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ABSTRACT

This work explores the potential of foundation models, specifically a Mamba-
based selective state space model, for enhancing EEG analysis in neurological
disorder diagnosis. EEG, crucial for diagnosing conditions like epilepsy, presents
significant challenges due to its noisy, high-dimensional, and nonlinear nature.
Traditional machine learning methods have made advances in automating EEG
analysis but often fail to capture its complex spatio-temporal dynamics. Recent
advances in deep learning, particularly in sequence modeling, offer new avenues
for creating more generalized and expressive models capable of handling such
complexities. By training a Mamba-based model on a large dataset containing
seizure and non-seizure EEG recordings through a self-supervised reconstruction
task followed by a seizure detection task, we demonstrate the model’s potential,
achieving an AUROC of 0.72 on a held-out test set. This approach marks a signif-
icant step toward developing large-scale, clinically applicable foundation models
for EEG data analysis.

1 INTRODUCTION

Electroencephalography (EEG), a vital, noninvasive tool for recording brain electrical activity, plays
a key role in diagnosing and treating neurological disorders such as epilepsy (Acharya et al., 2013).
Scalp EEG signals are noisy measurements of brain activity and are characterized by high inter-
patient variability, making it challenging to analyze and interpret them (Acharya et al., 2013).
Current clinical practice requires time-consuming, manual inspection for diagnosis (Acharya et al.,
2013).

While traditional machine learning models have helped to automate EEG analysis (Hosseini et al.,
2021), they typically struggle with the high-dimensional, non-linear nature of the signal and fail
to capture its spatio-temporal dynamics effectively. More expressive deep learning-based models
may offer a solution to improve EEG analysis. In particular, foundation models are large-scale deep
learning models trained on extensive datasets to generalize across various tasks. Such models have
been proposed in medicine (Moor et al., 2023), but work on developing these large models in a
clinical context remains limited.

Recent advances in sequence modeling, specifically with selective state space modeling offer a
unique opportunity for novel approaches to foundation models applied to biomedical data such as
EEG. In particular, Mamba (Gu & Dao, 2023) has emerged as a powerful selective state space model
with comparable performance to transformer-based approaches on language modeling, genomics,
and audio.

In this work, we aim to build a foundation model for EEG, first by relaxing the problem to a more
focused context. We train a Mamba-based model on a large public dataset that contains both seizure
and non-seizure EEG recordings, first on a self-supervised reconstruction task, and then a down-
stream seizure detection task.
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2 METHODS

2.1 DATA

We train and test our data on the Temple University Hospital EEG Seizure Corpus (TUSZ) v2.0.1
(Shah et al., 2018), which is one of the largest annotated seizure corpora to date. The training
data subset contains 579 patients, with 2,138 seizure events. The testing subset contains a disjoint
set of 43 patients, with 469 seizure events. We included 19 channels from the standard 10-20 EEG
montage, all referenced to a reference electrode. All signals are resampled to 200 Hz, and we remove
60 and 120 Hz interference via a notch filter. Data are segmented into 10s non-overlapping windows.
Windows are classified as “seizure” or “not seizure” if there is a seizure event in a window.

Figure 1: Proposed Model Architecture. Inspired by SaShiMi, U-Net, and EEGNet, the model learns
a state space representation of frequency-based filters, before downsampling to a smaller represen-
tation. The model upsamples back to reconstruct the signal, learning state space representations at
each level of sampling till a final output.

2.2 MODEL ARCHITECTURE AND TRAINING

Mamba is a deep selective state space model proposed by Gu & Dao (2023), capable of analyzing
long-range dependencies in sequences. Mamba has been shown to outperform many state-of-the-
art tasks in long-context modeling including audio and language. In this work we utilize Mamba
“blocks”; which include a Mamba layer followed by layer normalization and a residual connection,
which can be stacked together similarly to transformer blocks. In this work, we take inspiration
from EEGNet (Lawhern et al., 2018), and SaShiMi (Goel et al., 2022) for a full encoder/decoder
architecture with Mamba blocks. EEGNet is a lightweight CNN-based model for processing EEG
data. SaShiMi is a U-Net (Ronneberger et al., 2015) like architecture interspersed with S4 blocks
(a precursor to Mamba), where downsampling and upsampling are done by reshaping rather than
repeated convolution and pooling.

Our model begins with a 1D CNN layer of kernel size 100 (half the sampling rate of the signal) to
learn “frequency-based” filters up to 50 Hz from each channel. Subsequently, a “channel mixing”
linear layer is applied to try to learn the relationships between the channels. This is followed by
several Mamba blocks to learn a state space representation of the data, emphasizing the temporal
dynamics.

The output is then downsampled through the traditional U-Net block, composed of a double con-
volution and mean pooling. We then pass the downsampled input through another set of Mamba
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blocks, to obtain a downsampled hidden representation of the data. During reconstruction, this is
then upsampled through repeated Mamba-transpose convolution - -double convolution blocks. Fol-
lowing the strategy of the U-Net, we concatenate the output of the corresponding downsampling
layer to form residual connections with each upsampling layer output to preserve features. We also
add a final convolutional layer initialized with zeros to improve sparsity in the final output.

In the downstream task, the downsampled hidden representation is max-pooled along the temporal
dimension and then passed through linear layers to obtain a classification probability.

To improve the reconstruction, we employ a combination of mean-squared-error (MSE) loss with a
spectral loss, which computes the loss in the Fourier domain.

3 RESULTS

3.1 PRETRAINING

Our best model achieves a MSE of 0.0063. Removing the spectral loss resulted in a four-fold
increase in MSE (0.025). Figure 2 demonstrates an example of the reconstruction on an example in
the test data.

Figure 2: Example reconstruction of input sequence on a test sample. Predicted time series are
dashed, while ground truth are solid lines. The model captures the general patterns in the time series
very well but sometimes fails to completely capture higher frequency components of the signals.
The model with spectral loss reconstructs the signal much better than that without.

3.2 SEIZURE DETECTION

We find that using a pretrained model followed by two linear layers, we can achieve a detection
AUROC of 0.72. When we use a model trained from scratch, the detection AUROC drops to 0.64.

3.3 MODEL INTERPRETABILITY

A limitation of Mamba blocks is that they do not have a way to analyze the interpretability of their
representations. In this work, we rely on analyzing model weights and saliency maps for inter-
pretability. To identify channel importance we compute channel-wise saliency based on particular
inputs. Figure 3 demonstrates a manner of highlighting channel importance for a seizure sample.
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We can also look at the weights of the initial convolutional layer (similar to the EEGNet approach)
to identify what types of patterns or frequencies are activated based on the input.

Figure 3: Sample seizure window with channel-wise saliency. Channel opacity is a function of its
importance to the output. Here, channels T4 and P4 are highlighted as being particularly important
to classify the sample as a seizure. We note that these channels exhibit the high-frequency signals
characteristic of many seizures.

4 DISCUSSION

This work presents a first step towards developing foundation models for EEG and neural data. Our
preliminary results demonstrate the promise that Mamba-based models have for analyzing neural
data. We find that the inclusion of a spectral loss significantly improves the performance of the pre-
trained model. We also find that pretraining boosts the downstream AUROC significantly, pointing
to the importance of this self-supervised pretraining approach.

One continued drawback of most deep learning approaches to EEG is that while the temporal dynam-
ics of the signal are captured well, the spatial relationships between channels are not meaningfully
incorporated into the model. State space models like Mamba process each channel independently.
In the approach presented here, we learn a “mixing” of the channels, but this does not necessarily
capture the more rigid geometric and functional connections between channels. For example, future
works will incorporate a graph-based approach to learning spatio-temporal dynamics at different
time windows, similar to Tang et al. (2023). Graphs can be constructed both functionally (based on
connectivity metrics such as coherence or Granger causality) and/or geometrically, based on spatial
distance between electrodes. Exploring these representations will enable the model to extend to
various EEG setups and geometries.

Another significant challenge in EEG analysis is the variability in channel configurations across
subjects and datasets. Many previous studies address this issue by standardizing the number of
channels or interpolating missing channels. These approaches are not geared towards using data
from different applications, hardware, and institutions, which contain greater variability and valuable
within-patient patterns. In lieu of this, we propose a masked training approach where channels are
randomly excluded during model training. This approach will force the model to learn a robust
representation based on the available channels. This approach to training along with a structured
graph-based architecture can help enhance this model’s usefulness across different setups and in
real-world settings such as wearable EEGs.
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4.1 FUTURE DIRECTIONS

To expand this model’s applicability, we plan to extend the pretraining stage to a variety of neu-
rological conditions beyond seizure detection. This will include datasets from larger EEG corpora
such as the larger TUH EEG Corpus (Obeid & Picone, 2016) and the UNM Predict+CT (Cavanagh
et al., 2017), which cover a range of disorders like Parkinson’s Disease, along with healthy control
subjects. This will enhance the range of downstream tasks that this foundation model is capable of,
as well as improve the model’s ability to learn neural signatures characteristic of these conditions.

In this approach, we do not explicitly use the learned state-space dynamics in our model (we just
use the final hidden representation output of the Mamba blocks). Incorporating these dynamics
more explicitly may offer further insights into the temporal dynamics of the EEG signals. These dy-
namics, combined with the graph approach could greatly improve the interpretability of this model.
Clinicians may be able to better understand how channel interactions at a particular time point may
contribute to a certain neurological phenomenon.

As an extension of detection and prediction, this approach may also be extended to help learn re-
lationships between behavioral and neural data, similar to CEBRA (Schneider et al., 2023), which
learns a joint latent representation between neural data and behavioral data. Mamba’s ability to learn
state space representations between sequences offers a similar opportunity to learn related dynamics,
perhaps in an even more expressive manner.

4.2 CONCLUSIONS

The development of a foundation model for EEG data has several practical implications. Such a
model would enable researchers and clinicians to more robustly elucidate information from noisy
EEG data by adapting to various EEG configurations and formats. This work is an initial step
towards that end. Expanding the training data to better cover a range of neurological conditions
along with more advanced models will further enhance this ability to analyze neural activity. Such a
model could make tangible differences in diagnosis and developing treatments, making an impactful
improvement to the understanding and care of neurological disorders.
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