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Abstract

This paper extends the Rashomon Effect to Reinforcement
Learning (RL), leveraging it as a framework for analyzing
behaviorally diverse yet performance-equivalent policies. We
begin by formalizing analogies: between datasets and envi-
ronments, between losses and rewards. These analogies let us
define the Rashomon set of RL agents as the set of policies
that achieve comparable returns while differing in behavior.
This framing highlights multiplicity as an inherent property
of learning rather than stochastic noise, with implications for
alignment, interpretability, and retraining. We further extend
the concept to multi-criteria settings, showing how multiple
overlapping equivalence criteria reveal structured diversity
within policy spaces. Viewing RL through the Rashomon lens
encourages systematic study of behavioral multiplicity as a
foundation for more robust, interpretable, and human-aligned
agents.

Introduction
The Rashomon Effect in Machine Learning The
Rashomon Effect, introduced by Breiman in Statistical Mod-
eling: The Two Cultures (Breiman 2001), highlights that
many distinct models can fit the same data similarly well.
Inspired by the film Rashōmon (Kurosawa 1950), it captures
how multiple plausible yet conflicting explanations can co-
exist. Building on this idea, (Fisher, Rudin, and Dominici
2019) formalized the Rashomon set—the collection of mod-
els whose predictive performance lies close to the best-
performing model. The Rashomon Effect provides an ana-
lytical framework on model multiplicity which has proven
effective in supervised settings (Dong, Rudin, and Seltzer
2020; Marx, Calmon, and Ustun 2020; Semenova, Rudin,
and Parr 2022; Rudin, Semenova, and Parr 2024). While
these studies establish the Rashomon framework as a pow-
erful lens for understanding model diversity, they remain
grounded in settings with a fixed dataset and consistent eval-
uation metric. How such multiplicity extends beyond fixed-
data paradigms remains largely unexamined.

From Fixed Data to Interactive Learning Reinforce-
ment learning (RL) challenges the foundational fixed-data
assumption. Unlike supervised settings, where all models
learn from the same dataset, each RL agent either: (1) gen-
erates its own individualized experience through on-policy
interaction with an environment that may or may not be
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Figure 1: Gridworld examples illustrating behavioral diver-
sity in RL. Cells marked with spirals represent inaccessi-
ble regions. (Left) A simple environment with two optimal
routes to identical rewards. (Right) An environment with
higher state connectivity and dynamic complexity, where
multiple distinct trajectories achieve the same outcome.
Takeaway: Complexity ↑ ⇒ Behavioral diversity ↑

stochastic; or, (2) in off-policy formulations, learns from tra-
jectories generated by different behaviors. Different explo-
ration trajectories expose agents to distinct subsets of the
state–action space, effectively giving rise to different data
distributions. As shown in Figure 1, even when agents are
trained under identical reward structures, they may arrive
at comparable returns through distinct state visitation pat-
terns or strategies. In simpler environments Figure 1(left),
the set of near-optimal behaviors is limited—only a few
paths lead to the same reward—whereas in more complex,
less constrained environments Figure 1(right), the space of
equally good trajectories expands substantially. This scal-
ing from a small to a large set of behaviorally diverse so-
lutions illustrates that, as environments grow in complexity,
equally successful agents can exhibit markedly different be-
haviors—diversity that warrants systematic study rather than
being treated as noise.

Position: The Rashomon Effect naturally extends to RL
and is useful to study behavioral multiplicity within the
environment, just as it studies model multiplicity on fixed
data.



Formulating the Rashomon Framework in
Reinforcement Learning

We formalize the Rashomon framework for RL by drawing
analogies between the fixed elements of classical Rashomon
framework and those in interactive learning. Specifically, we
relate datasets to environments and losses to rewards, intro-
ducing the notion of a Rashomon set that captures behavioral
multiplicity among comparable-performing policies.

Fixed Foundations: Environment and Reward
In supervised learning, the Rashomon Effect arises when
many models achieve comparable predictive performance
on the same fixed dataset. The dataset provides a common
source of evidence, while the loss function defines a uni-
form criterion for evaluating model quality. Extending this
framing to RL requires identifying analogous constructs.

Environment ≈ Dataset. In classical supervised learning,
the entire dataset is available to the model, with the goal of
approximating the data-generating function that is the origin
of the samples comprising the dataset. Each model implic-
itly determines which features or relationships to emphasize
while fitting the same examples.

Consider the case of a Markov Decision Process (MDP),
which represents one of the most common formulations
where RL is applied, though RL can extend beyond the MDP
setting. An MDP environment E can be formally defined as
shown in Equation 1:

E = {S,A, P,R, ρ0, γ}, (1)

where: S is the set of possible states, A is the set of possi-
ble actions, P (s′|s, a) is the transition probability, R(s, a)
is the reward function, ρ0 is the initial state distribution, and
γ ∈ [0, 1) is the discount factor. Equation 1 thus specifies
the underlying data-generating process: it defines the com-
plete space of possible trajectories that any policy could, in
principle, experience through interaction.

While every agent interacts with the same underlying en-
vironment, each policy π samples from it differently, gener-
ating its own distribution over transition tuples (s, a, r, s′)
based on its exploration behavior and learning dynamics.
This variation in data acquisition parallels how different
predictive models emphasize distinct features or relation-
ships within the same dataset.

Thus, in the RL Rashomon framework, the environment
serves as a shared but interactively accessible data source—a
fixed foundation from which multiplicity arises through di-
verse trajectories of experience. Even in off-policy settings,
where agents learn from replay buffers or trajectories from
other polices, this diversity persists: the underlying environ-
ment remains constant, but the observable data distribution
shifts according to which policies generated the experience.

Reward ≈ Loss. In supervised learning, the loss function
provides a scalar measure of model performance with re-
spect to a fixed dataset. All models optimize the same loss
function (e.g., mean squared error or cross-entropy) over
identical samples and labels. This shared loss evaluates all
models against the same evidence and criterion, allowing

differences in performance or structure to reflect their in-
ductive biases rather than differences in feedback.

In RL, the reward function R(s, a) plays an analogous
role by defining success for an agent. The resulting expected
return serves as the objective for optimization across all poli-
cies, shown in Equation 2.

J(π) = Eτ∼pπ

[
T∑

t=0

γtR(st, at)

]
, (2)

However, unlike the loss in supervised learning—which
evaluates models on a fixed dataset—the reward in RL
comes from interaction with the environment and is there-
fore inherently policy-dependent. Each policy π generates
its own trajectory distribution ρπ(s, a), shaping the feedback
it receives. Thus, while the reward function provides a con-
sistent measure of success analogous to the loss, Equation 2
captures outcomes derived from each policy’s unique expe-
riences rather than a shared static dataset.

Holding the environment and reward function constant es-
tablishes the fixed foundation necessary for defining multi-
plicity in RL. The environment provides the shared evidence
base, while the reward—often the most succinct and direct
representation of the task itself (Ng and Russell 2000)—
defines the objective of optimization. Together, they play
roles analogous to the data-generating function and loss in
classical Rashomon framework, forming a stable ground
from which diverse policies can emerge as equally compe-
tent yet behaviorally distinct solutions.

Defining a Rashomon Set for RL Agents
In parallel with the classical setting, we begin with the most
direct instantiation of a Rashomon set in RL: one defined
by the reward objective. Formally, the Rashomon Set in RL
is the set of policies that achieve similar expected returns
within the same environment, as shown in Equation 3:

RRL
ϵ = {π ∈ Π | J(π∗)− J(π) ≤ ϵ} (3)

where π∗ denotes a reference optimal policy and ϵ specifies
the near-optimality tolerance. Unlike the symmetric defini-
tion used in the classical Rashomon set—where model per-
formance may vary above or below the optimum by ±ϵ—the
RL case is inherently one-sided. Since J(π∗) represents the
maximum achievable expected return under the fixed re-
ward function, deviations can only occur in the negative di-
rection. Hence, the RL Rashomon set contains all policies
whose expected return lies within ϵ of the optimal value,
i.e., J(π) ∈ [J(π∗) − ϵ, J(π∗)]. Policies within RRL

ϵ share
comparable performance despite the high likelihood of dif-
ferences in experience and behavior.

Unlike the classical-Rashomon set, which measures mul-
tiplicity across models trained on a fixed dataset, we de-
fine the RL-Rashomon set over trajectory distributions τ ∼
pπ(s, a) arising from interaction with the environment.
Here, behavioral multiplicity replaces feature multiplicity:
different policies can achieve the same expected return while
emphasizing distinct regions of the state–action space or
adopting different exploration patterns. This formulation es-
tablishes the simplest form of multiplicity in RL—based



purely on the scalar reward—but also motivates a broader
view of what criteria can define equivalence.

Beyond Return Equivalence: Defining Rashomon
Sets for Behavioral Diversity
While the definition above mirrors the classical Rashomon
formulation, equating comparable-performance with simi-
lar expected return introduces a fundamental limitation in
the RL context. In supervised learning, evaluation metrics
such as accuracy or cross-entropy are directly tied to task
performance; a model with lower loss or higher accuracy is
unambiguously “better” within the defined objective. These
metrics are complete with respect to the dataset—they fully
capture the notion of success. As a result, numerical similar-
ity alone defines the Rashomon set in classical ML, without
requiring post hoc interpretation of the evaluation metric.

In contrast, RL decouples numerical reward from true task
performance. Policies that achieve similar or even maxi-
mal return can differ drastically in their qualitative behav-
ior. Some may exploit loopholes in the reward function—a
phenomenon often referred to as reward hacking (Amodei
et al. 2016)—achieving high cumulative reward while per-
forming poorly according to human judgment or task intent.
Thus, reward similarity alone does not guarantee behavioral
or semantic similarity across policies.

Unlike classical supervised learning—where fixed data
and loss metrics comprise evaluation—RL admits inherently
richer single-criterion formulations that arise from the dy-
namics of interaction. These criteria often have no direct
analogue in classical ML because they depend on how an
agent acts over time. Formally, such sets are expressible as
shown in Equation 4:

Rm
ϵ = {π ∈ Π | m(π∗

m)−m(π) ≤ ϵ} , (4)

where m(π) measures one aspect of policy performance be-
yond return and π∗

m denotes the best performing policy with
respect to metric m(·). The metric m(·) can capture behav-
ioral aspects of a policy that are not reflected in its return,
offering alternative ways to evaluate how an agent achieves
its outcomes. These aspects may relate to temporal dynam-
ics, stability, or exploration behavior, among others. The fol-
lowing examples illustrate several such criteria.

(a) Temporal Efficiency. Agents can achieve the same re-
ward while differing in how quickly or directly they reach
their goal. One agent might take a long, cautious route; an-
other might find a shorter or more aggressive path. This no-
tion of efficiency—the expected time or number of steps to
success—captures both the temporal cost and the behavioral
path of an agent. It has no direct analogue in static super-
vised settings, where task completion occurs in a single eval-
uation step.

(b) Consistency under Uncertainty. Policy optimization
in RL occurs in expectation—agents maximize the ex-
pected return rather than any single observed outcome. Con-
sequently, two policies may attain similar expected per-
formance yet differ in the stability of that performance

across episodes. One may exhibit low variance, follow-
ing a risk-averse strategy that performs reliably, while an-
other may display high variance, pursuing a high-risk, high-
reward strategy that alternates between failure and over-
performance. Equivalence defined through measures of reli-
ability captures an RL-specific notion of quality—one that
makes a critical difference when policies are deployed in
high-stakes or safety-sensitive settings.

(c) Exploration Preference. Agents can also differ in how
they balance exploration and exploitation. An exploratory
agent may continue sampling unfamiliar states even after
finding a good policy, while a more conservative agent ex-
ploits known high-reward actions. Both can achieve com-
parable long-term return, yet their behaviors, data distri-
butions, and learned representations are markedly differ-
ent. Exploration tendency therefore defines another single-
criterion Rashomon set that cannot arise in classical super-
vised learning, where the dataset is complete and originates
externally.

These examples illustrate that even single-criterion
Rashomon sets in RL encode dimensions of performance
rooted in interaction—time, uncertainty, and control sta-
bility—none of which have direct analogues in supervised
learning. They arise naturally from the agent–environment
loop rather than from algorithmic augmentation, underscor-
ing that multiplicity in RL is an inherent property of learning
through experience rather than a product of explicit diversity
design.

In this view, the single-criterion Rashomon set in RL pro-
vides a multidimensional surface of behavioral diversity be-
neath an apparently scalar objective. Expected return sim-
ilarity marks only one axis; many others emerge naturally
from the agent’s interaction with the environment. This in-
teractive grounding differentiates the RL Rashomon land-
scape from its supervised counterpart and motivates extend-
ing the framework to multiple criteria, as we discuss next.

From Single to Multi-Criteria Rashomon Sets
The richness of single-criterion RL Rashomon sets naturally
raises a question: why stop at one criterion? Real learning
problems rarely optimize a single metric—they balance mul-
tiple objectives. If a Rashomon set captures multiplicity un-
der one measure of comparable-performace, it is generaliz-
able to describe multiplicity under multiple, potentially in-
teracting criteria. This generalization is conceptually analo-
gous to Pareto fronts in multi-objective optimization, where
evaluation of solutions occurs jointly rather than hierarchi-
cally (Deb and Kalyanmoy 2001; Van Moffaert and Nowé
2014).

Extending this view beyond RL, the notion of multi-
criteria Rashomon sets applies to learned functions in gen-
eral, not only to policies. In classical ML, this enables si-
multaneous consideration of competing objectives (e.g., ac-
curacy, precision, recall, or F1-score) offering a richer pic-
ture of model multiplicity than single-metric formulations.
In RL, this perspective becomes even more critical: the rel-
evant criteria often extend beyond numerical performance
to encompass qualitative aspects of behavior—(e.g., stabil-
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Figure 2: Illustration of Rashomon sets extending from a sin-
gle performance criterion (C1) to multiple, overlapping cri-
teria (C1, C2, C3).

ity, risk sensitivity, or exploration) By treating these inter-
acting criteria as overlapping Rashomon sets, multiplicity
becomes a structured property of learning dynamics rather
than a byproduct of noise.

Formally, one can write a multi-criteria Rashomon set as
shown in Equation 5:

Rϵ = { f ∈ F | mi(f
∗
mi

)−mi(f) ≤ ϵi,

∀ i ∈ {1, . . . ,K} }.
(5)

where each mi is a performance metric, ϵi its tolerance,
and f∗

mi
is the best performing learned function with respect

to criterion mi(·). This formulation extends the Rashomon
framework from scalar to vector-valued evaluation. Figure 2
illustrates this generalization.

The relationships among these sets—such as their inter-
sections and unions—capture how different criteria interact
or compete, a topic elaborated in the following section.

Implications and Analytical Perspectives
Having established the conceptual formulation of a
Rashomon set in RL, we now consider its broader impli-
cations. The following discussions examine how acknowl-
edging multiplicity reshapes our understanding of policy di-
versity, evaluation, and interpretability in RL, and what new
perspectives emerge when treating variability as an informa-
tive property of learning rather than a source of noise.

Preserving Behavioral Diversity
Having identified a Rashomon set of RL
agents—comprising policies that achieve comparable
expected returns within a shared environment—the next
question is how to analyze such multiplicity. A common
practice is to aggregate predictions from top-performing
models, for example by averaging outputs or ensembling

parameters, to improve stability and generalization. How-
ever, prior work shows that such aggregation can diminish
model diversity and lead to homogenized behavior or
“learner collusion” (Wood et al. 2023; Jeffares et al. 2023).
In case of RL, ensemble-based approaches seem to reduce
exploration diversity and mask distinct strategies (Lin et al.
2024).

Each policy within the Rashomon set potentially repre-
sents a distinct way of solving the same task—a unique al-
location of attention, exploration pattern, or prioritization of
subgoals. Collapsing these policies into a single representa-
tive model may improve stability, but it erases the behavioral
variability offered by the Rashomon set. Preserving individ-
uality therefore becomes central: we should view each near-
optimal policy as an independent sample from the broader
solution space. Comparing these policies reveals how differ-
ent inductive biases, exploration dynamics, or local optima
yield diverse yet successful strategies—diversity that reflects
an intrinsic property of the learning process rather than noise
to be optimized away.

Alignment as Selection within the Rashomon Set
The existence of multiple comparable performing policies
raises a natural question of alignment: if several agents sat-
isfy the same training objective, which among them best
reflects the preferences or intentions of their designers or
users? Within RL, practitioners typically treat the reward
function as the ground truth specification of a task (Ng and
Russell 2000), despite knowing that it only approximates de-
sired behavior. Different policies can fulfill the same reward
criterion while exhibiting distinct behavioral characteristics
that may align differently with human expectations. A sim-
ilar situation arises in sports: two basketball players may
score the same number of points, one relying on consistent
two-pointers and another on riskier three-point shots. Both
achieve comparable success by the game’s metric, yet their
styles differ in stability and risk—mirroring how distinct RL
policies can meet the same reward but reflect different strate-
gic preferences.

This issue extends beyond reward-based definitions of the
Rashomon set. Defining similarity along other criteria still
raises alignment concerns. Multiple policies may achieve
comparable scores on these auxiliary dimensions while dif-
fering in trade-offs that are ethically or operationally signifi-
cant. Hence, we can understand preference alignment as the
process of navigating among Rashomon sets from different
criteria, each reflecting a particular view of what constitutes
“good” performance. Figure 3 concretizes the argument by
mapping the abstract set operations from Figure 2 onto a
grid-world example with three criteria (star, diamond, cir-
cle), showing how different intersections correspond to dis-
tinct policy behaviors.

From this perspective, alignment becomes a problem of
selection rather than retraining. Instead of modifying the
objective, one can explore the landscape of existing com-
petent policies and identify those that align best with human
values, safety requirements, or contextual norms. This in-
terpretation also complements recent approaches such as re-
inforcement learning from human feedback (RLHF) (Chris-



Figure 3: Preference extraction from a Rashomon set with
three criteria. Left: Two policy trajectories, each satisfying
exactly two of the three criteria. Right: Three trajectories
satisfying different numbers of criteria—one meets a single
criterion, one meets a pair, and one meets all three.
Takeaway: Each policy path lies in one of the intersecting
regions of the multi-criteria Rashomon space, correspond-
ing to specific combinations of alignment among the three
objectives.

tiano et al. 2017), where human input implicitly selects
among near-optimal behaviors rather than explicitly defin-
ing the underlying reward. Viewing alignment through the
Rashomon lens highlights how to leverage diversity in the
solution space to better match learning systems to human
intent.

Rashomon-Guided Retraining and Design Iteration
A common response to unsatisfactory model behav-
ior—whether in RL or other learning paradigms—is to mod-
ify the objective and retrain. This cycle often repeats un-
til the observed performance aligns with designer expec-
tations. In some cases, a domain expert may adjust spe-
cific reward or loss components based on human knowl-
edge about the task without knowing whether these modi-
fications will sufficiently redirect the model’s behavior. In
other cases—where such expertise is limited—the process
becomes largely based on intuition, relying on guesswork
rather than evidence. Both situations lead to the same bottle-
neck: a trial-and-error loop of retraining without a clear un-
derstanding of what behavioral changes each modification
actually induces.

The Rashomon framework offers an alternative approach.
Rather than retraining reactively after each disappoint-
ing outcome, one can begin by deliberately training a
set of agents that explore diverse behavioral solutions un-
der the same objective. This collection—the Rashomon
set—represents the space of comparable performing poli-
cies but through different behavioral strategies. Examining
these policies provides empirical insight into how the same
objective admits multiple interpretations. Instead of asking
“what new reward might fix this behavior,” designers can
ask “which existing behavior already aligns best with the in-
tended goal?”

Viewed this way, the effort of training n agents is not
wasted exploration. In the conventional loop, n retraining
attempts occur blindly, each a guess about what adjust-

ment might work. In a Rashomon-guided process, those
same n training runs are structured intentionally, produc-
ing a diverse set of interpretable policies that reveal trade-
offs across known criteria. This transforms retraining from
an uncertain search into an evidence-guided iteration pro-
cess. Figure 4 illustrates this contrast, comparing the con-
ventional trial-and-error retraining loop with the Rashomon-
guided process that incorporates an explicit analysis stage.

Importantly, the goal is not to eliminate retraining but to
replace guess-based iteration with a more informed and pur-
poseful process. The Rashomon set functions as an empir-
ical reference point—a repository of viable solutions that
exposes some of the behavioral degrees of freedom under
the current reward specification. This framing encompasses
practices in modern AI systems such as: league training
frameworks (Vinyals et al. 2019), which co-evaluates mul-
tiple policies to inform targeted improvements and avoid
cycle chasing behavior; hypergrid search, which explores
diverse configurations to reveal performance plateaus; and
cross-validation, which leverages variation across folds to
assess generalizable behavior. Acting with such structured
insight, rather than in ignorance, enables designers to rea-
son about what the agent could do—not just what it
did—providing a more principled basis for iterative refine-
ment.

Conceptual Background and Related Work

Although prior research in RL, interpretability, and ensem-
ble methods has examined phenomena related to multiplic-
ity, none has explicitly formalized them as a Rashomon set-
ting in RL. Rather than providing an exhaustive literature re-
view, this section traces the conceptual ancestry of the idea.
We highlight how multiple disconnected threads have im-
plicitly studied the same underlying property—the existence
of behaviorally distinct yet equally competent agents.

Behavioral Diversity and Skill Discovery in RL

Several strands of research actively investigate how di-
verse behaviors emerge in RL agents. Methods such as
DIAYN (Eysenbach et al. 2019) and MLSH (Frans et al.
2017) deliberately optimize for skill diversity by embed-
ding information-theoretic or hierarchical objectives into
the reward structure. Population-based and ensemble ap-
proaches—including Bootstrapped DQN (Osband et al.
2016) and Evolution Strategies (Salimans et al. 2017)—train
multiple agents in parallel, producing distinct yet compara-
bly performing policies that differ in exploration dynam-
ics and representational bias. Although these approaches
successfully elicit behavioral diversity, they do so by de-
sign—through algorithmic modifications or explicit diver-
sity incentives. The Rashomon perspective, in contrast, fo-
cuses on inherent multiplicity: the spontaneous coexistence
of many equally competent solutions that arise naturally
from stochastic initialization, random exploration, or envi-
ronmental noise, even when no mechanism explicitly en-
forces diversity (Panda, Srivastava, and Dodge 2024).
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Figure 4: Traditional retraining loop (top) versus Rashomon-informed process (bottom). The Rashomon framework adds an
analysis stage where behavioral diversity is examined before making changes, shifting retraining from intuition to evidence.

Interpretability and Explainable RL
A parallel line of research focuses on understanding why
RL agents behave as they do, emphasizing interpretability
and transparency. Some approaches extract symbolic or rule-
based representations from policies—such as Programmati-
cally Interpretable RL (Verma et al. 2018) and VIPER (Bas-
tani, Pu, and Solar-Lezama 2018)—while others employ at-
tention mechanisms, saliency analysis, or causal reasoning
to visualize decision processes (Greydanus et al. 2017; Mad-
umal et al. 2019). More recent frameworks—such as re-
ward decomposition and policy summarization (Septon et al.
2023; Amir and Amir 2018)—shift the emphasis from ex-
plaining how well an agent performs to why it succeeds, re-
vealing the latent priorities encoded within a learned policy.

While these approaches have deepened our understand-
ing of individual agent behaviors, they typically operate on a
single learned policy whose explanations are generalizable.
The Rashomon framework complements this view by asking
what happens when multiple distinct policies achieve com-
parable returns, revealing how each policy may provide a
different explanation for the same task—each policy reflect-
ing a unique understanding of what the problem requires.
Thus, interpretability in RL must extend beyond explaining
one policy—it must encompass the diversity of explanations
across the set of competent agents, capturing how different
yet equally successful agents make sense of the same envi-
ronment.

Conclusion and Future Directions
This work extends the Rashomon Effect to RL, framing it
as a conceptual tool for analyzing behaviorally diverse yet
comparable-performing policies. By unifying behavioral di-
versity, explanation variability, and preference alignment
under the shared phenomenon of model multiplicity, we con-
nect previously isolated threads in RL research. This per-
spective reframes the goal of analysis: understanding how
many good policies exist and how they differ becomes as
important as identifying a single policy that performs best.
Viewing variability as an informative property of learn-
ing—rather than stochastic noise—offers a principled foun-
dation for studying robustness, alignment, and interpretabil-
ity as interdependent facets of the same underlying multi-
plicity.

A central open direction lies in empirically characteriz-

ing Rashomon sets. Future work should develop quantita-
tive measures of behavioral diversity, trajectory divergence,
and representational overlap among comparable-performing
agents, as well as methods to visualize how these dimensions
evolve across training regimes or reward specifications. An-
other important challenge is to define equivalence criteria
beyond numerical return and to integrate human feedback
for reasoning over distributions of competent policies rather
than isolated models.

Understanding how many good policies exist—and why
they differ—may ultimately provide a more faithful picture
of intelligence than optimizing for any one of them. We
therefore encourage the community to look beyond singular
notions of optimality and to embrace the inherent multiplic-
ity of RL systems.
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