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Abstract
Traditional backdoor attacks in Federated Learn-
ing (FL) that rely on fixed trigger patterns and
model poisoning exhibit deficient attacking per-
formance against state-of-the-art defenses due to
the significant divergence between malicious and
benign client model updates. To effectively con-
ceal malicious model updates among benign ones,
we propose DPOTL0 , a backdoor attack strat-
egy in FL that dynamically constructs a per-round
backdoor objective by optimizing an L0-norm-
bounded backdoor trigger, making backdoor data
have minimal effect on model updates and pre-
serving the global model’s main-task performance.
We theoretically justify the concealment property
of DPOTL0’s model updates in linear models.
Our experiments show that DPOTL0

, via only
a data-poisoning attack, effectively undermines
state-of-the-art defenses and outperforms existing
backdoor attack techniques on various datasets.

1. Introduction
Federated Learning (FL) is a decentralized machine-
learning approach that has gained widespread attention re-
cently. Unlike traditional centralized model training, FL
synthesizes model updates contributed by multiple clients,
each computed locally from that client’s data. That is, in
each round of FL, a central server distributes a global model
to participating clients, each of whom independently trains
the model on its local data, and its model updates are ag-
gregated by the server to update the global model. This
approach offers enhanced data privacy, reduced commu-
nication overhead, and scalability for a large number of
clients. Despite its advantages, FL has been proven suscep-
tible to backdoor attacks (Bagdasaryan et al., 2020). In FL,
backdoor attacks occur when adversaries inject triggers into
a subset of clients’ local data, causing their local models
trained on the poisoned data to become compromised. After
aggregating these compromised local models, the global
model produces adversary-desired results when the same
trigger conditions are met. In this work, we term clients ma-
nipulated by adversaries during local training as malicious

clients, and those unaffected as benign clients.

Traditional backdoor attacks in FL present two common
deficiencies. First, the patterns of backdoor triggers are pre-
defined by the attacker and remain unchanged throughout
the entire attack process (Bagdasaryan et al., 2020). Con-
sequently, the learning objective brought by backdoored
data is static and incoherent with the learning objective of
main-task data (benign objective), resulting in distinct dif-
ferences in model updates after training. These malicious
clients’ model updates are therefore easily canceled out
by robust aggregations. Second, many approaches rely on
model-poisoning techniques to enhance the effectiveness of
backdoor attacks. Implementing model-poisoning attacks
requires attackers to change the training procedures of a cer-
tain number of clients to make their local training algorithms
different from other clients. However, achieving this condi-
tion is challenging, as advanced defense mechanisms (Riege
et al., 2024) have introduced Trusted Execution Environ-
ments (TEEs) to ensure the secure execution of client-side
training, making it harder to maliciously modify the training
procedure.

Existing defenses against backdoor attacks in FL rely on
a hypothesis that backdoor attacks will cause the updating
direction of a model to deviate from its original benign ob-
jective (Fung et al., 2020; Cao et al., 2021). To counter this
hypothesis, adversaries can align models’ malicious updat-
ing directions to their original benign objectives. Applying
this idea to FL, if the injection of backdoored data has mini-
mal effect on a client’s model updates, then detecting this
client as malicious becomes challenging for defenses based
on analyzing clients’ model updates.

Inspired by testing-stage adversarial exsamples (Szegedy,
2014; Carlini & Wagner, 2017), recent studies on backdoor
attacks in FL have proposed adding adversarial perturba-
tions to client data to minimize their impact on model up-
dates, which we term it as L2-norm-bounded optimized
triggers (Nguyen et al., 2024; Lyu et al., 2023). However,
adding perturbations to data does not produce consistent
backdoor features for the model to learn; instead, it sub-
stantially alters benign features, transforming them into new
features to associate with target labels. Our experimental re-
sults indicate that this will overdetermine the learning objec-
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tive, hindering the long-term convergence of the main-task
objective. Our comparison experiments also demonstrate
that pixel-pattern triggers with consistent backdoor features
are generally more effective for data-poisoning-only attacks
in FL.

In this work, we propose Data Poisoning with L0-norm-
bounded Optimized Trigger (DPOTL0

), a backdoor attack
on FL that dynamically constructs the malicious objective
to align model updates to the benign objective. DPOTL0

optimizes a single L0-norm-bounded backdoor trigger with
consistent appearance across different images, aiming to in-
troduce the fewest possible features to the learning objective.
We provide theoretical justification that the difference in
model update directions for benign and malicious objectives
can be minimized by reducing the error of the malicious
data on the model. Our experiments demonstrate that these
small differences brought by DPOTL0 enable malicious
model updates to bypass defenses and integrate into global
models, resulting in backdoored global models. Compared
to existing optimized triggers, DPOTL0

empirically proves
to be a more effective training-stage attack, demonstrating
better attack effectiveness and main-task objective conver-
gence. We ensured DPOTL0 ’s subtlety by constraining the
number of trigger pixels, degrading the accuracy of a clean
vision model when classifying the poisoned data by no more
than 30%.

Unlike testing-stage L0-norm-bounded adversarial exam-
ples (Papernot et al., 2016), the DPOTL0

trigger is required
to maintain a consistent appearance across different images,
serving as the unified backdoor feature. In this work, we
proposed algorithms to optimize the pixel values and place-
ments of a specified-size trigger using a set of client data and
a global model as input. To the best of our knowledge, this
is the first work to address this challenge. Without any assis-
tance of model-poisoning techniques, DPOTL0

is an attack
conducted simply by executing a normal training process
on the poisoned data containing the DPOTL0 trigger.

We evaluated DPOTL0
on four image datasets (FashionM-

NIST, FEMNIST, CIFAR10, and Tiny ImageNet) and four
model architectures including ResNet and VGGNet. We as-
sessed the attack effectiveness of DPOTL0 under a variety
of defense conditions, testing it against twelve defense strate-
gies that are based on analyzing clients’ model updates along
with one defense strategy that uses client-side adversarial
training to recover the global model (Zhang et al., 2023).
We compared DPOTL0 attack with four state-of-the-art
data-poisoning backdoor attacks that employ fixed-pattern
triggers, distributed fixed-pattern triggers (Xie et al., 2020),
partially L0-norm-bounded optimized triggers (Zhang et al.,
2024), and L2-norm-bounded optimzed triggers (Nguyen
et al., 2024). Using a small number of malicious clients
(5% of the total), DPOTL0 outperformed existing data-

poisoning backdoor attacks in effectively undermining de-
fenses without affecting the main-task performance of the
FL system.

2. Related Work
2.1. Backdoor Attacks in FL

FL is very vulnerable to backdoor attacks. As training data
are privately held by clients, the security of data is hard to
track and protect. We discussed existing backdoor attacks in
FL for image classification tasks based on some important
properties (more details can be found in Appendix A.2).

With vs. Without model poisoning. Backdoor attacks
in FL primarily rely on data poisoning, where attackers
embed triggers in local training data and alter labels to train
malicious models. Model poisoning (Fang et al., 2020)
is often introduced to strengthen these attacks, by directly
manipulating clients’ model updates or training algorithms.
However, Trusted Execution Environments (TEEs), which
authenticate and protect client-side training, make model
poisoning difficult. In contrast, data poisoning is easier for
attackers to conduct and harder to prevent, as clients would
gather data from open, vulnerable sources.

Static objective vs. Dynamic objective. A static objective
in backdoor attack represents a pre-defined and unchanging
objective that is independent of the training system’s status,
such as associating certain input features or patterns with in-
correct predictions. Having static objectives make malicious
model updates easier to detect due to their inconsistency
with main-task objective. In contrast, a backdoor attack that
adjusts its objective based on the training system’s status
is referred to as having a dynamic objective. For example,
Gong et al. (2022) and Fang & Chen (2023) optimized the
trigger pattern based on a hypothesis that maximizing the
activation of certain neurons in the backdoored local model
can enhance the attack’s persistence on the global model,
which provides preliminary insights into the potential of
dynamically changing backdoor objectives. Zhang et al.
(2024) optimized triggers for a situation where the global
model is directly trained to unlearn the trigger, which is
another pioneering work exploring the potential of using
dynamic objectives to attack FL.

L2-norm vs. L0-norm bounded optimized trigger. Exist-
ing works (Lyu et al., 2023; Nguyen et al., 2024) proposed to
conceal malicious model updates by using adversarial exam-
ples (Goodfellow et al., 2015; Kurakin et al., 2017) as poi-
soned data, and the perturbations on these examples are re-
ferred to as L2-norm-bounded optimized triggers. However,
while adversarial examples are effective as testing-stage
attack techniques, they are less suited for training-stage
backdoor attacks. The extensive inconsistency introduced
by adversarial alterations creates numerous redundant fea-

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Concealing Backdoored model updates in Federated Learning by Data Poisoning with L0-norm bounded Optimized Triggers

tures, overdetermining the learning objective and hindering
the convergence of the benign objective. Recent studies on
L0-norm-bounded optimized triggers (Zhang et al., 2024;
Fang & Chen, 2023) made constructive attempts in opti-
mizing the values of fixed-shape triggers alongside their
attack strategies. DPOTL0

enhances the effectiveness of
the L0-norm-bounded optimized trigger by optimizing not
only its values but also its shape and placement. This en-
hancement enables data-poisoning attacks to achieve better
performance without relying on additional attack strategies.

2.2. Defenses against Backdoor Attacks in FL

In this work, we focus on defenses that adhere to the privacy-
preserving principles of FL originally introduced by McMa-
han et al. (2017): clients’ private data are kept local, and
their model updates are not shared with any entities other
than the server. For a discussion on additional defenses with
varying privacy-preserving properties, please refer to the
Appendix A.3.

In existing defenses, the server and clients are the two sub-
jects commonly considered for implementing defense strate-
gies. For benign clients as the defense subject, the global
model of each round is the input they receive from the FL
system. Inspired by Neural Cleanse (Wang et al., 2019),
Zhang et al. (2023) proposed using trigger inversion on the
global model and adversarial training on local models to
mitigate the impact of the backdoor trigger. However, its
effectiveness against continually evolving optimized trig-
gers remains unaddressed. For server as the defense subject,
clients’ model updates are the input that the server receives
from the FL system. Numerous studies proposed to defend
against backdoor attacks by analyzing clients’ model up-
dates, which can be further classified into the two categories
below.

Excluding model updates with outlier values or charac-
teristics. Some existing works presume that a malicious
client’s model updates will exhibit significant differences
from those of benign clients in values or certain charac-
teristics extracted from values. Nguyen et al. (2022) and
Fung et al. (2020) exclude a client’s model updates that
have outlier cosine similarity to other clients’ model up-
dates. Sharma et al. (2023) and Ozdayi et al. (2021) reduce
or penalize the contribution of model updates that show a
certain degree of sign dissimilarity, either on a model-wise
or parameter-wise basis. Kumari et al. (2023) and Ferei-
dooni et al. (2024) assess the probabilistic distribution and
frequency transformation of clients’ model updates, and
eliminate outliers in these characteristics. Mozaffari et al.
(2023) create a sparse space of model updates for clients to
vote, and the server rejects outlier votes and aggregates the
rest.

Byzantine-robust aggregation. Some existing works pro-

pose aggregating only the most trustworthy model updates
to tolerate the presence of malicious clients. Yin et al. (2018)
aggregate reliable model updates parameter-wise by taking
median or trimmed mean, while Blanchard et al. (2017),
(Cao et al., 2022), and Pillutla et al. (2022) select and aggre-
gate reliable model updates model-wise.

Analyzing clients’ model updates can effectively defend
against backdoor attacks that cause distinctions between
malicious clients’ and benign clients’ model updates. How-
ever, when a backdoor attack can conceal malicious clients’
model updates among benign ones, defenses based on this
strategy will struggle (Bagdasaryan et al., 2020). In this
work, we show that this goal can be achieved by dynami-
cally changing the backdoor objectives defined on poison
data.

3. Threat Model
Attacker’s capability and background knowledge: As
shown in Figure 1, we assume that each FL client—even a
malicious one—is equipped with trustworthy training soft-
ware that conducts correct model training on the client’s
local training data and transmits the model updates to the
FL server. Aligning with the security settings in the state-
of-the-art defense work (Riege et al., 2024), we assume that
both the client training pipeline and the FL server, as well as
the communication between them, faithfully serve FL’s main
task training and cannot be undetectably manipulated. These
properties would be achievable by executing FL training
within Trusted Execution Environments (TEEs) (Schneider
et al., 2022; Riege et al., 2024), for example, by applying
cryptographic protections to the updates (e.g., a digital sig-
natures) to enable the FL server to authenticate the updates
as coming from the TEEs.

The capability of malicious clients in our attack is limited
to the manipulation of their local training data that are input
to their training pipelines. In addition, in line with existing
works (Lyu et al., 2023; Zhang et al., 2024; Fang & Chen,
2023; Gong et al., 2022), we do not assume the secrecy of
the global model provided by the FL server, as it would
typically need to be accessible outside TEEs for use in local
inference tasks. As such, in each FL round, clients are
granted white-box access to the global model. Originating
from initially benign clients that have been compromised,
these malicious clients possess some local training data for
the FL main task as background knowledge.

Attacker’s goals: The malicious clients aim to accomplish
the following goals.

• Effectiveness. For classification tasks, Attack Success
Rate (ASR) is the accuracy of a model in classifying
data with triggers into a target label. In FL, backdoor
attacks aim to make the post-aggregation global model
misclassify data with training-stage triggers into a target
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Figure 1. Overview of DPOTL0 attack process on a FL system within Trusted Execution
Environments (TEEs). In this figure, Client #1, #2, and #3 perform as the malicious clients while
other clients (e.g. Client #n) are benign clients.

FEMNIST CIFAR10

Figure 2. Data with DPOTL0 triggers.

label. We evaluate a backdoor attack’s final effectiveness
using the final-round global model’s ASR, with 50% as
the success threshold. By-round effectiveness is measured
as the average ASR across all FL rounds. Combined with
the final ASR, it indicates how quickly an attack achieves
sufficient effectiveness.

• Main-task Convergence. The main-task convergence
goal of a backdoor attack is to preserve the global model’s
accuracy on its main-task data at a normal level, ensuring
the model’s functionality remains intact and the attack
goes unnoticed.

• Subtlety. Backdoor triggers should preserve data’s main
details and avoid causing misinterpretation (Figure 2).
Subtlety can be evaluated by measuring accuracy drops
using an un-attacked computer vision model. We aim to
ensure that accuracy drops by no more than 30%.

4. DPOTL0 Design
4.1. Building a Trigger Training Dataset

At the beginning of the DPOTL0 attack, we initially gather
all available benign data from the malicious clients’ local
training datasets and assign a pre-defined target label yt to
them. We refer to this new dataset, which associates benign
data with the target label, as the trigger training dataset D.

4.2. Determining Trigger Size (trisize)

We determine the trigger size by ensuring that the accuracy
drop of the poisoned data predicted as benign by an un-
attacked model does not exceed a threshold, which we set
at 30% in this work. Different model architectures and
datasets result in varying trigger sizes under this standard.
Adversaries determine trisize based on their background
knowledge of the FL model and data, and can dynamically
reduce it during FL training to enhance the trigger’s subtlety,
with a trade-off in ASR. In the following discussion, we

assume trisize is a static and optimal value.

4.3. Optimizing a Backdoor Trigger

We independently generate a backdoor trigger for each
round’s data poisoning using the optimization algorithms 1
and 2.

In the image classification context, consider the global
model Wg as the input and all pixels within an image form-
ing the parameter space. Our approach seeks to identify a
subset of parameters that have the greatest impact on pro-
ducing the malicious output (i.e., the target label), and then
optimizes the values of these parameters to further improve
the accuracy of the result. The pixels in this subset with
their optimized values will serve as a backdoor trigger. To
enhance generalization performance of this trigger, we use
all images in the trigger training dataset D to optimize its
pixel placements and pixel values.

Algorithm 1 Computation for Trigger Location
Input: Wg , D, yt, tri size
Output: Et

1: ∀x ∈ D : yx ←Wg(x).
2: L ← 1

|D|
∑

x∈D(yx − yt)
2.

3: ∀x ∈ D : δx ← ∂L
∂x

.
4: δ ← abs(

∑
x∈D δx).

5: δf ← flatten δ into a one-dimensional array.
6: S ← argsort(δf ).{Store the sorted indices (descending sort)}
7: Et ← S[: tri size ]. {Top tri size indices are trigger locations}
8: Et ← transform from one-dimensional indices to indices for

x ∈ D.

Compute trigger-pixel placements Et. In Algorithm 1,
we select pixel locations that contain the largest absolute
gradient sum with respect to the backdoor objective as the
trigger-pixel placements. Algorithm 1 takes inputs includ-
ing the global model Wg, the trigger training dataset D,
the target label yt, and a parameter trisize that specifies the
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trigger size. The trigger size trisize determines the number
of pixel locations we will choose. The output of the Algo-
rithm 1 is the trigger-pixel placement information denoted
as Et.

We calculate the loss of the global model Wg on clean im-
ages in dataset D predicted as the target label yt, using Mean
Square Error (MSE) as the example loss function. Gradi-
ents of the loss with respect to each pixel are computed and
summed across all images, producing an absolute gradient
matrix. This matrix is flattened, sorted in descending order,
and the top trisize indices are identified as the trigger-pixel
placements, which are then mapped back to the original
image shape.

Algorithm 2 Optimization for Trigger Value
Input: Et, Wg , D, yt, niter , γ
Output: Vt

1: for iteration ← 1 to niter do
2: D′ ← D.
3: if iteration = 1 then
4: Vt ← 1

|D′|
∑

x∈D′ x.
5: else if iteration > 1 then
6: ∀x ∈ D′ : x[Et]← Vt[Et].
7: end if
8: ∀x ∈ D′ : yx ←Wg(x).
9: L ← 1

|D′|
∑

x∈D′(yx − yt)
2.

10: ∀x ∈ D′ : δx ← ∂L
∂x

.
11: δ ←

∑
x∈D′ δx.

12: Vt[Et]← (Vt − γ · δ)[Et].
13: end for

Optimize trigger-pixel values Vt. In Algorithm 2, we op-
timize the values of the trigger pixels defined in Et using
a learning-based approach. Algorithm 2 requires the fol-
lowing inputs: the trigger-pixel placements Et, the global
model Wg, the trigger training dataset D, and the target
label yt. Additionally, it uses two training parameters: the
number of training iterations niter and the learning rate γ.
The output produced by Algorithm 2 is the trigger-pixel
value information denoted as Vt.

In each iteration, we create a copy dataset D′ of the clean
dataset D to embed the optimized trigger. In the first it-
eration, we initialize the trigger-pixel value matrix Vt by
averaging pixel values across all images in D′. We then
compute the loss of the global model Wg on images from
D′ with the target label yt, followed by calculating the gra-
dients of the loss with respect to each pixel, storing them in
δx. The gradient matrix δ is obtained by summing δx along
each pixel location. Using gradient descent with learning
rate γ, we update only the pixels within the trigger-pixel
placements Et and assign the new values to Vt. In subse-
quent iterations, we replace the trigger-pixels in each image
with their corresponding values from Vt, ensuring that only
the trigger-pixels affect the loss.

4.4. Poisoning Malicious Clients’ Training Data

The last step of our attack is to poison malicious clients’
local training data using the optimized trigger τ = (Et, Vt)
and its target label yt by a certain data poison rate.

5. Theoretical Analysis
Gounding in the feature learning propertires of neural net-
works (Shi et al., 2022; Zeiler, 2014; Girshick et al., 2014),
we assume a dataset D’s valid information can be extracted
as a feature set, expressed as K = (v1, v2, . . . , vk) ∈
Rn×k. Each vi ∈ Rn has a target value yi, and y =
(y1, y2, . . . , yk) ∈ Rk. For a linear system w ∈ Rn×1, the
learning objective is to find w∗ ∈ Rn such that KTw∗ =
yT . See proof of 5.1 in Appendix B.1.

Proposition 5.1. (Concealment Property) Given a feature
set K ∈ Rn×k with its target values y ∈ Rk and a model
w ∈ Rn, assume an adversary generates a malicious feature
set Kadv ∈ Rn×p with adversarial target values yadv ∈
Rp. Let the error of (Kadv, yadv) on w be denoted as ϵadv,
where ϵadv = KT

advw−yTadv . Let the optimization direction
for w with respect to (K, y) be denoted by ∆wK , and the
optimization direction for w with respect to the combined
feature set ([K,Kadv], [y, yadv]) be denoted by ∆wK∪Kadv

.
The difference between the two update directions is bounded
as:

∥∆wK∪Kadv
−∆wK∥ ≤ δ∥ϵadv∥

where δ = max ∥vi∥, vi ∈ Kadv, representing the maxi-
mum magnitude of the feature vectors in the adversarial
dataset Kadv. Specifically, this bound indicates that the
difference between the two update directions is proportional
to the error in optimizing (Kadv, yadv) for w.

6. Experiments
6.1. FL Configurations

We conducted experiments on four benchmark image
datasets: Fashion MNIST, FEMNIST, CIFAR10, and Tiny
ImageNet, using four different model architectures includ-
ing ResNet and VGGNet, as detailed in Table 6. For FL
settings, we consider 100 clients for grayscale image learn-
ing tasks and 50 clients for colorful image learning tasks.
Clients’ data are Non-iid distributed, where the Non-iid
sampling followed the algorithm proposed by FLTrust (Cao
et al., 2021), with a medium bias degree of 0.5. FEMNIST
is naturally a Non-iid distributed dataset for FL, so we used
it as is. Each client performed five local training epochs per
global round and participated in all global rounds.

For grayscale image learning tasks, we used a fixed local
learning rate of 0.1. For color image learning tasks, we
applied learning rate scheduling techniques (He et al., 2016;
Simonyan & Zisserman, 2015). We used SGD optimization
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with CrossEntropy loss. In the experiments on Tiny Ima-
geNet, we set the mini-batch size to 64, while for the other
datasets, we set it to 256. The number of global rounds
was determined based on the stabilization of test accuracy
on the main task data, defined as remaining within 0.5 per-
centage points over five consecutive global rounds, which
we considered convergence. The number of global rounds
varied across datasets and model architectures, as detailed
in Table 7.

6.2. Attack Configurations

The default Malicious Client Ratio (MCR) was set to 5%,
meaning 2 out of 50 or 5 out of 100 clients engaged in data
poisoning during training. The Data Poison Rate (DPR),
representing the proportion of each malicious client’s data
poisoned with the DPOTL0 trigger, was set to a default
value of 0.5. Except for ablation studies or specific indica-
tions, all experiments followed the default configurations
for MCR and DPR.

6.3. Evaluation Metrics

We used Final Attack Success Rate (Final ASR) and Aver-
age Attack Success Rate (Avg ASR) to evaluate the effec-
tiveness of backdoor attacks in FL. Final ASR, calculated
as the mean ASR of the global model from the last five
rounds, measures the final effectiveness of the attack. Avg
ASR, calculated as the mean ASR across all global rounds,
assesses the average by-round effectiveness. A higher Avg
ASR indicates faster achievement of sufficient attack effec-
tiveness.

We used Main-task Accuracy (MA) to evaluate the perfor-
mance of the final global model on main-task data. A back-
door attack is considered to maintain main-task convergence
if the MA of its victim model is within a ±2 percentage-
point difference compared to the MA of the un-attacked
model.

6.4. Other Backdoor Triggers

In this study, we consider data poisoning as the sole attack
strategy for backdoor attacks in FL. Similar attack settings
in existing literature are relatively scarce, with many current
FL attacks combining data poisoning with other strategies
or targeting novel FL structures. Rather than comparing all
existing attack methods across various configurations, we
choose to compare representative backdoor triggers with
DPOTL0 ’s trigger in a purely data poisoning attack context
under unified settings to evaluate their effectiveness.

• Fixed Trigger (FT). A single pixel-pattern trigger with
fixed value, shape, and placement (Baruch et al., 2019;
Bagdasaryan et al., 2020).

• Distributed Fixed Trigger (DFT). Different fixed trig-
gers are used by malicious clients, with their union em-
ployed for testing (Xie et al., 2020).

• Partially L0-norm-bounded Optimized Trigger
(OT val

L0
). A single pixel-pattern trigger with dynamically

optimized values but fixed shape and placement (Zhang
et al., 2024).

• L2-norm-bounded Optimized Trigger (OTL2
). Adver-

sarial perturbations added on data, generated with con-
straints of their L2-norm (Nguyen et al., 2024).

6.5. Defenses

We selected defenses that have open-sourced their proof-
of-concept code to ensure accurate implementation of their
proposed ideas. Twelve of them are state-of-the-art server-
conduct defenses based on analyzing difference of model
updates from clients: FedAvg (McMahan et al., 2017), Me-
dian (Yin et al., 2018), Trimmed Mean (Yin et al., 2018),
RobustLR (Ozdayi et al., 2021), RFA (Pillutla et al., 2022),
FLAIR (Sharma et al., 2023), FLCert (Cao et al., 2022),
FLAME (Nguyen et al., 2022), FoolsGold (Fung et al.,
2020), Multi-Krum (Blanchard et al., 2017), BackdoorIndi-
cator (Li & Dai, 2024), and FRL (Mozaffari et al., 2023).
Detailed descriptions can be found in Appendix D. One de-
fense is conducted on client-side: Flip (Zhang et al., 2023).
Experiment results of Flip, FRL, and BackdoorIndicator are
given in Appendix G, H, and I due to space limitations.

6.6. DPOTL0
vs. OTL2

vs. OT val
L0

We present OTL2
, OT val

L0
, and DPOTL0

triggers on CI-
FAR10 images in Figure 3. The size of the DPOTL0

trigger
is set to 25, based on the subtlety maintenance rule. The
OT val

L0
trigger consists of 25 pixels arranged in a square

shape. We placed it in two different positions in the images
- upper-left (OT val

L0
-1) and center (OTL2

-2 ) . Both OTL2

and OT val
L0

triggers are optimized to minimize backdoor loss
on each round’s global model before being used for training.
Their optimization methods are based on two recent attack
works: A3FL (Zhang et al., 2024) and IBA (Nguyen et al.,
2024).

(a) OTL2
(right) (b) OTval

L0
-1 (c) OTval

L0
-2 (d) DPOTL0

Figure 3. Different triggers on CIFAR10 images.

The comparative results of the three optimized triggers in
terms of Final ASR, Avg ASR, and MA are presented in
Table 1. Compared to the OT val

L0
and DPOTL0

triggers,
the OTL2

trigger demonstrates lower attack effectiveness in
both final and average ASR. A potential explaination is that
when the MCR is small (5%), the global model’s updates
are largely irrelevant to learning backdoor features, which
impacts OTL2 triggers more than the L0-norm bounded trig-
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gers, as the OTL2
trigger contains more adversarial features

to learn. Moreover, the accuracy of poisoned data with a
larger number of features may be more negatively impacted
by irrelevant changes in the global model along training.
The enhanced attack effectiveness of OT val

L0
-2 compared

to OT val
L0

-1 underscores the significance of trigger place-
ment as a key factor to achieve backdoor attack objectives
in FL. The DPOTL0

trigger with placement optimization
therefore shows best effectiveness among all triggers.

The baseline MA results of an un-attacked FL system em-
ployed with various defense strategies are shown in the CI-
FAR10 column of Table 8. The MA results in Table 1 show
minimal differences from the corresponding baseline values,
indicating that attacks with different triggers maintain the
main-task convergence of the FL system.

Table 1. Results of OTL2 , OT val
L0

, and DPOTL0 on CIFAR10.
Measures Final ASR Avg ASR MA

Trigger Types O
T
L
2

O
T

v
a
l

L
0

-1

O
T

v
a
l

L
0

-2

D
P
O
T
L
0

O
T
L
2

O
T

v
a
l

L
0

-1

O
T

v
a
l

L
0

-2

D
P
O
T
L
0

O
T
L
2

O
T

v
a
l

L
0

-1

O
T

v
a
l

L
0

-2

D
P
O
T
L
0

FedAvg 18.5 48.9 75.1 100 26.0 38.1 60.2 98.5 69.3 70.6 70.0 70.7
Median 21.8 32.9 28.4 100 14.2 24.0 26.7 96.1 69.8 69.1 69.9 69.1

TrimmedMean 10.2 35.0 85.5 100 12.2 23.5 62.8 88.6 69.7 69.9 70.2 70.4
RobustLR 32.8 46.2 86.5 100 33.7 40.7 65.6 98.6 70.3 71.2 70.3 70.1

RFA 9.0 24.7 41.6 100 9.5 23.8 38.8 97.8 70.4 70.2 70.7 70.7
FLAIR 0.1 13.2 14.9 62.3 3.7 12.5 17.0 50.7 70.5 70.7 69.2 70.6
FLAME 3.9 13.7 18.2 59.8 25.1 32.1 48.4 56.0 68.7 70.1 69.5 70.3

FoolsGold 14.8 46.9 64.8 100 13.4 38.0 50.8 98.5 70.1 70.8 70.5 71.0
FLCert 4.0 39.0 28.9 99.2 4.2 28.4 25.5 88.3 69.3 69.9 69.7 70.0

Multi-Krum 0.3 33.4 86.2 100 4.4 29.5 84.2 98.7 64.3 62.8 61.2 63.0

6.6.1. MAIN-TASK CONVERGENCE BY OTL2

To study the long-term impact of the OTL2
trigger on main-

task convergence in FL, we set the MCR to 50% to boost
its attack effectiveness. The trigger was optimized for 30
rounds, and the poisoned data generated in the 30th round
was used until the end (150th round). This simulates an
unideal scenario where the attack is interrupted mid-training,
allowing us to assess how remaining poisoned data affects
MA over time. The results of DPOTL0

under identical
conditions are presented in Table 2 for comparison.

Table 2. Insufficient MA due to OTL2 attack.
FedAvg FLAIR

Final ASR Avg ASR MA Final ASR Avg ASR MA
OTL2 64.4 60.5 60.0 57.4 60.1 60.7

DPOTL0
95.2 96.5 69.9 74.5 82.8 70.6

As we analyzed before, substantially changing benign fea-
tures to adversarial features makes OTL2 overdetermine the
learning objective and hinder the convergence of main-task
data. In contrast, DPOTL0

is able to sustain the MA of
FL training, even under conditions of a large MCR and an
interruption in optimization.

6.6.2. COMPUTATIONAL OVERHEAD COMPARISON

We compared the elapsed time of trigger optimization al-
gorithms in A3FL and IBA with DPOTL0 on the same

computational platform, consisting of one NVIDIA A40
GPU core and 200 GB of CPU RAM. Comparison results
are shown in Table 3. DPOTL0 demonstrates a relatively
shorter total execution time. We assume adversaries can
offset the timing gap caused by trigger optimization with
powerful computational resources.

Table 3. Comparison of Elapsed Time
Methods Total (s) Per Epoch (s) # Epochs Benign Training (s)

DPOTL0
5.05 0.50 10 1.23

A3FL 421.04 2.07 200 1.23
IBA 16.56 1.59 10 1.23

6.6.3. SUBTLETY COMPARISON.

We evaluated the subtlety of four optimized triggers by
measuring the accuracy drop of an un-attacked model when
predicting poisoned data as benign labels (”Benign Acc” in
Table 4). OTL2 showed a relatively greater drop in benign
accuracy due to its substantial alteration of benign features
across the entire image.
Table 4. Benign accuracy drops caused by different triggers.

Triggers None DPOTL0
OTval

L0
-1 OTval

L0
-2 OTL2

Benign acc 70.81 52.98 70.46 67.65 27.98
Drop (%) 0 25.18 0.49 4.46 60.49

6.7. DPOTL0 vs. FT vs. DFT

Figure 4 presents a comparison of the ASR results for the
DPOTL0

trigger, FT, and DFT across different datasets.
Visualizations of FT and DFT can be found in Figures 8
and 9, respectively. The MA results are provided in Table 8.

6.8. Discussion of DPOTL0

6.8.1. AGGREGATION OF MALICIOUS MODEL UPDATES

We demonstrated that DPOTL0
’s attack effectiveness arises

from malicious model updates being aggregated into the
global model, rather than solely from the optimized trigger’s
residual effects on the next-round global model.

To evaluate this, we designed an experiment where mali-
cious clients generated a DPOTL0 trigger every round but
did not use it to poison their data. We tested the ASR of
the trigger on the next-round global model, measuring its
residual effects, and denoted this as ÃSR. In another ex-
periment, malicious clients input the poisoned data with the
DPOTL0

trigger into the training, with the attack effective-
ness denoted as ¨ASR.

As shown in Appendix Table 9, ¨ASR is notably larger
than ÃSR under different defenses across various datasets.
These results validate that malicious model updates can
effectively bypass defenses, be aggregated into the global
model, and drive it into a backdoored state.

6.8.2. WORKING PRINCIPLE ANALYSIS

The working principle of DPOTL0 in backdoor attack can
be explained through the relationship between its ASR and

7
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Figure 4. ASR results for the DPOTL0 , FT, and DFT.

the duration of the attack. We conducted experiments where
the attack was initiated at different training rounds, and
ASR was observed at specific subsequent rounds.

Table 5a presents the results for Fashion MNIST with
Trimmed Mean as the defense strategy. The ASR increases
with training duration and prior attack presence. This shows
the global model gradually learns the backdoor feature. The
optimization of the DPOTL0 trigger in this scenario enables
malicious model updates to bypass the defense mechanism
and accelerates the global model’s learning of the backdoor
feature. This is achieved through the alternating optimiza-
tion of the model and trigger, both aimed at minimizing
backdoor loss. The final ASR results in this case are bet-
ter than using DPOTL0 algorithms to perform adversarial
attack on an un-attacked model.

Table 5b shows the results for CIFAR10 with FLAIR as

the defense strategy. The ASR exhibits little variation re-
gardless of attack duration or the presence of prior attacks.
This indicates that the malicious model updates are weakly
bypass the defense under current attacking pattern. Con-
sequently, the ASR primarily reflects the residual effects
of the trigger on the next-round global model. We found
a small difference between the ASR by adversarial and
backdoor attacks, indicating that the DPOTL0

trigger, with
limited backdoor features, has good transferability across
rounds. A more effective backdoor attacking pattern for this
case can be found in Appendix P.

In summary, DPOTL0 combines pixel-pattern triggers’
learnability with adversarial triggers’ transferability, demon-
strating varied efficacy across conditions.

Table 5. DPOTL0 for backdoor attack and for adversarial attack.

(a) ASR is dependent to backdoor attack duration.
Backdoor Attack Adversarial Attack

Observe at (round):

48.92

1 200 250 280 300

A
tt

ac
k

st
ar

ts
at

(r
ou

nd
): 1 10.0 76.27 89.52 93.6 95.64

200 - 49.56 84.03 91.26 93.14
250 - - 69.47 81.04 87.86
280 - - - 66.75 74.41

(b) ASR is independent to backdoor attack duration.
Backdoor Attack Adversarial Attack

Observe at (round):

56.79

1 100 140 145 150

A
tt

ac
k

st
ar

ts
at

(r
ou

nd
): 1 10.0 57.48 65.43 60.72 61.29

100 - 47.54 74.95 64.04 61.14
140 - - 62.62 57.19 59.11
145 - - - 63.63 63.42

6.8.3. MORE RESULTS

Additional results of potential interest to readers are pro-
vided in the Appendix. Section J presents experimental
evidence guiding trigger size selection for different datasets.
The evolution of the DPOTL0

trigger during FL training is
visualized in Section K. Ablation studies on the effects of
different MCR, trigger size, DPR, Non-iid degree, and at-
tacking patterns on DPOTL0 ’s performance are detailed in
Sections L, M, N, O, and P, respectively. We also discussed
the attack performance of combining DPOTL0 with model-
poisoning techniques by relaxing the TEEs constraints in
Section Q.

7. Conclusion
In this work, we proposed DPOTL0

, a novel backdoor
attack method relying solely on data poisoning in Federated
Learning (FL). DPOTL0

dynamically adjusts the backdoor
objective to conceal malicious clients’ model updates among
benign ones, enabling global models to aggregate them even
when protected by state-of-the-art defenses.
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Impact Statement

Ethics Statement: This paper presents work whose goal is to advance the field of Machine Learning. Our paper presents a
practical attack on federated learning, which can be executed with minimal technical skill by anyone who can participant
into an FL. While this may seem risky, we believe the benefits of disclosing this attack outweigh potential harms. Sharing the
limitations of current defense strategies early prevents future misuse in security-critical applications, allowing organizations
to address vulnerabilities before widespread deployment.

Reproducibility Statement: To ensure the reproducibility of our results, we have provided detailed descriptions of our
experimental setup, including model architectures, hyperparameters, datasets, and training procedures. All code used to
implement our attack and run evaluations will be made available after the publication of this paper. Additionally, our code
can be easily adapted to other FL research projects by simply integrating our algorithms into the data preparation process of
FL clients before the data is input into their training phase. Therefore, our work can be extensively used to evaluate future
FL systems for security purposes.
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A. Additional Related Works
A.1. Federated Learning (FL)

The Federated Learning (McMahan et al., 2017) (FL) training process involves four main steps: 1) Model Distribution:
A central server distributes the most recent global model to the participating clients. 2) Local Training: Each client
independently trains the global model on its local training dataset and obtains a local model. 3) Model Updates: Each client
calculates the parameter-wise difference between its local model and the global model, referred to as model updates, and
then sends them to the central server. 4) Aggregation: The central server aggregates clients’ model updates to create a new
global model. This entire process, consisting of step 1 to 4, constitutes a global round. The FL system repeats these steps for
a certain number of rounds to obtain a final version of the global model.

A.2. Backdoor Attacks in FL

Backdoor
Attacks

in FL



With
model

poisoning



Static objective
(fixed trigger)


Semantic trigger: Bagdasaryan et al. (2020)
Edge-case backdoor: Wang et al. (2020)

Artificial
trigger

 Single global trigger:
Sun et al. (2019); Baruch et al. (2019)

Distributed trigger: Xie et al. (2020)

Dynamic objective
(optimized trigger)


L2-norm bounded trigger: Lyu et al. (2023); Nguyen et al. (2024)

L0-norm
bounded trigger

{
Fixed shape and placement:
Fang & Chen (2023)

Without
model

poisoning

Dynamic objective
(optimized trigger)

 L0-norm
bounded
trigger

 Fixed shape and placement:
Gong et al. (2022); Zhang et al. (2024)

Free shape and placement: Our work

Figure 5. An overview of related works on backdoor attacks in FL.

FL is easily suffered from backdoor attacks. As training data are privately held by clients, the security of data is hard to
track or protect. Adversaries can inject backdoors into the global model simply by compromising a few vulnerable client
devices and poisoning their data with backdoor triggers. To date, many variations of backdoor attacks targeting FL have
emerged, and we summarize those specific to image classification tasks in Figure 5.

With model poisoning vs. Without model poisoning
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The foundation of backdoor attacks in FL is through data poisoning - attackers embed backdoor triggers into the local
training data of certain clients and change the ground-truth labels of the infected data to malicious labels. As a result, clients’
local models trained on the poisoned data will be backdoored, and consequently, the global model that aggregates these
backdoored models will also be backdoored.

A standalone data poisoning is found challenging to succeed when employing some types of triggers. Therefore, many
works introduce model poisoning to assist backdoor attacks in FL. Model poisoning aims to either directly manipulate
clients’ model updates or indirectly achieve this by changing their local training algorithms. Three main approaches in
model poisoning were widely adopted in existing attacks: 1) Scaling based (Bagdasaryan et al., 2020; Sun et al., 2019; Xie
et al., 2020; Gong et al., 2022). Attackers amplify malicious model updates generated from backdoored models before
clients send them to the server. These malicious updates can overpower the aggregation results, causing the global model
to quickly incorporate backdoors. However, this approach is vulnerable to defenses that exclude outlier model updates
from the aggregation. 2) Constraint based (Bagdasaryan et al., 2020; Lyu et al., 2023). Attackers change clients’ local
training algorithms by adding extra constraints to their loss functions, giving backdoored models specific characteristics,
such as being less distinguishable from benign models. 3) Projection based (Zhang et al., 2022; Baruch et al., 2019; Wang
et al., 2020; Fang & Chen, 2023). Attackers constrain backdoor implementation to bounded model parameters: by clipping
parameter values or using Projected Gradient Descent, backdoor models are L2-norm bounded to a chosen model state; by
selectively updating a subset of parameters, they are L0-norm bounded to a chosen state.

Model poisoning requires attackers to modify certain clients’ local training procedures. However, with the introduction of
Trusted Execution Environments (TEEs) by state-of-the-art defense mechanisms (Riege et al., 2024), client-side execution
for training can be authenticated and secure, thus increasing the difficulty of conducting model poisoning. In contrast, data
poisoning is easier to conduct and harder to prevent since clients may collect their local data from open resources where
attackers can also get access to and make modifications.

Static objective vs. Dynamic objective

If a backdoor attack has a specified and unchanging objective that is independent to the training system’s status, we refer to
this as a static objective. For instance, Semantic trigger as backdoor (Bagdasaryan et al., 2020) aims to associate certain
features from input that is unrelated to the main training tasks with an attacker-chosen output, causing the model to make
incorrect predictions on those inputs; Edge-case backdoor (Wang et al., 2020) selects data that share certain commonalities
but are from the tail end of the input data distribution as the backdoored input, causing the model to mispredict them;
Artificial trigger as backdoor (Sun et al., 2019; Zhang et al., 2022; Baruch et al., 2019; Xie et al., 2020) embeds a few pixels
forming a specific artificial pattern into the input, leading the model to mispredict any input containing this pixel pattern. In
FL, since the static objectives of backdoor attacks are inconsistent with the optimization objectives defined by the main-task
data, malicious models will exhibit distinct differences in their model updates compared to benign models, making them
easy to detect.

In contrast to a static objective, a backdoor attack that adjusts its objective based on the training system’s status is referred to
as having a dynamic objective. By adjusting its objective, a backdoor attack is expected to achieve greater effectiveness.
Several approaches have been proposed in recent attack studies to attempt to accomplish this. For example, Model-
dependent attack (Gong et al., 2022) and F3BA (Fang & Chen, 2023) optimized the trigger pattern based on a hypothesis
that maximizing the activation of certain neurons in the backdoored local model can enhance the attack’s persistence on the
global model, which provides preliminary insights into the potential of optimized triggers; A3FL (Zhang et al., 2024), which
optimizes triggers specifically for a defense scenario where the global model is directly trained to unlearn the trigger, is
another pioneering work exploring the potential of optimized triggers in attacking FL.

L2-norm-bounded optimized trigger vs. L0-norm-bounded optimized trigger

A critical consideration in designing backdoor triggers is ensuring their subtlety when applied to input data, resulting in a
trivial disparity between human perception and the backdoored model’s interpretation. Existing dynamic objective attacks
achieve this by constraining the optimized triggers’ L2-norm or L0-norm bounds.

An L2-norm-bound restricts the total magnitude of the perterbations adding to the data. For example, CerP (Lyu et al.,
2023) and IBA (Nguyen et al., 2024) generate optimized perturbations adds them to clients’ local data to induce their local
models learn to misclassify the perturbed data to a specified target label.

An L0-norm bound restricts the number of components (e.g., pixels in an image) that can be altered by the trigger. For
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example, The optimized trigger in Model-dependent attack (Gong et al., 2022), F3BA (Fang & Chen, 2023), or A3FL (Zhang
et al., 2024) consists of a small number of pixels arranged in a square shape, being placed in a certain location on the data.

Clean-label attacks

Clean-label attacks (Shafahi et al., 2018) involve manipulating input data with subtle perturbations while keeping labels
unchanged. Although this assumption aligns with scenarios like Vertical Federated Learning (Liu et al., 2024) (VFL), where
participants possess vertically partitioned data with labels owned by only one participant, our study does not consider VFL
as our attack scenario. Therefore, discussions of clean-label attacks are beyond the scope of our work.

A.3. Defenses with different privacy-preserving properties

Recent defense works have introduced several novel FL pipelines aimed at enhancing the security of FL against various types
of attacks. These novel architectures provide different levels of privacy protection and often require additional techniques
(e.g., Secured Multi-party Computation) to ensure privacy for FL clients. In light of these privacy considerations, we have
chosen to focus our analysis on the conventional FL structure that was originally proposed in the concept of Federated
Learning (McMahan et al., 2017). Although defenses built on newly proposed FL structures fall outside the scope of our
main comparison, we offer a discussion of these related works in this section.

Clients’ private data were shared to the server: Some approaches allow the server to have access to a small portion
of main-task data shared by clients. To mitigate backdoor attacks, server-side defense strategies use this data to either
independently train a model and use its updates as a reference for each round of aggregation (e.g., FLTrust (Cao et al.,
2021)), or to validate clients’ model updates and eliminate those with abnormal outputs (e.g., SSDT (Mo et al., 2024),
SHERPA (Sandeepa et al., 2024)). However, both of these methods still rely on analyzing clients’ model updates, making
them vulnerable to backdoor attacks with dynamic objectives that conceal malicious updates. FedREdefense (Xie et al.,
2024) detects and filters out artificial model updates by reconstructing distilled data shared by clients, but this approach is
not effective against backdoor attacks where malicious clients genuinely train their models on poisoned local data rather
than fabricating model updates.

Clients’ model updates were shared to each other: Some approaches propose allowing clients to share their model
updates with one another, rather than just with the server. CrowdGuard (Riege et al., 2024) and FLShield (Kabir et al., 2024)
suggest that a subset of clients validate other clients’ model updates using their own data, assuming that malicious model
updates would produce abnormal outputs on benign data. However, this hypothesis fails when malicious model updates are
trivially different from non-attacked model updates, a state that can be achieved through using optimized triggers. Fang et al.
(2024) proposed a decentralized FL framework without a central server, where clients exchange model updates and apply
Byzantine-robust aggregation using their own updates as a reference. Like other defenses that rely on analyzing clients’
model updates, this approach is also vulnerable to backdoor attacks with optimized triggers.

B. Theoretical Analysis
B.1. Proof of Proposition 5.1

Proof. We define the least-squares optimization objectives for fK and fK∪Kadv
:

fK =
1

2
∥KTw − yT ∥22 (1)

fK∪Kadv
=

1

2
∥[K Kadv]

Tw − [y yadv]
T ∥22. (2)

14



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Concealing Backdoored model updates in Federated Learning by Data Poisoning with L0-norm bounded Optimized Triggers

The gradients with respect to w are:

∂fK
∂w

= K(KTw − yT ),

∂fK∪Kadv

∂w
= [K Kadv]([K Kadv]

Tw − [y yadv]
T )

= (KKT +KadvK
T
adv)w − (KyT +Kadvy

T
adv)

= K(KTw − yT ) +Kadv(K
T
advw − yTadv).

Let ϵadv represent the error of (Kadv, yadv) on the model w:

ϵadv = KT
advw − yTadv.

Substituting ϵadv into the gradient, we get:

∂fK∪Kadv

∂w
= K(KTw − yT ) +Kadvϵadv.

The difference in gradients is:

∆ =
∂fK∪Kadv

∂w
− ∂fK

∂w
= Kadvϵadv. (3)

Writing ϵadv ∈ Rp as ϵadv = (e1, e2, . . . ep) and Kadv ∈ Rn×p as Kadv = (v1, v2, . . . , vp), where vi ∈ Rn, the magnitude
of ∆ is bounded as:

∥∆∥ = ∥Kadvϵadv∥ = ∥e1v1 + e2v2 + · · ·+ epvp∥ ≤
p∑

i=1

∥eivi∥ ≤ δ∥ϵadv∥,

where δ = max ∥vi∥, vi ∈ Kadv .

Finally, the update directions ∆wK and ∆wK∪Kadv
for minimizing the objective 1 and 2, defined as the negative gradients,

satisfy:
∥∆wK∪Kadv

−∆wK∥ = ∥∆∥ ≤ δ∥ϵadv∥.

Thus, when ϵadv = 0, the update directions for fK and fK∪Kadv
are identical. Otherwise, the difference is bounded by

δ∥ϵadv∥, quantifying the influence of the adversarial error.

C. Experimental Settings

Table 6. Dataset description
Dataset #class #img img size Model #params

Fashion MNIST 10 70k 28× 28 grayscale 2 conv 3 fc ∼1.5M
FEMNIST 62 33k 28× 28 grayscale 2 conv 2 fc ∼6.6M
CIFAR10 10 60k 32× 32 color ResNet18 ∼11M

Tiny ImageNet 200 100k 64× 64 color VGG11 ∼35M

D. Descriptions of Defenses
Twelve different server-side defense strategies, based on analyzing clients’ model updates, are briefly introduced below:

FedAvg (McMahan et al., 2017), a basic aggregation rule in FL, computes global model updates by averaging all clients’
model updates.
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Table 7. Default settings
Trigger Size Round Number of Clients Malicious Client Ratio Data Poison Rate

Fashion MNIST 64 300 100

0.05 0.5FEMNIST 25 200 100
CIFAR10 25 150 50

Tiny ImageNet 64 100 50

Median (Yin et al., 2018), a simple but robust alternative to FedAvg, constructs the global model updates by taking the
median of the values of model updates across all clients

Trimmed Mean (Yin et al., 2018), in our implementation, excludes the 40% largest and 40% smallest values of each
parameter among all clients’ model updates and takes the mean of the remaining 20% as the global model updates.

Multi-Krum (Blanchard et al., 2017), in our implementation, identifies 10% honest client whose model updates have the
smallest Euclidean distance to all other clients’ model updates and takes the average of these honest clients’ model updates
as the global model updates.

RobustLR (Ozdayi et al., 2021) adjusts the aggregation server’s learning rate, per dimension and per round, based on the
sign information of clients’ updates.

RFA (Pillutla et al., 2022) computes a geometric median of clients’ model updates and assigns weight factors to clients
depending on their distance from the geometric median. Subsequently, it computes the weighted average of all clients’
model updates to generate the global model updates.

FLAIR (Sharma et al., 2023) assigns different weight factors to clients according to the similarity of the coefficient signs
between client model updates and global model updates of the previous round, and then takes the weighted average of all
clients’ model updates to form the global model updates. The weight factors are carried over and accumulate from the
previous round.

FLCert (Cao et al., 2022) randomly groups clients into 5 clusters, computes the median of model updates within each
cluster, and uses the majority inference outcomes of these cluster models as the final results.

FLAME (Nguyen et al., 2022) first clusters clients’ model updates according to their cosine similarity to each other, and
then aggregates the clipped model updates within the largest cluster as the global model updates.

FoolsGold (Fung et al., 2020) reduces aggregation weights of a set of clients whose model updates constantly exhibit high
cosine similarity to each other.

BackdoorIndicator (Li & Dai, 2024) trains an indicator model using OOD datasets to serve as the global model, then
filtering out clients’ model updates if their accuracy on those OOD datasets greater than a threshold.

FRL (Mozaffari et al., 2023) is a defense strategy where the server sparsifies the value space of model updates, allowing
clients to vote on the most effective model updates based on their local data. The server then aggregates only the accepted
votes while rejecting outliers to construct the global model.

E. Main-task Accuracy Results corresponding to Figure 4
Table 8 lists the Main-task Accuracy of each experiment in getting results in Figure 4. Table 8 demonstrates that for different
datasets used as the main tasks, global models under various attacks maintained a comparable level of Main-task Accuracy
to the baselines with no attacks (“None”), indicating that all types of backdoor attacks successfully achieved their main-task
convergence goals.

F. Aggregation of Malicious Model Updates
In this section, we analyzed the attack effectiveness of each component of the DPOTL0

attack’s working principles and
report evidence that it effectively conceals malicious clients’ model updates, thereby getting them integrated into the global
models through aggregation.
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Table 8. The Main-task Accuracies (MA) correspond to results in Figure 4. ”None” represents no attack existing in the FL training.
MA Tiny ImageNet Fashion MNIST FEMNIST CIFAR10

None Ours FT DFT None Ours FT DFT None Ours FT DFT None Ours FT DFT
FedAvg 43.9 43.5 43.0 43.3 86.7 87.3 86.7 86.8 82.2 81.4 83.3 82.3 70.3 70.7 70.4 71.4
Median 40.6 40.2 40.6 38.6 86.0 85.8 86.6 86.3 80.4 81.5 79.8 79.9 70.2 69.1 69.8 69.7

Trimmed Mean 40.8 40.4 40.1 40.6 86.4 85.8 86.4 86.3 80.2 81.7 81.3 81.2 69.4 70.4 70.2 70.8
RobustLR 44.1 42.7 42.9 43.2 86.5 86.8 86.6 86.9 81.8 82.5 81.9 82.6 70.4 70.1 70.3 70.5

RFA 43.6 43.0 43.0 43.0 86.4 86.0 87.1 87.1 83.0 80.7 81.0 80.8 70.4 70.7 70.3 70.8
FLAIR 43.6 42.6 41.8 42.1 86.1 84.9 85.2 84.4 81.5 80.7 80.6 79.7 70.3 70.6 71.0 70.4
FLCert 40.3 40.2 39.7 39.7 86.2 85.9 86.0 86.8 81.3 80.9 81.5 81.0 69.6 70.0 69.8 70.4

FLAME 29.9 28.7 29.2 28.9 86.4 86.4 86.4 86.7 81.8 80.2 80.7 81.0 70.1 70.3 70.9 70.9
FoolsGold 43.1 43.2 43.5 43.2 86.6 87.1 86.8 87.3 83.4 82.7 83.0 81.8 70.4 71.0 71.2 71.7

Multi-Krum 30.7 27.7 27.7 26.4 86.2 85.9 86.0 87.0 79.9 80.4 79.6 80.2 61.4 63.0 63.2 60.8

In the i-th round, DPOTL0 generates a trigger τ (i) by optimizing its shape, placement and values to make the global model
of this round Wg

(i) achieve a maximum ASR. However, what we were truly interested in is its ASR on the global model
after the i-th round aggregation, which is the next-round global model denoted as Wg

(i+1). The attack effectiveness of the
trigger τ (i) on the global model Wg

(i+1) stems from two factors:

1. Trigger Optimization: Trigger optimization using Wg
(i) results in an improvement of the trigger’s ASR on Wg

(i+1)

due to the small difference between Wg
(i+1) and Wg

(i).

2. Aggregation of Backdoored Model Updates: Model updates that were trained on data partially poisoned by τ (i) exhibit
small differences from those were trained on data without poisoning. Therefore, they bypassed defenses and made
Wg

(i+1) incorporate backdoored model parameters.

In the following, we explain how we designed experiments to study the impact of each factor, and analyzed the experiment
results.

Experiment design: To assess the attack effectiveness solely brought by Trigger Optimization, we eliminated any effects
produced by data poisoning. Specifically, we set all clients in the FL system to be benign, ensuring that the next-round
global model, denoted as W̃ (i+1)

g , aggregated benign model updates only. In the meantime, we still collected data from a
certain number of clients and optimized a trigger τ̃ (i) for W̃ (i)

g . Then, we tested W̃
(i+1)
g on a testing dataset in which all

images are poisoned with the trigger τ̃ (i) to obtain an ÃSR. This ÃSR evaluates the attack effectiveness achieved by the
current-round optimized trigger τ (i) on the next-round global model W̃ (i+1)

g , which does not contain any model updates
learned from backdoor information.

To assess the attack effectiveness brought by Aggregation of Backdoored Model Updates, we introduced malicious clients
into the FL system and therefore the global model, denoted as Ẅ (i+1)

g , was allowed to aggregate model updates submitted
by malicious clients. In this system, malicious clients partially poisoned their local training data (aligning with default
settings in Table 7) using the trigger τ̈ (i) that was optimized for Ẅ (i)

g , and then conducted their local training. We tested the
Ẅ

(i+1)
g on the testing dataset that was also poisoned by τ̈ (i) to obtain an ¨ASR. We evaluated the attack effectiveness of

Aggregation of Backdoored Model Updates by measuring the increase in ASR compared to the previous setting, calculated
as ( ¨ASR− ÃSR). This metric reveals how much the malicious clients’ model updates influenced the global model Ẅ (i+1)

g

to achieve a higher ASR compared to W̃
(i+1)
g .

Experiment results: Table 9 shows results of ÃSR and ¨ASR over 10 different defense methods. We used same settings as
in Table 7 for testing ¨ASR, and kept the size of trigger training dataset consistent when testing ÃSR.

The results of ÃSR in Table 9 show that different defense methods resulted in very different ÃSR even for the same
learning task of a dataset. The reason for the variance of ÃSR is the gap between Wg

(i) and W̃
(i+1)
g were different when

implementing different defense methods. According to recent studies (Lyu et al., 2023; Zhang et al., 2024), if the gap
between consecutive rounds of global models in an FL system is smaller, Trigger Optimization will be more effective in its
attack. The results of ¨ASR in Table 9 show that the presence of malicious clients’ model updates consistently enhances ASR
compared to ÃSR across all defense methods on different datasets. We consider this enhancement as an evidence of the
statement that the attack effectiveness of DPOTL0 comes from both Trigger Optimization and Aggregation of Backdoored
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Table 9. ASR under different attacking conditions. ÃSR assesses the attack effectiveness of “Trigger Optimization” alone, while ¨ASR
assesses the combined effectiveness of both “Trigger Optimization” and “Aggregation of Backdoored Model Updates”.

Fashion
MNIST FEMNIST CIFAR10

ASR type Final Avg Final Avg Final Avg

FedAvg ÃSR 58.8 45.1 54.0 28.6 55.6 50.9
¨ASR 97.7 69.1 99.7 92.9 100 98.5

Median ÃSR 57.9 38.2 18.0 17.5 56.6 48.7
¨ASR 97.8 61.7 95.4 81.2 100 96.1

Trimmed ÃSR 31.6 29.7 24.2 25.6 55.6 40.9
Mean ¨ASR 94.4 56.0 95.2 84.3 100 88.6

RobustLR ÃSR 70.2 47.2 28.8 27.3 60.1 47.3
¨ASR 99.2 62.8 99.3 93.0 100 98.6

RFA ÃSR 78.0 46.4 18.9 13.4 57.4 46.1
¨ASR 97.7 62.0 98.3 95.9 100 97.8

FLAIR ÃSR 42.2 36.2 23.0 29.6 54.1 45.9
¨ASR 85.3 50.1 88.7 72.7 62.3 50.7

FLCert ÃSR 49.6 39.7 27.7 34.6 48.7 46.7
¨ASR 95.2 57.9 97.1 86.7 99.2 88.3

FLAME ÃSR 38.0 26.2 34.7 35.7 28.1 51.0
¨ASR 71.1 43.4 99.2 86.1 59.8 56.1

Fools ÃSR 54.2 50.3 57.0 43.7 35.5 35.6
Gold ¨ASR 98.9 68.5 99.6 95.2 100 98.5

Multi-Krum ÃSR 60.6 45.4 31.7 28.7 49.7 36.1
¨ASR 99.9 63.6 99.7 92.0 100 98.7

Model Updates, with the latter one playing a critical role in producing a high ¨ASR.

A general hypothesis made by the state-of-the-art defenses against backdoor attacks in FL is that malicious clients’ model
updates have a distinct divergence from benign clients’ model updates. However, as indicated by the results in Table 9,
DPOTL0

effectively conceals the model updates from malicious clients amidst those of benign clients, eluding detection
and filtering by state-of-the-art defenses. Consequently, defenses formulated based on this broad hypothesis will inherently
struggle to defend against DPOTL0 attacks.

G. Evaluation of DPOTL0 attack against Flip (Zhang et al., 2023)
Flip (Zhang et al., 2023) is a client-side defense strategy where benign clients perform trigger inversion and adversarial
training using their local data to recover the global model from backdoors. In this section, we evaluate the effectiveness
of the DPOTL0

attack against the Flip defense. We implemented the DPOTL0
attack by modifying the data preparation

approach in Flip’s open-source project, replacing it with the method used in this work, and injecting our data-poisoning
algorithms into a subset of clients. Additionally, as DPOTL0

is a pure data-poisoning attack, we removed any additional
steps in their project specified to malicious clients but not existed in benign clients’ training, to ensure consistency between
malicious clients and benign clients in FL training. We selected Fashion MNIST as the main-task dataset for our evaluation
and directly adopted Flip’s default experiment settings provided in their project - the total number of clients was 100 and 4%
of them were malicious clients; the aggregation rule was set to FedAvg; the global model’s parameters were initialized by a
pre-trained state. The size of DPOTL0

trigger was set to 64, consistent with our default attacking settings.

We compared the performance of the DPOTL0
attack under two attack patterns provided by Flip’s project: 1) Single shot:

Each of the 4 malicious clients conducts a one-time attack at the beginning of training. 2) Continuous: All 4 malicious
clients continuously execute the attack algorithms in every round during training.

Figure 6 shows the performance of the DPOTL0
attack on an FL system using Flip as its defense, measured by the

Attack Success Rate (ASR). In the single-shot attack pattern, DPOTL0
maintains a stable ASR of around 15% across all

training rounds, exceeding the random guess accuracy of 10% for the 10-class dataset. In the continuous attack pattern,
DPOTL0

achieves a significant ASR, peaking at 80.03% during training and stabilizing around 40%, which is higher than
the single-shot pattern. These results indicate that Flip is vulnerable to optimized triggers with varying appearances across
different rounds, because recovering from backdoors is an after-effect strategy which is unable to stop new and distinct
backdoors from injecting into the model.

Figure 7 illustrates the global model’s performance on the main task data when using Flip as a defense while under DPOTL0
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attack. We observed that employing Flip reduces the global model’s main-task performance compared to not using it. In
our baseline experiment on Fashion MNIST, with the same data distribution and aggregation rule (FedAvg), the model
achieved an 86.7% MA. However, Flip’s global model achieved only 82.8% MA at its best by the end, even with pre-trained
model initialization. Additionally, under continuous attack by the DPOTL0

trigger, the global model’s MA further declined
compared to the less frequent attack pattern. This raises concerns about Flip’s ability to maintain stable and normal
performance on the main-task while effectively defending against attacks.

In summary, Flip represents an early effort to explore client-side defenses that do not rely on analyzing clients’ model
updates. While it demonstrates better defense effectiveness against DPOTL0

compared to server-side defenses, concerns
about its potential impact on main-task convergence warrant further investigation.
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Figure 6. Global model’s Attack Success Rate under DPOTL0

attack when employed Flip as defense strategy. (Fashion MNIST)
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Figure 7. Global model’s Main-task Accuracy under DPOTL0

attack when employed Flip as defense strategy. (Fashion MNIST)

H. Evaluation of DPOTL0 attack against FRL (Mozaffari et al., 2023)
FRL (Mozaffari et al., 2023) is a defense strategy where the server sparsifies the value space of model updates, allowing
clients to vote on the most effective model updates based on their local data. The server then aggregates only the accepted
votes while rejecting outliers to construct the global model. In this section, we evaluate the effectiveness of the DPOTL0

attack against the FRL defense. Similar to the experiment on Flip, we implemented our attack on FRL’s open-source project
by injecting our data-poisoning algorithms into a portion of clients’ execution and removing any inconsistent steps that
distinguished malicious clients from benign ones during training. We used FRL’s default settings, in which only 2% of
clients were malicious, and tested our attack on the CIFAR10 dataset as the main training task.

Table 10 presents the performance results of the DPOTL0
attack on an FL system employing FRL as the defense method.

The ASR of DPOTL0 (92.5%) is significantly higher than that of other backdoor attack approaches tested and discussed in
FRL’s paper. This indicates that FRL, which relies on analyzing clients’ model updates, is vulnerable to our attack. The
evaluation results also demonstrate that the DPOTL0

attack is more advanced than backdoor attacks with static objectives
when targeting the FRL defense strategy.

Table 10. Comparison results on CIFAR10.
Attacks ASR

Semantic backdoor attacks 49.2
Artificial backdoor attacks 0

Edge-Case backdoor attacks 64.6
DPOTL0 backdoor attacks 92.5

I. Evaluation of DPOTL0 attack against BackdoorIndicator (Li & Dai, 2024)
We conducted experiments with different learning rates to demonstrate DPOTL0’s attack effectiveness against Back-
doorIndicator, comparing it to Fixed pixel-pattern Triggers (FT).
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Table 11. Comparison of DPOTL0 and FT’s ASR against BackdoorIndicator.
Learning Rate 0.01 0.025 0.05

Fixed pixel-pattern (Final ASR) 10.7 23.3 26.3
DPOT (Final ASR) 100 99.9 99.9
DPOT (Avg ASR) 70.5 89.6 91.2

As shown in the table above, the DPOTL0 trigger maintains a significant Final ASR (> 50%) against BackdoorIndicator
across different learning rates and outperforms FT. We observe that BackdoorIndicator’s defense effectiveness improves
with smaller learning rates, consistent with the results in its original paper.

J. Trigger size selection
We determined the size of the DPOTL0

trigger for each FL task by balancing its subtlety with achieving an effective ASR.
A trigger’s subtlety was evaluated by measuring the accuracy drop it caused when an un-attacked model predicted poisoned
images into their original benign labels.

An un-attacked model with the same architecture as the victim FL system’s model was used to assess the accuracy drop.
The results for different datasets are presented in Table 12.

Table 12. Impact of DPOTL0 trigger size on un-attacked models’ accuracy
Trigger size 0 25 64 100

Fashion-MNIST Clean label acc 85.76 79.32 76.07 70.53
Drop (%) 0 7.5 11.30 17.76

FEMNIST Clean label acc 81.24 68.11 45.12 28.39
Drop (%) 0 16.16 44.46 65.05

CIFAR10 Clean label acc 70.81 52.98 35.90 25.06
Drop (%) 0 25.18 49.30 64.61

Tiny-ImageNet Clean label acc 43.44 42.32 35.89 29.53
Drop (%) 0 2.58 17.38 32.02

- Benign acc: accuracy of poisoned data being predicted to its original bengin label.

- Drop (%): Benign acc drop compared to when testing clean data (trigger size is 0) on the same un-attacked model.

We established a 30% upper limit for the acceptable accuracy drop and a minimum final ASR effectiveness threshold of
50%. The smallest trigger size meeting both criteria was chosen. Notably, Table 12 reveals that the sensitivity of accuracy
drop to trigger sizes varies across datasets and model architectures.

K. Visualization of Triggers
K.1. FT, DFT, and DPOTL0

triggers on Tiny ImageNet images

We displayed FT, DFT, and DPOTL0 triggers on images from the Tiny ImageNet dataset in Figures 8, 9, and 10.

K.2. DPOTL0 triggers on images from different datasets.

We displayed DPOTL0
triggers generated for different datasets in Figure 11.

K.3. Trigger evolution during training

In Figure 14 and Figure 15, we demonstrated how DPOTL0 trigger changes during the FL training.

In Figure 14, we showed one screenshot of the trigger on a blank background in the same size of the cifar10’s figure for every
ten global rounds. These trigger screenshots were collected during a DPOTL0 attacking experiment that trains ResNet18 as
the global model on the CIFAR-10 dataset, with Trimmed Mean used as the aggregation rule. Figure 12 displays the MA
and ASR of the global model over 150 global rounds in this experiment.

Similarly, in Figure 15 we showed one screenshot of the trigger on a blank background in the same size of the Tiny
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(a) Training Data (b) Training Data (c) Test Data

Figure 8. FT trigger on Tiny ImageNet data. Training Data 8a and 8b are from different malicious clients. Test Data 8c is used to test ASR.

(a) Training Data (b) Training Data (c) Test Data

Figure 9. DFT trigger on Tiny ImageNet data. Training Data 9a and 9b are from different malicious clients. Test Data 9c is used to test
ASR.

(a) Training Data (b) Training Data (c) Test Data

Figure 10. DPOTL0 trigger on Tiny ImageNet data. Training Data 10a and 10b are from different malicious clients. Test Data 10c is
used to test ASR.
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Fashion MNIST FEMNIST CIFAR10 Tiny ImageNet

Figure 11. DPOTL0 triggers on images from different datasets.

ImageNet’s figure for every ten global rounds. These trigger screenshots were collected during a DPOTL0
attacking

experiment that trains VGG11 as the global model on the Tiny ImageNet dataset, with Trimmed Mean used as the aggregation
rule. Figure 13 displays the MA and ASR of the global model over 100 global rounds in this experiment.

Figures 14 and 15 show that the DPOTL0
trigger evolves gradually and coherently over rounds, reflecting its dependency

on the global model- the trigger is optimized based on the global model, and the global model is influenced by malicious
updates tied to the trigger. As the global model evolves, the DPOTL0

trigger follows a similar consistent pattern.
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Figure 12. Global model’s accuracy in experiment of get-
ting trigger screenshots in Figure 14. (CIFAR10, ResNet18)
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Figure 13. Global model’s accuracy in experiment of get-
ting trigger screenshots in Figure 15. (Tiny ImageNet,
VGG11)

L. Impact of Malicious Client Ratio (MCR)
In this section, we evaluated the impact of different Malicious Client Ratios (MCR) on the attacking performance of
DPOTL0 attack. We assumed that the number of malicious clients in the FL system should be kept small (≤ 30%) for
practical reasons. We varied the MCR across four different settings (0.05, 0.1, 0.2, and 0.3) while keeping other settings
consistent with those in Table 7. We experimented over 10 different defenses on the learning tasks of the CIFAR10 datasets
and compare DPOTL0

’s results with FT and DFT.

Tables 13 presents the evaluation results of attack effectiveness. DPOTL0
exhibited a dominant advantage over FT and

DFT when the MCR is small (0.05 and 0.1). However, this advantage diminished with increasing MCR, indicating that
when a sufficient number of malicious clients present in FL, even FT and DFT can achieve respectable ASR against certain
defense strategies. In most cases, the ASR for all attacks continued to rise as the MCR increased, with the exception
of FLAME. Results obtained with FLAME indicate that the number of malicious clients did not significantly impact its
defense effectiveness. Table 14 presents the Main-task Accuracy results for each experiment considered in this section.
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(a) Round 10 (b) Round 20 (c) Round 30 (d) Round 40 (e) Round 50

(f) Round 60 (g) Round 70 (h) Round 80 (i) Round 90 (j) Round 100

(k) Round 110 (l) Round 120 (m) Round 130 (n) Round 140 (o) Round 150

Figure 14. (CIFAR10, ResNet18) DPOTL0 triggers on different rounds.

(a) Round 10 (b) Round 20 (c) Round 30 (d) Round 40 (e) Round 50

(f) Round 60 (g) Round 70 (h) Round 80 (i) Round 90 (j) Round 100

Figure 15. (Tiny ImageNet, VGG11) DPOTL0 triggers on different rounds.
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Table 13. The attack effectiveness under different MCR(CIFAR10).
Final ASR Average ASR

MCR 0.05 0.1 0.2 0.3 0.05 0.1 0.2 0.3
Ours FT DFT Ours FT DFT Ours FT DFT Ours FT DFT Ours FT DFT Ours FT DFT Ours FT DFT Ours FT DFT

FedAvg 100 100 93 100 100 100 100 100 100 100 100 100 99 88 50 99 96 88 99 99 92 99 100 97
Median 100 81 72 100 100 97 100 100 100 100 100 100 96 47 42 97 79 63 99 97 82 99 98 93

Trimmed Mean 100 95 38 100 100 99 100 100 100 100 100 100 89 59 23 98 82 69 99 94 85 99 99 92
RobustLR 100 100 100 100 100 100 100 100 100 100 100 100 99 94 87 99 98 94 99 99 98 99 99 99

RFA 100 100 98 100 100 100 100 100 100 100 100 100 98 81 55 99 95 90 99 99 97 99 99 98
FLAIR 62 15 10 58 25 9 67 27 22 82 33 40 51 14 10 64 24 9 68 24 16 84 42 30
FLCert 99 93 34 100 100 95 100 100 100 100 100 100 88 60 21 98 87 60 98 94 83 99 99 91

FLAME 60 19 17 52 18 51 50 16 16 55 19 16 56 18 14 66 19 34 53 19 16 70 23 43
FoolsGold 100 100 94 100 100 100 100 100 100 100 100 100 98 88 53 99 97 87 99 99 95 99 99 98

Multi-Krum 100 100 100 100 100 100 100 100 100 100 100 100 99 99 83 99 100 98 98 100 99 99 100 100

Table 14. The Main-task Accuracy (MA) under different MCR (CIFAR10).
MCR 0.05 0.1 0.2 0.3

None Ours FT DFT Ours FT DFT Ours FT DFT Ours FT DFT
FedAvg 70.3 70.66 70.37 71.37 70.03 71.04 70.13 69.9 70.39 71.18 70.25 70.69 70.24
Median 70.21 69.06 69.76 69.71 69.32 69.17 70.12 68.23 69.05 68.87 68.49 68.47 67.82

Trimmed Mean 69.43 70.42 70.24 70.84 69.9 69.17 69.78 69.33 69.19 69.8 69.23 68.83 68.02
RobustLR 70.35 70.10 70.35 70.48 70.58 70.42 69.90 70.31 70.56 70.43 70.05 69.11 69.22

RFA 70.42 70.69 70.27 70.77 70.35 70.44 70.16 70.72 70.33 69.56 70.09 69.72 69.37
FLAIR 70.25 70.62 71.04 70.42 69.80 71.45 70.89 71.85 71.20 71.16 71.26 69.74 70.99
FLCert 69.6 69.95 69.76 70.42 69.44 69.44 69.45 69.28 69.25 69.73 68.54 69.06 68.24
FLAME 70.14 70.28 70.93 70.85 69.62 70.87 71.01 70.71 70.4 70.58 69.19 71.45 70.52

FoolsGold 70.42 71.02 71.19 71.68 70.71 71.32 71.27 70.45 70.38 70.82 70.12 69.97 69.97
Multi-Krum 61.38 62.98 63.16 60.80 61.44 62.89 62.09 59.38 61.26 63.70 60.28 64.02 62.96

All MA results for different attacks remain similar to the baseline MA, indicating the main-task convergence capability of
pixel-pattern triggers.

M. Impact of Trigger Size
Trigger Size, determining how many pixels in an image we can alter, is an important parameter for L0-norm-bounded
triggers. In this section, we assessed the impact of different trigger sizes on the performance of different L0-norm-bounded
triggers. We explored trigger sizes across four different settings (9, 25, 49, and 100) while maintaining other settings in
accordance with those outlined in Table 7.

Tables 15 shows that DPOTL0
maintained a significant advantage in ASR over FT and DFT across various trigger sizes,

ranging from small to large. According to the results, we found that FT and DFT did not benefit from larger trigger sizes in
achieving higher ASR when encountering with some defenses such as FLAIR and FLAME. A possible explanation is that
FT or DFT triggers in larger size can not cause smaller divergence between malicious and benign model updates, leaving
malicious ones still susceptible to detection and filtering by defense mechanisms. In contrast, DPOTL0 demonstrated a
continuous improvement in ASR as the trigger size increased. Table 16 presents the Main-task Accuracy results for each
experiment considered in this section. Results in it indicate all backdoor attacks achieved their main-task convergence goals
during attacking.

Table 15. The attack effectiveness under different tirgger sizes (CIFAR10).
Final ASR Average ASR

Trigger Size 9 25 49 100 9 25 49 100
Ours FT DFT Ours FT DFT Ours FT DFT Ours FT DFT Ours FT DFT Ours FT DFT Ours FT DFT Ours FT DFT

FedAvg 100 94 49 100 100 93 100 100 91 100 100 77 95 60 28 99 88 50 99 90 59 99 93 52
Median 97 23 12 100 81 72 100 95 25 100 99 46 66 21 12 96 47 42 98 66 17 99 82 29

Trimmed Mean 98 51 14 100 95 38 100 99 43 100 100 74 71 29 13 89 59 23 99 74 27 99 79 44
RobustLR 100 100 100 100 100 100 100 100 98 100 100 99 95 91 69 99 94 87 99 94 77 99 95 82

RFA 100 100 99 100 100 98 100 100 100 100 100 98 93 79 56 98 81 55 99 81 71 99 90 73
FLAIR 27 14 14 62 15 10 89 22 15 99 24 14 24 14 13 51 14 10 84 22 15 98 16 13
FLCert 99 38 14 99 93 34 100 88 51 100 100 49 78 26 13 88 60 21 99 59 23 99 78 33

FLAME 21 18 12 60 19 17 100 12 11 100 33 31 35 17 12 56 18 14 84 17 11 90 31 24
FoolsGold 100 100 43 100 100 94 100 100 98 100 100 81 93 72 23 98 88 53 99 94 69 99 94 55

Multi-Krum 100 100 15 100 100 100 99 100 100 100 100 100 99 99 11 99 99 83 99 99 95 99 99 97
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Table 16. The Main-task Accuracy (MA) under different trigger sizes. (CIFAR10).
Trigger Size 9 25 49 100

None Ours FT DFT Ours FT DFT Ours FT DFT Ours FT DFT
FedAvg 70.3 70.88 70.72 71.25 70.66 70.37 71.37 70.77 71.35 70.94 69.92 70.71 71.15
Median 70.21 68.31 70.04 68.69 69.06 69.76 69.71 69.95 70.54 70.56 69.88 70.30 70.86

Trimmed Mean 69.43 69.75 70.13 70.19 70.42 70.24 70.84 69.42 70.17 69.79 69.67 70.26 70.68
RobustLR 70.35 70.48 70.95 69.48 70.10 70.35 70.48 70.79 70.08 70.27 70.39 69.73 69.86

RFA 70.42 70.45 70.16 71.00 70.69 70.27 70.77 70.56 70.19 70.62 70.52 69.22 70.77
FLAIR 70.25 70.79 70.67 70.58 70.62 71.04 70.42 70.84 69.96 71.03 71.17 70.65 70.28
FLCert 69.6 69.88 69.64 69.87 69.95 69.76 70.42 67.77 69.83 70.08 68.81 70.81 70.41
FLAME 70.14 70.07 71.24 70.19 70.28 70.93 70.85 69.87 71.20 70.68 67.24 71.06 70.75

FoolsGold 70.42 70.4 72.1 70.09 71.02 71.19 71.68 70.66 70.75 71.38 69.84 71.06 71.64
Multi-Krum 61.38 62.86 64.65 58.90 62.98 63.16 60.80 58.23 60.16 64.04 63.03 61.64 63.33

N. Impact of Data Poison Rate (DPR)

Table 17. Final ASR under different DPR.
Data Poison Rate 0.3 0.5 0.8

Ours FT DFT Ours FT DFT Ours FT DFT
Fedavg 100.0 100.0 99.0 100.0 100.0 92.5 100.0 100.0 99.8
Median 100.0 97.0 61.0 100.0 81.3 72.0 100.0 96.3 35.9

Trimmed Mean 99.7 97.3 67.6 100.0 94.8 38.3 99.9 95.5 45.8
RobustLR 100.0 100.0 99.5 100.0 100.0 100.0 100.0 100.0 99.7

RFA 98.9 100.0 94.0 100.0 100.0 98.2 100.0 100.0 79.3
FLAIR 54.9 17.6 20.2 62.3 15.1 9.7 40.1 14.2 14.9
FLCert 99.4 96.7 63.5 99.2 92.6 33.7 99.9 89.1 34.8
FLAME 99.9 26.6 15.4 59.8 19.0 16.8 24.3 12.1 13.2

FoolsGold 100.0 100.0 98.8 100.0 100.0 94.1 100.0 100.0 98.3
Multi-Krum 95.2 100.0 77.3 100.0 100.0 99.9 100.0 100.0 100.0

Table 18. Average ASR under different DPR.
Data Poison Rate 0.3 0.5 0.8

Ours FT DFT Ours FT DFT Ours FT DFT
Fedavg 97.3 92.5 75.5 98.5 88.1 50.2 98.3 93.1 81.2
Median 93.4 68.2 34.2 96.1 46.6 41.8 96.4 59.2 22.7

Trimmed Mean 88.0 68.5 34.2 88.6 59.4 22.6 95.2 65.6 29.6
RobustLR 97.9 94.7 76.7 98.6 94.4 87.4 98.2 92.2 78.3

RFA 87.0 82.9 53.5 97.8 81.0 55.3 97.9 81.5 45.7
FLAIR 50.1 16.2 15.4 50.7 13.6 10.1 45.3 14.1 13.8
FLCert 93.8 65.7 33.1 88.3 59.5 21.3 91.4 61.8 23.4

FLAME 84.3 51.6 28.4 56.0 18.2 14.4 34.5 43.1 40.4
FoolsGold 97.9 91.6 72.8 98.5 88.4 53.0 97.7 89.6 71.9

Multi-Krum 92.8 98.3 56.1 98.7 98.7 82.8 99.6 98.7 99.1

Table 19. Main-task Accuracy under different DPR.
Data Poison Rate 0.3 0.5 0.8

Ours FT DFT Ours FT DFT Ours FT DFT
Fedavg 71.2 70.3 70.2 70.7 70.4 71.4 69.3 70.3 70.1
Median 69.3 69.8 70.0 69.1 69.8 69.7 69.5 69.0 69.5

Trimmed Mean 69.9 69.8 69.3 70.4 70.2 70.8 68.6 68.9 69.6
RobustLR 70.4 70.3 70.7 70.4 70.4 70.4 70.0 70.7 71.1

RFA 70.4 70.6 70.5 70.7 70.3 70.8 70.6 70.5 70.0
FLAIR 69.9 69.2 69.2 70.6 71.0 70.4 69.8 68.5 69.7
FLCert 70.7 70.1 68.9 70.0 69.8 70.4 69.1 67.9 69.9

FLAME 69.3 70.5 70.7 70.3 70.9 70.9 68.6 68.5 69.3
FoolsGold 70.5 70.7 71.4 71.0 71.2 71.7 70.1 70.0 70.4

Multi-Krum 62.8 60.1 59.0 62.9 63.2 60.8 60.0 61.1 61.1

We implemented experiments to study the impact of different DPR on the performance of DPOT, FT, and DFT attacks.
We evaluated Final ASR and Avg ASR to compare attack effectiveness, and Main-task Accuracy to assess the main-task
convergence. Other attack and FL training settings are consistent with those in Table 7. The results are shown in the
Tables 17, 18, and 19.

In general, DPOTL0 shows better attack effectiveness than FT and DFT across different DPR values. An interesting
observation is that the best attack effectiveness occurs at different DPR values for various defenses and attacks. One possible
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explanation for this is that a smaller DPR weakens the impact of poisoned data on model updates, reducing the divergence
between malicious and benign updates, which helps bypass defenses. On the other hand, a larger DPR increases the impact
on model updates, speeding up the attack’s effectiveness but also increasing the divergence, making malicious updates
more detectable and filterable by defenses. Therefore, the attack effectiveness of different attacks against different defenses
depends on how stealthy the attack can make the model updates at that DPR and how effectively the defense can mitigate
those malicious updates at the same DPR.

O. Impact of Non-iid degree
We implemented experiments to study the impact of different Non-iid degrees on the performance of DPOTL0

, FT, and
DFT attacks. We evaluated Final ASR and Avg ASR to compare attack effectiveness, and Main-task Accuracy to assess
main-task convergence. Other attack and FL training settings are consistent with those in Table 7. The results are shown in
Tables 20, 21, and 22.

It can be observed from the last table that different Non-iid degrees result in different main-task accuracies. A smaller
Non-iid degree indicates that the data distribution is closer to an iid distribution, with a Non-iid degree of 0 representing an
exact iid distribution. The DPOTL0 attack generally exhibits better attack effectiveness than FT and DFT across different
Non-iid degree settings.

Table 20. Final ASR results in different Non-iid degrees.
Non-iid degree 0 0.2 0.5 0.8

Ours FT DFT Ours FT DFT Ours FT DFT Ours FT DFT
Fedavg 100.0 100.0 99.7 100.0 100.0 99.8 100.0 100.0 92.5 100.0 100.0 99.3
Median 100.0 99.4 72.2 100.0 99.0 66.8 100.0 81.3 72.0 99.3 99.2 33.0

Trimmed Mean 100.0 99.4 73.6 100.0 99.8 86.8 100.0 94.8 38.3 100.0 96.0 65.8
RobustLR 100.0 100.0 99.8 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 99.2

RFA 100.0 100.0 97.0 100.0 99.8 95.5 100.0 100.0 98.2 100.0 100.0 98.5
FLAIR 49.7 21.2 12.9 65.4 29.3 15.8 62.3 15.1 9.7 19.9 12.6 5.1
FLCert 99.9 99.7 77.1 100.0 96.7 54.1 99.2 92.6 33.7 100.0 92.1 19.4
FLAME 46.5 15.7 15.1 57.6 16.7 16.2 59.8 19.0 16.8 100.0 8.5 26.5

FoolsGold 100.0 100.0 99.9 100.0 100.0 99.6 100.0 100.0 94.1 100.0 100.0 99.9
Multi-Krum 100.0 100.0 95.2 100.0 100.0 18.9 100.0 100.0 99.9 100.0 100.0 100.0

Table 21. Average ASR results in different Non-iid degrees.
Non-iid degree 0 0.2 0.5 0.8

Ours FT DFT Ours FT DFT Ours FT DFT Ours FT DFT
Fedavg 98.1 94.6 81.5 97.9 90.8 80.9 98.5 88.1 50.2 98.3 94.2 75.5
Median 95.9 73.0 39.2 95.3 79.5 38.1 96.1 46.6 41.8 89.0 59.6 19.6

Trimmed Mean 95.3 75.6 42.6 96.7 80.5 53.7 88.6 59.4 22.6 93.3 49.4 33.6
RobustLR 98.5 95.0 79.5 98.6 92.9 81.7 98.6 94.4 87.4 98.1 95.1 71.0

RFA 95.8 86.6 61.4 97.5 87.9 61.5 97.8 81.0 55.3 98.0 85.8 58.6
FLAIR 56.7 27.7 12.1 64.9 28.2 14.5 50.7 13.6 10.1 21.0 9.3 5.4
FLCert 96.7 71.0 40.4 95.0 74.7 31.7 88.3 59.5 21.3 96.2 52.2 13.7
FLAME 63.0 38.8 26.0 56.1 28.3 21.4 56.0 18.2 14.4 73.8 21.1 37.8

FoolsGold 98.4 93.9 81.4 97.8 92.6 81.0 98.5 88.4 53.0 98.7 98.0 80.0
Multi-Krum 91.4 98.2 58.4 98.6 86.6 15.1 98.7 98.7 82.8 96.2 98.7 70.4

Table 22. Main-task Accuracy results in different Non-iid degrees.
Non-iid degree 0 0.2 0.5 0.8

Ours FT DFT Ours FT DFT Ours FT DFT Ours FT DFT
Fedavg 74.5 74.5 74.9 74.4 74.3 75.0 70.7 70.4 71.4 55.9 55.5 56.2
Median 74.5 75.5 74.3 73.8 74.3 74.9 69.1 69.8 69.7 53.4 52.9 54.5

Trimmed Mean 75.0 74.3 74.5 74.4 75.2 74.3 70.4 70.2 70.8 52.7 53.5 54.5
RobustLR 75.3 75.1 75.1 75.3 74.4 74.4 70.4 70.4 70.4 55.2 55.8 55.4

RFA 74.3 74.8 75.1 75.0 75.8 74.4 70.7 70.3 70.8 56.4 56.2 55.2
FLAIR 73.7 73.4 73.6 73.9 72.7 73.1 70.6 71.0 70.4 55.3 52.5 52.1
FLCert 74.6 74.0 74.7 74.1 74.8 74.0 70.0 69.8 70.4 53.9 53.5 53.3
FLAME 73.2 72.1 73.0 72.9 73.5 73.5 70.3 70.9 70.9 56.1 56.2 57.5

FoolsGold 74.1 74.5 74.5 74.6 74.3 74.5 71.0 71.2 71.7 57.0 55.1 55.1
Multi-Krum 73.8 73.6 73.1 73.4 73.2 73.0 62.9 63.2 60.8 38.7 41.0 38.4

26



1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

Concealing Backdoored model updates in Federated Learning by Data Poisoning with L0-norm bounded Optimized Triggers

P. Different attacking patterns
In this section we evaluated DPOTL0

attack’s extensive capability in attacking in different frequency and starting at different
rounds. The results are shown in Table 23.

Table 23. DPOTL0 ’s attack effectiveness against FLAIR and FLAME across different start and interval rounds.
Start round Interval round FLAIR FLAME

1 1 62.3 59.8
1 5 52.9 53.8
1 10 72.0 57.8
50 1 52.1 39.2
50 10 76.5 48.5

100 1 54.2 50.3
100 10 69.2 54.5

- Start round: The round that DPOTL0 starts attacking.

- Interval round: The number of rounds beween two adjacent DPOTL0
attacks.

In conclusion, DPOTL0
attack shows better attack effectiveness in lower attacking frequency when against specific defense

strategy like FLAIR. FLAIR penalizes clients that are frequently flagged as suspicious by lowering their aggregation weight,
reducing their impact on the global model. Malicious clients can regain their normal influence by pausing malicious
behavior, allowing the penalty score to gradually decrease. For other defenses that do not use similar strategy (FLAME),
the effectiveness of the DPOTL0 attack shows insignificant variation across different start rounds and interval rounds. A
more successful attack effectiveness for FLAME however can be achieved by decreasing the Data Poison Rate as shown in
Table 17.

Q. Combine the scaling-based model poisoning techniques with DPOTL0

(a) Final ASR
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Figure 16. Comparison results of different attacks when employing the scaling-based model poisoning technique to undermine FLAME
defense (implemented on the FEMNIST dataset).

In this section, we removed the TEEs assumption and conducted experiments to examine the effects of employing scaling-
based model poisoning techniques on the attack performance of DPOTL0

, FT, and DFT. By incorporating the model
poisoning technique, our implementation of FT and DFT pipelines aligns more closely with the attack strategies introduced
in state-of-the-art backdoor attacks on FL (Bagdasaryan et al., 2020; Xie et al., 2020).

Our experiments were designed within an FL system utilizing FLAME as its aggregation rule and FEMNIST dataset as its
main training task. We adjusted the scaling factors, used to scale malicious clients’ model updates, to be 0.5, 1, 3, 9, 33, and
129 respectively. Figures 16a and 16b illustrate the results of Final ASR and Avg ASR of various attacks in response to
different scaling factors.

We observed that when the scaling factor is 1, all DPOTL0
, FT, and DFT pipelines exhibit comparable and high ASR

against FLAME defense. However, as the scaling factor increases, FLAME demonstrates robust defense performance,
significantly reducing the ASR of every attack pipeline. Despite this mitigation, DPOTL0 shows greater resilience in
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attack effectiveness compared to FT and DFT. The optimized trigger generated by our algorithms retains intrinsic attack
effects on the global model even without successful data-poisoning techniques. When the scaling factor is reduced to
0.5, malicious model updates are expected to be stealthier, yet their contributions to the aggregated global model are also
mitigated, resulting in reduced ASR for all attack pipelines compared to when the scaling factor is 1.
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