
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SHARELORA: LESS TUNING, MORE PERFORMANCE
FOR LORA FINE-TUNING OF LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning large language models (LLMs) is prohibitively expensive, prompt-
ing the development of various parameter-efficient fine-tuning (PEFT) methods.
These methods primarily focus on fine-tuning small, additional modules known
as adapters, which account for only a small fraction of the total LLM parameters.
One such method, low-rank adaptation (LoRA), has shown notable parameter
efficiency while maintaining performance comparable to full fine-tuning. However,
classical LoRA may still involve tuning more parameters than necessary given the
intrinsic rank of pre-trained weights, as highlighted by prior work (Aghajanyan
et al., 2020). Recent variants of LoRA aim to enhance fine-tuning performance, but
they overlook the layer-wise redundancies that can be leveraged for more efficient
weight sharing. In this work, we introduce SHARELORA, a novel approach that
further enhances parameter efficiency during LLM fine-tuning by leveraging redun-
dancies in pre-trained model weights to share LoRA modules, thereby significantly
reducing the number of trainable parameters. Specifically, SHARELORA auto-
matically identifies redundancies in the pre-trained weights and determines which
LoRA adapters can share parameters. This is achieved by measuring the similarity
between representations to assess information redundancy and using a greedy al-
gorithm to maximize parameter sharing. We conducted extensive evaluations on
the LLMs of the LLaMA family across benchmark tasks. Notably, SHARELORA
achieves better parameter efficiency, with up to a 23% reduction in the number of
fine-tuned parameters while delivering performance comparable to or better than
existing PEFT methods.

1 INTRODUCTION

Large language models (LLMs), e.g., GPT-4 and LLaMA2, are at the forefront of advances in the field
of machine learning (ML). These large models are pre-trained on vast datasets (e.g., images or text
corpora) and are subsequently fine-tuned for specialized tasks, demonstrating proficiency in domains
such as natural language, image processing, and fundamental scientific discoveries (Bommasani
et al., 2021; Touvron et al., 2023a; Singhal et al., 2022; 2023). These models, often referred as
“base model”, are pre-trained solely to predict the next token to generate from their entire vocabulary
space (Touvron et al., 2023a; Penedo et al., 2023; Team, 2023). To employ the base model for
real applications, e.g., building chatbots, then often need further fine-tuning (e.g., on multi-turn
human-human or human-chatbot conversations) to follow specific human instructions or align with
human preferences (Leike et al., 2018; Ziegler et al., 2019; Chung et al., 2022).

Fine-tuning such large-scale LLMs, however, presents a computational challenge due to the massive
number of parameters. For instance, GPU memory must be sufficiently large to handle the fine-tuning
process while marinating a reasonably large batch size. Parameter-Efficient Fine-Tuning (PEFT)
methods have been proposed to tackle this challenge by allowing fine-tuning of only a small subset
of LLM parameters or incorporating small adapter modules on top of the pre-trained model, while
leaving the majority of the base LLM parameters frozen (Houlsby et al., 2019; Hu et al., 2021; Zaken
et al., 2021; Zhang et al., 2023). These methods democratize LLM fine-tuning by making it feasible
on commodity hardware. One popular PEFT method, LoRA, has been shown to effectively reduce
the GPU memory requirement during LLM fine-tuning (Hu et al., 2021). LoRA achieves parameter
efficiency by adding low-rank adapters in parallel with specific LLM parameters, such as the query,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

FT Method GSM8K ↑ ARC-Challenge ↑ WinoGrande ↑ Hellaswag ↑
LoRA(r = 12) 37.98 48.21 64.25 51.96
Naive-shared LoRA 37.23 47.95 62.83 48.38

Table 1: Accuracy comparison of LoRA and a naive-share LoRA strategy.

key, and value parameter weights in multi-head attention. During fine-tuning, LoRA LoRA optimizes
only the low-rank adapters, while the LLM parameters remain unchanged.

Although LoRA is efficient, it treats all layers uniformly, lacking finer control over which layers
are most important or exhibit similar behavior. Recent improvements, such as AdaLoRA (Zhang
et al., 2023), which dynamically adjusts the rank based on layer importance, DoRA (Liu et al.,
2024a), which decouples weights into direction and magnitude for more nuanced fine-tuning, and
LoRA+ (Hayou et al., 2024), which independently adjusts the learning rates of LoRA components,
have aimed to enhance LoRA’s efficiency. However, these approaches overlook the redundancy
present in pre-trained foundation models, where certain layers may exhibit similar behavior and can
potentially share parameters, further reducing memory requirements.

We observed that sharing the LoRA module’s weights across layers does not significantly degrade
performance, while effectively reducing the number of trainable parameters. Specifically, we exper-
imented by sharing the LoRA weights between odd-numbered and even-numbered layers, which
halved the number of trainable parameters. In this naive approach, the weights of even-numbered
layers were directly mirrored to their adjacent odd-numbered layers. Surprisingly, this straightforward
weight-sharing strategy led to only minor performance degradation, as demonstrated in Table 1. This
finding suggests that there is significant potential for further optimization through weight sharing
in LoRA modules. However, determining which layers should share weights remains an ongoing
challenge, largely due to the limited explainability of foundation models (Zhao et al., 2024). The
behavior and interaction of different layers within these models are not yet fully understood, and
there is no consensus on which layers exhibit sufficiently similar representations to justify weight
sharing. This is an active area of research, and more sophisticated methods for identifying redundant
layers could lead to even more efficient weight-sharing strategies in the future.

In foundation models, certain layer representations often exhibit notable similarities. This redundancy
is a result of insufficient training data, which prevents each parameter from learning distinct, unique
features. Consequently, this leads to overlapping or redundant representations across layers. Prior
research has harnessed these redundancies for model compression (Gromov et al., 2024). Building
on this insight, our work leverages this redundancy by sharing LoRA weights across layers with
similar representations during fine-tuning. This approach allows us to slightly increase the LoRA
rank without increasing the overall number of trainable parameters, thereby enhancing fine-tuning
performance.

Our SHARELORA method consists of two main components: (i) computing similarity matrices
between representations of layers and (ii) sharing the LoRA module parameters among redundancy
layers. This method identifies layers with similar representations and shares their weights, reducing
the number of trainable parameters while maintaining model performance. By leveraging layer
similarities, SHARELORA significantly improves finetuning efficiency. We conduct extensive ex-
periments on a wide range of tasks and models to demonstrate the effectiveness of SHARELORA.
Specifically, we evaluate the performance using LLaMA-7B, LLaMA2-7B, and LLaMA3-8B for
natural language commonsense reasoning and LLava-1.5-7B for image-text understanding. The
results show that SHARELORA performs similar or better than LoRA, while only using 80% trainable
parameter.

The summary of our contributions is as follows:

• We propose SHARELORA, a novel parameter-efficient fine-tuning (PEFT) method that
leverages the similarity of layer representations to enable weight sharing, achieving this
without introducing any additional train or inference latency compared to LoRA.

• We develop a greedy algorithm to determine which layers should share the weights of the
LoRA module based on the similarity of their representations.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We conduct extensive experiments demonstrating that SHARELORA consistently performs
similar or better LoRA across various tasks, while using less trainable parameters.

2 PRELIMINARY AND MOTIVATION

Parameter Efficient Fine Tuning. A primary research trajectory aimed at reducing the fine-tune
parameters of pretrained FMs is to model the incremental updates of pretrained weights in a parameter-
efficient manner. For example, given a pretrained weight matrix W , diff pruning (Guo et al., 2021)
initializes ∆ as the same dimensions as W and performs magnitude-based pruning on ∆. Diff pruning
characterizes ∆ as the incremental updates of W , and it can improve the parameter efficiency due to
the sparsity of ∆. However, it requires specific hardware support to accelerate the computation of
unstructured sparse matrices. This hardware-specific dependency underscores a crucial consideration
for the practical deployment of such an approach in real-world applications. In addition, it does not
significantly reduce computational cost compared to full fine-tuning (Hu et al., 2021), as every entry
of ∆ needs to be updated and then be pruned.

To tackle those limitations, Hu et al. propose LoRA (Hu et al., 2021), which parameterize ∆ as the
product of two low-rank matrices:

W ′ = W +∆ = W +BA, (1)

where ∆ ∈ Rd1×d2 , B ∈ Rd1×r, and A ∈ Rr×d2 with r ≪ {d1, d2}. As the rank r is much smaller
than the dimension of W (e.g., r = 8 and d1 = d2 = 4096), the number of trainable parameters and
training overhead dramatically decreases.

However, LoRA has its limitations, as it typically applies separate parameters for each B and A
by default. This approach overlooks the significant variation in the redundancy of weight matrices
across different layers and modules during the fine-tuning of pretrained foundation models. We will
demonstrate this issue later. Consequently, LoRA cannot adaptively share the LoRA modules among
the redundancy layers, which could otherwise achieve comparable performance with fewer trainable
parameters.

Weight Sharing. Although PEFT methods can reduce the number of trainable parameters, thereby
decreasing GPU memory footprint during fine-tuning, the number of parameters in LLMs also scales
rapidly, making it increasingly challenging to conduct even PEFT on commodity GPUs. In this
paper, we explore the possibility of combining LoRA with weight sharing, a method that allows
multiple neural network layers to share the same model weights. Weight sharing has been a widely
adopted technique to reduce the number of trainable parameters while maintaining performance and
sometimes helping mitigate overfitting (Press & Wolf, 2017; de Lhoneux et al., 2018; Lan et al., 2020;
Dai et al., 2020; Takase & Kiyono, 2021).

0 10 20 30
Layer Index

0
10

20
30

La
ye

r I
nd

ex

0.2

0.4

0.6

0.8

Figure 1: Cosine similarity among lay-
ers’ representations experimented on
LLaMA2-7B model over the GSM8k
evaluation dataset.

Similarity Across Layers. Our motivation for weight
sharing among LoRAs across layers comes from the obser-
vation that the representations among model layers/blocks
attain high levels of similarity, especially for bottom layer
blocks (as shown in Figure 1). This effect has also been
observed by many prior works (Kornblith et al., 2019; Gro-
mov et al., 2024). This effect is also connected to methods
like layer skipping and mixture of depth for LLMs (Fan
et al., 2024; Elhoushi et al., 2024; Raposo et al., 2024).
Previous research (He et al., 2024) demonstrates that the
distribution of similarity scores remains consistent, even
when the calibration dataset sample size varies. Addition-
ally, prior studies indicate that altering the type of cali-
bration dataset—whether it be pretraining datasets (e.g.,
C4 (Raffel et al., 2020)) or instruction-tuning datasets (e.g.,
, CodeAlpaca-20k, MathInstruct (Xiang Yue, 2023), and
LIMA (Zhou et al., 2024))—has minimal effect on the
similarity score distribution.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Embedding

LM head

Input text

Output text

0

𝑙!∗

𝑙!∗ + 𝑛

𝐿	 − 1

Compute the cosine
similarity between each
layer.

Find all blocks ([
]

𝑙!∗, 𝑙!∗ +
𝑛 , 𝑙#∗ , 𝑙#∗ +𝑚 ,…) has
the similarity under
threshold.

Share the LoRA
parameters within the
blocks ([
]

𝑙!∗, 𝑙!∗ +
𝑛 , 𝑙#∗ , 𝑙#∗ +𝑚 ,…) . + LoRA

+ Shared LoRA

𝑙#∗

𝑙#∗ +𝑚

Embedding

LM head

Input text

Output text

0

𝑙!∗

𝑙!∗ + 𝑛

𝐿	 − 1

𝑙#∗

𝑙#∗ +𝑚
+ Shared LoRA

+ LoRA

+ LoRA

+ LoRA

+ LoRA

+ LoRA

Figure 2: An overview of our proposed AutoLoRA, which computes the cosine similarity between
each layer, and shares the LoRA parameters within redundancy blocks.

3 SHARELORA METHOD

As illustrated in Figure 2, our method comprises two key components: (i) layer similarity computation
and (ii) LoRA sharing.

3.1 THE FORMULATION OF SHARELORA

In this subsection, we present the formulation of SHARELORA as an optimization problem. Specif-
ically, we consider an L-layer LLM. We denote S as the collection of shared sets of LLM layer
indices, e.g., S = {(2, 3), (5, 6, 7), (11, 13)}.
Our objective is to maximize the number of shared LLM layers while ensuring that the similarity
measure between any two layers with shared weights exceeds a predefined threshold, ϵ. This can be
formulated as the following optimization problem:

max
∑
∀s∈S

|s| (2)

s.t. c(xi,xi) ≥ ϵ (3)

where |s| is the number of layers in set s, and S is the collection of sets such that each set s contains
layers with similarity measure (i.e., c(·, ·)) between each pair exceeding the threshold ϵ.

The objective of SHARELORA is to maximize the total number of layers sharing LoRA. The
remaining question is How to find S? We will present our algorithm of SHARELORA in section 3.3.

3.2 SIMILARITY BETWEEN REPRESENTATIONS OF LAYERS

To decide which layer’s LoRA module could be shared with another, we have to compute the angular
distance c(xi,xj) between the representations of layer i and layer j. The similarity of a single
sequence of length T is given by

c(xi,xj) :=
1

π
cos−1

(
x⊤
i xj

∥xi∥∥xj∥

)
, (4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where the inner product is over the hidden dimension of the model for the final token T of the
sequence, ∥ · ∥ denotes the ℓ2-norm, and the factor of 1/π is a convention. This distance should then
be summed over a number of examples that is large enough to get a low-fluctuation estimate but
overall should be quite small.

3.3 SIMILARITY-BASED WEIGHT SHARING

The objective of the algorithm is to identify sets of neural network layers that can share LoRA
modules based on the angular distance of their representations. The algorithm employs a greedy
strategy to maximize the size of these shared sets while adhering to a predefined similarity threshold.

First, the algorithm processes the similarity matrix to create an upper triangular matrix, excluding the
diagonal, which represents the pairwise similarities between layers. It then identifies all eligible pairs
of layers (i, j) where the similarity score exceeds the threshold ϵ. Formally, this can be expressed as:
shared_pairs = {(i, j) | c(xi,xj) ≥ ϵ and 0 ≤ i < j < L}.
Next, the algorithm constructs sets of shared layers by iterating through the identified shared pairs. It
maintains a set visited to avoid reprocessing layers. The construction of the shared sets proceeds is
shown in Algorithm 1.

Algorithm 1 Construct Shared Sets
1: Input: Similarity matrix C, threshold ϵ;
2: Output: Collection of shared sets S;
3: Initialize shared_pairs← {(i, j) | c(xi,xj) ≥ ϵ and 0 ≤ i < j < L};
4: Sort shared_pairs by similarity scores;
5: Initialize S ← {}, and initialize visited← set();
6: for all (i, j) in shared_pairs do
7: if i not in visited and j not in visited then
8: if i not in S then
9: Initialize Si ← {i}

10: end if
11: Add j to Si, and add j to visited
12: if All pairs starting with i is done then
13: Add i to visited
14: end if
15: end if
16: end for

The algorithm ensures that layers are grouped into shared sets only if their pairwise similarities
exceed the threshold ϵ, thus maximizing the number of layers that can share the LoRA modules while
maintaining high similarity within each set.

Algorithm 2 SHARELORA
1: Input: Sample Dataset D∗; Train Dataset D; hyper-parameter similarity threshold ϵ.
2: Inference on D∗ and save the representations x(l) for each layer l;
3: Compute the angular distance d(x(lp), x(lq)) between each layer lp and lq;
4: Compute the share set S and update LoRA rank r;
5: Share parameters using S;
6: Finetune weight sharing model W with D.
7: Output: The fine-tuned parameters W ∗.

Furthermore, after sharing layers using the set S , the number of layers with shared parameters will be∑
Si∈S |Si| − |S|. This allows us to optionally expand the original rank r to ⌊ L

L−
∑

Si∈S |Si|+|S|r⌋,
where L is the total number of layers. We summarize the algorithm in Algorithm 2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Model PEFT Method # Params BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA Avg.

LLaMA-7B

Prefix 10.5M 57.46 50.49 33.62 28.38 64.8 29.84 24.49 26.6 39.46
AdapterH 20.1M 71.19 74.48 45.45 57.24 59.51 56.90 33.70 39.0 54.68
AdapaterP 20.1M 67.65 73.45 44.27 57.04 58.48 57.62 33.87 37.0 53.67
Parallel 448M 73.36 74.54 73.81 57.08 60.22 56.23 35.58 36.8 54.70
LoRA(r = 8) 14.0M 78.53 78.45 46.98 73.41 70.17 70.24 41.21 42.2 62.65
SHARELORA* 12.1M 73.94 79.38 47.08 72.93 68.11 65.99 37.8 43.0 61.03
SHARELORA(ours) 10.8M 77.55 79.65 47.54 73.04 70.96 69.95 40.70 45.4 63.10

LLaMA2-7B LoRA(r = 8) 14.0M 80.64 79.16 47.85 75.18 69.93 69.70 42.06 44.0 63.56
SHARELORA(ours) 11.8 M 80.89 79.22 46.78 74.04 71.27 68.73 41.81 44.0 63.36

LLaMA3-8B LoRA(r = 8) 14.2M 82.17 81.34 49.49 78.38 74.19 76.39 50.77 46.4 67.39
SHARELORA(ours) 11.4M 82.17 81.56 48.77 79.32 73.80 76.85 50.00 44.2 67.07

Table 2: Accuracy with LLaMA model family with various PEFT methods on commonsense
reasoning tasks.

4 EXPERIMENTS

Models and datasets. We implemented SHARELORA to fine-tune LLaMA family LLMs, namely,
LLaMA-7B (Touvron et al., 2023a), LLaMA2-7B (Touvron et al., 2023b) and LLaMA3-8B (Meta,
2024). We follow the settings of LLM-Adapters (Hu et al., 2023), and evaluate the effectiveness
of the several natural language commonsense reasoning task including BoolQ (Clark et al., 2019),
PIQA (Bisk et al., 2019), SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019), Winogrande (Sak-
aguchi et al., 2021), ARC-Easy (Clark et al., 2018), ARC-Challenge, and OBQA (Mihaylov et al.,
2018). Additionally, we implemented SHARELORA to fine-tune LLaVA-1.5-7B (Liu et al., 2023), a
popular vision language foundation model (VLM) and used on image-text pair understanding, and
evaluated on LLaVA-Bench (in-the-wild) evaluation dataset (Liu et al., 2023).

Setup. We use PyTorch (Paszke et al., 2019) to implement all the algorithms. Our fine-tuning
algorithm implementation is based on the publicly available Huggingface Transformers (Wolf et al.,
2019) and LLM-Adapters code base. All the experiments are conducted on NVIDIA A6000 GPUs.

Baselines. We compare SHARELORAwith the following baselines.

• Prompt learning (Prefix): (Li & Liang, 2021) Involves fine-tuning a small set of continuous
task-specific vectors (prefixes) while keeping the large language model parameters frozen to
pre-trained weights.

• Adapter tuning (AdapterH): (Houlsby et al., 2019) Inserts small add-on layers between
the multi-head attention modules and FFN modules of the pre-trained model that can be
fine-tuned for downstream task learning, while keeping the rest of the model parameters
frozen.

• Pfeiffer adapter (AdapterP): (Pfeiffer et al., 2020) Unlike adapter tuning it inserts add-on
layers after FFN modules and LayerNorm modules, allows them to fine-tune and keeps the
rest of the model frozen.

• Parallel adapter (Parallel): (He et al., 2021) Modifies the hidden representations in a
transformer model by inserting additional trainable parameters in parallel to the original
model’s layers.

• LoRA: (Hu et al., 2021) Is the most popular PEFT method that injects trainable low-rank
matrices into transformer layers parallel to the frozen main path, to approximate the weight
updates.

• SHARELORA* is a variation of our SHARELORAmethod, but instead of using similarity
scores to select the set S, it randomly selects adjacent layers for weight sharing.

4.1 EVALUATIONS ON LLMS

We assess the fine-tuning performance of LLaMA-7B, LLaMA2-7B, and LLaMA3-8B using all
baseline methods along with the proposed algorithm. The commonsense reasoning evaluation
includes eight sub-tasks, each with its own predefined training and testing sets. Following the setup
from LLM-Adapters (Hu et al., 2023), we combine the training datasets from all eight tasks to form a
comprehensive training dataset for fine-tuning and performing evaluations on the individual testing
sets for each sub-task.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Implementation details. All of LLaMA models have 32 hidden layers. Initially, we calculate the
similarity c(xi,xi) between each layer’s representation using 256 randomly sampled C4 validation
dataset (Raffel et al., 2020). We set the similarity threshold ϵ to 0.85 for LLaMA-7B and LLaMA2-7B,
and 0.80 for LLaMA3-8B. Utilizing our similarity-based weight-sharing algorithm, the share set
collection S for LLaMA-7B is {{16, 17}, {18, 19}, {20, 21, 22}, {23, 24, 25, 26, 27}, {28, 29, 30}},
enabling the sharing the LoRA modules of ten similar layers. The share set collection S for
LLaMA2-7B and LLaMA3-8B are {{17, 18}, {19, 20}, {21, 22, 23}, {24, 25, 26, 27}, {28, 29}}
and {{19, 20}, {21, 22}, {23, 24, 25}, {26, 27, 28}} separate. Note that we expand the original
LoRA rank from 8 to 9 for these three models. The hyperparameters for fine-tuning across LLaMA-
7B, LLaMA2-7B, and LLaMA3-8B models are consistent for most settings. A dropout rate of 0.05,
AdamW optimizer, a linear learning rate scheduler, a batch size of 16, and 3 epochs are applied for
all models. The learning rate (LR) is set to 2e-4 for LLaMA-7B and LLaMA2-7B, while it is reduced
to 1e-4 for LLaMA3-8B. The fine-tuning targets the Q, K, V, Down, and Up layers for each model.
The share set collection S for SHARELORA* is randomly generated as {{2, 3}, {4, 5, 6}, {9, 10},
{11, 12, 13}, {14, 15}, {19, 20}, {22, 23}, {29, 30}}.
Table 2 shows experimental results on the eight commonsense reasoning tasks. SHARELORA
achieves similar or better performance across all datasets for all the models. Notably, our proposed
approach saves up to 23% of the trainable parameters yet achieves a 1.5% improvement in performance
with LLaMA-7B, while maintaining similar performance on LLaMA2-7B and LLaMA3-8B.

4.2 EVALUATIONS ON MULTI-MODAL VLMS

LoRA(rank=64) SHARELORA
Params 159.9M 139.4M

Description 45.57 ± 0.60 45.80 ± 0.40

Conversation 46.87 ± 1.27 54.10 ± 0.00

Reasoning 66.90 ± 0.85 65.37 ± 0.72

All 55.47 ± 0.55 57.00 ± 0.44

Table 3: Instruction-following capability compari-
son between LoRA and SHARELORA (ours). We
conduct three repeated evaluations and report the
average scores. The results are reported in the for-
mat of mean± std.

We now present the results of SHARELORAon
vision-language models. We used the LLaVA-
1.5-7B (Liu et al., 2023), which consists of a
language model, a visual encoder and a projec-
tion layer for feature alignment. Specifically,
the language model and visual encoder were ini-
tialized with Vicuna-1.5-7B (Zheng et al., 2024)
and CLIP ViT-L/336px (Radford et al., 2021),
respectively. In addition, we employed the pre-
trained projection layer1 and directly performed
visual instruction fine-tuning stage. In contrast
to the setup of LLaVA, we chose a subset of
their dataset, i. e. LLaVA-Instruct-80K. It con-
sists of 80k image-instruction pairs filtered out
from LLaVA-Instruct-150K2. We set the rank to
64 and performed instruction tuning for one epoch of the LLM component using SHARELORAand
LoRA, respectively. Note, we keep the feature transformation module trainable for both.

Implementation details. For SHARELORA we compute the similarity between the inputs and
outputs of each layer based on 128 samples, with each sample comprising of visual-text inputs. The
similarity threshold was set to 0.9 and the share set collection S for language model is {{2, 3}, {4, 5},
{6, 7}, {17, 18}, {19, 20}, {21, 22, 23}, {24, 25, 26}, {27, 28, 29}}. The hyperparameters used for
fine-tuning both LoRA and SHARELORAon the vision-language model are as follows. For the
similarity threshold, only SHARELORAutilizes a value of 0.9, while LoRA does not incorporate this
parameter. Both methods share the same rank r = 64, scaling factor α = 128, and a dropout rate of
0.05. The target layers include Q, K, V, O, Up, Down, and Gate for both methods. The training runs
for one epoch with a learning rate of 2e-4, and the learning rate is adjusted using a cosine scheduler.
Both approaches employ the AdamW optimizer, with a batch size of 64 and a warmup ratio of
0.03. These shared hyperparameters ensure consistent conditions for comparing the performance of
LoRA and SHARELORA. We use GPT-4 generated answers as the golden answers. Subsequently,
we employed GPT-4o to evaluate the instruction-following capabilities of the fine-tuned model and
selected the challenging LLaVA-Bench (in-the-wild).

1https://huggingface.co/liuhaotian/llava-v1.5-mlp2x-336px-pretrain-vicuna-7b-v1.5
2https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

It comprises 24 images with a total of 60 questions. In Table 3, we demonstrate the performance
of SHARELORA and LoRA fine-tuned LLaVA model. Overall, SHARELORA exhibits superior
performance compared to that with LoRA, with a significant advantage in the conversation aspect.
Additionally, SHARELORArequires around 13% fewer trainable parameters to yield this improved
performance.

4.3 ABLATIONS AND DISCUSSIONS

Robustness towards different rank settings.

59

60

61

62

63

64

65

66

2 4 8 16
A

cc
ur

ac
y

(%
)

Original Rank (%)

LoRA
ShareLoRA

Figure 3: Accuracy comparison with different rank
values for LoRA and SHARELORA.

Here we investigate the impact of various rank
configurations on SHARELORA and LoRA
by adjusting the original r within the set
{2, 4, 8, 16}. We then evaluate the performance
of fine-tuned LLaMA-7B on commonsense rea-
soning tasks as described in §4.1. Fig. 3 de-
picts the results with different ranks for both
LoRA and SHARELORA. Across all four orig-
inal rank settings, SHARELORA consistently
improves performance compared to the baseline
LoRA. Despite using the same original rank,
SHARELORA employs only 80% of the train-
able parameters relative to the LoRA. For in-
stance, SHARELORA achieves an average ac-
curacy of 63.35% on the eight commonsense
reasoning tasks with 5M trainable parameters, whereas LoRA requires 7M parameters for the same
rank level.

Similarity threshold.

Similarity threshold Accuracy
0.75 61.80
0.80 62.81
0.85 63.10
0.90 61.80

Table 4: Accuracy comparison of
different similarity thresholds eval-
uated with LLaMA-7B.

Table 4 presents the experimental results of fine-tuning LLaMA-
7B with different similarity thresholds {0.75, 0.80, 0.85, 0.90}.
The best performance is achieved when the similarity threshold
ϵ is set to 0.85. Higher similarity thresholds result in more el-
igible shared layers. As the number of shared layers increases,
the rank of the LoRA modules can be adjusted upward within
the constraints of the trainable parameter budget, which is de-
termined by the original rank. Thus, there is a tradeoff between
having more independent layers and a larger rank. Conse-
quently, selecting an optimal similarity threshold ϵ is crucial
for balancing the trade-off between the number of shared layers
and the rank of LoRA modules. Higher thresholds allow more
layers to share weights, permitting an increase in the rank within the limits of the trainable parameter
budget. Therefore, the choice of ϵ significantly influences the method’s performance.

Target Modules Accuracy
Q 64.19

K 64.31

V 63.71

Down 62.63

Up 62.91

Q,K,V,Down,Up 63.10

Table 5: Accuracy comparison of plac-
ing LoRA at different target modules.

In practice, we typically choose ϵ between 0.80 and 0.90,
resulting in about one-third of the layers sharing weights
with others. We can also run Algorithm 1 independently to
obtain the shared dictionary, helping select an appropriate
ϵ before fine-tuning.

Adapter sensitivity to different layer types.

In subsection 4.1, we adapt our proposed method to the
Q, K, V, Down, and Up weights. Table 5 presents the
performance of fine-tuning the weights associated with
each module type separately. We use r = 8 for the LoRA
modules. The results indicate that adapting our proposed
method to the Q and K weights yields the most significant
benefits in fine-tuning. This improvement can be attributed to the critical role these weights play

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

in attention mechanisms, highlighting the importance of carefully selecting target modules for
optimization.

5 RELATED WORKS

Generative foundation models. Generative deep learning models pre-trained on large datasets are
called generative foundation models (Bommasani et al., 2021). These foundation models can be
applied to downstream tasks by fine-tuning. Advanced generative foundation models in natural lan-
guage processing (NLP) such as GPT (Brown et al., 2020; Ouyang et al., 2022) and LLaMA (Touvron
et al., 2023a) model have shown great success in assisting and generating human-like text across
a wide range of topics. These generative language models can also be applied to many practical
downstream tasks, such as education (Kasneci et al., 2023) and healthcare (Thirunavukarasu et al.,
2023). Another kind of generative foundation model that has developed maturely is the diffusion
model (Ho et al., 2020; Rombach et al., 2022). The diffusion model works well in various computer
vision tasks such as text-to-image generation (Everaert et al., 2023) and image editing (Kawar et al.,
2023).

Efficient fine-tuning methods. Efficient fine-tuning methods aim to reduce the number of trainable
parameters to save the GPU memory and training time during fine-tuning large-scale models. Some
PEFT methods freeze most of the parameters in the model and only fine-tune specific modules, e.g.,
BitFit (Zaken et al., 2021) fine-tunes only the bias of the model, which significantly saves the GPU
memory. However, it cannot be executed on models without bias parameters. (Houlsby et al., 2019)
and (Pfeiffer et al., 2020) add adapter layers between transformer blocks. These methods accelerate
fine-tuning by transferring knowledge from adapter layers pre-trained on general tasks. LoRA (Hu
et al., 2021; Liu et al., 2024b) is the most popular adapter for fine-tuning large foundation models.
It adopts the product of two small matrices to represent the full gradient during fine-tuning. It can
reduce the number of trainable parameters by 10,000 times and the GPU memory requirement by 3
times. Some adaptive algorithms work together with LoRA that can dynamically adjust the number
of trainable parameters to fit specific needs. For instance, AdaLoRA (Zhang et al., 2023) adaptively
allocates the trainable parameters to fit the GPU memory budget. These adaptive algorithms on LoRA
require heterogeneous LoRA configuration when implemented in federated fine-tuning.

6 FUTURE WORK

Our proposed SHARELORA method is orthogonal to other LoRA variants, suggesting that future work
could explore combining SHARELORA with existing PEFT methods. For example, LoRA+ (Hayou
et al., 2024) sets different learning rates for the adapter matrices A and B. By adjusting the
learning rate ratio between these two matrices, the efficiency and performance of fine-tuning can
be significantly improved. Specifically, LoRA+ sets the learning rate of B to be λ times that of A.
This technique could easily be integrated with SHARELORA. Additionally, DoRA (Liu et al., 2024a)
is a novel PEFT method that enhances LoRA by decomposing pre-trained weights into magnitude
and direction components for more precise fine-tuning. This weight decomposition allows DoRA to
optimize the magnitude and direction of weights separately. SHARELORA could also be combined
with DoRA to share the magnitude and direction components among redundant layers. In summary,
SHARELORA not only provides a robust solution for fine-tuning but also offers the flexibility to
integrate with advanced PEFT methods, opening new avenues for research and potentially leading to
significant gains in PEFT performance and efficiency.

7 CONCLUSION

In this paper, we present SHARELORA, a parameter-efficient fine-tuning method that determines
which layers share the LoRA weights based on layer redundancy. SHARELORA leverages the
cosine similarity between each layer’s representations to ascertain redundancy. Utilizing a greedy
algorithm, we maximize the sharing of LoRA weights while adhering to a predefined similarity
threshold. This approach effectively reduces the number of trainable parameters. We conduct
extensive experiments on large language models and multi-modal vision-language foundation models.
The results demonstrate that SHARELORA achieves comparable or superior performance to existing
PEFT methods, while using only 80% of the trainable parameter budget.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. arXiv preprint arXiv:2012.13255, 2020.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language, 2019.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
ties and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416, 2022.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Dawei Dai, Liping Yu, and Hui Wei. Parameters sharing in residual neural networks. Neural
Processing Letters, 51(2):1393–1410, 2020.

Miryam de Lhoneux, Johannes Bjerva, Isabelle Augenstein, and Anders Søgaard. Parameter sharing
between dependency parsers for related languages. arXiv preprint arXiv:1808.09055, 2018.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al. Layer skip: Enabling early
exit inference and self-speculative decoding. arXiv preprint arXiv:2404.16710, 2024.

Martin Nicolas Everaert, Marco Bocchio, Sami Arpa, Sabine Süsstrunk, and Radhakrishna Achanta.
Diffusion in style. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 2251–2261, 2023.

Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng Han, Shuo Shang, Aixin Sun, Yequan Wang,
and Zhongyuan Wang. Not all layers of llms are necessary during inference. arXiv preprint
arXiv:2403.02181, 2024.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The
unreasonable ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-efficient transfer learning with diff pruning.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 4884–4896, 2021.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
arXiv preprint arXiv:2402.12354, 2024.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

Shwai He, Guoheng Sun, Zheyu Shen, and Ang Li. What matters in transformers? not all attention is
needed. arXiv preprint arXiv:2406.15786, 2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning
of large language models. arXiv preprint arXiv:2304.01933, 2023.

Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank
Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke Hüllermeier, et al. Chatgpt for good?
on opportunities and challenges of large language models for education. Learning and individual
differences, 103:102274, 2023.

Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and
Michal Irani. Imagic: Text-based real image editing with diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6007–6017, 2023.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pp. 3519–3529.
PMLR, 2019.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut.
Albert: A lite bert for self-supervised learning of language representations. In International
Conference on Learning Representations, 2020.

Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, and Shane Legg. Scalable agent
alignment via reward modeling: a research direction. arXiv preprint arXiv:1811.07871, 2018.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353, 2024a.

Zeyu Liu, Souvik Kundu, Anni Li, Junrui Wan, Lianghao Jiang, and Peter Anthony Beerel. Aflora:
Adaptive freezing of low rank adaptation in parameter efficient fine-tuning of large models. arXiv
preprint arXiv:2403.13269, 2024b.

AI Meta. Introducing meta llama 3: The most capable openly available llm to date. Meta AI., 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli,
Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb
dataset for falcon llm: outperforming curated corpora with web data, and web data only. arXiv
preprint arXiv:2306.01116, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
fusion: Non-destructive task composition for transfer learning. arXiv preprint arXiv:2005.00247,
2020.

Ofir Press and Lior Wolf. Using the output embedding to improve language models. In Proceedings
of the 15th Conference of the European Chapter of the Association for Computational Linguistics:
Volume 2, Short Papers, pp. 157–163, 2017.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and Adam
Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based language
models. arXiv preprint arXiv:2404.02258, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Commonsense
reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan
Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, et al. Large language models encode
clinical knowledge. arXiv preprint arXiv:2212.13138, 2022.

Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Le Hou, Kevin Clark, Stephen
Pfohl, Heather Cole-Lewis, Darlene Neal, et al. Towards expert-level medical question answering
with large language models. arXiv preprint arXiv:2305.09617, 2023.

Sho Takase and Shun Kiyono. Lessons on parameter sharing across layers in transformers. arXiv
preprint arXiv:2104.06022, 2021.

MosaicML NLP Team. Introducing mpt-7b: A new standard for open-source, commercially usable
llms, 2023. URL www.mosaicml.com/blog/mpt-7b. Accessed: 2023-05-05.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez, Ting Fang
Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature medicine, 29(8):
1930–1940, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

12

www.mosaicml.com/blog/mpt-7b

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ge Zhang Yao Fu Wenhao Huang Huan Sun Yu Su Wenhu Chen Xiang Yue, Xingwei Qu. Mam-
moth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 4791–4800, 2019.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen,
and Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=lq62uWRJjiY.

Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu, Huiqi Deng, Hengyi Cai, Shuaiqiang Wang,
Dawei Yin, and Mengnan Du. Explainability for large language models: A survey. ACM
Transactions on Intelligent Systems and Technology, 15(2):1–38, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural Information
Processing Systems, 36, 2024.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

13

https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY

	Introduction
	Preliminary and Motivation
	ShareLoRA Method
	The Formulation of ShareLoRA
	Similarity Between Representations of Layers
	Similarity-based Weight Sharing

	Experiments
	Evaluations on LLMs
	Evaluations on Multi-Modal VLMs
	Ablations and Discussions

	Related Works
	Future work
	Conclusion

