge, characteristic of automated theorem proving. In addition, INT
provides a fast theorem proving environment with sequence-based and graph-based
interfaces, conducive to performing learning-based research. We introduce base-
lines with architectures including transformers and graph neural networks (GNNs)
for INT. Using INT, we find that transformer-based agents achieve stronger test
performance for most of the generalization tasks, despite having much larger out-
of-distribution generalization gaps than GNNs. We further find that the addition of
Monte Carlo Tree Search (MCTS) at test time helps to prove new theorems.

1 INTRODUCTION

Advances in theorem proving can catalyze developments in fields including formal mathematics (Mc-
Cune, 1997), software verification (Darvas et al., 2005), and hardware design (Kern and Greenstreet,
1999). Following its recent success across other application domains, machine learning has sig-
nificantly improved the performance of theorem provers (Bansal et al., 2019; Bridge et al., 2014;
Gauthier et al., 2018; Huang et al., 2019; Irving et al., 2016; Kaliszyk et al., 2018; Lee et al., 2020;
Loos et al., 2017; Urban et al., 2011; Wang and Deng, 2020; Yang and Deng, 2019; Li et al., 2020;
Rabe et al., 2020; Polu and Sutskever, 2020). Two key factors that make theorem proving particularly
challenging for ML are data sparsity and that it requires out-of-distribution generalization.

Firstly, due to the difficulty of formalizing mathematics for humans, manually generated formal
proofs are necessarily expensive. Typical formal mathematics datasets contain thousands (Huang
et al., 2019) to tens-of-thousands (Yang and Deng, 2019) of theorems — orders of magnitude smaller
than datasets that enabled breakthroughs in areas such as vision (Deng et al., 2009) and natural
language processing (Rajpurkar et al., 2016). Secondly, the assumption frequently made in machine
learning that each data point is identically and independently distributed does not hold in general for
theorem proving: interesting problems we want to prove are non-trivially different from those we
have proofs for. Hence, the out-of-distribution generalization ability is crucial.

Synthetic datasets that rely on procedural generation provide a potentially unlimited amount of data.
Well-designed synthetic datasets have been shown to help understand the capabilities of machine
learning models (Johnson et al., 2017; Ros et al., 2016; Weston et al., 2016). With the goal of
alleviating the data scarcity problem and understanding out-of-distribution generalization for theorem
proving, we introduce INT. INT is a synthetic INequality Theorem proving benchmark designed for
evaluating generalization. It can generate a theoretically unlimited number of theorems and proofs in
the domain of algebraic equalities and inequalities. INT allows tweaking of its problem distribution
along 6 dimensions, enabling us to probe multiple aspects of out-of-distribution generalization. It
is accompanied by a fast proof assistant with sequence and graph-based interfaces. A common
reservation to hold for synthetic datasets is one of realism: can synthetic data help to prove realistic
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theorems? Polu and Sutskever (2020) adopted our generation method and showed that augmentation
of 1% of synthetic theorems in training helped to complete 2.3% more proofs on Metamath (Megill
and Wheeler, 2019). This demonstrates the usefulness of INT in real mathematics.

Time and memory requirements for the proof assistant have often been an obstacle for using theorem
provers as RL environments. Most existing proof assistants require a large software library to define
numerous mathematical theorems, leading to slow simulation. Therefore, a key design objective for
INT was to be lightweight and swift. Taking advantage of the limited scope of inequality theorems,
we load a minimal library and achieve fast simulation. Reducing the simulation overhead allows for
experimentation with planning methods such as MCTS which requires many calls to a simulator.

We summarize the contributions of this paper as follows:

1. We make, to the best of our knowledge, the first attempt to investigate an important question
in learning-assisted theorem proving research, i.e., can theorem provers generalize to different
problem distributions? We introduce INT for evaluating six dimensions of generalization.

2. We introduce and benchmark baseline agents for the six types of generalization tasks in INT. We
find that transformer-based agents’ generalization abilities are superior when training and test data
are drawn from the same distribution and inferior in out-of-distribution tasks in INT, compared
to GNN-based agents. Surprisingly, despite larger generalization gaps, transformer-based agents
have favorable test success rates over GNN-based ones in most cases.

3. We find that searching with MCTS at test time greatly improves generalization.

2 RELATED WORKS

Automatic and Interactive Theorem Proving. Modern Automatic Theorem Provers (ATPs) such
as E (Schulz, 2013) and Vampire (Kovács and Voronkov, 2013) represent mathematical theorems in
first-order logic and prove them with resolution-based proof calculi. On the other hand, Interactive
Theorem Provers (ITPs) allow human formalization of proofs. This perhaps makes them more suitable
for biologically inspired methods such as machine learning. Famous ITPs include Isabelle (Paulson,
1986), Coq (Barras et al., 1999), LEAN (de Moura et al., 2015), and HOL Light (Harrison, 1996).

Learning-assisted Theorem Proving. Theorem provers have been improved by supervised learn-
ing (Urban et al., 2011; Bridge et al., 2014; Irving et al., 2016; Loos et al., 2017; Wang et al., 2017;
Rocktäschel and Riedel, 2017; Bansal et al., 2019; Gauthier et al., 2018; Huang et al., 2019; Yang and
Deng, 2019; Kaliszyk and Urban, 2015; Polu and Sutskever, 2020; Li et al., 2020; Rabe et al., 2020;
Jakubuv and Urban, 2019; Olsák et al., 2020; Jakubuv et al., 2020; Kaliszyk et al., 2015; Gauthier and
Kaliszyk, 2015). Wang et al. (2017) used graph embeddings to represent logic formulas and achieved
state-of-the-art classification accuracy on the HolStep dataset (Kaliszyk et al., 2017). Reinforcement
learning (RL) was employed in (Zombori et al., 2019; Gauthier, 2019; 2020). Kaliszyk et al. (2018)
combined MCTS with RL to prove theorems with connection tableau. Notably, GPT-f (Polu and
Sutskever, 2020) adopts our INT generation method for dataset augmentation.

Datasets for Theorem Proving. There have been many formal mathematical libraries (Megill and
Wheeler, 2019; Rudnicki, 1992; Gauthier, 2019). Formalized mathematical theorems include the
Feit-Thompson theorem (Gonthier et al., 2013) and the Kepler Conjecture (Hales et al., 2017). The
largest human formal reasoning dataset is IsarStep (Li et al., 2020), where they mined the archive
of formal proofs and brought together 143K theorems in total. These works rely on human efforts
to formalize theorems, which leads to small to moderate-sized datasets. There have been studies
on synthesizing theorems (Urban, 2007; Urban et al., 2008; Piotrowski and Urban, 2018; Gauthier
et al., 2017; 2016; Chvalovskỳ et al., 2019; Lenat, 1976; Fajtlowicz, 1988; Colton, 2012; Johansson
et al., 2014) It is worth mentioning that there have been a few approaches (Urban and Jakubv, 2020;
Wang and Deng, 2020) on neural theorem synthesizers. Our theorem generator INT is designed to
be capable of creating an infinite number of theorems, as well as benchmarking the generalization
ability of learning-assisted theorem provers.

3 THE INT BENCHMARK DATASET AND PROOF ASSISTANT

Our INT benchmark dataset provides mathematical theorems and a means to study the generalization
capability of theorem provers. For this purpose, we need control over the distribution of theorems:
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this is achieved by a highly customizable synthetic theorem generator. We used a set of ordered field
axioms (Dummit and Foote, 2004) to generate inequality theorems and a subset of it to generate
equality theorems. Details of the axiomization schemes can be found in Appendix A. The code
for generating theorems and conducting experiments is available at https://github.com/
albertqjiang/INT.

3.1 TERMINOLOGY

The axiom combination of a proof refers to the set of axioms used in constructing it. The sequence
of axioms applied in order in the proof is called the axiom order. For example, let A,B,C denote
three unique axioms, and their order of application in a proof be [B,B,A,C]. In this case, the
axiom combination is the set {A,B,C} and the axiom order is the sequence [B,B,A,C]. An initial
condition is a (usually trivial) logic statement (e.g. a = a) to initiate the theorem generation process.
The degree of an expression is the number of arithmetic operators used to construct it. For example,
degree(a) = 0 while degree(((a ∗ c) ∗ b)2) = 3.

3.2 INT ASSISTANT

(a) LEAN, rw stands for
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(b) INT, seq2seq interface
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Figure 1: A proof of a+ b+ c = c+ a+ b in LEAN and INT, with seq2seq and graph interfaces.

We built a lightweight proof assistant to interact with theorem provers. It has two interfaces, providing
theorem provers with sequential and graph representations of the proof state, respectively.

A problem in INT is represented by a goal and a set of premises (e.g. a + 0 = a,∅), which are
mathematical propositions. The INT assistant maintains a proof state composed of the goal and the
proven facts. The proof state is initialized to be just the goal and premises of the theorem. A proof is a
sequence of axiom-arguments tuples (e.g. [(AdditionZero, [a+0])]). At each step of the proof, a tuple
is used to produce a logical relation in the form of assumptions→ conclusions (e.g. ∅→ a+0 = a).
Then, if the assumptions are in the proven facts, the conclusions are added to the proven facts; if the
conclusions include the goal, the unproven assumptions will become the new goal. The assistant
considers the theorem proven, if after all steps in the proof are applied, the goal is empty or trivial.

In Figure 1, we present the same proof in LEAN (de Moura et al., 2015) and INT assistants. They both
process proofs by simplifying the goal until it is trivial. The INT assistant’s seq2seq interface (Figure
1b) is very similar to that of LEAN (Figure 1a) with the rewrite tactic. An action is composed of
an axiom followed by argument names and their positions in the proof state. in obj indicates that
the arguments can be found in the objective. The graph interface (Figure 1c) of the INT assistant
allows theorem provers to chose axiom arguments from the computation graphs of the proof state by
node. We can view theorem proving with this interface as a graph manipulation task.

INT assistant provides fast simulation. To demonstrate this, we produced 10,000 typical proof steps
in both interfaces, 40-character-long on average. We executed them with HOL Light (Harrison, 1996)
and INT assistant. The average time it takes per step is 7.96ms in HOL Light and 1.28ms in INT,
resulting in a 6.2× speedup. The correctness of the proofs is ensured by a trusted core of fewer than
200 lines of code.
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3.3 THEOREM GENERATOR

One of the main contributions of this paper is to provide a generation algorithm that is able to
produce a distribution of non-trivial synthetic theorems given an axiom order. Generating theorems
by randomly sampling axiom and argument applications will often yield theorems with short proofs.
Instead, we write production rules for axioms in the form of transformation and extension rules. With
these production rules, we can find arguments and new premises required for longer proofs.

We provide the theorem generation algorithm in Algorithm 1. The general idea of the algorithm is to
morph a trivial logic statement into one that requires a non-trivial proof; we call this statement the
core logic statement. We initiate the core logic statement C0 to be one of the initial conditions. At
step t of the generation process, we are given an axiom at specified by the axiom order. We apply
the MORPH function associated with the axiom at to Ct−1 and derive a new logic statement Ct and
corresponding premises Pt. The key design idea in the MORPH function is to ensure that the newly

Algorithm 1 Theorem Generator
1: function GENERATE_THEOREM(initial conditions I, axiom order A)
2: Axiom order length L = len(A).
3: Initialize core logic statement C0 ∼ Uniform(I), and the set of premises P = {C0}.
4: for t← 1 to L do
5: Get axiom at ← A[t].
6: Get new logic statement and premises: Ct, Pt← MORPH (at, Ct−1).
7: Add new premises to the set of all premises: P ← P ∪ Pt.
8: end for
9: return CL, P

10: end function

generated logic statement and the premises form the implication Ct−1, at, Pt → Ct (see Appendix B
for details). Therefore, we can chain the implications from all steps together to obtain a proof whose
length is the axiom order: C0, {at, Pt}Lt=1 → CL, where L denotes the length. The last core logic
statement CL and its premises C0, {Pt}Lt=1 are returned as the theorem generated. Below we show a
step-by-step example of how a theorem is generated with our algorithm.

A worked example

Use Algorithm 1 to generate a theorem with initial conditions I: {a = a, b = b, c = c, d = d, e = e}
and axiom order A: [AdditionAssociativity (AA), AdditionCommutativity (AC), EquivalenceImplies-
DoubleInequality (EIDI), FirstPrincipleOfInequality (FPI)].

Core logic statement C0 ∼ Uniform(I) : a = a.
Step 1: a1 = AA. C1: a+ (b+ c) = (a+ b) + c, P1 = ∅.
Step 2: a2 = AC. C2: a+ (b+ c) = (b+ a) + c, P2 = ∅.
Step 3: a3 = EIDI. C3: a+ (b+ c) ≥ (b+ a) + c, P3 = ∅.
Step 4: a4 = FPI. C4: (a+ (b+ c)) + d ≥ ((b+ a) + c) + e, P4 = {d ≥ e}.

Theorem generated: Given d ≥ e, prove a+ (b+ c) + d ≥ b+ a+ c+ e.

With recorded axiom and argument applications, we can synthesize proofs to the theorems. The proofs
can be used for behavior cloning. Appendix E shows statistics of the generated proofs, including the
distribution of length of theorems in characters, the distribution of axioms, and the distribution of the
number of nodes in proof state graphs.

4 EXPERIMENTS

Our experiments are intended to answer the following questions:

1. Can neural agents generalize to theorems: 1) sampled from the same distribution as training
data, 2) with different initial conditions, 3) with unseen axiom orders, 4) with unseen axiom
combinations, 5) with different numbers of unique axioms, 6) with shorter or longer proofs?
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Figure 2: Proof success rates on problems generated with different K and L parameters. Left: When
the IID assumption holds, the success rate decreases as the two generation parameters K and L are
increased. Right: All agents are trained on degree-0 problems and evaluated against problems of
degree 0, 1, and 2. We find that transformer-based agents deteriorate in performance as the test
problems become more complex than training problems. For GNN-based agents, there are no obvious
trends as to how the proof success rate changes as the degree of the initial entities is varied.

2. How do different architectures (transformer vs. GNN) affect theorem provers’ in-distribution and
out-of-distribution generalization?

3. Can search at test time help generalization?

4.1 EXPERIMENT DETAILS

In the following experiments, we used the proofs generated by the INT generator to perform behavior
cloning. We then evaluated the success rates of trained agents in a theorem proving environment. We
denote the cardinality of an axiom combination as K and the length of a proof as L. In the worked
example, K = 4 and L = 4. For each theorem distribution, we first generated a fixed test set of 1000
problems, and then produced training problems in an online fashion, while making sure the training
problems were different from the test ones. For each experiment, we generated 1000 problems and
performed 10 epochs of training before generating the next 1000. We ran 1500 such iterations in
total, with 1.5 million problems generated. We used the Adam optimizer (Kingma and Ba, 2015). We
searched over the learning rates {10−5, 3 · 10−5, 10−4, 3 · 10−4} in preliminary experiments and
found 10−4 to be the best choice, which was used for following experiments. We used one Nvidia
P100 or Tesla T4 GPU with 4 CPU cores for training. For each experiment, we ran 2 random seeds,
and picked the one with higher validation success rates for test evaluation. Since this paper focuses
on inequalities, all figures and tables in the main text are based on results from the ordered-field
axiomization. We also include results of GNN-based agents on equalities in Appendix G.

4.2 NETWORK ARCHITECTURES
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Figure 3: Proof success rates on test prob-
lems generated with K and L settings. Trans-
former and GNN perform well; TreeLSTM has
mediocre performance; and Bag-of-Words per-
forms poorly: it cannot prove more than 5% of
problems.

In this section, we introduce four baselines built
on commonly used architectures: Transform-
ers (Vaswani et al., 2017), Graph Neural Net-
works (GNNs), TreeLSTMs (Tai et al., 2015) and
Bag-of-Words (BoWs). In preliminary experi-
ments, we found Graph Isomorphism Networks
(GINs) (Xu et al., 2019) to have performed the
best among several representative GNN architec-
tures. So we used GIN as our GNN of choice.
Transformers interact with the INT proof assistant
through the seq2seq interface while the other base-
lines through the graph interface.

For sequence-to-sequence training, we used a
character-level transformer architecture with 6 en-
coding layers and 6 decoding layers. We used
512 embedding dimensions, 8 attention heads and
2048 hidden dimensions for position-wise feed-
forward layers. We used dropout with rate 0.1,
label smoothing with coefficient 0.1, and a maxi-
mum 2048 tokens per batch. The library fairseq (Ott et al., 2019) was used for its implementation.
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Table 1: Left: Average success rates (in %) of agents trained on different numbers of axiom orders.
Right: Average success rates (in %) of agents trained on different numbers of axiom combinations.

# Axiom 100 500 2000 5000
orders Train Test Train Test Train Test Train Test

Transformer 93.2 10.0 93.4 62.8 93.6 87.9 93.7 91.8
GNN 87.6 21.1 86.6 53.6 79.0 70.4 75.7 74.7

# Axiom 25 100 200 300
combinations Train Test Train Test Train Test Train Test

Transformer 96.1 29.3 96.0 71.8 95.4 88.4 94.4 91.3
GNN 79.1 47.5 76.6 68.0 72.6 72.4 72.8 71.9

For data in the graph form, each node in computation graphs corresponds to a character in the formula.
We first used a learnable word embedding of dimension 512 to represent each node. We then used
6 GIN layers to encode graph inputs into vector representations, each with 512 hidden dimensions.
The graph representation was obtained by taking the sum of all the node embeddings. For the
TreeLSTM and the BoW baselines, we used a bidirectional TreeLSTM with 512 hidden dimensions
and a BoW architecture to compute the graph representation vectors from node embeddings. The
hyper-parameters used were found to be optimal in preliminary experiments. We then proposed
axioms conditioned on the graph representations, with a two-layer MLP of hidden dimension 256.
Conditioning on the graph representation and axiom prediction, the arguments are selected in an
autoregressive fashion. Namely, the prediction of the next node is conditioned on the previous ones.
For each argument prediction, we used a one-layer MLP with a hidden size of 256. We used graph
neural network libraries Pytorch Geometric (Fey and Lenssen, 2019) for the GIN implementation,
and DGL (Wang et al., 2019) for the TreeLSTM implementation.

We trained agents based on architectures mentioned above by behavior cloning on theorems of various
length (L) and number of axioms (K). The success rates for proving 1000 test theorems are plotted
in Figure 3. As the BoW architecture did not utilize the structure of the state, it failed miserably at
proving theorems, indicating the significance of the structural information. TreeLSTM performed
worse than the graph neural network baseline. The transformer and the GNN baselines perform the
best among the architectures chosen and they take inputs in sequential and graph forms, respectively.
Thus, we used these two architectures in the following experiments to investigate generalization.

4.3 BENCHMARKING SIX DIMENSIONS OF GENERALIZATION

IID Generalization In this experiment, the training and test data are independently and identically
distributed (IID). The performances of our transformer-based and GNN-based agents are displayed
on the left in Figure 2. As can be seen, the performance of agents examined on train and test problems
are very similar. The largest difference between train and test success rates is 2% (K3L7). Notably,
transformer-based agents complete 15.3% more test proofs than GNN-based agents on average.

Initial Condition Consider two theorems: (1) (a+ b)2 = a2 + b2 + 2ab and (2) (a+ (b+ c))2 =
a2 + (b+ c)2 + 2a(b+ c). The two problems take the same axioms and the same number of steps
to prove. However, the axiom argument complexities are different, which can be seen as a result of
varying initial conditions. Can agents trained on problems like (1) prove theorems like (2)?

For an initial condition of the form X = X , we use the degree of the entity X to determine the
complexity. In this experiment, we trained agents on problems with initial conditions made up of
entities of degree 0, and evaluated them on ones of degrees 1 and 2. The results are presented in
Figure 2 (b) with various K and L. For transformer-based agents, the success rate drops 25.6% on
degree-1 problems and 31.5% on degree-2 problems on average. However, for GNN-based agents,
the largest generalization gap between training and test success rates is 3% (K3L5). This shows that
GNN agents can generalize to problems of higher complexities while transformer agents struggle.

Axiom Orders Let A and B represent two different axioms. There are multiple orders in which
they can be applied in a K2L3 problem. O1 = [A, A, B] and O2 = [B, A, B] are two examples. Can
an agent trained on problems generated with O1 prove theorems generated with O2?

For both architectures, we investigated how well agents can generalize to problems with different
axiom orders than those in training. We generated 100, 500, 2000, and 5000 axiom orders to use in
the training set for different K and L settings. We evaluated the test success rates on 1000 unseen
axiom orders with the corresponding K and L settings and averaged them. The results averaged over
different K and L settings are shown on the left of Table 1 (See Appendix G.5 for the full results).

It can be observed in the table that the test success rates rise when we increase the number of axiom
orders in the training set. We notice that transformer-based agents have worse generalization than
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Figure 4: Proof success rates on problems generated with different parameters. Left: We keep L
the same and vary K. The success rate is likely to decrease when the test problems have different
K from the training problems. Right: We keep K the same and vary L. For all agents, the proof
success rate is lower on theorems that require longer proofs.

GNN-based ones, as their average generalization gap is larger. This is particularly true when the
number of axiom orders in the training set is 100: transformer-based agents can prove only 10.0% of
test theorems. Remarkably, they still manage to complete more proofs than GNNs when the number
of axiom orders in the training set exceeds 500.

Axiom Combinations Consider three problems provable in the ordered field axiomization (Ap-
pendix A): (1) a2 ≥ 0, (2) a ∗ (b + c) = b ∗ a + a ∗ c, and (3) a2 + b2 − 2ab ≥ 0. Solving (1)
requires axiom SquareGEQZero (SGEQZ). Solving (2) requires axiom AdditionMultiplicationDistri-
bution (AMD) and axiom MultiplicationCommutativity (MC). Solving (3) requires axiom SGEQZ and
axiom AMD. Notice that all axioms used to prove (3) appear in the proofs of (1) and (2). We ask: can
an agent trained on theorems like (1) and (2) prove theorems like (3)?

In this set of experiments, we investigated how well theorem provers can generalize to problems with
different axiom combinations than those in training for both architectures. We used 25, 100, 200, and
300 axiom combinations to generate the training set with various K and L settings, and evaluated
the agents on test sets generated with 300 unseen combinations. The results averaged over different
K and L settings are displayed on the right in Table 1 (See Appendix G.5 for full results). As the
number of axiom combinations in training set increases, the generalization gap decreases and test
success rate improves. The transformer-based agents have larger generalization gaps than GNN-based
ones. This is particularly obvious when there are 25 axiom combinations: the generalization gap is
66.8% for transformers and 31.6% for GNNs. The test success rate of transformers is 18.2% lower
than that of GNNs in this setting. Yet when there are more than 100 axiom combinations in training,
transformers always perform better on the test sets, completing 3.8%− 19.6% more proofs. When
the data is diverse, transformers perform better; when it is insufficient, GNNs are better. This might
be due to the difference in the inductive bias used by both structures and might explain the choice of
neural architectures in deep learning practice.

Number of Axioms Here we investigated how well theorem provers could generalize to test
problems that were generated with a different number of axioms than at training time. For instance,
let A, B and C represent different axioms. Will agents trained on K2L3 axiom orders like [A,B,A]
and [C,C,B] be able to prove theorems generated with K3L3 axiom orders like [A,B,C]?

We trained the agents on problems that have the same proof length (L = 7) and varying Ks. The
results are on the left of Figure 4. It can be observed from the figure that in general, agents perform
the best on the K they were trained on and worse when K shifts away. Transformer-based agents
showed better performances in all K and L settings, completing 20.9% more proofs than GNN-based
ones on average. The success rates of transformer-based agents drop 5.6% on average when the test
K is shifted away by 1 from the training K. For GNN-based agents, this averages to 5.1%. This
shows that their generalization abilities to different number of axioms are similar.

Proof Length We tested the generalization ability of theorem provers over the dimension of proof
length of the theorems. To do this, we kept the cardinality of the axiom set to be the same (K = 3)
and varied the evaluated problems’ proof length (L = 3, 5, 7). The result is presented on the right of
Figure 4. For all of the agents trained, the success rate decreases as the length of the proof increases.
This is due to the natural difficulty of completing longer proofs. Observing the figure, we see that the
longer the training problems, the less they deteriorate in performance when proofs becomes longer:
agents trained onK3L3 problems complete 18.8% fewer proofs when L is increased by 1, while ones
trained on K3L7 complete 5.7% fewer. Furthermore, the performance of transformer-based agents
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Table 2: The behavior cloning (BC) agents versus the MCTS-assisted (search) agents. Left: The
average success rates (in %) of agents with and without MCTS over 1000 test theorems. Right: The
average length of successful proofs by agents with and without MCTS over 1000 test theorems. K
denotes the cardinality of the axiom combination of a proof, L denotes the length of the proof.

Train K3L3 K3L5 K3L7
Evaluation BC Search BC Search BC Search

K3 L3 92 98 91 97 81 96
K3 L5 50 64 80 92 70 92
K3 L7 25 40 64 78 58 81

Average 56 67 78 89 69 90

Train K3L3 K3L5 K3L7
Evaluation BC Search BC Search BC Search

K3 L3 3.83 3.33 4.00 3.52 5.00 3.67
K3 L5 7.54 6.82 6.2 5.52 6.84 5.56
K3 L7 9.05 8.54 8.01 7.53 8.39 7.50

Average 6.81 6.23 6.07 5.52 6.74 5.58

decreases by 12.2% when the test proof length increases by 1, compared to 10.7% for GNN-based
ones. This suggests that transformers have inferior proof length generalization abilities than GNNs.

4.4 GENERALIZING WITH SEARCH

We investigated whether performing search at test time can help agents generalize. Specifically,
we investigated the effectiveness of Monte-Carlo Tree Search (MCTS) in finding proofs for unseen
theorems with GNN-based agents. We chose GNN-based agents because they are better at out-
of-distribution generalization than transformer-based ones. Straightforward application of MCTS
is impractical: in our theorem proving environment, the action space can be as large as 1.3M in
size (see Appendix H). Hence, it would be infeasible to expand all possible actions when constructing
the MCTS trees. Thus, we only performed MCTS over the axiom space (18 distinct axioms in
total), and the arguments were proposed by the behavior cloning agents. Following AlphaGo
Zero/AlphaZero (Silver et al., 2017; 2018), we trained a value network to estimate the value of a
state. The value network is an MLP with two hidden layers of size 256, taking the GNN global
representations of graphs as input. It was trained on 1000 episodes of rollouts obtained by the
behavior cloning agents, with a learning rate of 3 · 10−6. We also followed AlphaZero for the choice
of the upper confidence bound, and the way that actions are proposed using visit counts. We used
200 simulations for constructing MCTS trees. More details can be found in Appendix F. We took
the agents trained on "K3L3", "K3L5", and "K3L7" from section 4.3, and evaluated the agents’
performance when boosted by MCTS.

Generalization The average success rates on 1000 test theorems are presented on the left in Table
2. We can see that search greatly improved the generalization results. It helped to solve 21%
more problems on average for the agent trained on theorem distribution K3L7. Remarkably, when
evaluating on K3L7 theorems, search helped the K3L3 agent improve its success rate from 25%
to 40%: a relative improvement of 60%. It is interesting to see the K3L7 behavior cloning agent
solved 9% fewer problems on average than the K3L5 agent. But search brought about much larger
improvement to theK3L7 agent and helped it to solve the largest proportion of problems on average –
90%. This indicates that skills learned through behavior cloning can be better exploited by searching.

The average proof length for 1000 problems is presented on the right in Table 2 (we count those
unsolved problem as 15, the step limit of an episode). We can see that by performing search, we are
able to discover proofs of length closer to the ground truth proof length. For test theorems requiring
3-step proofs, the K3L3 agent was able to prove them in 3.33 steps on average, with a gap of 0.33
steps to the optimal value. Similarly, for test theorems requiring 5-step proofs, the K3L5 agent was
able to prove them in 5.52 steps on average, with a gap of 0.52 steps; and for theorems requiring
7-step proofs, K3L7 agent achieved a gap of 0.5 steps.

4.5 DISCUSSION

Experimental results suggested that transformer-based agents can complete more proofs in the IID
generalization scenario but have larger out-of-distribution generalization gaps than GNN-based ones.
The larger gap may be due to the lack of constraints in the sequence-to-sequence framework, in which
the model can propose sequences that are invalid actions, whereas the graph interface constrains the
model to propose valid actions only. However, we still see that transformers are able to complete
more proofs overall. This shows the superiority of transformers in model capacity when applied
to theorem proving. This insight motivates us to explore the possibility of taking the best from
both worlds, combining both graph structural information and the strong transformer architecture to
improve learning-assisted theorem proving. We leave it for future work.
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5 CONCLUSION

We addressed the problem of diagnosing the generalization weaknesses in learning-assisted theorem
provers. We constructed INT, a synthetic benchmark of inequalities, to analyze the generalization of
machine learning methods. We evaluated transformer-based and GNN-based agents and a variation
of GNN-based agents with MCTS at test time. Experiments revealed that transformer-based agents
generalize better when the IID assumption holds while GNN-based agents generalize better in out-
of-distribution scenarios. We also showed that search can boost the generalization ability of agents.
We stress that proving theorems in INT is not an end in itself. A hard-coded expert system might
perform well on INT but not generalize to real-world mathematical theorems. Therefore, INT should
be treated as instrumental when diagnosing generalization of agents. The best practice is to use INT
in conjunction with real mathematical datasets.

We believe our benchmark can also be of interest to the learning community, facilitating research in
studying generalization beyond the IID assumption. The agents’ abilities to reason and to go beyond
the IID assumption are essential in theorem proving, and studying how to acquire these abilities is at
the frontier of learning research. In other domains requiring out-of-distribution generalization, such as
making novel dialogs (Chen et al., 2017) or confronting unseen opponents in Starcraft (Vinyals et al.,
2019), the requirements for data and computation forbid a generally affordable research environment.
The INT benchmark provides practical means of studying out-of-distribution generalization.
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APPENDIX A AXIOM SPECIFICATIONS

Field axioms Definition

AdditionCommutativity (AC) → a+ b = b+ a

AdditionAssociativity (AA) → a+ (b+ c) = (a+ b) + c

AdditionSimplification (AS) a = b→ a+ (−b) = 0

MultiplicatoinCommutativity (MC) → a · b = b · a

MultiplicationAssociativity (MA) → a · (b · c) = (a · b) · c

MultiplicationSimplification (MS) (a 6= 0) ∧ (a = b)→ 1 = a · 1b

AdditionMultiplicationLeftDistribution (AMLD) → (a+ b) · c = a · c+ b · c

AdditionMultiplicationRightDistribution (AMRD) → a · (b+ c) = a · b+ a · c

SquareDefinition (SD) → a2 = a · a

MultiplicationOne (MO) → a · 1 = a

AdditionZero (AZ) → a+ 0 = a

PrincipleOfEquality (POE) (a = b) ∧ (c = d)→ a+ c = b+ d

EquMoveTerm(Helper axiom) (EMT) a+ b = c→ a = c+ (−b)

Ordered field axioms Definition

All field axioms

SquareGEQZero (SGEQZ) a = b→ a · b ≥ 0

EquivalenceImpliesDoubleInequality (EIDI) a = b→ (a ≥ b) ∧ (a ≤ b)

IneqMoveTerm (IMT) a+ b ≥ c→ a ≥ c+ (−b)

FirstPrincipleOfInequality (FPOI) (a ≥ b) ∧ (c ≥ d)→ a+ c ≥ b+ d

SecondPrincipleOfInequality (SPOI) (a ≥ b) ∧ (c ≥ 0)→ a · c ≥ b · c

Table 3
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APPENDIX B THE MORPH FUNCTION

We detail the morphing of C at each step as follows. For each theorem a, we define two symbolic
patterns: La and Ra, each represented by an expression (see Appendix C for full details). For
example, if a is AdditionCommutativity, we use La = x1 + x2 to denote any formula that is a sum
of two terms (x1 and x2 can be arbitrary terms). We check if one of the nodes in the computation
graph of C has the structure defined by La. If so, we then transform that node to a formula specified
by Ra. For example, if C is (p + q) + l = (p + (q + l)), p + q is a node that matches the pattern
specified by La, in which x1 = p and x2 = q. Let Ra = x2 + x1. We hence transform the node
p+ q to q+ p as specified byRa. As a result, C ′ becomes (q+ p) + l = (p+ (q+ l)). If there is no
node in the computation graph, we morph the core logic statement using the extension function E ,
defined in Appendix D . We sample nodes in available computation graphs and combine them with
C, coming up with C ′ and optionally a non-empty set of new premises Pnew.

Algorithm 2 Theorem Generator (complete)

1: function GENERATE_THEOREM(initial conditions I, axiom order A)
2: Axiom order length L = len(A).
3: Initialize core logic statement C0 ∼ Uniform(I), and the set of premises P = {C0}.
4: for t← 1 to L do
5: Get axiom at ← A[t].
6: Get new logic statement and premises: Ct, Pt ← MORPH (at, Ct−1).
7: Add new premises to the set of all premises: P ← P ∪ Pt.
8: end for
9: return CL, P

10: end function
function MORPH(axiom a, core logic statement C)

2: Collect Nt = {n| n is a node in C and matches the pattern specified by La}
if Nt 6= ∅ then

4: Sample node n ∼ Uniform(Nt).
Transform n into new node n′ using the mapping from La toRa.

6: C ′ ← Replace n with n′ in the graph of C. Pnew ← ∅.
else

8: Collect N , the set of all nodes in the graphs.
Extend C and get the set of premises: C ′, Pnew ← E(a,C,N ).

10: end if
return C ′, Pnew.

12: end function

The reasons that we have two sets of rules for morphing are as follow: 1) Transformation rules can
only be applied when the axiom will produce an equality, while extension rules can be applied to any
axiom. So in order to generate theorems with all the axioms, we need the extension rules. 2) Almost
all the extension rules will complicate the core logic statement while none of the transformation rules
will. If we only have extension rules, the goal generated can be very complex even the proof is of
moderate length. In order to generate compact theorems (goal not too complicated) with long proofs,
the transformation rules are preferred. Therefore we only apply extension rules when transformation
rules are not applicable.
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APPENDIX C TRANSFORMATION RULES

The implementations of the transformation rules L andR.

Axiom (a) La Ra

AdditionCommutativity x1 + x2 x2 + x1

AdditionAssociativity x1 + (x2 + x3) (x1 + x2) + x3

AdditionSimplification x1 + (−x1) 0

MultiplicatoinCommutativity x1 · x2 x2 · x1

MultiplicationAssociativity x1 · (x2 · x3) (x1 · x2) · x3

MultiplicationSimplification x1 · 1
x1

1

AdditionMultiplicationLeftDistribution (x1 + x2) · x3 x1 · x3 + x2 · x3

AdditionMultiplicationRightDistribution x1 · (x2 + x3) x1 · x2 + x1 · x3

SquareDefinition x21 x1 · x1

MultiplicationOne x1 · 1 or 1 · x1 x1

AdditionZero x1 + 0 or 0 + x1 x1

SquareGEQZero NA NA

PrincipleOfEquality NA NA

EquMoveTerm NA NA

EquivalenceImpliesDoubleInequality NA NA

IneqMoveTerm NA NA

FirstPrincipleOfInequality NA NA

SecondPrincipleOfInequality NA NA

Table 4
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APPENDIX D EXTENSION FUNCTION

For these axioms, the core logic statement C needs to be of the form LHS(C) = RHS(C).

Axiom (a) Extension function E(C, a,N )

AdditionCommutativity Sample node n ∼ Uniform ( N )
return RHS(C) +n = n+ LHS(C), ∅

AdditionAssociativity Sample nodes n1, n2 ∼ Uniform ( N )
return RHS(C)+(n1 + n2) =LHS(C)+n1 + n2, ∅

AdditionSimplification return 0 =LHS(C)+(−RHS(C)), ∅

MultiplicatoinCommutativity Sample node n ∼ Uniform ( N )
return RHS(C)·n = n·LHS(C), ∅

MultiplicationAssociativity Sample nodes n1, n2 ∼ Uniform ( N )
return RHS(C)·(n1 · n2) =LHS(C)·n1 · n2, ∅

MultiplicationSimplification return 1 =LHS(C)· 1
RHS(C) , ∅

AdditionMultiplicationLeftDistribution
Sample nodes n1, n2 ∼ Uniform ( N )
return (n1 + n2) · RHS(C) =

n1 · LHS(C) + n2 · LHS(C),∅

AdditionMultiplicationRightDistribution
Sample nodes n1, n2 ∼ Uniform (N )
return RHS(C) · (n1 + n2) =

LHS(C) · n1 + LHS(C) · n2,∅

SquareDefinition return LHS(C) · RHS(C) = LHS(C)2, ∅

MultiplicationOne return Uniform ( {LHS(C) · 1 = RHS(C),
1 · LHS(C) = RHS(C) } ), ∅

AdditionZero return Uniform ( {LHS(C) + 0 = RHS(C),
0 + LHS(C) = RHS(C) } ), ∅

SquareGEQZero return LHS(C) · RHS(C) ≥ 0, ∅

PrincipleOfEquality Sample nodes n1, n2 ∼ N , where n1 = n2
return LHS(C) + n1 = RHS(C) + n2, {n1 = n2}

EquMoveTerm Only execute when LHS(C) is of the form x+ y
return x = RHS(C) + (−y), ∅

EquivalenceImpliesDoubleInequality return LHS(C) ≥ RHS(C), ∅

Table 5
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For these axioms, the core logic statement C needs to be of the form LHS(C) ≥ RHS(C).

Axiom (a) Extension function E(C, a,N )

IneqMoveTerm Only execute when LHS(C) is of the form x+ y
return x ≥ RHS(C) + (−y), ∅

FirstPrincipleOfInequality Sample nodes n1, n2 ∼ N , where n1 ≥ n2
return LHS(C) + n1 ≥ RHS(C) + n2, {n1 ≥ n2}

SecondPrincipleOfInequality Sample node n ∼ N , where n ≥ 0
return LHS(C) ·n ≥ RHS(C) ·n, {n ≥ 0}

Table 6
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APPENDIX E DATASET STATISTICS

APPENDIX E.1 THEOREM LENGTH

We compare the length of the theorems generated in characters and plot their distributions in Figure
5. The length of the theorem in characters is a measure for how complicated it is. As is expected,
the more complicated the theorem is, the longer the proof(bigger L). It is also worth noting that as
L becomes bigger, the distribution of theorem length becomes less concentrated. This is likely a
consequence of a more spread-out theorem length range.
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Figure 5: The distribution of theorem length in characters for field axioms(left) and ordered-field
axioms(right) generated with parameters K3L3, K3L5, and K3L7. As the length of the proof
is increased, so is the number of characters in the theorem, while the distribution of latter is less
concentrated.

20



Published as a conference paper at ICLR 2021

APPENDIX E.2 AXIOM DISTRIBUTIONS

The frequency at which each axiom is applied influences the distribution of theorems our generator
is able to produce. In Figure 6, we present the proportions of axioms that are applied in generating
10,000 theorems. Their frequencies are a measure of how easy it is to satisfy the conditions to apply
them. For the field axioms, the PrincipleOfEquality axiom is the most frequently used(9.30%) and
the EquMoveTerm axiom is the most rarely used(2.38%). EquMoveTerm has a strict condition for
application: the left hand side of the core logic statement has to be of the form x+ y, therefore not
frequently applied. For the ordered-field axioms, the EquivalenceImpliesDoubleInequality axiom
is the most frequently used(10.18%). Since we start with a trivial equality in generation and want
to end up with an inequality, a transition from equality to inequality is needed. Among the ways of
transitioning, this conditions to apply this axiom is easiest to satisfy. Its popularity is followed by the
group of Field axioms, from MultiplicationCommutativity(4.69%) to AdditionAssociativity(5.98%).
The rest are ordered-field axioms which define the properties of inequalities, proportions ranging
from IneqMoveTerm(1.14%) to FirstPrincipleOfInequality(5.74%).
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APPENDIX E.3 NUMBER OF NODES

Since an action in the MDP consists of an axiom and a list of nodes as its arguments and the number
of axioms is fixed, the number of nodes available determines the size the action space. Therefore
it is interesting to investigate how many nodes are available in a proof. In Figure 7 we present the
average number of nodes in proofs of different length. It can be told from the figure that the longer
the proofs, the more nodes there will be, as expected. Comparing the axiom sets used, we find that
the average number of nodes for ordered-field axioms is larger than that of field axioms. This is
likely the consequence of ordered-field axioms, in generation, being more capable of producing new
premises(e.g. First Principle of Inequality will produce an inequality premise(see Table 6), thus
adding more nodes in the graphs).
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APPENDIX F MORE EXPERIMENTAL DETAILS FOR GENERALIZATION WITH
SEARCH

We give more experimental details for the use of MCTS. Following (Silver et al., 2017), in the
selection step of the MCTS tree construction, we use the following formula to select the next action,

a∗ = argmaxa

(
Q(s, a) + cpuctP (s, a)

√∑
bN(s, b)

1 +N(s, a)

)
,

where Q(s, a) represents the action value function, N(s, a) denotes the visit counts, P (s, a) is the
prior probability, and cpuct is a constant hyperparameter. In all of our experiments, we used the
behavior cloning policy for computing P (s, a), and we used cpuct = 1. After the MCTS tree is built,
the action is sampled from the policy distribution π(a|s) = N(s, a)

1
τ , where τ is a hyperparameter

and was chosen as 1 in our experiments.
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APPENDIX G MORE TRAINING AND EVALUATION RESULTS

APPENDIX G.1 LEARNING CURVES OF GNN-BASED AGENTS
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Figure 8: Proof success rates for field axioms(left) and ordered-field axioms(right) of GNN-based
agents trained on different K and L parameters. We keep the K the same and vary the L. The agents
converge slower and to a lower success rate when the proof length is increased. Also, the agents on
field axioms are easier to train than those on ordered-field axioms.

APPENDIX G.2 PERFORMANCE VARIATION OF TRAINED AGENTS

To verify that the experimental results are statistically significant, we ran the experiments on proof
length generalization in subsection 4.3 with 5 random seeds and tabled the results.

Table 7: Success rates of agents trained and tested on problems of different parameters (mean ± std)
in percentage.

Transformers Tested on K3 L3 K3 L5 K3 L7

Trained on
K3 L3 97.6 ± 0.9 31.5 ± 1.6 10.9 ± 1.0
K3 L5 97.2 ± 0.7 88.3 ± 1.2 59.5 ± 1.6
K3 L7 96.6 ± 1.2 87.0 ± 1.6 75.1 ± 1.2

GNNs Tested on K3 L3 K3 L5 K3 L7

Trained on
K3 L3 91.5 ± 0.5 45.6 ± 1.7 16.5 ± 0.8
K3 L5 86.4 ± 0.9 77.8 ± 0.9 58.4 ± 1.5
K3 L7 82.0 ± 1.3 71.4 ± 1.1 56.5 ± 1.5

APPENDIX G.3 GNN-BASED AGENTS ON IID GENERALIZATION

K3 L3 K3 L5 K3 L7 K5 L5 K5 L7
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 ra
te

Field axioms

K3 L3 K3 L5 K3 L7 K5 L5 K5 L7

Ordered-field axioms

Train Test

Figure 9: Proof success rates on problems generated with different K and L parameters (K denotes
the cardinality of the axiom combination of a proof, L denotes the length of the proof). When the IID
assumption holds, the success rate decreases as the two generation parameters K and L are increased.
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APPENDIX G.4 GNN-BASED AGENTS ON INITIAL CONDITION GENERALIZATION

K3 L3 K3 L5 K3 L7 K5 L5 K5 L7
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 ra
te

Field axioms

K3 L3 K3 L5 K3 L7 K5 L5 K5 L7

Ordered-field axioms

Degree
0 1 2

Figure 10: Proof success rates on problems generated with different K and L parameters (K denotes
the cardinality of the axiom combination of a proof, L denotes the length of the proof). When
generalizing to different initial conditions, there are no obvious trends as to how the proof success
rate changes as the degree of the initial entities is varied.
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APPENDIX G.5 FULL RESULTS ON AXIOM ORDERS AND COMBINATIONS GENERALIZATION

Table 8: Top: Proof success rates (in %) of agents trained on different numbers of axiom orders.
Bottom: Proof success rates (in %) of agents trained on different numbers of axiom combinations.
K denotes the cardinality of the axiom combination of a proof, L denotes the length of the proof.

Architecture Axiom 100 500 2000 5000
orders Train Test Train Test Train Test Train Test

Transformer

K3 L3 98.4 32.6 99.5 90.0 98.8 98.7 97.6 97.6
K3 L5 95.3 6.3 94.0 56.3 94.0 94.9 96.5 94.9
K3 L7 87.8 3.8 88.0 46.4 88.3 77.5 88.4 85.5
K5 L5 94.7 5.6 97.0 72.9 97.4 93.1 97.5 96.9
K5 L7 89.7 1.8 88.6 48.6 89.3 75.2 88.6 84.0

Average 93.2 10.0 93.4 62.8 93.6 87.9 93.7 91.8

GNN

K3 L3 84.3 38.6 94.4 73.9 93.7 89.0 90.5 92.3
K3 L5 92.7 17.1 86.3 60.0 84.4 72.9 77.7 77.1
K3 L7 82.4 14.1 82.4 33.8 68.6 57.7 70.2 63.5
K5 L5 91.0 23.0 89.7 61.2 81.8 75.0 78.3 80.8
K5 L7 87.5 12.9 80.2 39.0 66.5 57.4 61.6 60.0

Average 87.6 21.1 86.6 53.6 79.0 70.4 75.7 74.7

Architecture Axiom 25 100 200 300
combos Train Test Train Test Train Test Train Test

Transformer

K3 L3 99.2 34.1 99.0 72.8 99.5 96.1 98.6 98.2
K3 L5 97.8 29.3 98.6 66.3 97.5 89.5 94.3 90.4
K3 L7 93.6 25.0 91.9 55.9 91.5 80.0 91.9 85.9
K5 L5 98.5 27.4 98.4 87.6 97.0 93.6 97.3 94.9
K5 L7 91.2 30.5 92.2 76.3 91.7 82.9 90.0 87.0

Average 96.1 29.3 96.0 71.8 95.4 88.4 94.4 91.3

GNN

K3 L3 96.3 61.6 96.0 90.1 92.7 91.2 95.3 92.0
K3 L5 82.1 43.4 80.3 68.9 78.5 74.9 76.5 76.1
K3 L7 72.1 34.3 68.1 57.2 62.3 63.7 62.5 62.0
K5 L5 77.8 61.6 78.9 71.0 74.5 78.4 72.8 74.9
K5 L7 67.2 36.8 59.7 52.7 54.9 54.0 56.7 54.5

Average 79.1 47.5 76.6 68.0 72.6 72.4 72.8 71.9
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APPENDIX G.6 GNN-BASED AGENTS ON AXIOM NUMBER GENERALIZATION
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Figure 11: Proof success rates on problems generated with different parameters ((K denotes the
cardinality of the axiom combination of a proof, L denotes the length of the proof). We keep
parameter L the same and vary parameter K. The success rate is likely to decrease when an agent is
evaluated on problems that have different K than the problems it is trained on.

APPENDIX G.7 GNN-BASED AGENTS ON PROOF LENGTH GENERALIZATION
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Figure 12: Proof success rates on problems generated with different parameters ((K denotes the
cardinality of the axiom combination of a proof, L denotes the length of the proof). We keep
parameter K the same and vary parameter L. For all agents, the proof success rate is lower on
theorems that require longer proofs. The best-performing agent for problems of a given length is
usually the agent trained on problems of the same length.
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APPENDIX H THEOREM PROVING AS A MARKOV DECISION PROCESS (MDP)

We model theorem proving as a Markov Decision Process. A state s in the MDP is the proof state
maintained by the assistant, namely, the goal, the premises and the proven facts, represented by
computation graphs. An action a is a tuple of an axiom and a sequence of arguments. We denote the
axiom space as X and the argument space, the set of all the nodes in available computation graphs, as
N . The maximum number of arguments for one axiom within our axiomizations is 3, therefore the
action space is A = X ×N 3. The assistant ignores redundant arguments if fewer than 3 are needed
for the axiom considered. We show in Appendix E.3 the distribution of the number of nodes for proofs
of different length. The size of the discrete action space can be as large as 18× 423 ≈ 1.33× 106.
The deterministic state transition function P (s, a) is implicitly determined by the proof assistant.
When the proof assistant deems the proof complete and the theorem proven, the episode terminates
and a reward of one is given. Otherwise, the reward is zero at each step. When the step limit for a
proof is exhausted, the episode terminates with a reward of zero. For experiments in this paper, we
used a step limit of 15.
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APPENDIX I EXAMPLE PROBLEMS

Equality theorems
Theorem 1
Goal: ((0 · 1) · ((−(a2)) · c)) = (((−(a2)) · ((a · a) + (−(a2)))) · c)

Theorem 2
Goal: (((((0 + c) + a) · a) · 1) · (b · (0 + c))) = ((((c · a) + (a · a)) · (0 + c)) · b)

Theorem 3
Goal: 0 = ((((c+ 0) · (a+ a)) · ( 1

((c·a)+(c·a)) )) + (−(0 + 1)))

Theorem 4
Premises: (b+ d) = b

Goal: (1 + (−((b+ b) · ( 1
((b+(b+d))·1) )))) = (0 + 0)

Theorem 5
Premises: (a+ d) = b

Goal: 1 = (((d · ((a+ d) + ((c+ (a+ d)) + 0))) · ((d · (a+ d)) + (d · (c+ b)))) · ( 1
((d·((a+d)+((c+(a+d))+0)))2) ))

Theorem 6
Premises: ((b · b) + d) = (b · b)
Goal: (0 + ((b · b) + d)) = (((1 · ((b+ b) · b)) + (−(((b · b) + (b · b)) · 1))) + (b · b))

Theorem 7
Goal: ((a · (a+ 0)) + ((−(0 + a)) · (a+ 0))) = ((a · 0) + (0 · 0))

Theorem 8
Goal: (((c · c) + c) · ((c2) · 1)) = (((c · c) · (0 + (c · c))) + (c · (0 + (c · c))))

Theorem 9
Goal: 1 = ((((a · c) + ((b · (a · b)) · c)) · (a+ (a · c))) · ( 1

((((a+((b·a)·b))·c)·(a·c))+(((a+((b·a)·b))·c)·a)) ))

Theorem 10
Goal: ((((b · c) + (c · c)) + (−(0 + ((b+ c) · c)))) · (c · c)) = ((c2) · 0)

Theorem 11
Goal: (1 · (b+ a)) = ((0 + (a+ b)) + 0)

Theorem 12
Goal: (((−c) · (−c)) + (((−c) · c) + ((−c) · (−c)))) = (((−c) · (−c)) + (0 · (−c)))

Theorem 13
Goal: (((a2) · (a · (a+ 0))) + (a · (a · (a+ 0)))) = ((((a2) · (a2)) + (a · (a2))) + 0)

Theorem 14
Goal: ((((b · 1) · (a · c)) · (b · a)) + (((b · 1) · (a · c)) · (b · a))) = (((((b · a) · c) · (b · a)) + (((b · a) · c) · (b · a))) · 1)

Theorem 15
Goal: 1 = (( 1

(( 1
(b+0)

)·b) ) · 1)

Theorem 16
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Goal: 0 = ((0 + (−((a · b) + (−(b · a))))) + (−(0 · 1)))

Theorem 17
Premises: (a+ d) = c; ((b+ c) + e) = (a+ d)

Goal: (((b · d) + (b · (b+ (a+ d)))) + ((b+ c) + e)) = ((((b · d) + (b · (b+ c))) · 1) + (a+ d))

Theorem 18
Goal: (((( 1b ) · b) · b) · 1) = ((b · 1) · 1)

Theorem 19
Goal: (((1 · (b · (c+ a))) + (b · a)) + 1) = (1 · ((1 · ((b · c) + (b · a))) + ((b · a) + 1)))

Theorem 20
Premises: (b+ d) = c; ((1 · a) + e) = a

Goal: (((a+ (b+ d)) · ( 1
((1·a)+c) )) + ((1 · a) + e)) = ((1 · 1) + a)

Theorem 21
Goal: ((((c2) · ((c2) · c)) + (−(((c · c) · (c2)) · c))) + (b+ b)) = ((1 · ((0 + b) + b)) + (−0))

Theorem 22
Premises: (b+ d) = (a · b)
Goal: (1·((((c+c)·(((a·b)·c)+(c+c)))+((c+c)·(c+c)))+(a·b))) = (((((c+c)·((((a·(b·c))+c)+c)+(c+c)))+(b+d))·1)+0)

Theorem 23
Premises: ((0 · 1) + d) = (1 · 0)
Goal: (((((a+(0·1))·(1·0))+(−b))+(1·0))+(1·0)) = (((((a·(1·0))+((b+(−b))·(1·0)))+((−b)+(1·0)))+((0·1)+d))+0)

Theorem 24
Premises: (a+ d) = (1 + c)

Goal: (((((1 ·b)+(c ·b))+(1+c))2) ·((1+c) ·b)) = ((((((1 ·b)+(c ·b))+(1+c)) ·(((b ·(1+(1 ·c)))+(a+d)) ·1)) ·(1+c)) ·b)

Theorem 25
Premises: (a+ d) = (b · 1)
Goal: 0 = ((b+ (a+ d)) + (−((b · 1) + (b · 1))))

Theorem 26
Premises: (c+ d) = a

Goal: (0 + ((((a+ a) · 1) + a) · 1)) = (1 · ((1 · ((a+ (c+ d)) + 0)) + (1 · a)))

Theorem 27
Premises: (c+ d) = (b+ c)

Goal: (1 · ((((b+ c) · c) + (b · (b+ c))) + (c+ d))) = ((((b+ c)2) + (b+ c)) · 1)

Theorem 28
Premises: ((1 · b) + d) = b

Goal: (((((1 · b) + b) · (a · 1)) · (((b+ ((1 · b) + d)) · a) · 1)) + 0) = ((((b+ (1 · b)) · (a · 1))2) · 1)

Theorem 29
Goal: (((b · 1) + 0) · (1 · 0)) = (((b · 1) · ((−(0 + b)) + (1 · b))) + (0 · ((−(0 + b)) + (1 · b))))

Theorem 30
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Goal: (1 · 1) = (((((a · (c+ c)) + 0) · (b · (c+ c))) · ( 1
((((a·c)+(a·c))·b)·(c+c)) )) + 0)

Theorem 31
Goal: ((1 · (b · b)) · b) = (1 · (0 + (((0 + b) · b) · b)))

Theorem 32
Goal: (((c · (c · 1)) + 0) · 1) = (((c · c) + 0) · 1)

Theorem 33
Goal: 1 = (1 · ( 1

((1+0)·( 1

((b·( 1
b
))+0)

))
))

Theorem 34
Goal: (((((((c+a) ·a) · (c+a)) · c) · (a+ c)) · (c+a)) · (c+a)) = (((((((a+ c) · (c+a)) ·a) · c) · (a+ c)) · (c+a)) · (c+a))

Theorem 35
Goal: 0 = ((−(1 · 0)) + ((−(c+ c)) + ((1 · c) + c)))

Theorem 36
Goal: 1 = (1 · ( 1

(a·( 1
(((a+c)+a)+(−(c+a)))

))
))

Theorem 37
Premises: (a+ d) = a; (( 1c ) + e) = b

Goal: (((1 · (1 · ( 1
(c·( 1

c ))
))) + a) + b) = (1 · (((1 · 1) + (a+ d)) + (( 1c ) + e)))

Theorem 38
Goal: 0 = ((b · (b+ (−b))) + (−(((0 + 0) · b) + 0)))

Theorem 39
Goal: (((1 · c) + (−(1 · (c · 1)))) · 1) = ((0 · 1) · 1)

Theorem 40
Goal: ((a+ b) · (1 · ((b · c) + (c · c)))) = ((a · ((c · c) + (b · c))) + (b · ((c · c) + (b · c))))

Theorem 41
Goal: (0 + ((0 + ((c+ c) · c)) · (a · b))) = (0 + ((((c · c) · a) + ((c · c) · a)) · b))

Theorem 42
Premises: (0 + d) = 1

Goal: ((((1 · 0) + (a+ (a · 1))) + 0) + d) = (((((1 · a) + (−(a · 1))) + a) + (a · 1)) + 1)

Theorem 43
Premises: (b+ d) = 0

Goal: 0 = ((((((0 + b) · 0) + ((0 + b) · b)) · 1) + 0) + (−((((b · 0) + (b · b)) + (b+ d)) · 1)))

Theorem 44
Goal: ((0 + c) · ((−c) + (((c · 1) + 0) + (−c)))) = (((0 + c) · (−c)) + ((0 + c) · 0))

Theorem 45
Goal: 0 = (0+(−(((0 ·0)+(a ·0))+(−(((((((a ·b)+(a ·b))+((b+b)+b))+(−(((a ·(b+b))+(b+b))+b)))+a) ·0) ·1)))))

Theorem 46
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Premises: ((a+ b) + d) = (a+ b); (b+ e) = a

Goal: (a · a) = (1 · (a · a))

Theorem 47
Premises: (c+ d) = c

Goal: ((b · (1 + 0)) + (b · (c+ d))) = (0 + (b · ((0 + (1 · ( 1
((b+(c+d))·( 1

(b+c)
))
))) + (c+ d))))

Theorem 48
Goal: ((b+ ((((a+ a) · 1) · a) + 0)) · a) = ((b · a) + ((((a · a) · 1) + (a · (a · 1))) · a))

Theorem 49
Goal: (((1 + b) · (((a · ((c · 1) + (c2))) + 1) + b)) + ((1 + b) · (((a · ((c · 1) + (c2))) + 1) + b))) = ((((1 + b) + (1 + b)) ·
((((a · (c · 1)) + (a · (c · (c · 1)))) + (1 + b)) · 1)) · 1)

Theorem 50
Goal: 0 = (((((0+(((c ·c)+(c ·c))+((c+c)+(c ·c))))+0)+c) ·a)+(−(((0+((((c+c) ·c)+(c+c))+(c ·c))) ·a)+(c ·a))))

Inequality theorems
Theorem 1
Premises: (1 + d) ≥ 0; (b+ e) ≥ 0

Goal: ((((1 + 1) · (a · ( 1a ))) · (1 + d)) + (b+ e)) ≥ ((((1 · 1) + (1 · 1)) · (1 + d)) + 0)

Theorem 2
Goal: (b2) ≥ (0 + (b · (1 · b)))

Theorem 3
Premises: ((c+ 0) + d) ≥ 0; (d+ e) ≥ b

Goal: ((c · ((c+ 0) + d)) + (d+ e)) ≥ (((0 + c) · ((c+ 0) + d)) + b)

Theorem 4
Goal: (b+ 0) ≥ ((((0 + b) + c) + c) + (−(c+ c)))

Theorem 5
Premises: (1 + d) ≥ 0

Goal: ((((c · c) + c) + a) · (1 + d)) ≥ ((((c2) + (c+ a)) · 1) · (1 + d))

Theorem 6
Premises: (b+ d) = b

Goal: 1 ≥ ((((a+ b) + (−(b+ d))) · ((a+ b) + b)) · ( 1
((a·(a+b))+(a·b)) ))

Theorem 7
Premises: ((0 + a) + d) = 0

Goal: (((0 + a) · a) + ((0 + a) + d)) ≥ ((a2) + 0)

Theorem 8
Premises: (b+ d) = a

Goal: ((c · b) + (b · b)) ≥ (1 · ((((c+ a) + (−(b+ d))) + b) · b))
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Theorem 9
Goal: (1 · ((((b · ( 1b )) · a) · (1 · 1)) + a)) ≥ ((1 · ((1 · 1) · (a · (1 · 1)))) + (1 · a))

Theorem 10
Premises: (c+ d) ≥ 0

Goal: (b · (c+ d)) ≥ ((((b+ b) + 0) + (−b)) · (c+ d))

Theorem 11
Goal: (((b+ 0) + (b+ c)) + 0) ≥ (((b+ b) + c) + 0)

Theorem 12
Goal: ((c · (c+ 0)) + 0) ≥ ((c2) + 0)

Theorem 13
Goal: (1 · (b · 1)) ≥ ((1 · b) · 1)

Theorem 14
Goal: 1 ≥ ((((b · ( 1b )) + ( 1b )) + 1) · ( 1

((1+( 1
b ))+1)

))

Theorem 15
Goal: 1 ≥ (( 1

((c·a)·( 1
(a·c) ))

) · 1)

Theorem 16
Goal: ((c · (a · a)) + (((a · a) + (c · a)) · (a · a))) ≥ (0 + ((c+ (0 + ((a+ c) · a))) · (a · a)))

Theorem 17
Goal: (((c · b) + a) · ((c · b) + (c · b))) ≥ ((a · ((c · b) + (c · b))) + ((c · b) · ((c · b) + (c · b))))

Theorem 18
Goal: ((a · b) · 1) ≥ ((((a · 1) · b) · 1) · 1)

Theorem 19
Goal: a ≥ ((a+ c) + (−c))

Theorem 20
Goal: ((c · b) · b) ≥ (b · (b · c))

Theorem 21
Premises: (a+ d) = a; ((a+ d) + e) ≥ 0; (b+ f) ≥ (0 · 0)
Goal: ((((((c ·0)+(0 ·0))+(a+d)) ·((0+((c+0) ·(a+(−a))))+a)) ·((a+d)+e))+(b+f)) ≥ ((0 ·((a+d)+e))+(0 ·0))

Theorem 22
Premises: (c+ d) ≥ 0; ((0 + 0) + e) ≥ (0 + 0)

Goal: ((((((0 + (c+ (−c))) · (−c)) · ( 1
((0·(−c))+(0·(−c))) )) · (0 + 1)) · (c+ d)) + ((0 + 0) + e)) ≥ ((0 · (c+ d)) + (0 + 0))

Theorem 23
Premises: ((a2) + d) ≥ 0

Goal: ((((a · a) + c) · (0 + (1 · (a · a)))) · ((a2) + d)) ≥ ((((a · a) · ((a2) + 0)) + (c · ((a2) + 0))) · ((a2) + d))

Theorem 24
Premises: (c+ d) = c; ((0 + a) + e) ≥ a
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Goal: ((((a+ b) · (((a+ (−a)) + (a+ b)) + (c+ d))) · (((((0 + a) + b) + c) · (a+ b)) · 1)) + ((0 + a) + e)) ≥ (0 + a)

Theorem 25
Goal: 1 ≥ ((a · (c+ b)) · ( 1

((a·c)+(a·b)) ))

Theorem 26
Premises: (a+ d) ≥ b

Goal: ((0·((((((a+c)+a)·(a·c))·(a·c))+((a·c)·(a·c)))+(−((((((a+(c+a))·a)·c)+(a·c))·(a·c))+0))))+(a+d)) ≥ (0+b)

Theorem 27
Premises: ((c · b) + d) = (b · b); ((b · b) + e) ≥ a

Goal: ((((b+ b) + (b+ b)) · ((((c · (b · b)) + b) + b) + (b2))) + ((b · b) + e)) ≥ ((((b+ b) · ((((c · b) · b) + (b+ b)) + ((c · b) +
d))) + ((b+ b) · ((((c · b) · b) + (b+ b)) + ((c · b) + d)))) + a)

Theorem 28
Premises: ((b · 0) + d) ≥ c

Goal: ((((b+ (((0 + c) + (0 + c)) + 0)) · 0) · ((b · 0) + (((0 + c) + (0 + c)) · 0))) + ((b · 0) + d)) ≥ (0 + c)

Theorem 29
Premises: (a+ d) ≥ 0

Goal: ((0 · ((((c · c) + (c · 0)) · a) + (−(((c+ 0) · ((c+ 0) · a)) · 1)))) + (a+ d)) ≥ (0 + 0)

Theorem 30
Premises: (a+ d) ≥ c

Goal: (((b · (b · 1)) + (b · c)) + (a+ d)) ≥ ((0 + (b · ((b · 1) + c))) + c)

Theorem 31
Goal: (0 + (0 + (c+ b))) ≥ (0 + ((b+ c) + 0))

Theorem 32
Goal: (a+ (a+ 0)) ≥ ((((0 + a) + 0) + a) + 0)

Theorem 33
Premises: ((c+ c) + d) ≥ a; (d+ e) ≥ 0; ((c+ c) + f) ≥ (0 + a); (b+ g) ≥ 0

Goal: (((((((c+c)+(c+c))·((c+c)+(c+c)))+((c+c)+d))+(d+e))+((c+c)+f))+(b+g)) ≥ ((((0+a)+0)+(0+a))+0)

Theorem 34
Goal: (((0 + b) + c) + a) ≥ (0 + (0 + (b+ (c+ a))))

Theorem 35
Premises: (a+ d) ≥ 0; (a+ e) ≥ (c · c); (e+ f) ≥ 0; (c+ g) ≥ 0; (c+ h) ≥ (c+ g); (c+ i) ≥ 0

Goal: (((((((c · c) · (a+ d)) + (a+ e)) · (e+ f)) · (c+ g)) + (c+ h)) · (c+ i)) ≥ ((((((0 · (a+ d)) + (c · c)) · (e+ f)) · (c+
g)) + (c+ g)) · (c+ i))

Theorem 36
Goal: (1 · (1 · (1 · a))) ≥ (1 · ((a+ 0) + 0))

Theorem 37
Premises: (b+ d) ≥ b; ((c+ b) + e) ≥ c; (b+ f) ≥ a; (e+ g) ≥ (b+ f)

Goal: (((c+ (b+ d)) + (b+ f)) + (e+ g)) ≥ (((((c+ b) + c) + (−((c+ b) + e))) + a) + (b+ f))

34



Published as a conference paper at ICLR 2021

Theorem 38
Goal: ((a+ (((b+ c) · (b+ c)) + ((c+ b) · b))) · ((c+ b) + (c+ b))) ≥ ((((((b+ c) · (c+ b)) + ((b+ c) · b)) + a) · (c+ b)) +

(((((b+ c) · (c+ b)) + ((b+ c) · b)) + a) · (c+ b)))

Theorem 39
Premises: (c+ d) = b; ((c+ b) + e) = (c+ d); (a+ f) ≥ 0; (0 + g) ≥ 0; (g + h) ≥ 0; (d+ i) ≥ 0

Goal: ((((((c+(c+d))+((c+b)+e))·(a+f))·(0+g))·(g+h))·(d+i)) ≥ ((((((c+b)+(c+d))·(a+f))·(0+g))·(g+h))·(d+i))

Theorem 40
Goal: ((((c+ a) · b) · b) + (a+ c)) ≥ ((a+ c) + (((a+ c) · b) · b))

Theorem 41
Goal: (((c+ b) + (a+ (c+ b))) · ( 1

((((1·c)+b)+a)+(c+b)) )) ≥ (1 · 1)

Theorem 42
Premises: (c+ d) = b

Goal: (((((c·b)+(c2))·((b+c)·(c·b)))+(c+d))·(((((c·(b+c))·(b+c))·c)·b)+b)) ≥ (((((c·b)+(c2))·((b+c)·(c·b)))+(c+d))2)

Theorem 43
Premises: (a+ d) = b; (d+ e) = a; (c+ f) ≥ 0; ((b+ b) + g) ≥ 0

Goal: ((1 · (c+ f)) · ((b+ b) + g)) ≥ (((((b+ b) + a) · ( 1
(0+((b+(a+d))+(d+e))) )) · (c+ f)) · ((b+ b) + g))

Theorem 44
Goal: (((((a · 1) · a) · 1) · b) + (((a · 1) · (a · 1)) · (a · a))) ≥ (1 · ((((a · a) · 1) · b) + (((a · a) · 1) · (a · a))))

Theorem 45
Premises: ((c+ 0) + d) ≥ b; (1 + e) ≥ a

Goal: ((0 + ((c+ 0) + d)) + (1 + e)) ≥ (((0 + (−((c · 1) + (−(c+ 0))))) + b) + a)

Theorem 46
Premises: (c+ d) ≥ (a · c)
Goal: (((1 · (1 · (a · (a · c)))) · ((1 · ((a · a) · c)) + 0)) + (c+ d)) ≥ (0 + (a · c))

Theorem 47
Premises: (c+ d) ≥ c

Goal: ((c · (0 + c))2) ≥ (((0 + ((c · (0 + c)) · (c2))) + c) + (−(c+ d)))

Theorem 48
Premises: (a+ d) = b

Goal: (1 · ((b+ b) + (−(1 · (b+ (a+ d)))))) ≥ (1 · (0 · 1))

Theorem 49
Premises: ((c · b) + d) = a; ((c · b) + e) ≥ b

Goal: (((b · b) · (a · (c · b))) + ((c · b) + e)) ≥ ((((b · b) · a) · (c · b)) + b)

Theorem 50
Goal: (((a+ c) · (c+ a)) + ((a · (c+ a)) + ((c · c) + (c · a)))) ≥ (((a+ c) · ((c+ a) + (c+ a))) · 1)
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