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Abstract
2D image understanding is a complex problem within computer vision, but it holds the key to providing human-level scene
comprehension. It goes further than identifying the objects in an image, and instead, it attempts to understand the scene.
Solutions to this problem form the underpinning of a range of tasks, including image captioning, visual question answering
(VQA), and image retrieval. Graphs provide a natural way to represent the relational arrangement between objects in an
image, and thus, in recent years graph neural networks (GNNs) have become a standard component of many 2D image
understanding pipelines, becoming a core architectural component, especially in the VQA group of tasks. In this survey, we
review this rapidly evolving field and we provide a taxonomy of graph types used in 2D image understanding approaches,
a comprehensive list of the GNN models used in this domain, and a roadmap of future potential developments. To the best
of our knowledge, this is the first comprehensive survey that covers image captioning, visual question answering, and image
retrieval techniques that focus on using GNNs as the main part of their architecture.

Keywords Graph neural networks · Image captioning · Visual question answering · Image retrieval

1 Introduction

Recent years have seen an explosion of research into graph
neural networks (GNNs), with a flurry of new architectures
being presented in top-tier machine learning conferences and
journals every year [1–7]. The ability of GNNs to learn
in non-Euclidean domains makes them powerful tools to
analyse data where structure plays an important role, from
chemoinformatics [8] to network analysis [9]. Indeed, these
models can also be applied to problems not traditionally asso-
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ciated with graphs such as 3D object detection in LiDAR
point clouds [10] and shape analysis [11].

GNN-based approaches have gained increasing popularity
for solving 2D image understanding Vision-Language tasks,
similar to other domains [12–14]. Whilst advances in this
domain are discussed in [15], it is a wide ranging survey. Our
work focuses specifically on Vision-Language and therefore
covers these topics more extensively.

We view 2D image understanding as the high-level chal-
lenge of making a computer understand a two-dimensional
image to a level equal to or greater than a human.Models that
enable this should be able to reason about the image in order
to describe it (image captioning), explain aspects of it (visual
question answering (VQA), or find similar images (image
retrieval). These are all tasks that humans can dowith relative
ease; however, they are incredibly difficult for deep learn-
ing models and require a large amount of data. These tasks
also fall under the category of Vision-Language problems, as
they require the model to have an understanding of both the
image pixels and a language (typically English) in which the
models can express their understanding. Adjacent to these is
the challenging taskofVision-LanguageNavigation [16–21],
i.e. the development of a system able to navigate a previously
unseen environment using natural language instructions from
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a human and its own visual observations. Combining Vision,
NLP,Agents, and potentially Robotics, it is a task thatmerges
together a broad set of fields. Given the task breadth and
depth, and its strong links to Agents and Robotics, it falls
outside the scope of this survey. Readers are directed to the
recent survey by Wu et al. [22] for in-depth reviews of this
task. GNNs also have a wide range of applications within
the medical imaging domain [23–25], including the genera-
tion of medical reports through the utilisation of knowledge
graphs [23–25] (an extension of the image captioning task).
They have also been used in medical VQA [26] and medical
image retrieval [27].

Whilst there is a plethora of techniques that have been
applied to the tasks discussed in this survey [28–37], this sur-
vey focuses on graph-based approaches. There are a range
of graphs that are applicable, but the most widely used and
understood is the semantic graph [38, 39]. This graph is
constructed of nodes representing visual objects and edges
representing the semantic relationships between them. The
semantic graph as well as further graph types are discussed
in Sect. 2.3.

Alongside a taxonomy of the graph types used across 2D
image understanding tasks, this paper contributes a much
needed overview of these approaches. Covering the three
main tasks, we also include an overview of popular GNN
techniques as well as insights on the direction of future GNN
work. In the discussion section of this paper, we argue that the
increasingly popular Transformer architecture [40] is actu-
ally a special case GNN [41]. We expand upon this argument
to suggest that GNNs should not be overlooked as they may
offer better inductive biases for a range of tasks.

Our main contributions are: (1) a taxonomy of the graph
types used in 2D image understanding tasks; (2) a compre-
hensive survey of GNN-based approaches to common 2D
image understanding tasks; and (3) a roadmap of potential
future developments for the community to explore.

The remainder of this paper is organised as follows: Sect. 2
gives a taxonomy of the tasks discussed and their corre-
sponding datasets, as well as an overview of the different
graph types used throughout. Section3 gives an overview of
the common GNN architectures used. It also briefly men-
tions current and future research directions for GNNs and
signposts appropriate surveys. The main body of the paper
is formed of Sects. 4, 5, and 6, which detail GNN-based
approaches to image captioning, VQA, and image retrieval,
respectively.We then conclude the paperwith a three part dis-
cussion, with Sect. 7.1 covering the advantages that GNNs
still offer despite the rapid adoption of the Transformer
architecture. This is followed by Sect. 7.2 which links the
emerging field of latent diffusion and image generation to
image captioning. Finally, Sect. 7.3 concludes the paper and
provides potential directions for future work.

2D Vision-
Language Tasks

Image Captioning

Visual Question
Answering

Image Retrieval

Retrieval-based
Captioning

Template-based
Captioning

Deep Learning-
based Captioning

Standard Visual
Question

Answering

Knowledge-based
Visual Question

Answering

Text Visual
Question

Answering

Content-based
Image Retrieval

Sketch-based
Image Retrieval

Text-based Image
Retrieval

Semantic Image
Retrieval

Annotation-based
Image Retrieval

Fig. 1 2D vision-language methodological taxonomy

2 Background and definitions

In this section, we outline the background required to view
this survey in context. We first briefly define a generic graph
before outlining the taxonomy of the field. Finally, we give
an overview of the various graph types.

2.1 2D vision-language tasks taxonomies

This paper follows the taxonomies of [42–45] and joins
them together for a more complete overview of 2D Vision-
Language tasks (see Fig. 1). This section gives a brief
overview of the existing taxonomies and highlights the sec-
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tions of them this survey focuses on. It also highlights the
main datasets used for various tasks discussed in the paper,
and these are summarised in Table 1.

Whilst individual Vision-Language tasks have their own
unique datasets, they are unified by the Visual Genome [46],
an expansive dataset that provides ground truths for a range
of Vision-Language tasks. As the most generic dataset, it has
33, 877 object categories and 68, 111 attribute categories. At
the time of its publication, this was the largest andmost dense
dataset containing image descriptions, objects, attributes,
relationships, and question–answer pairs. Additionally, the
VisualGenome also contains region graphs, semantic graphs,
andquestion–answer pairs. This results in it being a verywide
ranging dataset with lots of applications in visual cognition
tasks such as scene graph generation [54] and VQA [55].

For image captioning, we follow [42] who identify three
main approaches: 1) retrieval-based captioning, the task of
mapping an input image to an existing caption; 2) template-
based captioning, using image features to complete a caption
template; and 3) deep learning-based captioning, where the
caption is generated from scratch. Retrieval-based caption-
ing is built on the assumption that for every image, a caption
exists, and needs to be retrieved from a bank of existing
captions. It was the foundation of early image captioning
approaches [28] and yielded good results without the need
for deep learning. However, not all images may have appro-
priate captions. If the captions are generic, they will only
be able to describe aspects of an image and may omit its
most important feature. In contrast, template-based caption-
ing [56] uses a predefined caption format and uses object
detection to fill in the blanks. This approach is good for gen-
erating consistent captions, but can result in captions that are
unnatural and clearly generated by amachine. Contemporary
approaches to the task of image captioning are based on deep
learningmodels. Earlywork focused on aCNNencoder feed-
ing an RNN-based decoder [57]; however, more recent deep
learning approaches have developed to incorporate a wide
variety of techniques including GNNs [39, 58] and Trans-
formers [59, 60]. In this survey, we focus specifically on deep
learning approaches to image captioning and focus on graph-
based approaches. Deep learning approaches are typically
trained on the COCO [47] or Flickr30k [48] which contain
a set of images accompanied by five human generated cap-
tions. Closely related to contemporary deep learning-based
captioning are the tasks of paragraph captioning and video
captioning. Paragraph image captioning is the challenge of
generating a multi-sentence description of an image [61, 62],
whilst video captioning focuses on describing videos. Read-
ers interested in video captioning are directed to the recent
survey [63].

Taxonomies of VQA are usually defined through the lens
of the datasets used by the various tasks [43, 44]. Here we
focus on 1) the standard VQA task of answering a ques-

tion about an image, 2) the fact-based VQA (FVQA) task
of answering questions that require external knowledge to
answer, and 3) TextVQA, the task of answering questions
that require the model to read text in the scene and com-
bine it with visual data. Each of the various VQA tasks
have their own set of speicalised datasets. The original VQA
dataset [49] and the subsequently updated VQA 2.0 [64]
dataset address the original task of answering questions
based on the visual information in the image. The FVQA
dataset [50] is built using images from ImageNet [65] and
COCO [47] alongside facts from DBPedia [66], ConceptNet
[67], and WebChild [68]. The images have three forms of
visual concepts extracted from them using a range of models.
These visual concepts include objects (items identified in the
image), scene (scene-level features such as room label), and
actions. Question–answer pairs were generated by human
annotators who selected a visual concept and an accompa-
nying fact triplet which they used to generate a question.
Finally, the text-KVQA dataset [53] was built by compiling
images from a Kaggle movie poster challenge,1 [69], and
Google Image search results from combining brand names
with postfixes such as ‘store’ or ‘building’. This collection
of images was then given to human annotators who removed
images that did not contain text of brand names. The result
is a dataset of 257K images with three groupings: book,
movie, and scene. Accompanying these images are 1.3 mil-
lionquestion–answer pairs. Each imagegroupinggets its own
triplet-based knowledge base from a relevant source: Wiki-
Data [70], IMBd, and [69], respectively. Adjacent to the task
of VQA and its sub-tasks is the field of Visual Grounding
(sometimes known as Referring Expression). This is the task
of identifying the salient regions of an image based on a natu-
ral language query. Although the task is closely aligned with
VQA, it falls outside the scope of this paper. We direct the
readers to [15].

Image retrieval spans multiple tasks, all of which make
use of deep learning in contemporary approaches. We follow
the taxonomy of Alexander et al. [45] and address the fol-
lowing sub-tasks: 1) text-based image retrieval where images
are returned based on a text query; 2) content-based image
retrieval where images are retrieved based on their simi-
larity to an input image; 3) sketch-based retrieval, where
images are retrieved based on their similarity to a sketch;
4) semantic-based retrieval which returns images based on
their perceptual content; and 5) annotation-based retrieval,
where images are returned using meta-data annotations. The
number of datasets used for image retrieval are vast, and the
community has not solidified around a single dataset in the
way image captioning has around COCO [47]. This presents
a challengewhenmaking accurate comparisons between sys-

1 https://www.kaggle.com/datasets/neha1703/movie-genre-from-its-
poster
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Table 1 A summary of common datasets

Dataset Main task Features

Visual Genome [46] Multi-Task 108,000 images; 5.4 million region descriptions; 1.7 million question–answer pairs;
scene graphs

COCO [47] Image Captioning 330,000 images with 5 human generated reference captions for training and
validation sets

Flickr30K [48] Image Captioning 31,000 images each with 5 human generated reference captions

VQA 2.0 [49] VQA 265,000 images; average of 5.4 questions per image each with 10 ground truth
answers

FVQA [50] VQA 2,190 images; 5,826 questions; knowledge base of 4,216 facts

OK-VQA [51] VQA 14,000 questions, each with five ground truth answers, with knowledge extracted
from Wikipedia

TextVQA [52] VQA 28,000 images; 45,000 questions each with 10 ground truth answers

Text-KVQA [53] VQA 257,000 images; 1.3 million QA pairs; inclusion of a knowledge base

tems as the challenge presented by different datasets varies
complicating direct comparisons across datasets. Whilst
image retrieval specific datasets exist [71], there are papers
[72–74] that make use of image captioning datasets [47, 48],
showing thewide range of varied datasets that exist for image
retrieval.

Understanding the inherent biases in datasets is incredi-
bly important for deep learning researchers and practitioners.
As models move beyond research benchmarks and into
mainstream use, models that are trained on biased data
will produce biased outputs and may contribute to the
proliferation of harmful stereotypes. Within the scope of
Vision-Language, work has been done to discover negative
biases in core datasets such as COCO, enabling researchers
to mitigate these risks [75]. Comprehensively demonstrated
the gender, racial, andWestern biases that exist in the COCO
[47] dataset. The research finds lighter-skinned individuals
are 7.5× more common than darker-skinned individuals,
and males are 2× more common than females. This leads
to the concern that image captioning models may come to
see the world as being predominantly occupied by light-
skinned males. Worryingly, [75] also find the existence of
racial slurs in the ground truth captions which leads to con-
cerns about captioningmodels producing captions containing
this derogatory language.

Hirota et al. [76] continue the work of [75] but focus on
VQA datasets. They find evidence of bias in Visual Genome
[46] and OK-VQA [51], two widely used VQA datasets. The
biases include a reflection of traditional gender stereotypes
and a US-centric viewpoint on race and nationality.

In addition to the gender and racial biases in existing
Vision-Language datasets, a lot of the datasets are limited
by style. The vast majority of datasets contain real world
photographs (typically mined from Flickr), which limits
models to only understanding photographs. This limitation
is most significant in image captioning and image retrieval
as the style is a significant component of either the caption

or retrieval query. Unless the question asked is specifically
about the style of the image, then the impact is somewhat
limited for VQA.

2.2 Fundamental graph theoretical concepts

Undirected graph. We define an undirected graph G to be a
tuple of sets V and E , i.e. G = (V , E). The set V contains n
vertices (sometimes referred to as nodes) that are connected
by the edges in the set E , i.e. if v ∈ V and u ∈ V are
connected by an edge then ev,u ∈ E . For an undirected graph,
we have that ev,u = eu,v .

Directed graph A directed graph is a graph where the exis-
tence of ev,u does not imply the existence of eu,v as well. Let
A be the n×n binary adjacency matrix such thatAv,u = 1 if
ev,u ∈ E . Then it follows that A is asymmetric (symmetric)
for directed (undirected) graphs. More in general,A can be a
real-valuedmatrix, where the value ofAv,u can be interpreted
as the strength of the connection between v and u.

Neighbourhood. The neighbourhoodN (v) of a vertex v ∈ V
is the subset of nodes in V that are connected to v. The
neighbour u can be either directly connected to v, i.e. (v, u) ∈
E , or indirectly connected by traversing r edges from v to
u. Note that some definitions include v itself as part of the
neighbourhood.

Complete graph. A complete graph is one (directed or undi-
rected) where for each vertex, there is an edge connecting it
to every other vertex in the set V . A complete graph is there-
fore a graph with the maximum number of edges for a given
number of nodes.

Multi-partite graph.Amulti-partite graph (also known as K -
partite graph) is a graphwhere the nodes can be separated into
K different sets. For scene understanding tasks, this allows
for a graph representation where one set of nodes represent
objects and another represents relationship between objects.
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Multi-modal graph. A multi-modal graph is one with nodes
that have features from different modalities. This approach
is commonly used in VQAwhere the image and text modali-
ties are mixed. Multi-modal graphs enable visual features to
coexist in a graph with word embeddings.

2.3 Common graph types in 2D vision-language
tasks

This section organises the various graph types used across
all three tasks discussed in the survey. Some graphs, such
as the semantic and spatial graphs, are used across all tasks
[39, 55, 73], whilst others are more domain specific, like the
knowledge graph [53, 77]. Figure2 shows a sample image
from the COCO dataset [47] together with various types of
graphs that can be used to describe it. This section, along-
side the figure, is organised so that graph that represent a
single image and graphs that represent portions the dataset
are grouped together.

Semantic graph, multi-partite semantic graph, and textual
semantic graph. Sometimes referred to as a scene graph, a
semantic graph (shown in Fig. 2b) is a one that encapsulates
the semantic relationships between visual objects within a
scene. Across the literature, the terms ‘semantic graph’ and
‘scene graph’ are used somewhat interchangeably, depend-
ing on the paper. However, in this survey we use the term
‘semantic graph’ because there are many ways to describe a
visual scene as a graph, whereas the ‘semantic graph’ label
is more precise about what the graph represents. Seman-
tic graphs come in different flavours. One approach is to
define a directed graphwith nodes representing visual objects
extracted by an object detector such as Faster-RCNN [78]
and edges representing semantic relationships between them.
This is the approach of Yao et al. [39], where, using a dataset
such as Visual Genome [46], a model predicts the seman-
tic relationships to form edges in the graph. Alternatively,
the semantic graph can be seen as a multi-partite graph [58,
79–81] (shown in Fig. 2c), where attribute nodes describe
the object nodes they are linked to. They also change the
way relationships are represented by using nodes rather than
edge features. This yields a semantic graph with three node
types: visual object, object attribute, and inter-object relation-
ship. This definition follows that of the ‘scene graph’ defined
by Johnson et al. [38]. Finally, another form of semantic
graph exists, the textual semantic graph[58, 82] (shown in
Fig. 2d). Unlike visual semantic graphs, textual ones are not
generated from the image itself but rather its caption. Specifi-
cally, the caption is parsed through the Stanford Dependency
Parser [83], a widely used [84, 85] probabilistic sentence
parser. Given a caption, the parser will return its grammati-
cal structure, identifying components such nouns, verbs, and
adjectives and marking the relationship between them. This

is then modified from a tree into a graph, following the tech-
niques outlined in [86].

Spatial graph. Yao et al. [39] define a spatial graph (Fig. 2e)
as one representing the spatial relationship between objects.
Visual objects detected by an object detector form nodes,
and the edges between the nodes represent one of 11 prede-
fined spatial relationships that may occur between the two
objects. These include inside (labelled ‘1’), cover (labelled
‘2’), overlap (labelled ‘3’), and eight positional relationships
(labelled ‘4’–‘11’) based on the angle between the centroid
of the two objects. These graphs are directional but will not
always be complete as there are cases where two objects have
a weak spatial relationship and are therefore not connected
by an edge in the spatial graph. Guo et al. [80] define a graph
of a similar nature known as a geometry graph. It is defined
as an undirected graph that encodes relative spatial positions
between objects with an overlap and relative distance that
meet certain thresholds.

Hierarchical spatial (Tree). These graphs build on from the
spatial graph but the relationships between nodes focus on
the hierarchical nature of the spatial relationship between the
detected objects within an image. Yao et al. [87] propose to
use a tree (i.e. a graph where each pair of nodes is connected
by a single path) to define ahierarchical image representation.
An image (I) is first divided into regions using Faster-RCNN
[78] (R = {ri }Ki=1) with each region being further divided
into instance segmentations (M = {mi }Ki=1). This gives
a three-layer tree structure (T = (I,R,M, Etree), where
Etree is the set of connecting edges) to represent the image,
as shown in Fig. 2f. He et al. [60] use a hierarchical spatial
graph, with relationships representing ‘parent’, ‘child’, and
‘neighbour’ relationships depending on the intersection over
union of the bounding boxes.

Similarity graph. The similarity graph (Fig. 2) proposed by
Kan et al.[88] (referred to as a semantic graph by the authors)
is generated by computing the dot product between two
visual features extracted by Faster-RCNN [78]. The dot
products are then used to form the values of an adjacency
matrix A as the operation captures the similarity between
two vectors, the higher the dot product, the closer the two
vectors are. Faster-RCNN extracts a set of n visual features,
where each feature x(v) is associated to a node v and the
value of the edge between two nodes v and u is given by
Au,v = σ

(
x(v)TMx(u)

)
, where σ(·) is a nonlinear function

andM is a learnt weight matrix. The authors of [88] suggest
that generating the graph this way allows for relationships
between objects to be discovered in a data-driven manner,
rather than relying on a model trained on a dataset such as
the Visual Genome [46].

Image graphs/K-nearest neighbour graph. In their 2021
image captioning work, Dong et al. [89] construct an image
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graph by converting images into a latent feature space by
averaging the object vectors output by feeding the image into
Faster-RCNN [78]. The K closest images from the training
data or search space in terms of l2 distance are then turned
into an undirected complete graph, shown in Fig. 2h. This is a
similar approach used by Liu et al. [90] with their K -nearest
neighbour graph.

Topic graph. Proposed by Kan et al. [88], the topic graph is
an undirected graph of nodes representing topics extracted
by GPU-DMM [91]. Topics are latent features representing
shared knowledge across the entire caption set. Modelling
them as a graph, as shown in Fig. 2i, with edges computed by
taking the dot product of the two nodes, allows the modelling
of knowledge represented in the captions.

Region adjacency graph. A region adjacency graph (RAG)
is a graph made up of nodes representing homogeneous seg-
ments of the image,with edges representing the connection of
adjacent regions. There are different approaches to defining
the regions, but patches or superpixels are commonly used.
Patches, small equal divisions of the image, are used by Sui
et al. [92] whilst superpixels, an unsupervised segmentation
approach for clustering nearby pixels, are used by [93].

Knowledge graph. A knowledge graph, or fact graph, is
a graph-based representation of information. Whilst there
is no agreed structure of these graphs [94], they typically
take the form of triplets. They are used in a wide variety of
tasks to provide the information needed to ‘reason’. Hence,
knowledge graphs enable the FVQA task.

3 An overview of graph neural networks

Over the past years, a large number of GNN architec-
tures have been introduced in the literature. Wu et al. [95]
proposed a taxonomy containing four distinct groups: recur-
rent GNNs, convolutional GNNs, autoencoder GNNs, and
spatial–temporal GNNs. The applications discussed in this
paper mostly utilise convolutional GNNs, for a comprehen-
sive overview of other architectures readers are directed to
[95].GNNs, especially traditional architectures such as graph
convolutional network, have a deep grounding in relational
inductive biases [41]. They are built on the assumption of
homophily, i.e. that connected nodes are similar. There is
an increasing body of work looking into addressing some of
the bottlenecks that GNNs may suffer from. Novel training
strategies such as [96] have been shown to reduceGPUmem-
ory whilst approaches such as [97] reduce the difference in
performance when dealing with homophilic or heterophilic
graphs.

3.1 Graph convolutional networks

One common convolutionalGNNarchitecture is themessage
passing neural networks (MPNNs) proposed by Gilmer et al.
Although this architecture has been shown to be limited [98],
it forms a good abstraction of GNNs.

Gilmer et al. describe MPNNs as being comprised of a
message function, update function, and readout function.
These functions will vary depending on the application of
the network, but are learnable, differentiable, and permuta-
tion invariant. The message and update functions will run
for a number of time steps T , passing messages between
connected nodes of the graph. These are used to update the
hidden feature vectors of the nodes, which are then used to
update the node feature vector, which in turn is used in the
readout function.

The messages are defined as

m(t+1)
v =

∑

u∈N (v)

Mt (h(t)
v ,h(t)

u , ev,u) , (1)

where a message for a node at the next time step m(t+1)
v is

given by combining its current hidden state h(t)
v with that

of its neighbour h(t)
u and any edge feature ev,u in a multi-

layer perceptron (MLP) Mt (·). Given that a message is an
aggregation of all the connected nodes, the summation acts
over the nodes connected to the node u ∈ N (v), i.e. the
neighbourhood of v.

Thesemessages are then used to update the hidden vectors
by combining the node current state with the message in an
MLP Ut .

h(t+1)
v = Ut (htv,m

(t+1)
v ) (2)

Once the message passing phase has run for T time steps,
a readout phase is then conducted using a readout function,
R(·). This is defined as an MLP that considers the updated
feature vectors of nodes (hTv ) on the whole graph (v ∈ G) to
produce a prediction and is defined as:

ŷ = R({hTv |v ∈ G}) (3)

In order to make the GCN architecture scale to large
graphs, the GraphSAGE [99] architecture changes the mes-
sage function. Rather than taking messages from the entire
neighbourhood of a node, a random sample is used. This
reduces the number of messages that require processing,
resulting in an architecture that works well on large graphs.

3.2 Gated graph neural networks

The core idea behind the gated graph neural network
(GGNN) [100] is to replace the update function from the
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Fig. 2 A visual comparison of the various graph types used across vision-language tasks. Best viewed in colour
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message passing architecture (Eq.2) with a gated recurrent
unit (GRU) [101]. The GRU is a recurrent neural network
with a update and reset gates that controls which data can
flow through the network (and be retained) and which data
cannot (and therefore be forgotten).

h(t+1)
v = GRU

⎛

⎝h(t)
v ,

∑

u∈N (v)

Wh(t)
u

⎞

⎠ . (4)

where htv is the hidden feature of node v at time t , W is a
learnt weight matrix, and u ∈ N (v) is the subset of nodes in
the graph connected to node v.

The GGNN also replaces the message function from Eq.1
with a learnable weight matrix. Using the GRU alongside
back-propagation through time enables theGGNN to operate
on series data. However, due to the recurrent nature of the
architecture, it can become unfeasible in terms of memory to
run the GGNN on large graphs.

3.3 Graph attention networks

Following on from the multi-head attention mechanism of
the popular Transformer architecture [40], graph attention
networks (GATs) [102] extend the common GCN to include
this attention attribute. Using an attention function, typically
modelled by an MLP, the architecture calculates an attention
weighting between two nodes. This process is repeated K
times using K attention heads in parallel. The attention scores
are then averaged to give the final weights.

The self-attention is computed by a function a(htv, h
t
u)

(typically an MLP) that attends to the hidden representation
of a node (htv) andoneof its neighbours (h

t
u).Once every node

pairing in the graph has their attention computed, the scores
are passed through a softmax function to give a normalised
attention coefficient (αv,u). This process is then extended to
multi-head attention by repeating the process across K differ-
ent attention heads, each with different initialisation weights.
The final node representation is achieved by concatenating or
averaging (represented as ‖) the K attention heads together.

h(t+1)
v =

∥∥∥∥

K

k=1

σ

⎛

⎝
∑

u∈N (v)

α(k)
v,uW

(k)hu

⎞

⎠ (5)

where σ is a nonlinear activation function such as ReLU and
W is a learnable weight matrix.

3.4 Graphmemory networks

Recent years have seen the development of graph memory
networks, which can conceptually be thought of as models
with an internal and external memory. When there are mul-

tiple graphs overlapping the same spatial information, as in
[103], the use of some form of external memory can allow
for an aggregation of node updates and the graph undergoes
message passing. This essentially allows for features from
multiple graphs to be combined in someway that goes beyond
a more simplistic pooling operation. In the case of Khademi
[103], two graphs are constructed across the same image but
may have different nodes. These graphs are updated using a
GGNN. An external spatial memory is constructed to aggre-
gate information from across the graphs as they are updated,
using a neural network with an attention mechanism. The
final state of the spatial memory is used to perform the final
task.

3.5 Modern graph neural network architectures

In recent years, the limits of message passing GNNs have
become increasingly evident, from their tendency to over-
smooth the input features as the depth of the network
increases [104] to their unsatisfactory performance in het-
erophilic settings [105], i.e. when neighbouring nodes in
the input graphs are dissimilar. Furthermore, the expressive
power of GNNs based on the message passing mechanism
has been shown to be bounded by that of the well-known
Weisfeiler–Lehman isomorphism test [98], meaning that
there are inherent limits to their ability to generate differ-
ent representations for structurally different input graphs.

Motivated by the desire to overcome these issues,
researchers have now started looking at alternative models
thatmove away fromstandardmessage passing architectures.
Efforts in this direction include, among many others, higher-
order message passing architectures [106], cell complexes
networks [107], networks based on diffusion processes [2,
105, 108]. To the best of our knowledge, the application of
these architectures to the 2D image understanding tasks dis-
cussed in this paper has not been explored yet. As such, we
refer the readers to the referenced papers for detailed infor-
mation on the respective architectures.

4 Image captioning

Image captioning is the challenging task of producing a nat-
ural language description of an image. Outside of being
an interesting technical challenge, it presents an oppor-
tunity to develop accessibility technologies for severely
sight impaired (formally ‘blind’) and sight impaired users
(formally ‘visually impaired’ 2). Additionally, it has appli-
cations in problems ranging from image indexing [109] to
surveillance [88]. There are three forms of image captioning

2 The UK Department of Health and Social Care adopted the more
inclusive phrasing around 2017.
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techniques: 1) retrieval-based captioning, where a caption
is retrieved from a set of existing captions, 2) template-
based captioning, where a pre-existing template is filled in
using information extracted from the image, and 3) deep
learning-based image captioning, where a neural network
is tasked with generating a caption from an input image.
We propose to refine this taxonomy to differentiate between
GNN-based approaches and more traditional deep learning
powered image captioning. The following section details the
GNN-based approaches to image captioning, of which there
have been a number of in recent years. Figure3 illustrates the
structure of a generic GNN-based image captioning architec-
ture.

GNN-based approaches to image captioning all follow
the traditional encoder–decoder-based approach common
in deep learning image captioning techniques. Images first
undergo object detection, the output ofwhich is used to create
an encoding. These encodings are then decoded, traditionally
with a long short-term memory network (LSTM), into a cap-
tion. Through incorporating GNNs, researchers have been
able to enhance the encoded image representationby incorpo-
rating spatial and semantic information into the embeddings.

As the task of image captioning has developed over
time, so have the evaluation metrics used to assess the
performance of proposed architectures. Originally, image
captioning relied heavily on machine translation evalua-
tion techniques such as BLEU [110], ROUGE [111], and
METEOR [112] as no image captioning specific metric
existed. However, this changed with the introduction of both
CIDEr [113] and SPICE [86]. The performance metrics are
detailed in Table 2.

The first architecture to use a GNN to improve image
captioning was by Yao et al. [39]. In their work, they pro-
pose the use of a GCN to improve the feature embeddings
of objects in an image. They first start by applying a Faster
RCNN object detector [78] to the image in order to extract
feature vectors representing objects. These feature vectors
are then used to create two graphs: a bidirectional spatial
graph encoding spatial relationships between objects and a
directed semantic graph which encodes the semantic rela-
tionships between objects. A GCN is then applied to both
graphs before the enhanced features of the graphs undergo
mean pooling. They are then decoded by an LSTM into a
caption. As the whole graphs are used to inform the caption
generation, it may lead to scenarios where dense graphs lead
to redundant or low-value information being included in the
caption.

Zhong et al. [79] focus solely on a semantic graph and
address the problem of which nodes and edges to include in
the final caption. This is challenging for scenes containing a
lot of detected objects as the semantic graphs can become
relatively large. The problem is addressed by decompos-
ing the semantic graph into various sub-graphs that cover

various parts of the image. They are then scored using a
function trained to determine how closely the sub-graph
resembles the ground truth caption. This enables the selec-
tion of sub-graphs from the main semantic graph (produced
by the commonly used MotifNet [114]) that will go on to
generate useful captions. Zhong et al. [79] make use of a
GCN to aggregate neighbourhood information of the pro-
posed sub-graph; focusing on the link between the language
modality and semantic graph, therefore discarding the spatial
information.

Another work that makes use of the semantic graph is
that of Song et al. [115]. They investigated how both implicit
and explicit features can be utilised to generate accurate and
high-quality image captions. The authors define implicit fea-
tures as representing global interactions between objects and
explicit features as those defined on a semantic graph. For
the latter, rather than using multiple graphs, [115] only uses
a single semantic graph. However, rather than predicting the
graph directly via MotifNet [114] as in other works [79], its
construction starts with a spatial graph. After object detec-
tion, a fully connected directed graph is generated between
the objects (with nodes being represented by the object fea-
ture vector). The edges of this graph are then whittled away
in a two step process. Firstly, edges between objects that
have zero overlap (measured as intersection over union) and
an l2 distance less than the longest side of either objects
bounding box are removed. The remaining edges are used to
determine which object pairs have their relationship detected
by MotifNet [114]. Those relationships with a high enough
probability are kept whilst the others are removed. This
results in a semantic graph that indirectly contains spatial
information, going beyond the semantic graph of [79]. The
final graph is then processed by a GGNN, the output of
which is a representation of the explicit features. The implicit
features are generated by a Transformer encoder [40]. The
entire image alongside the regions within the detected object
bounding boxes is encoded. These features are then used
alongside those of the explicit features as input to an LSTM
language decoder that is used to generate the final caption.
The work demonstrates the successes possible when using
GNNs alongside Transformers, using their different induc-
tive biases to best model different interactions (see Table 3).
However, both the implicit and explicit relationships remain
local to a single image. Further work could consider how
often certain relationships occur over the entire dataset.

Guo et al. [80] took a very similar approach to Yao et al.
[39] with their work, utilising a dual graph architecture con-
taining a semantic and spatial graph. However, theymake the
observation that images can be represented by a collection
of visual semantic unit (VSU) vectors, which represent an
object, its attributes, and its relationships. These VSUs are
combined into a semantic graph that models relationships as
nodes rather than edge features and adds attribute nodes con-
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Fig. 3 An abstract overview of GNN-based image captioning architec-
tures discussed in this section.Most architectures extract image features
and use them to construct at least one graph to represent the image.
Some papers [88, 89] build higher-level graphs at an image level rather

than an object level. A GNN is then applied to these graphs, and the
resulting features are fed into a language generator that creates an appro-
priate caption for the image. Traditionally this was an LSTM, but more
recently the trend is to use Transformers [40]. Best viewed in colour

Table 2 A table detailing the different image captioning performance metrics

Metric Original field Based on Description

BLEU Machine translation Precision Based on a modified n-gram precision where the reference word is
exhausted after a matching candidate word is identified. BLEU
favours captions that are a similar in length to the reference
caption

ROUGE Machine text summarisation Recall Built with four components: an n-gram recall between the
candidate and reference set, a comparison of the longest common
sub-sequence, a comparison of the weighted longest common
sub-sequence, and finally, the skip-bigram co-occurrence statistic

METEOR Machine translation Fmean Uses the harmonic mean of the precision and recall between
candidate caption and reference captions

CIDEr Image Captioning n-grams The metric is based on a number of intuitions. Firstly, that if an
n-gram is not present in the reference captions it should not
appear in the candidate caption. Secondly, that it should encode
how often n-grams present in the candidate captions are present.
And finally, n-grams that occur across all the reference captions
should be assigned a lower weighting as they will be things like
articles and have little to no important information

SPICE Image Captioning Textual Semantic Tree Reference and candidate captions are converted into textual
semantic graphs to compare the semantic makeup of the captions

nected to objects, thusmaking it multi-partite. Doing so gives
the graph a closer resemblance to the captions it will go on to
generate as objects map to nouns, relationships to verbs and
prepositions, and finally attributes to adjectives. The authors
argue that this approach allows the model to explicitly learn
relationships and model them directly. As argued in [80],
a semantic graph of an image has a close mapping to the
image caption. Nodes representing objects map directly to
nouns, edge features (in the case of [39]) or nodes (in the
case of [80]) that encode relationships map clearly to prepo-
sitions, and nodes representing attributes map to adjectives.
This strong relationship between the graph structure gener-
ated by the encoder and the final sentence outputted by the
decoder further supports the use of the image graph–sentence
architecture used by many image captioning systems.

Zhou et al. [81] use an LSTM alongside a Faster-RCNN
[78]-based image feature extractor, with the addition of a
visual self-attention mechanism. The authors make use of
a multi-partite semantic graph, following the style of [38,
80]. Specifically, they propose to use three GCNs to cre-
ate context-aware feature vectors for each of the object,
attribute, and relationship nodes. The resulting context-aware
nodes undergo fusion with the self-attention maps, enabling
the model to control the granularity of captions. Finally,
the authors test two methods of training an LSTM-based
language generator: the first being a traditional supervised
approachwith cross-entropy loss and the second being a rein-
forcement learning-based approach that uses CIDEr [113] as
the reward function. By utilising context dependent GCNs
in their architecture, to specifically account for the object,
attribute, and relationship nodes, SASG is able to achieve
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competitive results when compared with similar models, as
shown in Table 3.

SGAE (scene graph autoencoder) is another paper tomake
use of a multi-partite semantic graph. In the paper, Yang et
al. [58] take a caption and convert it into a multi-partite tex-
tual semantic graph using a similar process to that of the
SPICEmetric [86] (detailed further in Table 2). The nodes of
the graph are converted to word embeddings which are then
converted into feature embeddings by way of a GCN, with
each node type being given its own GCN with independent
parameters. These feature embeddings are then combined
with a dictionary to enable them to be re-encoded before they
are used to generate a sentence. The dictionary weights are
updated via back-propagating the cross-entropy loss from the
sentence regeneration. By including a dictionary, the authors
are able to learn inductive biases from the captions. This
allows generated captions to go from ‘man on motorcycle’
to ‘man riding motorcycle’. When given an image, SGAE
generates a multi-partite visual semantic graph, similar to
[38, 80], using Faster-RCNN [78] andMotifNet [114]. These
visual features are then combined with their word embed-
dings through amulti-modal GCN and then re-encoded using
the previously learnt dictionary. These features are then used
to generate the final sentence.

Yang et al. [116] take a multi-partite semantic graph and
input it to a multi-head attention-based GNN. The MHA-
GNN is based on the Transformer architecture in that a
multi-head self-attention is computed between all the nodes
of the graph. However, the output of the self-attention is
masked by an adjacencymatrix prior to the softmax.Doing so
enables a self-attention mechanism that maintains the origi-
nal semantic graph structure. Additionally, the model makes
use of Mixture of Experts (MoE) decoding, a first for image
captioning. Each node type (object, relationship, attribute)
gets its own decoder, and the output is put through a soft
router which computes the final output token.

Rather than utilising multiple graphs, Wang et al. [117]
instead use a single fully connected spatial graph with an
attention mechanism to learn the relationships between dif-
ferent regions. This graph is formed of nodes that represent
the spatial information of regions within the image. Once
formed, it is passed through a GGNN [100] to learn the
weights associated with the edges. Once learnt, these edge
weights correspond to the probability of a relationship exist-
ing between the two nodes.

The work of Yao et al. [87], following on from their GCN-
LSTM [39], presents an image encoder that makes use of
a novel hierarchy parsing (HIP) architecture. Rather than
encoding the image in a traditional scene graph structure
like most contemporary image captioning papers [39, 79,
89], Yao et al. [87] take the novel approach of using a tree
structure (discussed in Sect. 2.3), exploiting the hierarchi-
cal nature of objects in images. Unlike their previous work

which focused on the semantic and spatial relationships, this
work is about the hierarchical structure within an image. This
hierarchical relationship can be viewed as a combination of
both semantic and spatial information—therefore merging
the two graphs used previously. The feature vectors repre-
senting the vertices on the tree are then improved through the
use of Tree-LSTM [118]. As trees are a special case graph,
the authors also demonstrate that their previous work GCN-
LSTM [39] can be used to create enriched embeddings from
the tree before decoding it with an LSTM. They demonstrate
that the inclusion of the hierarchy passing improves scores
on all benchmarks when compared with GCN-LSTM [39],
which does not use hierarchical relationships.

The work of He et al. [60] build on the idea of a hierarchi-
cal spatial relationships proposed byYao et al.[87]. However,
rather than use a tree to represent these relationships, they
use a graph with three relationship types: parent, neighbour,
and child. They then propose a modification to the popular
Transformer layer to better adapt it to the task of image pro-
cessing. After detecting objects using Faster-RCNN [78], a
hierarchical spatial relationship graph is constructed. Three
adjacencymatrices are then built from this graph tomodel the
three relationship types (�p,�n, and�c, respectively). The
authors modify the Transformer layer so that rather compute
self-attention across the whole spatial graph, there is a sub-
layer for each relationship type. Each sub-layer processes the
query Q with its own key Ki and value Vi with the modified
attention mechanism:

Attention(Q, Ki , Vi ) = �i � Sof tmax

(
QKT

i√
d

)

Vi (6)

where � is the Hadamard product and i refers to the rela-
tionship type i ∈ {parent, neighbour , child} and is used
to specify the adjacency matrix (�) used. Finally,

√
d is

used as a regularisation technique with d being the dimen-
sion of Ki . Using the Hadamard product essentially zeroes
out the attention between regions whose relationship is not
being processed by that sub-layer. The resulting encodings
are decoded by an LSTM to produce captions.

Like [60], theM2meshedmemoryTransformer proposed
by Cornia et al. [59] also makes use of the increasingly pop-
ular Transformer architecture [40]. Unlike other papers [39,
58, 60, 87] which make use of some predefined structure
on extracted image features (spatial graph, semantic graph,
etc.),M2 uses stacks of self-attention layers across the set of
all the image regions. The standard key and values from the
Transformer are edited to include the concatenation of learn-
able persistent memory vectors. These allow the architecture
to encode a priori knowledge such as ‘eggs’ and ‘toast’ make
up the concept ‘breakfast’. When decoding the output of the
encoder, a stack of self-attention layers is also used. Each
decoder layer is connected via a gated cross-attentionmecha-
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nism to eachof the encoder layers, givingway to the ‘meshed’
concept of the paper. The output of the decoder block is used
to generate the final output caption.

The work of Herdade et al. [119] modifies the atten-
tion weight matrix in order to incorporate relative geometric
relationships between detected objects. These geometric
relationships are defined using a displacement vector that
characterises the difference in geometry between two bound-
ing boxes. The work allows the Transformer-based archi-
tecture to incorporate geometric relationships directly into
the attention mechanism, a relationship not considered by
other Transformer-based image captioning techniques such
as [59].

The authors of [88] propose using a novel similarity
(referred to as a semantic in the paper) and topic graphs. Built
on dot product similarity, the graphs are producedwithout the
requirement of graph extraction models such as MotifNet
[114]. Rather, a set of vertices V = {vi ∈ R

dobj }nobji=1 are
extracted as ResNet features from a Faster-RCNN object
detector [78]. Edges in the adjacency matrix are then pop-
ulated using the dot product between the feature vectors in
V with ai j = σ(vTi Mv j ), where M is a matrix of learn-
able weights and σ is a nonlinear activation function. Once
both graphs have been constructed, a GCN is applied to both
in order to enrich the nodes with local context. A graph
self-attention mechanism is then applied to ensure nodes
are not just accounting for their immediate neighbours. The
improved graphs are then decoded via an LSTM to generate
captions.

Following [39], Dong et al. [89] use a spatial graph to
show a directed relationship between detected objects within
the input image. Locally, object features are extracted by a
CNN to associate a vector to each vertex of the spatial graph.
This process is completed for each image in the dataset. In
addition to this graph, the authors introduce an image-level
graph. Specifically, each image is represented by a feature
vector that is the average of its associated set of object fea-
ture vectors. The image graph for a corresponding image
is formed as a fully connected undirected graph of the K
images whose l2 distance is the closest to the input image.
Both the local spatial graph and the more global image-level
graph are processed by GCNs to create richer embeddings
that can be used for caption generation. This approach is
shown to work extremely well, with Dual-GCN achieving
outperforming comparable models in the BLEU, METEOR,
and ROGUE metrics (see Table 3).

5 Visual question answering

VQA is the challenging task of designing and implementing
models that are able to answer natural language questions
about a given image. These answers can range from sim-

ple yes/no to more natural, longer form answers. Questions
can also vary in complexity. As the field has developed,
more specific VQA tasks have emerged. The first to emerge
was FVQA, sometimes known as knowledge visual ques-
tion answering (KVQA), where external knowledge sources
are required to answer the questions. Another task that has
emerged is Textual VQA, where the models must understand
the text within the scene in order to generate answers. All
three tasks have their own datasets [46, 49, 50, 52, 53] and
have an active community developing solutions [49, 84, 103].

5.1 VQA

Originally proposed in [49],VQAhas developedbeyond sim-
ple ‘yes’ or ‘no’ answers to richer natural language answers.
A common thread of work is to leverage the multi-modal
aspect of VQA and utilise both visual features from the input
image and textual features from the question [84, 85, 103].

One of the first works in VQA to make use of GNNs was
that of Teney et al. [84]. Their work is based on the clip art
focused dataset [49]. Their model takes a visual scene graph
as input alongside a question. The question is then parsed into
a textual scene graph using the Stanford Dependency Parser
[83]. These scene graphs are then processed independently
using a GGNN [100] modified to incorporate an attention
mechanism. The original feature vectors are then combined
using an attention mechanism that reflects how relevant two
nodes from the scene graphs are to one another.

Khademi [103] takes a multi-modal approach to VQA by
using dense region captions alongside extracted visual fea-
tures. Given a query and input image, the model will first
extract visual regions using a Faster-RCNN object detector
and generated a set of features using ResNet and encoding
the bounding box information into these features. An off-the-
shelf dense region captioningmodel is also used to create a set
of captions and associated bounding boxes. The captions and
boundingbox information are encodedusing aGRU.Each set
of features is turned into a graph (visual and textual, respec-
tively) with outgoing and incoming edges existing between
features if the Euclidean distance between the centre of the
normalised bounding boxes is less than γ = 0.5. Both graphs
are processed by aGGNNwith updated features being used to
update an external spatialmemoryunit—thusmaking the net-
work a graph memory network (described in Sect. 3.4). After
propagating the node features, the final state of the exter-
nal spatial memory network is turned into a complete graph
using each location as a node. This final graph is processed
by a GGNN to produce the final answer. The multi-modal
approach presented in this paper is shown to be highly effec-
tive when compared to similar VQAmethods. This approach
is shown towork extremelywell in benchmarks, with the pro-
posed MN-GMN architecture [103] performing favourably
with comparable models (Table 4).
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MORN [85] is another work that focuses on capturing the
complexmulti-modal relationships between the question and
image. Like many recent works in deep learning, it adopts
theTransformer [40] architecture. Built with threemain com-
ponents, the model first creates a visual graph of the image
starting from a fully connected graph of detected objects and
a GCN is used to aggregate the visual features. The second
part of the model creates a textual scene graph from the input
question. Both graphs are merged together by the final com-
ponent of the model, a relational multi-modal Transformer,
which is used to align the representations.

Sharma et al. [120] follow the Vision-Language multi-
modal approach but diverge from the use of a textual semantic
graph and instead opt to use word embeddings. The authors
utilise a novel GGNN-based architecture that processes an
undirected complete graph of nodes representing visual
features. Nodes are weighted with the probability that a rela-
tionship occurs between them. In line with other VQA work
[103], the question is capped to 14words,with each one being
converted into GloVe embeddings [121]. Questions with
fewer than 14words are paddedwith zero vectors. A question
embedding is then generated using aGRUapplied to theword
embeddings. An LSTM-based attention mechanism consid-
ers both the question vector and the visual representations
making up the nodes of the scene graph. This module con-
siders previously attended areas when exploring new visual
features. Finally, an LSTM-based language generator is used
to generate the final answer. Another work to forgo using a
textual scene graph, Zhang et al. [55] make use of word vec-
tors to embed information about the image into a semantic
graph. Using a GNN, they are able to create enriched feature
vectors representing the nodes, edges, and an image feature
vector representing the global state. They include the ques-
tion into the image feature by averaging the word vectors,
which enables the GNN to reason about the image. Whilst
both [120] and [55] yield good results, by only using word-
or sentence-level embeddings and not using a textual scene
graph, they fail to model relationships in the textual domain.
This therefore removes the ability for the models to reason
in that domain alone.

Both Li et al. [122] and Nuthalapati et al. [123] take a
different route to the established multi-modal approach and
instead use different forms of visual information. Li et al.
[122] take inspiration from [39] andmake use of both seman-
tic and spatial graphs to represent the image. In addition to
these explicit graphs, they also introduce an implicit graph,
i.e. a fully connected graph between the detected objects
with edge weights set by a GAT. The relation-aware visual
features are then combined with the question vector using
multi-modal fusion. The fused output is then used to predict
an answer via an MLP.

Nuthalapati et al. [123] use a dual scene graph approach,
using both visual and semantic graphs. These graphs are

merged into a single graph embedding using a novel GAT
architecture [102] that is able to attend to edges as well as
nodes. The graphs are enriched with negative entities that
appear in the question but not the graph. Pruning then takes
place to remove nodes and edges that are K hops away from
features mentioned in the question. A decoder is then used
to produce an answer to the inputted question.

5.2 Knowledge-/fact-basedVQA

Knowledge- or fact-based VQA is the challenging task of
making use of external knowledge given in knowledge graphs
such as WikiData [70] to answer questions about an image.
The major challenge of this task is to create a model that can
make use of all three mediums (image, question, and fact) to
generate an appropriate answer. The MUCKO [124] archi-
tectural diagram shown in Fig. 4 (reused with permission), is
shown as a representative example of models that approach
FVQA.

In [125], the authors present a novel GCN-based archi-
tecture for FVQA. Alongside the question and answer
sets, a knowledge base of facts is also included, K B =
{ f1, f2, ..., f|K B|}. Each fact f = (x, r , y) is formed of a
visual concept grounded in the image (x), an attribute or
phrase (y), and a relation linking the two r . Relationships
exist in a predefined set of 13 different ways a concept and
attribute can be related. Their work first reduces the search
space to the 100 facts most likely to contain the correct
answer by using GloVe embeddings [121] of words in the
question and facts before further reducing it to the most rel-
evant facts frel . These most relevant facts are turned into a
graph where all the visual concepts and attributes from frel
form the nodes. An edge joins two nodes if they are related
by a fact in frel . A GCN is then used to ‘reason’ over the
graph to predict the final answer. Using a message passing
architecture, the authors are able to update the feature repre-
sentations of the nodes which can then be fed into an MLP
which predicts a binary label corresponding to whether or
not the entity contains the answer.

Zhu et al. [124] use amulti-modal graph approach to repre-
senting imageswith a visual, semantic, and knowledge graph.
After graph construction, GCNs are applied to each modality
to create richer feature embeddings. These embeddings are
then processed in a cross-modal manner. Visual–fact aggre-
gation and semantic–fact aggregation operations produce
complimentary information which is then used with a fact–
fact convolutional layer. This final layer takes into account
all three modalities and produces an answer that considers
the global context. The authors continue their work in [77]
by changing the cross-modal mechanism for a novel GRUC
(Graph-based Read, Update, and Control) mechanism. The
GRUCoperates in a parallel pipeline.One pipeline startswith
a concept from the knowledge graph and recurrently incor-
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Table 4 A table showing the model details and VQA [49] Test-Dev results of selected VQA models

Model Graphs Used Architecture Overall Y/N Number Other Test-Std

Sharma et al [120] Semantic GGNN 67.96 84.12 46.12 58.13 67.98

GraphVQA [84] (Abstract Scenes only) Visual and Textual Semantic GCN 70.42 81.26 76.47 56.28 –

MORN [85] Visual and Textual Semantic GCN 71.21 87.15 55.22 61.19 71.53

MN-GMN [103] Visual and Textual Semantic Graph Memory Network 73.2 88.2 56 64.2 73.5

ReGAT [122] Semantic, Spatial GAT 70.27 86.08 54.42 60.33 70.59

Bold: Best score

Fig. 4 MUCKO architecture [124] (reused with permission). Best viewed in colour

porates knowledge from the visual graph. Another starts with
the same knowledge graph concept but incorporates seman-
tic knowledge. At the end of the recurrent operations, the
outputs of the two pipelines are fused together with the ques-
tion and original fact node. This fused feature is then used to
predict the final answer. The changemade to the cross-modal
attention mechanism yields significant improvements in the
FVQA benchmark when compared with MUCKO [124].

Liu et al. [126] also adopt amulti-modal approach, but use
only the semantic and knowledge modalities. They propose
a dual process system for FVQA that is based on the dual
process theory from cognitive science [127]. Their approach
utilises a BERT encoder to represent the input question and
a Faster-RCNN [78]-based feature extractor to represent the
image features. The first of the two systems, based on the
Transformer architecture [40], joins these two representa-
tions into a single multi-modal representation. The second
system then develops a semantic graph by turning dense
region captions into textual scene graphs (using SPICE), as
well as a knowledgegraphgenerated using the question input.
A message passing GNN is then used to identify the impor-
tant nodes and aggregate information between them using an
attention weighting. A joint representation for each knowl-
edge graph node is then learned by combining the whole
semantic graph with the node with relation to an attention

weighting. This joint representation is then used to predict
the final answer.

The GNN-VQA proposed in [128] makes use of a
bidirectional GNN that fuses structured and unstructured
multi-modal data through a ‘supernode’. After extracting a
semantic graph, they use a pretrained sentence BERT model
to calculate the similarity between the potential answers and
the Visual Genome region descriptions. The top-10 region
descriptions in terms of similarity are averaged and used to
define a concept node which is connected to each visual node
of the semantic graph. Concepts are then extracted from the
ConceptNet KG [67] using the labels of detected objects in
the image and concepts extracted from potential answers. A
GAT-based GNN is then used to construct better node repre-
sentations which are then used to select the correct answer.

Moving away from the multi-modal approach, SGEITL
[129] makes a semantic graph of the image and then fol-
lows Yang et al. [54] and introduces skip edges to the graph,
essentially making it a complete graph. This graph then goes
through a multi-hop graph Transformer, which masks the
attention between nodes based on their distance, ensuring
that only close by nodes are attended to. Through their work,
they demonstrate that structural information is useful when
approaching the complex VQA task.

With their TRiG model, Gao et al. [130] advocate taking
an alternative approach to FVQA and rather than generat-
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ing the answer in some multi-modal space, they propose to
use the textual space. They argue that this prevents further
fusion with additional outside knowledge, and that as most
of this data are in textual form, it makes sense to work in that
domain. TRiG therefore has three components. It first con-
verts the image into a caption using an off-the-shelf image
captioning tool. The model then finds the top K relevant
facts from a knowledge base of Wikipedia articles before
using a T5 backbone Transformer [131] to fuse and decode
the <question, visual context, knowledge> triplet into an
answer.

5.3 TextVQA

TextVQA is the sub-task of VQA where the answers require
the model to be able to read text that appears in images.
Typically this involves tasks like reading brand names from
buildings or the title of book covers. This information can
then be combined with an external knowledge base, enabling
the models to answer questions such as ‘Is the shop an Amer-
ican brand?’ by reading the shop name and searching it in a
knowledge base.

Gao et al. [132] focus on the in-image text and how it can
be better leveraged to improve VQA. They use a novel multi-
modal graph made up of fully connected visual, semantic,
and numeric sub-graphs. Each sub-graph represents a unique
modality that can be found in an image: visual entities (rep-
resented by image feature extractors), semantic meaning of
discovered text (initially discovered by OCR), along with
numeric values and their semantic meaning. The paper pro-
posed a model that aggregates information across modalities
together using a relevance score. Once the three modalities
have been aggregated, an attentionmechanism is deployed to
help predict the final answer. The focus on different modal-
ities proves a useful approach, with the model performing
favourably in benchmarks (see Table 6).

Another work that makes use of multi-modal graphs is
Liang et al. [133]. Their work uses both image features and
scene text features (extracted by OCR) to generate a spa-
tial relationship graph similar to that of [39]. The graph
undergoes multi-head attention before being processed by
a GNN that makes use of the attention weights. Multi-modal
fusion is then used to join the node features with the question
embedding and positional features. The output of this fusion
operation is then used to predict a final answer.

6 Image retrieval

Image retrieval is the task of finding images from a database
given some query. These queries can take many forms,
including a similar image, a natural language query, or even
a sketch. A common approach is to represent the database

images as being in some space, where similar images are
thosewith aminimal distance to the query.When this space is
represented using graphs,GNNsbecomevaluable for sharing
features and acquiring more global context for the features.

Johnson et al. [38] show that a scene graph can be used
as the input of the image retrieval system. By allowing end
users to create a scene graph where nodes represent objects,
attributes, and relationships, they are able to return appropri-
ate images via a scenegraphgroundingprocess. This involves
matching each scene graph object node with a bounding box
predicted by an object detector, and is represented prob-
abilistically using a conditional random field (CRF). The
advantage of using scene graphs as search queries over nat-
ural language is that they scale well in terms of complexity.
Once a basic scene graph has been constructed, it is straight-
forward for it to be extended and made more complex by
adding additional nodes. Another advantage is that it reduces
the operations required to map the search query to the image.

Following on from [38], Yoon et al. propose IRSGS
(Image Retrieval with Scene Graph Similarity) [73], which
makes use of a semantic graph. Given a query image, the
model will generate a semantic graph and compare its sim-
ilarity with graphs of images in the database. This graph
comparison is achieved by taking the inner product of graph
embeddings generated by a GNN (either GCN [134] or
GIN[135]). One key contribution of the paper is the concept
of Surrogate Relevance, which is the similarity between the
captions of the images being compared. Surrogate Relevance
is calculated using the inner product between Sentence-
BERT embeddings of the captions. This measure is used as
the training signal of the model to hone the feature embed-
dings generatedby theGNN.Thegraph-to-graph comparison
behind the model allows this work to better scale to large
image databases when compared to [38]. The use of Surro-
gate Relevance allows the work to be potentially expanded
to match against user queries if they are in the style of the
captions used to power the relevance measure.

Using an image graph of K -nearest neighbour graph of
images represented as feature embeddings, Liu et al. [90]
propose using a GCN alongside a novel loss function based
on image similarity. The feature embeddings are enhanced to
account for a global context across the whole image database
using aGCN. Similarity between images is calculated by tak-
ing the inner product of the feature embeddings. The higher
the similarity, the better the retrieval candidate. The author’s
novel loss function is designed tomove similar images closer
together in the embedding space and dissimilar images fur-
ther apart. Compared with [73], by using the inner product,
the similarity measure is far more deterministic. However,
unlike [73], it cannot be expanded to work alongside text-
based image retrieval with a user query.

Zhang et al. [136] also use a K -nearest neighbour graph,
but focus on improving the re-ranking process in content-

123



Graph neural networks in vision-language image understanding: a survey 507

Table 5 A table showing the model details and results of selected models trained and tested against the OK-VQA [51] and FVQA [50] datasets

Model Graphs Used GNN OK-VQA Top-1 OK-VQA Top-3 FVQA Top-1 FVQA Top-3
Architecture Results Results Results Results

Out of the box [125] Knowledge GCN – – 69.35 80.25

Dual process [126] Semantic, Knowledge GCN 29.43 32.83 63.57 76.47

Mucko [124] Visual, Semantic, Knowledge GCN – – 73.06 85.94

GRUC [77] Visual, Semantic, Knowledge GCN 29.87 32.65 79.63 91.20

Bold: Best score

Table 6 A table showing the model details and TextVQA-Val Accuracy results of selected TextVQA models

Model Graphs Used GNN TextVQA-Val TextVQA Test
Architecture Accuracy (%) Accuracy (%)

MM-GNN [132] Visual, Textual Semantic, Numeric Multi-modal GNN 31.44 31.10

MCG [133] Spatial Multi-modal (contextual) GNN 29.40 29.61

Bold: Best score

based image retrieval.AGNN is applied to aggregate features
created from a modified adjacency matrix. Using a GNN
allows the re-ranking process to de-emphasise nodes with a
low confidence score.

Rather than use a pure K -nearest neighbour graph, the
DGCQ model [137] is based on vector quantisation, a pro-
cess from Information Theory for reducing the cardinality of
a vector space. It can essentially be thought of as a many-to-
one clustering technique where vectors in one space x ∈ R

d

are mapped to a single point in another space. A mapping
function q(x) maps the vector to a codeword ci . These code-
words make up a set of length K known as a code book;
thus, q(x) ∈ C = {ci ; i ∈ {0...(K − 1)}}. The learned code
words are combined with image features to form landmark
graph—based on the similarity graph except the graph also
has nodes learned through the quantisation process. Once
the landmark graph has been constructed, a GCN is use
to propagate features with the objective of moving similar
images closer together in the feature space. The use of vector
quantisation allows for the landmark graph to exist in a lower-
dimensional space, reducing computation when computing
which images from the graph to return as candidates.

The authors of [74]move to adopt amulti-modal approach.
They use GraphSAGE [99] to effectively learn multi-modal
node embeddings containing visual and conceptual informa-
tion from the connections in the graph. The distance between
connected nodes are reduced, whilst the distance between
disconnected nodes is increased. By using graph nodes that
represent images as well as nodes representing meta-data
tags, their model is able to provide content-based image
retrieval as well as tag prediction. At inference time, images
shown to themodel can be attached to the graph through their
K nearest images, attached to relevant tags, or both. Unlike
previous works [38, 73, 90], Misraa et al. [74] make use of
multi-modal embeddings in the graph nodes.

Schuster et al. [82] continue the work of Johnson et al.
[38], by creating a natural language parser that converts a
query into a scene graph that can be processed by their work.
This allows them to go beyond content-based image retrieval
and move into text-based image retrieval. Their parser works
by creating a dependency tree using the Stanford Depen-
dency Parser [83] and then modifying the tree. They first
execute a quantification modifier that ensures nouns are the
head of the phrase. This is followed by pronoun resolution
to make the relationship between two objects more explicit.
Finally, plural nouns are processed. This involves copying
noun instances when numeric modifiers are given. This tex-
tual scene graph is then mapped to images following [38].

Cui et al. [72] also tackle text-based image retrieval. They
presentwork thatmakes use of aGCN to provide cross-modal
reasoning on visual and textual information. Input features
are split into channels which form a complete graph and
undergo graph convolution. Once the textual and visual fea-
tures are projected into a common space, they have their
distances measured using the cosine similarity. These sim-
ilarity scores are then stored in a matrix representing the
similarities between visual and textual inputs.

Zhang et al. [138] tackle the challenging task of Com-
posing Text and Image to Image Retrieval, where given a
reference image and modification query the image retrieval
system must find an image similar to the reference that con-
tains the modifications outlined in the query. The principle
challenge of this emerging task is its cross-modality nature.
The authors tackle this challenge by first generating a spatial
graph of the reference image and a textual feature of themod-
ification query. These features are then concatenated before
the graph is processed by a GATwhose attention mechanism
has been altered to account for the directionality of the graph
and the spatial data it encodes. A collection of GRUs that
form a Global Semantic Reasoning GSR unit are then used
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to create the final embedding for the reference image. The
same process is used on the target image but without the con-
catenation of the textual feature. A cross-modal loss function
and adversarial loss function are combined to ensure that the
features outputted by the Global Semantic Reasoning unit of
the same category are moved closer together.

Chaudhuri et al. [93] adopt a Siamese-based network
architecture where two similar inputs go into two sepa-
rate networks that share weights. This network architecture
typically uses contrastive loss or triplet loss to ensure the out-
puts of these networks are similar. The authors use a novel
Siamese-GCN on a region adjacency graph that is formed
by connecting adjacent segmented regions and weighting the
edge accounting for the distance and angle between centroids
of the regions. They apply their technique to high-resolution
remote sensing images for content-based image retrieval.
By using a Siamese-GCN with contrastive loss, the authors
are able to learn an embedding that brings similar images
together and forces dissimilar images apart. This work is
then followed up by the authors in [139], where they add a
range of attention mechanisms. They implement both node-
level and edge-level attention mechanisms (in a similar style
to GAT [102]). These attention mechanisms are then incor-
porated into the Siamese-GCN to yield improvements over
their previous work.

Another work to incorporate a Siamese network design
was Zhang et al. [140]. They use a three part network design
to perform zero-shot sketch-based image retrieval with a
Siamese-based encoding network which creates features of
the image and associated sketch using ResNet50. These fea-
tures are the concatenated together to create node features.
The similarity between nodes is calculated using a metric
function modelled by an MLP, and this operation is used to
populate the adjacency matrix of a similarity graph. A GCN
is then applied to the similarity graph to create fusion embed-
dings of sketch–image pairs. Rather than use an MLP to
reconstruct the semantic information from the GCN embed-
dings, the authors chose to use a conditional variational
autoencoder [141]. Doing so enables the model to generate
semantic information for sketches of unseen classes, aiding
the zero-shot component of the model.

7 Discussion and conclusion

In this section,we drawupon the views ofBattaglia et al. [41],
and discuss how the popular Transformer [40] can be viewed
through the lens of GNNs. We then discuss how its depen-
dence on consistent structure may pose challenges should
image generation techniques be applied to create new train-
ing data for image captioning. The section concludes with a
final summary of the paper and an overview of the challenges

and future research directions that lie ahead for graph-based
2D image understanding.

7.1 Why GNNs when we have transformers?

Recent years have seen the rapid rise in popularity of the
Transformer architecture [40]. Originally proposed in the
Natural Language Processing domain, it was quickly applied
as a generalised encoder in computer vision tasks [60].
Further work then expanded the architecture so that it can
process images directly [142, 143], allowing it to operate
as a backbone for common vision tasks. The wide range of
applications the architecture can be applied to has led to it
dominating much of deep learning in recent years.

There has been some effort by the community to unify the
attention-based approach with GNNs. Battaglia et al. [41]
proposes a more generic graph network which both Trans-
formers and GNNs fall into. They present a viewpoint where
Transformers can be viewed as a neural architecture operat-
ing on a complete graph.

Viewing GNNs and Transformers as graph networks
shows that they share a number of similarities. Both archi-
tectures take a set of values and decide how much different
values should be considered when transforming them to
update the values, with GNNs ignoring nodes that are not
connected and Transformers scaling the importance of an
input. It is worth noting that if the graph being processed by
a GNN is a complete graph, the graph network will allow
all nodes to have their messages propagated to one being
updated. Therefore, it is possible to view the Transformer as
a special case GNN operating on a complete graph. Whilst
GNNsuse the readmodule to take advantage of an underlying
structure, the Transformer learns one based on the task.

By applying a Transformer to a task, a graph structure
is being learnt from scratch. Meanwhile, there are plenty
of graph structures that appear naturally within Vision-
Language tasks. This multitude of graph types allow for
different structures to be taken for the image, from the seman-
tic structure of an image to the hierarchical structure of the
image with regards to the entire training set. Graphs appear
naturally in the language component of the tasks aswell, with
sentence dependency trees being closely aligned to seman-
tic graphs (when the semantic graph is made multi-partite
as in the case of [80]). When clear graph representations
of data exist, they should be utilised rather than ignored,
instead of learning a graph structure using amore general pur-
pose architecture. Utilising existing graph structures enables
a graph network with the appropriate inductive biases to be
deployed. It also results in fewer computations as messages
are not being passed between all possible node connections.
Looking at the results of various image captioning models
(Table 3), it is clear that whilst the fully Transformer-based
M2 model performs impressively with a BLEU-4 of 39.1,
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models utilising GNN-based encoders outperform it. For
example, the Dual-GCN [89] has a BLEU-4 of 39.7. Table 3
shows that the benefits of a Transformer lie in the language
generation, rather than the image encoding. A GNN-based
encoder seems to create a better representation of the image.
This viewpoint is reinforced by the performance of [119].
Whilst their incorporation of geometric relationships into the
Transformer attention model works well, it falls short of the
performance of models that specifically use a spatial graph
[87, 89, 115]. These results show that if a specific relation-
ship, one that can be expressed explicitly as a graph, is being
exploited by a model, then its architecture should make use
of aGNN to take advantage of the graph. The spatial relation-
ships between objects form a graph, and therefore, a GNN is
well suited to make use of this information.

Although Transformers can be viewed as operating on a
complete graph and pruning edges via the attention mecha-
nism [41], we have demonstrated in this survey that this is
not always the best approach. This raises the questions of 1)
which graph should be used? and 2) How do we construct
better graphs?

There are awide number of aspects that researchers should
consider when selecting a graph type for a GNN-based
Vision-Language model. However, they all come down to
experimentation and iteration during development. Whilst
GCN-LSTM and VSUA demonstrate that a semantic graph
is better suited to image captioning than a spatial graph, that
is not to say spatial graphs no longer have a place in image
captioning. It may be pertinent to incorporate a spatial graph
if a model spatial reasoning is limited.

Whilst the challenge of producing better graphs is some-
times down to the optimisation of hyperparameters (in the
case of the kNN-based image graph), better graphs are
sometimes data or model dependent. Larger, more detailed
knowledge graphs will yield improvements in fVQA and
improvements in scene graph generation will produce richer
semantic graphs. Scene graph generation is an incredibly
vibrant field within Vision-Language and we direct readers
to relevant surveys [144]. Better graph representations can
be achieved through careful definition of the graph struc-
ture. Spatial relationships have been modelled in a number
of different ways [39, 80, 119], leading to different model
performance. Finally, developments in upstream tasks such
as object detection can lead to better initial representation
of visual components in the nodes of graphs. Advancements
like VinVL [145] show that the use of more contemporary
object detection techniques produces richer features that can
be incorporated into the graphs used in Vision-Language
tasks.

When it is possible to utilise multiple graphs, it is advan-
tageous to do so when compared to using a single graph. As
shown with image captioning (Table 3), architectures that
only use a single graph type perform sub-optimally com-

pared to theirmulti-graph counterparts.ARL [117], SUB-GC
[79], and Topic [88] all use a single graph (spatial, semantic,
and similarity, respectively) and all three suffer in bench-
marks.Whilst Topic performs well in BLEU,METEOR, and
ROGUE, when evaluated usingmetrics designed specifically
for image captioning (SPICEandCIDEr) its performance fal-
ters against comparable models. This theme of multi-graph
approaches performing more favourably is also found across
the VQA, FVQA, and TextVQA tasks, with multi-graph
approaches outperforming their single graph counterparts.

7.2 Latent diffusion and the future of image
captioning

Currently, image captioning techniques are constrained by
their training data. As popular as COCO is within the Com-
puter Vision community for its wide ranging scenes and
generalisability to the real world, it has its shortcomings.
Captioning systems trained on it alone will never understand
particular art styles, or objects outside of the 80 cate-
gories covered by the COCO dataset. The advent of image
generation techniques such as DALLE·3 [146] present an
opportunity for image captioning systems to go well beyond
an 80 category limit and start understanding various stylistic
elements of images. Work in this area is in its infancy [147,
148], but previous non-generative unsupervised approaches
to image captioning are very promising [29].

We speculate that latent diffusion-based captioning may
be a promising avenue of research. However, for this
approach to work effectively, image generation techniques
will need to develop further. Currently Stable Diffusion 2.1
[149] and similar systems do not understand structure as
deeply as would be required for them to be able to replace
the training data of a captioning system, although DALLE·3
[146] has shown improvements in this area. As impressive as
they are, diffusion models can struggle to assemble images
correctly when the prompt asks for something that is unlikely
in real life. When asked to generate an image of ‘a man
giving a horse a piggyback ride’, models such as DALLE·2
[150] and Stable Diffusion 2.1 [149] can sometimes strug-
gle to understand the requested spatial relation between the
two objects, resulting in the sample result shown in Fig. 5.
Although DALLE·3 [146] produces an image that aligns to
the basic prompt, when changing ‘man’ to ‘woman’, the pro-
duced image no longer matches the prompt as intended. It
could be argued that so called ‘prompt hacking’ could coerce
all the models to produce the desired relationship between
the objects when said relationship is outside of common dis-
tributions. However, that argument fails to address the fact
that these models fail to understand a relationship a toddler
would understand.

Discovering examples of incorrect relationships in images
is not just a case of dreamingup relationships betweenobjects
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Fig. 5 A comparison of
different text-to-image models
when given a simplistic caption.
Best viewed in colour

that are unlikely to exist in training data. Conwell andUllman
[151] conducted a participant study where they asked 169
people to select generated images that they felt well matched
a given prompt. They found that across the generated images
in their study, only 22% matched the original prompt. The
authors conclude that ‘current image generation models do
not yet have a grasp of even basic relations involving simple
objects and agents’ [151]. Whilst latent diffusion methods
may play a role in the future of image captioning, they have a
longway to gounderstanding structure before this is possible.
In order for graph networks [41] to be applicable to diffusion
generated training data, the structurewithin the image and the
caption/prompt will need to be consistent. Supervised learn-
ing approaches require large amounts of very clean training
data in order to work well, so graph networks [41] may strug-
gle if the underlying structure in the image data is not as
expected. However, we still expect that diffusion models will
play a role within Vision-Language tasks going forward. The
recent De-Diffusion Model [152] shows that the use of an
image captioning model as the encoder portion of an autoen-

coder enables tasks such as VQA to be achieved by using a
Large LanguageModel on the caption. This use of text as the
latent representation of an image may provide a promising
avenue of research.

7.3 Final notes

Vision-Language tasks such as image captioning and VQA
pose significant opportunities for accessibility technology
to be developed for those with sight impairment or severe
sight impairment. Having widespread automatic alt-text gen-
eration on websites and applications enabling queries about
images shared online, there is substantial impact that research
in these fields can have. However, models trained on current
datasets are prone to the biases of sighted humans. The ques-
tions asked in VQA datasets, and the captions given in image
captioning datasets do not necessarily cater to the needs of
possible end users of this technology. A lot is said in the field
of the technology being applied to aid those with various
levels of sight impairment, but little action is actually taken.
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Whilst the release of trained models is promising, making
these models available outside of the research community
would be beneficial. Another direction the community could
take is building on the work of VizWiz [153], a Vision-
Language dataset curated for those with low vision. The
dataset aims to highlight the accessibility requirements indi-
viduals with (severe) sight impairment require from models
within this space. Whilst VizWiz [153] focuses on the VQA
task, a similar route could be taken for image captioning,
enabling researchers to tune models to ensure that the gen-
erated captions are useful to the people who need them the
most.

The state of the art (SOTA) in Vision-Language tasks
is currently dominated by large Transformer-based models
developed by industrial labs [154–156]. This makes compar-
ing these models to those discussed in this paper difficult
given the model size and compute power used for training.
However, there are a few take home points.

In the case of image captioning, the Transformer-based
model M2 is outperformed by GNN-based architectures,
namely Dual-GCN [89]. This leads the authors to posit that
there is a strong inductive bias in using imposed graph struc-
tures rather than allowing all relationships between detected
objects to be processed using self-attention. The use of a
global context graph (taking into account the whole dataset)
alongside a local context graph (image-level relationships)
by Dual-GCN [89] is shown to work extremely well and this
dual graph approach could be the seed for future works.

It could be that given the scale of the models currently
achieving SOTA that there are some emergent properties that
develop in these models when they achieve such as scale.
Future work should consider scaling graph-based architec-
tures, such as those discussed in this survey, to the scale of
the large models being produced by industry labs.

ForFVQAand image retrieval, the graph-based approaches
have stronger inductive biases for the reasoning stages of the
tasks. Both tasks require the processing of graph data (in
the case of a knowledge graph in FVQ or some graph rep-
resentation of the search space in image retrieval). It is well
documented that Transformers do not performwell on sparse
graphs (such as knowledge graphs) or large graphs (such as
those used in image retrieval).

The adoption of GNN-based image captioning techniques
has proved promising. Given that this approach is relatively
new, there is ample opportunity for further research to be
carried out in this field. As shown in Sect. 4, the majority
of image captioning techniques make use of either GCN
or GGNN architectures. As GNNs develop and newer more
expressive techniques are approached, the community should
move to adopt these over traditional message passing style
networks. Models such as GAT [102] may provide advan-
tages over the techniques being used as they incorporate
self-attention mechanisms into the architecture, a technique

proved to yield impressive results given the popularity of the
Transformer.

All the GNNs being used in the Vision-Language tasks
discussed in the survey are built on the concept of homophily,
i.e. similar nodes are connected by an edge. This is not always
the case though given that a semantic graph connects dissim-
ilar objects that are semantically related. Some of the graphs
detailed are homophilic (e.g. image graph), but many oth-
ers are not. This leads us to speculate that there are ample
research opportunities for applying GNN architectures that
respect the amount of homophily or heterophily of the graph
being processed.

Another direction of researchwould be investigating com-
binations of different graph representations (at both the image
level and dataset level) to identify combinations that work
well together. Using different graph representations will
allow for better utilisation of both local and global features.

The incorporation of outside knowledge into image cap-
tioning could provide an interesting research direction. It is
often pointed out that image captioning is a useful accessi-
bility technology for those with sight impairment. However,
this assumes the user is an adult with a developed understand-
ing of the world. Image captioning systems may struggle to
be applied in a paediatric accessibility setting. Having the
model explain the world in greater detail may be of use.

Another potential future research direction would be the
unification of the three tasks discussed in this paper. Devel-
oping a single unified model that could perform competently
in all three would hail an important breakthrough. In order to
perform this, a model would have to have a common inter-
mediary space for which it could map between the text and
image spaces. We posit that this space would most likely
be graph-based due to their expressive nature. However, a
textual representation may also be performant as Gao et al.
[130] showed reasoning in the text space improved perfor-
mance over graph-based reasoning in VQA.

In summary, Vision-Language tasks such as those dis-
cussed in this paper are set to have a fruitful future, withmany
opportunities for various graph structures to be exploited.
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