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ABSTRACT

Fine-tuning large language models (LLMs) is prohibitively expensive, prompt-
ing the development of various parameter-efficient fine-tuning (PEFT) methods.
These methods primarily focus on fine-tuning small, additional modules known
as adapters, which account for only a small fraction of the total LLM parameters.
One such method, low-rank adaptation (LoRA), has shown notable parameter
efficiency while maintaining performance comparable to full fine-tuning. However,
classical LoRA may still involve tuning more parameters than necessary given the
intrinsic rank of pre-trained weights, as highlighted by prior work (Aghajanyan
et al., 2020). Recent variants of LoRA aim to enhance fine-tuning performance, but
they overlook the layer-wise redundancies that can be leveraged for more efficient
weight sharing. In this work, we introduce SHARELORA, a novel approach that
further enhances parameter efficiency during LLM fine-tuning by leveraging redun-
dancies in pre-trained model weights to share LoRA modules, thereby significantly
reducing the number of trainable parameters. Specifically, SHARELORA auto-
matically identifies redundancies in the pre-trained weights and determines which
LoRA adapters can share parameters. This is achieved by measuring the similarity
between representations to assess information redundancy and using a greedy al-
gorithm to maximize parameter sharing. We conducted extensive evaluations on
the LLMs of the LLaMA family across benchmark tasks. Notably, SHARELORA
achieves better parameter efficiency, with up to a 23% reduction in the number of
fine-tuned parameters while delivering performance comparable to or better than
existing PEFT methods.

1 INTRODUCTION

Large language models (LLMs), e.g., GPT-4 and LLaMA2, are at the forefront of advances in the field
of machine learning (ML). These large models are pre-trained on vast datasets (e.g., images or text
corpora) and are subsequently fine-tuned for specialized tasks, demonstrating proficiency in domains
such as natural language, image processing, and fundamental scientific discoveries (Bommasani
et al., 2021; Touvron et al., 2023a; Singhal et al., 2022; 2023). These models, often referred as
“base model”, are pre-trained solely to predict the next token to generate from their entire vocabulary
space (Touvron et al., 2023a; Penedo et al., 2023; Team, 2023). To employ the base model for
real applications, e.g., building chatbots, then often need further fine-tuning (e.g., on multi-turn
human-human or human-chatbot conversations) to follow specific human instructions or align with
human preferences (Leike et al., 2018; Ziegler et al., 2019; Chung et al., 2022).

Fine-tuning such large-scale LLMs, however, presents a computational challenge due to the massive
number of parameters. For instance, GPU memory must be sufficiently large to handle the fine-tuning
process while marinating a reasonably large batch size. Parameter-Efficient Fine-Tuning (PEFT)
methods have been proposed to tackle this challenge by allowing fine-tuning of only a small subset
of LLM parameters or incorporating small adapter modules on top of the pre-trained model, while
leaving the majority of the base LLM parameters frozen (Houlsby et al., 2019; Hu et al., 2021; Zaken
et al., 2021; Zhang et al., 2023). These methods democratize LLM fine-tuning by making it feasible
on commodity hardware. One popular PEFT method, LoRA, has been shown to effectively reduce
the GPU memory requirement during LLM fine-tuning (Hu et al., 2021). LoRA achieves parameter
efficiency by adding low-rank adapters in parallel with specific LLM parameters, such as the query,
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FT Method GSM8K ↑ ARC-Challenge ↑ WinoGrande ↑ Hellaswag ↑
LoRA(r = 12) 37.98 48.21 64.25 51.96
Naive-shared LoRA 37.23 47.95 62.83 48.38

Table 1: Accuracy comparison of LoRA and a naive-share LoRA strategy.

key, and value parameter weights in multi-head attention. During fine-tuning, LoRA LoRA optimizes
only the low-rank adapters, while the LLM parameters remain unchanged.

Although LoRA is efficient, it treats all layers uniformly, lacking finer control over which layers
are most important or exhibit similar behavior. Recent improvements, such as AdaLoRA (Zhang
et al., 2023), which dynamically adjusts the rank based on layer importance, DoRA (Liu et al.,
2024a), which decouples weights into direction and magnitude for more nuanced fine-tuning, and
LoRA+ (Hayou et al., 2024), which independently adjusts the learning rates of LoRA components,
have aimed to enhance LoRA’s efficiency. However, these approaches overlook the redundancy
present in pre-trained foundation models, where certain layers may exhibit similar behavior and can
potentially share parameters, further reducing memory requirements.

We observed that sharing the LoRA module’s weights across layers does not significantly degrade
performance, while effectively reducing the number of trainable parameters. Specifically, we exper-
imented by sharing the LoRA weights between odd-numbered and even-numbered layers, which
halved the number of trainable parameters. In this naive approach, the weights of even-numbered
layers were directly mirrored to their adjacent odd-numbered layers. Surprisingly, this straightforward
weight-sharing strategy led to only minor performance degradation, as demonstrated in Table 1. This
finding suggests that there is significant potential for further optimization through weight sharing
in LoRA modules. However, determining which layers should share weights remains an ongoing
challenge, largely due to the limited explainability of foundation models (Zhao et al., 2024). The
behavior and interaction of different layers within these models are not yet fully understood, and
there is no consensus on which layers exhibit sufficiently similar representations to justify weight
sharing. This is an active area of research, and more sophisticated methods for identifying redundant
layers could lead to even more efficient weight-sharing strategies in the future.

In foundation models, certain layer representations often exhibit notable similarities. This redundancy
is a result of insufficient training data, which prevents each parameter from learning distinct, unique
features. Consequently, this leads to overlapping or redundant representations across layers. Prior
research has harnessed these redundancies for model compression (Gromov et al., 2024). Building
on this insight, our work leverages this redundancy by sharing LoRA weights across layers with
similar representations during fine-tuning. This approach allows us to slightly increase the LoRA
rank without increasing the overall number of trainable parameters, thereby enhancing fine-tuning
performance.

Our SHARELORA method consists of two main components: (i) computing similarity matrices
between representations of layers and (ii) sharing the LoRA module parameters among redundancy
layers. This method identifies layers with similar representations and shares their weights, reducing
the number of trainable parameters while maintaining model performance. By leveraging layer
similarities, SHARELORA significantly improves finetuning efficiency. We conduct extensive ex-
periments on a wide range of tasks and models to demonstrate the effectiveness of SHARELORA.
Specifically, we evaluate the performance using LLaMA-7B, LLaMA2-7B, and LLaMA3-8B for
natural language commonsense reasoning and LLava-1.5-7B for image-text understanding. The
results show that SHARELORA performs similar or better than LoRA, while only using 80% trainable
parameter.

The summary of our contributions is as follows:

• We propose SHARELORA, a novel parameter-efficient fine-tuning (PEFT) method that
leverages the similarity of layer representations to enable weight sharing, achieving this
without introducing any additional train or inference latency compared to LoRA.

• We develop a greedy algorithm to determine which layers should share the weights of the
LoRA module based on the similarity of their representations.
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• We conduct extensive experiments demonstrating that SHARELORA consistently performs
similar or better LoRA across various tasks, while using less trainable parameters.

2 PRELIMINARY AND MOTIVATION

Parameter Efficient Fine Tuning. A primary research trajectory aimed at reducing the fine-tune
parameters of pretrained FMs is to model the incremental updates of pretrained weights in a parameter-
efficient manner. For example, given a pretrained weight matrix W , diff pruning (Guo et al., 2021)
initializes ∆ as the same dimensions as W and performs magnitude-based pruning on ∆. Diff pruning
characterizes ∆ as the incremental updates of W , and it can improve the parameter efficiency due to
the sparsity of ∆. However, it requires specific hardware support to accelerate the computation of
unstructured sparse matrices. This hardware-specific dependency underscores a crucial consideration
for the practical deployment of such an approach in real-world applications. In addition, it does not
significantly reduce computational cost compared to full fine-tuning (Hu et al., 2021), as every entry
of ∆ needs to be updated and then be pruned.

To tackle those limitations, Hu et al. propose LoRA (Hu et al., 2021), which parameterize ∆ as the
product of two low-rank matrices:

W ′ = W +∆ = W +BA, (1)

where ∆ ∈ Rd1×d2 , B ∈ Rd1×r, and A ∈ Rr×d2 with r ≪ {d1, d2}. As the rank r is much smaller
than the dimension of W (e.g., r = 8 and d1 = d2 = 4096), the number of trainable parameters and
training overhead dramatically decreases.

However, LoRA has its limitations, as it typically applies separate parameters for each B and A
by default. This approach overlooks the significant variation in the redundancy of weight matrices
across different layers and modules during the fine-tuning of pretrained foundation models. We will
demonstrate this issue later. Consequently, LoRA cannot adaptively share the LoRA modules among
the redundancy layers, which could otherwise achieve comparable performance with fewer trainable
parameters.

Weight Sharing. Although PEFT methods can reduce the number of trainable parameters, thereby
decreasing GPU memory footprint during fine-tuning, the number of parameters in LLMs also scales
rapidly, making it increasingly challenging to conduct even PEFT on commodity GPUs. In this
paper, we explore the possibility of combining LoRA with weight sharing, a method that allows
multiple neural network layers to share the same model weights. Weight sharing has been a widely
adopted technique to reduce the number of trainable parameters while maintaining performance and
sometimes helping mitigate overfitting (Press & Wolf, 2017; de Lhoneux et al., 2018; Lan et al., 2020;
Dai et al., 2020; Takase & Kiyono, 2021).
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Figure 1: Cosine similarity among lay-
ers’ representations experimented on
LLaMA2-7B model over the GSM8k
evaluation dataset.

Similarity Across Layers. Our motivation for weight
sharing among LoRAs across layers comes from the obser-
vation that the representations among model layers/blocks
attain high levels of similarity, especially for bottom layer
blocks (as shown in Figure 1). This effect has also been
observed by many prior works (Kornblith et al., 2019; Gro-
mov et al., 2024). This effect is also connected to methods
like layer skipping and mixture of depth for LLMs (Fan
et al., 2024; Elhoushi et al., 2024; Raposo et al., 2024).
Previous research (He et al., 2024) demonstrates that the
distribution of similarity scores remains consistent, even
when the calibration dataset sample size varies. Addition-
ally, prior studies indicate that altering the type of cali-
bration dataset—whether it be pretraining datasets (e.g.,
C4 (Raffel et al., 2020)) or instruction-tuning datasets (e.g.,
, CodeAlpaca-20k, MathInstruct (Xiang Yue, 2023), and
LIMA (Zhou et al., 2024))—has minimal effect on the
similarity score distribution.
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Figure 2: An overview of our proposed AutoLoRA, which computes the cosine similarity between
each layer, and shares the LoRA parameters within redundancy blocks.

3 SHARELORA METHOD

As illustrated in Figure 2, our method comprises two key components: (i) layer similarity computation
and (ii) LoRA sharing.

3.1 THE FORMULATION OF SHARELORA

In this subsection, we present the formulation of SHARELORA as an optimization problem. Specif-
ically, we consider an L-layer LLM. We denote S as the collection of shared sets of LLM layer
indices, e.g., S = {(2, 3), (5, 6, 7), (11, 13)}.
Our objective is to maximize the number of shared LLM layers while ensuring that the similarity
measure between any two layers with shared weights exceeds a predefined threshold, ϵ. This can be
formulated as the following optimization problem:

max
∑
∀s∈S

|s| (2)

s.t. c(xi,xi) ≥ ϵ (3)

where |s| is the number of layers in set s, and S is the collection of sets such that each set s contains
layers with similarity measure (i.e., c(·, ·)) between each pair exceeding the threshold ϵ.

The objective of SHARELORA is to maximize the total number of layers sharing LoRA. The
remaining question is How to find S? We will present our algorithm of SHARELORA in section 3.3.

3.2 SIMILARITY BETWEEN REPRESENTATIONS OF LAYERS

To decide which layer’s LoRA module could be shared with another, we have to compute the angular
distance c(xi,xj) between the representations of layer i and layer j. The similarity of a single
sequence of length T is given by

c(xi,xj) :=
1

π
cos−1

(
x⊤
i xj

∥xi∥∥xj∥

)
, (4)
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where the inner product is over the hidden dimension of the model for the final token T of the
sequence, ∥ · ∥ denotes the ℓ2-norm, and the factor of 1/π is a convention. This distance should then
be summed over a number of examples that is large enough to get a low-fluctuation estimate but
overall should be quite small.

3.3 SIMILARITY-BASED WEIGHT SHARING

The objective of the algorithm is to identify sets of neural network layers that can share LoRA
modules based on the angular distance of their representations. The algorithm employs a greedy
strategy to maximize the size of these shared sets while adhering to a predefined similarity threshold.

First, the algorithm processes the similarity matrix to create an upper triangular matrix, excluding the
diagonal, which represents the pairwise similarities between layers. It then identifies all eligible pairs
of layers (i, j) where the similarity score exceeds the threshold ϵ. Formally, this can be expressed as:
shared_pairs = {(i, j) | c(xi,xj) ≥ ϵ and 0 ≤ i < j < L}.
Next, the algorithm constructs sets of shared layers by iterating through the identified shared pairs. It
maintains a set visited to avoid reprocessing layers. The construction of the shared sets proceeds is
shown in Algorithm 1.

Algorithm 1 Construct Shared Sets
1: Input: Similarity matrix C, threshold ϵ;
2: Output: Collection of shared sets S;
3: Initialize shared_pairs← {(i, j) | c(xi,xj) ≥ ϵ and 0 ≤ i < j < L};
4: Sort shared_pairs by similarity scores;
5: Initialize S ← {}, and initialize visited← set();
6: for all (i, j) in shared_pairs do
7: if i not in visited and j not in visited then
8: if i not in S then
9: Initialize Si ← {i}

10: end if
11: Add j to Si, and add j to visited
12: if All pairs starting with i is done then
13: Add i to visited
14: end if
15: end if
16: end for

The algorithm ensures that layers are grouped into shared sets only if their pairwise similarities
exceed the threshold ϵ, thus maximizing the number of layers that can share the LoRA modules while
maintaining high similarity within each set.

Algorithm 2 SHARELORA
1: Input: Sample Dataset D∗; Train Dataset D; hyper-parameter similarity threshold ϵ.
2: Inference on D∗ and save the representations x(l) for each layer l;
3: Compute the angular distance d(x(lp), x(lq)) between each layer lp and lq;
4: Compute the share set S and update LoRA rank r;
5: Share parameters using S;
6: Finetune weight sharing model W with D.
7: Output: The fine-tuned parameters W ∗.

Furthermore, after sharing layers using the set S , the number of layers with shared parameters will be∑
Si∈S |Si| − |S|. This allows us to optionally expand the original rank r to ⌊ L

L−
∑

Si∈S |Si|+|S|r⌋,
where L is the total number of layers. We summarize the algorithm in Algorithm 2.

5
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Model PEFT Method # Params BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA Avg.

LLaMA-7B

Prefix 10.5M 57.46 50.49 33.62 28.38 64.8 29.84 24.49 26.6 39.46
AdapterH 20.1M 71.19 74.48 45.45 57.24 59.51 56.90 33.70 39.0 54.68
AdapaterP 20.1M 67.65 73.45 44.27 57.04 58.48 57.62 33.87 37.0 53.67
Parallel 448M 73.36 74.54 73.81 57.08 60.22 56.23 35.58 36.8 54.70
LoRA(r = 8) 14.0M 78.53 78.45 46.98 73.41 70.17 70.24 41.21 42.2 62.65
SHARELORA* 12.1M 73.94 79.38 47.08 72.93 68.11 65.99 37.8 43.0 61.03
SHARELORA(ours) 10.8M 77.55 79.65 47.54 73.04 70.96 69.95 40.70 45.4 63.10

LLaMA2-7B LoRA(r = 8) 14.0M 80.64 79.16 47.85 75.18 69.93 69.70 42.06 44.0 63.56
SHARELORA(ours) 11.8 M 80.89 79.22 46.78 74.04 71.27 68.73 41.81 44.0 63.36

LLaMA3-8B LoRA(r = 8) 14.2M 82.17 81.34 49.49 78.38 74.19 76.39 50.77 46.4 67.39
SHARELORA(ours) 11.4M 82.17 81.56 48.77 79.32 73.80 76.85 50.00 44.2 67.07

Table 2: Accuracy with LLaMA model family with various PEFT methods on commonsense
reasoning tasks.

4 EXPERIMENTS

Models and datasets. We implemented SHARELORA to fine-tune LLaMA family LLMs, namely,
LLaMA-7B (Touvron et al., 2023a), LLaMA2-7B (Touvron et al., 2023b) and LLaMA3-8B (Meta,
2024). We follow the settings of LLM-Adapters (Hu et al., 2023), and evaluate the effectiveness
of the several natural language commonsense reasoning task including BoolQ (Clark et al., 2019),
PIQA (Bisk et al., 2019), SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019), Winogrande (Sak-
aguchi et al., 2021), ARC-Easy (Clark et al., 2018), ARC-Challenge, and OBQA (Mihaylov et al.,
2018). Additionally, we implemented SHARELORA to fine-tune LLaVA-1.5-7B (Liu et al., 2023), a
popular vision language foundation model (VLM) and used on image-text pair understanding, and
evaluated on LLaVA-Bench (in-the-wild) evaluation dataset (Liu et al., 2023).

Setup. We use PyTorch (Paszke et al., 2019) to implement all the algorithms. Our fine-tuning
algorithm implementation is based on the publicly available Huggingface Transformers (Wolf et al.,
2019) and LLM-Adapters code base. All the experiments are conducted on NVIDIA A6000 GPUs.

Baselines. We compare SHARELORAwith the following baselines.

• Prompt learning (Prefix): (Li & Liang, 2021) Involves fine-tuning a small set of continuous
task-specific vectors (prefixes) while keeping the large language model parameters frozen to
pre-trained weights.

• Adapter tuning (AdapterH): (Houlsby et al., 2019) Inserts small add-on layers between
the multi-head attention modules and FFN modules of the pre-trained model that can be
fine-tuned for downstream task learning, while keeping the rest of the model parameters
frozen.

• Pfeiffer adapter (AdapterP): (Pfeiffer et al., 2020) Unlike adapter tuning it inserts add-on
layers after FFN modules and LayerNorm modules, allows them to fine-tune and keeps the
rest of the model frozen.

• Parallel adapter (Parallel): (He et al., 2021) Modifies the hidden representations in a
transformer model by inserting additional trainable parameters in parallel to the original
model’s layers.

• LoRA: (Hu et al., 2021) Is the most popular PEFT method that injects trainable low-rank
matrices into transformer layers parallel to the frozen main path, to approximate the weight
updates.

• SHARELORA* is a variation of our SHARELORAmethod, but instead of using similarity
scores to select the set S, it randomly selects adjacent layers for weight sharing.

4.1 EVALUATIONS ON LLMS

We assess the fine-tuning performance of LLaMA-7B, LLaMA2-7B, and LLaMA3-8B using all
baseline methods along with the proposed algorithm. The commonsense reasoning evaluation
includes eight sub-tasks, each with its own predefined training and testing sets. Following the setup
from LLM-Adapters (Hu et al., 2023), we combine the training datasets from all eight tasks to form a
comprehensive training dataset for fine-tuning and performing evaluations on the individual testing
sets for each sub-task.
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Implementation details. All of LLaMA models have 32 hidden layers. Initially, we calculate the
similarity c(xi,xi) between each layer’s representation using 256 randomly sampled C4 validation
dataset (Raffel et al., 2020). We set the similarity threshold ϵ to 0.85 for LLaMA-7B and LLaMA2-7B,
and 0.80 for LLaMA3-8B. Utilizing our similarity-based weight-sharing algorithm, the share set
collection S for LLaMA-7B is {{16, 17}, {18, 19}, {20, 21, 22}, {23, 24, 25, 26, 27}, {28, 29, 30}},
enabling the sharing the LoRA modules of ten similar layers. The share set collection S for
LLaMA2-7B and LLaMA3-8B are {{17, 18}, {19, 20}, {21, 22, 23}, {24, 25, 26, 27}, {28, 29}}
and {{19, 20}, {21, 22}, {23, 24, 25}, {26, 27, 28}} separate. Note that we expand the original
LoRA rank from 8 to 9 for these three models. The hyperparameters for fine-tuning across LLaMA-
7B, LLaMA2-7B, and LLaMA3-8B models are consistent for most settings. A dropout rate of 0.05,
AdamW optimizer, a linear learning rate scheduler, a batch size of 16, and 3 epochs are applied for
all models. The learning rate (LR) is set to 2e-4 for LLaMA-7B and LLaMA2-7B, while it is reduced
to 1e-4 for LLaMA3-8B. The fine-tuning targets the Q, K, V, Down, and Up layers for each model.
The share set collection S for SHARELORA* is randomly generated as {{2, 3}, {4, 5, 6}, {9, 10},
{11, 12, 13}, {14, 15}, {19, 20}, {22, 23}, {29, 30}}.
Table 2 shows experimental results on the eight commonsense reasoning tasks. SHARELORA
achieves similar or better performance across all datasets for all the models. Notably, our proposed
approach saves up to 23% of the trainable parameters yet achieves a 1.5% improvement in performance
with LLaMA-7B, while maintaining similar performance on LLaMA2-7B and LLaMA3-8B.

4.2 EVALUATIONS ON MULTI-MODAL VLMS

LoRA(rank=64) SHARELORA
# Params 159.9M 139.4M

Description 45.57 ± 0.60 45.80 ± 0.40

Conversation 46.87 ± 1.27 54.10 ± 0.00

Reasoning 66.90 ± 0.85 65.37 ± 0.72

All 55.47 ± 0.55 57.00 ± 0.44

Table 3: Instruction-following capability compari-
son between LoRA and SHARELORA (ours). We
conduct three repeated evaluations and report the
average scores. The results are reported in the for-
mat of mean± std.

We now present the results of SHARELORAon
vision-language models. We used the LLaVA-
1.5-7B (Liu et al., 2023), which consists of a
language model, a visual encoder and a projec-
tion layer for feature alignment. Specifically,
the language model and visual encoder were ini-
tialized with Vicuna-1.5-7B (Zheng et al., 2024)
and CLIP ViT-L/336px (Radford et al., 2021),
respectively. In addition, we employed the pre-
trained projection layer1 and directly performed
visual instruction fine-tuning stage. In contrast
to the setup of LLaVA, we chose a subset of
their dataset, i. e. LLaVA-Instruct-80K. It con-
sists of 80k image-instruction pairs filtered out
from LLaVA-Instruct-150K2. We set the rank to
64 and performed instruction tuning for one epoch of the LLM component using SHARELORAand
LoRA, respectively. Note, we keep the feature transformation module trainable for both.

Implementation details. For SHARELORA we compute the similarity between the inputs and
outputs of each layer based on 128 samples, with each sample comprising of visual-text inputs. The
similarity threshold was set to 0.9 and the share set collection S for language model is {{2, 3}, {4, 5},
{6, 7}, {17, 18}, {19, 20}, {21, 22, 23}, {24, 25, 26}, {27, 28, 29}}. The hyperparameters used for
fine-tuning both LoRA and SHARELORAon the vision-language model are as follows. For the
similarity threshold, only SHARELORAutilizes a value of 0.9, while LoRA does not incorporate this
parameter. Both methods share the same rank r = 64, scaling factor α = 128, and a dropout rate of
0.05. The target layers include Q, K, V, O, Up, Down, and Gate for both methods. The training runs
for one epoch with a learning rate of 2e-4, and the learning rate is adjusted using a cosine scheduler.
Both approaches employ the AdamW optimizer, with a batch size of 64 and a warmup ratio of
0.03. These shared hyperparameters ensure consistent conditions for comparing the performance of
LoRA and SHARELORA. We use GPT-4 generated answers as the golden answers. Subsequently,
we employed GPT-4o to evaluate the instruction-following capabilities of the fine-tuned model and
selected the challenging LLaVA-Bench (in-the-wild).

1https://huggingface.co/liuhaotian/llava-v1.5-mlp2x-336px-pretrain-vicuna-7b-v1.5
2https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K
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It comprises 24 images with a total of 60 questions. In Table 3, we demonstrate the performance
of SHARELORA and LoRA fine-tuned LLaVA model. Overall, SHARELORA exhibits superior
performance compared to that with LoRA, with a significant advantage in the conversation aspect.
Additionally, SHARELORArequires around 13% fewer trainable parameters to yield this improved
performance.

4.3 ABLATIONS AND DISCUSSIONS

Robustness towards different rank settings.

59
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Figure 3: Accuracy comparison with different rank
values for LoRA and SHARELORA.

Here we investigate the impact of various rank
configurations on SHARELORA and LoRA
by adjusting the original r within the set
{2, 4, 8, 16}. We then evaluate the performance
of fine-tuned LLaMA-7B on commonsense rea-
soning tasks as described in §4.1. Fig. 3 de-
picts the results with different ranks for both
LoRA and SHARELORA. Across all four orig-
inal rank settings, SHARELORA consistently
improves performance compared to the baseline
LoRA. Despite using the same original rank,
SHARELORA employs only 80% of the train-
able parameters relative to the LoRA. For in-
stance, SHARELORA achieves an average ac-
curacy of 63.35% on the eight commonsense
reasoning tasks with 5M trainable parameters, whereas LoRA requires 7M parameters for the same
rank level.

Similarity threshold.

Similarity threshold Accuracy
0.75 61.80
0.80 62.81
0.85 63.10
0.90 61.80

Table 4: Accuracy comparison of
different similarity thresholds eval-
uated with LLaMA-7B.

Table 4 presents the experimental results of fine-tuning LLaMA-
7B with different similarity thresholds {0.75, 0.80, 0.85, 0.90}.
The best performance is achieved when the similarity threshold
ϵ is set to 0.85. Higher similarity thresholds result in more el-
igible shared layers. As the number of shared layers increases,
the rank of the LoRA modules can be adjusted upward within
the constraints of the trainable parameter budget, which is de-
termined by the original rank. Thus, there is a tradeoff between
having more independent layers and a larger rank. Conse-
quently, selecting an optimal similarity threshold ϵ is crucial
for balancing the trade-off between the number of shared layers
and the rank of LoRA modules. Higher thresholds allow more
layers to share weights, permitting an increase in the rank within the limits of the trainable parameter
budget. Therefore, the choice of ϵ significantly influences the method’s performance.

Target Modules Accuracy
Q 64.19

K 64.31

V 63.71

Down 62.63

Up 62.91

Q,K,V,Down,Up 63.10

Table 5: Accuracy comparison of plac-
ing LoRA at different target modules.

In practice, we typically choose ϵ between 0.80 and 0.90,
resulting in about one-third of the layers sharing weights
with others. We can also run Algorithm 1 independently to
obtain the shared dictionary, helping select an appropriate
ϵ before fine-tuning.

Adapter sensitivity to different layer types.

In subsection 4.1, we adapt our proposed method to the
Q, K, V, Down, and Up weights. Table 5 presents the
performance of fine-tuning the weights associated with
each module type separately. We use r = 8 for the LoRA
modules. The results indicate that adapting our proposed
method to the Q and K weights yields the most significant
benefits in fine-tuning. This improvement can be attributed to the critical role these weights play

8
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in attention mechanisms, highlighting the importance of carefully selecting target modules for
optimization.

5 RELATED WORKS

Generative foundation models. Generative deep learning models pre-trained on large datasets are
called generative foundation models (Bommasani et al., 2021). These foundation models can be
applied to downstream tasks by fine-tuning. Advanced generative foundation models in natural lan-
guage processing (NLP) such as GPT (Brown et al., 2020; Ouyang et al., 2022) and LLaMA (Touvron
et al., 2023a) model have shown great success in assisting and generating human-like text across
a wide range of topics. These generative language models can also be applied to many practical
downstream tasks, such as education (Kasneci et al., 2023) and healthcare (Thirunavukarasu et al.,
2023). Another kind of generative foundation model that has developed maturely is the diffusion
model (Ho et al., 2020; Rombach et al., 2022). The diffusion model works well in various computer
vision tasks such as text-to-image generation (Everaert et al., 2023) and image editing (Kawar et al.,
2023).

Efficient fine-tuning methods. Efficient fine-tuning methods aim to reduce the number of trainable
parameters to save the GPU memory and training time during fine-tuning large-scale models. Some
PEFT methods freeze most of the parameters in the model and only fine-tune specific modules, e.g.,
BitFit (Zaken et al., 2021) fine-tunes only the bias of the model, which significantly saves the GPU
memory. However, it cannot be executed on models without bias parameters. (Houlsby et al., 2019)
and (Pfeiffer et al., 2020) add adapter layers between transformer blocks. These methods accelerate
fine-tuning by transferring knowledge from adapter layers pre-trained on general tasks. LoRA (Hu
et al., 2021; Liu et al., 2024b) is the most popular adapter for fine-tuning large foundation models.
It adopts the product of two small matrices to represent the full gradient during fine-tuning. It can
reduce the number of trainable parameters by 10,000 times and the GPU memory requirement by 3
times. Some adaptive algorithms work together with LoRA that can dynamically adjust the number
of trainable parameters to fit specific needs. For instance, AdaLoRA (Zhang et al., 2023) adaptively
allocates the trainable parameters to fit the GPU memory budget. These adaptive algorithms on LoRA
require heterogeneous LoRA configuration when implemented in federated fine-tuning.

6 FUTURE WORK

Our proposed SHARELORA method is orthogonal to other LoRA variants, suggesting that future work
could explore combining SHARELORA with existing PEFT methods. For example, LoRA+ (Hayou
et al., 2024) sets different learning rates for the adapter matrices A and B. By adjusting the
learning rate ratio between these two matrices, the efficiency and performance of fine-tuning can
be significantly improved. Specifically, LoRA+ sets the learning rate of B to be λ times that of A.
This technique could easily be integrated with SHARELORA. Additionally, DoRA (Liu et al., 2024a)
is a novel PEFT method that enhances LoRA by decomposing pre-trained weights into magnitude
and direction components for more precise fine-tuning. This weight decomposition allows DoRA to
optimize the magnitude and direction of weights separately. SHARELORA could also be combined
with DoRA to share the magnitude and direction components among redundant layers. In summary,
SHARELORA not only provides a robust solution for fine-tuning but also offers the flexibility to
integrate with advanced PEFT methods, opening new avenues for research and potentially leading to
significant gains in PEFT performance and efficiency.

7 CONCLUSION

In this paper, we present SHARELORA, a parameter-efficient fine-tuning method that determines
which layers share the LoRA weights based on layer redundancy. SHARELORA leverages the
cosine similarity between each layer’s representations to ascertain redundancy. Utilizing a greedy
algorithm, we maximize the sharing of LoRA weights while adhering to a predefined similarity
threshold. This approach effectively reduces the number of trainable parameters. We conduct
extensive experiments on large language models and multi-modal vision-language foundation models.
The results demonstrate that SHARELORA achieves comparable or superior performance to existing
PEFT methods, while using only 80% of the trainable parameter budget.
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