
Enhancing the Hierarchical Environment Design via
Generative Trajectory Modeling

Anonymous Author(s)
Affiliation
Address
email

Abstract

Unsupervised Environment Design (UED) is a paradigm that automatically gen-1

erates a curriculum of training environments, enabling agents trained in these2

environments to develop general capabilities, i.e., achieving good zero-shot transfer3

performance. However, existing UED approaches focus primarily on the random4

generation of environments for open-ended agent training. This is impractical5

in resource-limited scenarios where there is a constraint on the number of envi-6

ronments that can be generated. In this paper, we introduce a hierarchical MDP7

framework for environment design under resource constraints. It consists of an8

upper-level RL teacher agent that generates suitable training environments for a9

lower-level student agent. The RL teacher can leverage previously discovered10

environment structures and generate environments at the frontier of the student’s11

capabilities by observing the student policy’s representation. Additionally, to alle-12

viate the time-consuming process of collecting the experience of the upper-level13

teacher, we utilize recent advances in generative modeling to synthesize a trajec-14

tory dataset for training the teacher agent. Our method significantly reduces the15

resource-intensive interactions between agents and environments, and empirical16

experiments across various domains demonstrate the effectiveness of our approach.17

1 Introduction18

The advances of reinforcement learning (RL) [17] have promoted research into the problem of19

training autonomous agents that are capable of accomplishing complex tasks. One interesting, yet20

underexplored, area is training agents to perform well in unseen environments, a concept referred to21

as zero-shot transfer performance. To this end, Unsupervised Environment Design (UED) [3] has22

emerged as a promising paradigm to address this problem. The objective of UED is to automatically23

generate environments in a curriculum-based manner, and training agents in these sequentially24

generated environments can equip agents with general capabilities, enabling agents to learn robust25

and adaptive behaviors that can be transferred to new scenarios without explicit exposure during26

training.27

Existing approaches in UED primarily focus on building an adaptive curriculum for the environment28

generation process to train the generally capable agent. Dennis et al. [3] formalize the problem of29

finding adaptive curricula through a game involving an adversarial environment generator (teacher30

agent), an antagonist agent (expert agent), and the protagonist agent (student agent). The RL-based31

teacher is designed to generate environments that maximize regret, defined as the difference between32

the protagonist and antagonist agent’s expected rewards. They show that these agents will reach33

a Nash Equilibrium where the student agent learns the minimax regret policy. However, since the34

teacher agent adapts solely based on the regret feedback, it is inherently difficult to adapt to student35

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



policy changes. Meanwhile, training such an RL-based teacher remains a challenge because of the36

high computational cost of training an expert antagonist agent for each environment.37

In contrast, domain randomization [19] based approaches circumvent the overhead of developing38

an RL teacher by training agents in randomly generated environments, resulting in good empirical39

performances. Building upon this, Jiang et al. [7] introduce an emergent curriculum by sampling40

randomly generated environments with high regret value 1 to train the agent. Parker-Holder et al.41

[10] then propose the adaptive curricula by manually designing a principled, regret-based curriculum,42

which involves generating random environments with increasing complexity. While these domain43

randomization-based algorithms have demonstrated good zero-shot transfer performance, they face44

limitations in efficiently exploring large environment design spaces and exploiting the inherent45

structure of previously discovered environments. Moreover, existing UED approaches typically46

rely on open-ended learning, necessitating a long training horizon, which is unrealistic in the real47

world due to resource constraints. Our goal is to develop a teacher policy capable of generating48

environments that are perfectly matched to the current skill levels of student agents, thereby allowing49

students to achieve optimal general capability within a strict budget for the number of environments50

generated and within a shorter training time horizon.51

In this paper, we address these challenges by introducing a novel, adaptive environment design52

framework. The core idea involves using a hierarchical Markov Decision Process (MDP) to simul-53

taneously formulate the evolution of an upper-level teacher agent, tasked with generating suitable54

environments to train the lower-level student agent to achieve general capabilities. To accurately55

guide the generation of environments at the frontier of the student agent’s current capabilities, we56

propose approximating the student agent’s policy/capability by its performances across a set of diverse57

evaluation environments, which acts as the state abstraction for the teacher’s decision-making process.58

The transitions in the teacher’s state represent the trajectories of the student agent’s capability after59

training in the generated environment. However, collecting experience for the upper-level teacher60

agent is slow and resource-intensive, since each upper-level MDP transition evolves a complete61

training cycle of the student agent on the generated environment. To accelerate the collection of62

upper-level MDP experiences, we utilize advances in diffusion models that can generate new data63

points capturing complex distribution properties, such as skewness and multi-modality, exhibited64

in the collected dataset [11]. Specifically, we employ diffusion probabilistic model [15, 6] to learn65

the evolution trajectory of student policy/capability and generate synthetic experiences to enhance66

the training efficiency of the teacher agent. Our method, called Synthetically-enhanced Hierarchical67

Environment Design (SHED), automatically generates increasingly complex environments suited to68

the current capabilities of student agents.69

In summary, we make the following contributions:70

• We develop a novel hierarchical MDP framework for UED that introduces a straightforward method71

to represent the current capability level of the student agent.72

• We introduce SHED, which utilizes diffusion-based techniques to generate synthetic experiences.73

This method can accelerate the training of the off-policy teacher agent.74

• We demonstrate that our method outperforms existing UED approaches (i.e., achieving a better75

general capability under resource constraints) in different task domains.76

2 Preliminaries77

In this section, we provide an overview of two main research areas upon which our work is based.78

2.1 Unsupervised Environment Design79

The objective of UED is to generate a sequence of environments that effectively train the student
agent to achieve a general capability. Dennis et al. [3] first model UED with an Underspecified
Partially Observable Markov Decision Process (UPOMDP), which is a tuple

M =< A,O,Θ, SM,PM, IM,RM, γ >

1They approximate the regret value by the Generalized Advantage Estimate [12].
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. The UPOMDP has a set Θ representing the free parameters of the environments, which are80

determined by the teacher agent and can be distinct to generate the next new environment. Further,81

these parameters are incorporated into the environment-dependent transition function PM : S ×A×82

Θ → S. Here A represents the set of actions, S is the set of states. Similarly, IM : S → O is the83

environment-dependent observation function, RM is the reward function, and γ is the discount factor.84

Specifically, given the environment parameters θ⃗ ∈ Θ, we denote the corresponding environment85

instance as Mθ⃗. The student policy π is trained to maximize the cumulative rewards VM
θ⃗ (π) =86 ∑T

t=0 γ
trt in the given environment Mθ⃗ under a time horizon T , and rt are the collected rewards87

in Mθ⃗. Existing works on UED consist of two main strands: the RL-based environment generation88

approach and the domain randomization-based environment generation approach.89

The RL-based generation approach was first formalized by Dennis et al. [3] as a self-supervised RL90

paradigm for generating environments. This approach involves co-evolving an environment generator91

policy (teacher) with an agent policy π (student), where the teacher’s role is to generate environment92

instances that best support the student agent’s continual learning. The teacher is trained to produce93

challenging yet solvable environments that maximize the regret measure, which is defined as the94

performance difference between the current student agent and a well-trained expert agent π∗ within95

the current environment: RegretMθ⃗ (π, π∗) = VM
θ⃗ (π∗)− VM

θ⃗ (π).96

The domain randomization-based generation approach, on the other hand, involves randomly generat-97

ing environments. Jiang et al. [7] propose to collect encountered environments with high learning98

potentials, which are approximated by the Generalized Advantage Estimation (GAE) [12], and then99

the student agent can selectively train in these environments, resulting in an emergent curriculum100

of increasing difficulty. Additionally, Parker-Holder et al. [10] adopt a different strategy by using101

predetermined starting points for the environment generation process and gradually increasing com-102

plexity. They manually divide the environment design space into different difficulty levels and employ103

human-defined edits to generate similar environments with high learning potentials. Their algorithm,104

ACCEL, is currently the state-of-the-art (SOTA) in the field, and we use an edited version of ACCEL105

as a baseline in our experiments.106

2.2 Diffusion Probabilistic Models107

Diffusion models [15] are a specific type of generative model that learns the data distribution.108

Recent advances in diffusion-based models, including Langevin dynamics and score-based generative109

models, have shown promising results in various applications, such as time series forecasting [18],110

robust learning [9], anomaly detection [21] as well as synthesizing high-quality images from text111

descriptions [8, 11]. These models can be trained using standard optimization techniques, such as112

stochastic gradient descent, making them highly scalable and easy to implement.113

In a diffusion probabilistic model, we assume a d-dimensional random variable x0 ∈ Rd with an114

unknown distribution q(x0). Diffusion Probabilistic model involves two Markov chains: a predefined115

forward chain q(xk|xk−1) that perturbs data to noise, and a trainable reverse chain pϕ(xk−1|xk) that116

converts noise back to data. The forward chain is typically designed to transform any data distribution117

into a simple prior distribution (e.g., standard Gaussian) by considering perturb data with Gaussian118

noise of zero mean and a fixed variance schedule {βk}Kk=1 for K steps:119

q(xk|xk−1) = N (xk;
√

1− βkxk−1, βtI) and q(x1:K |x0) = ΠK
k=1q(xk|xk−1), (1)

where k ∈ {1, . . . ,K}, and 0 < β1:K < 1 denote the noise scale scheduling. As K → ∞, xK120

will converge to isometric Gaussian noise: xK → N (0, I). According to the rule of the sum of121

normally distributed random variables, the choice of Gaussian noise provides a closed-form solution122

to generate arbitrary time-step xk through:123

xk =
√
ᾱkx0 +

√
1− ᾱkϵ, where ϵ ∼ N (0, I). (2)

Here αk = 1− βk and ᾱk =
∏k

s=1 αs. The reverse chain pϕ(xk−1|xk) reverses the forward process124

by learning transition kernels parameterized by deep neural networks. Specifically, considering the125

Markov chain parameterized by ϕ, denoising arbitrary Gaussian noise into clean data samples can be126

written as:127

pϕ(xk−1|xk) = N (xk−1;µϕ(xk, k),Σϕ(xk, k)) (3)
It uses the Gaussian form pϕ(xk−1|xk) because the reverse process has the identical function form as128

the forward process when βt is small [15]. Ho et al. [6] consider the following parameterization of129
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pϕ(xk−1|xk):130

µϕ(xk, k) =
1

αk

(
xk − βk√

1− αk
ϵϕ(xk, k)

)
and Σϕ(xk, k) = β̃

1/2
k where β̃k =

{
1−αk−1

1−αk
βk k > 1

β1 k = 1

(4)
ϵϕ is a trainable function to predict the noise vector ϵ from xk. Ho et al. [6] show that training131

the reverse chain to maximize the log-likelihood
∫
q(x0) log pϕ(x0)dx0 is equivalent to minimizing132

re-weighted evidence lower bound (ELBO) that fits the noise. They derive the final simplified133

optimization objective:134

L(ϕ) = Ex0,k,ϵ

[
∥ϵ− ϵϕ(

√
ᾱkx0 +

√
1− ᾱkϵ, k)∥2

]
. (5)

Once the model is trained, new data points can be subsequently generated by first sampling a random135

vector from the prior distribution, followed by ancestral sampling through the reverse Markov chain136

in Equation 3.137

3 Approach138

In this section, we formally describe our method, Synthetically-enhanced Hierarchical Environment139

Design (SHED), which is a novel framework for UED under resource constraints. The SHED140

incorporates two key components that differentiate it from existing UED approaches:141

• A hierarchical MDP framework to generate suitable environments,142

• A generative model to generate the synthetic trajectories.143

SHED uses a hierarchical MDP framework where an RL teacher leverages the observed student’s144

policy representation to generate environments at the student’s capabilities frontier. Such targeted145

environment generation process enhances the student’s general capability by utilizing the underlying146

structure of previously discovered environments, rather than relying on the open-ended random147

generation. Besides, SHED leverages advances in generative models to generate synthetic trajectories148

that can be used to train the off-policy teacher agent, which significantly reduces the costly interactions149

between the agents and the environments. The overall framework is shown in Figure 1, and the150

pseudo-code is provided in Algorithm 1.151

3.1 Hierarchical Environment Design152

The objective is to generate a limited number of environments that are designed to enhance the general153

capability of the student agent. Inspired by the principles of PAIRED [3], we adopt an RL-based154

approach for the environment generation process. To better generate suitable environments tailored155

to the current student skill level, SHED uses the hierarchical MDP framework, consisting of an156

upper-level RL teacher policy Λ and a lower-level student policy π. Specifically, the teacher policy,157

Λ : Π → Θ, maps from the space of all potential student policies Π to the space of environment158

parameters Θ. Existing RL-based methods (e.g., PARIED) rely solely on regret feedback and159

fail to effectively capture the nuances of the student policy. To address this challenge, SHED160

enhances understanding by encoding the student policy π into a vector that serves as the state161

abstraction for teacher Λ. Rather than compressing the knowledge in the student policy network, we162

approximate the embedding of the student policy π by assessing performance across a set of diverse163

evaluation environments. This performance vector, denoted as p(π), gives us a practical estimate164

of the student’s current general capabilities, enabling the teacher to customize the next training165

environments accordingly. In our hierarchical framework, the environment generation process is166

governed by discrete-time dynamics. We delve into the specifics below.167

Upper-level teacher MDP. The upper-level teacher operates at a coarser layer of student policy168

abstraction and generates environments to train the lower-level student agent. This process can be169

formally modeled as an MDP by the tuple < Su, Au, Pu, Ru, γu >:170

• Su represents the upper-level state space. Typically, su = p(π) = [p1, . . . , pm] denotes the171

student performance vector across m diverse evaluation environments. This vector serves as the172

representation of the student policy π and is observed by the teacher.173
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Algorithm 1 SHED
Input: real data ratio ψ ∈ [0, 1], evaluate environment

set θeval, reward function R;
1: Initialize: diffusion model D, teacher policy Λ,

real and synthetic replay buffer Breal,Bsyn = ∅;
2: for episode ep = 1, . . . ,K do
3: Initialize student policy π
4: Evaluate π on θeval and get state su = p(π)
5: for Budget t = 1, . . . , T do
6: generate θ⃗ ∼ Λ, and create Mθ⃗(π)

7: train π on Mθ⃗ to maximize V θ⃗(π)

8: evaluate π on θeval and get next state s′
9: compute teacher’s reward rt according to R

10: add experience (sut , θ⃗, r
u
t , s

u,′
t ) to Breal

11: train D with samples from Breal

12: generate synthetic experiences from D and
add them to Bsyn

13: train Λ on samples from Breal

⋃
Bsyn mixed

with ratio ψ
14: set s = s′;
15: end for
16: end for
Output: Λ, π, D

Figure 1: The overall framework of SHED.

Figure 2: The illustration of the environment
generation process.

• Au is the upper-level action space. The teacher observes the abstraction of the student policy,174

su and produces an upper-level action au which is the environment parameters θ⃗. θ⃗ (au) is then175

used to generate specific environment instances Mθ⃗. Thus the upper-level action space Au is the176

environment parameter space Θ.177

• Pu denotes the action-dependent transition dynamics of the upper-level state. The general capability178

of the student policy evolves due to training the student agent on the generated environments.179

• Ru provides the upper-level reward to the teacher at the end of training the student on the generated180

environment. The design of Ru will be discussed in Section 3.3.181

As shown in Figure 2, given the student policy π, the teacher Λ first observes the representation182

of the student policy, su = [p1, . . . , pm]. Then teacher produces an upper-level action au which183

corresponds to the environment parameters. These environment parameters are subsequently used184

to generate specific environment instances. The lower-level student policy π will be trained on the185

generated environments for C training steps. The upper-level teacher collects and stores the student186

policy evolution transition (su, au, ru, su,′) every C times steps for off-policy training. The teacher187

agent is trained to maximize the cumulative reward giving the budget for the number of generated188

environments. The choice of the evaluation environments will be discussed in Section 3.3.189

Lower-level student MDP. The generated environment is fully specified for the student, characterized190

by a Partially Observable Markov Decision Process (POMDP), which is defined by a tuple Mθ⃗ =<191

A,O, S θ⃗,P θ⃗, I θ⃗,Rθ⃗, γ >, where A represents the set of actions, O is the set of observations, S θ⃗192

is the set of states determined by the environment parameters θ⃗, similarly, P θ⃗ is the environment-193

dependent transition function, and I θ⃗ : θ⃗ → O is the environment-dependent observation function,194

Rθ⃗ is the reward function, and γ is the discount factor. At each time step t, the environment produces a195

state observation st ∈ S θ⃗, the student agent samples the action at ∼ A and interacts with environment196

θ⃗. The environment yields a reward rt according to the reward function Rθ⃗. The student agent is197

trained to maximize their cumulative reward V θ⃗(π) =
∑C

t=0 γ
trt for the current environment under198

a finite time horizon C. The student agent will learn a good general capability from training on a199

sequence of generated environments.200

5



The hierarchical framework enables the teacher agent to systematically measure and enhance the201

general capability of the student agent and to adapt the training process accordingly. However, it’s202

worth noting that collecting student policy evolution trajectories (su, au, ru, su,′) to train the teacher203

agent is notably slow and resource-intensive, since each transition in the upper-level teacher MDP204

encompasses a training horizon of C timesteps for the student in the generated environment. Thus, it205

is essential to reduce the need for costly collection of upper-level teacher experiences.206

3.2 Generative Trajectory Modeling207

In this section, we will formally introduce a generative model designed to ease the collection of upper-208

level MDP experience. This will allow us to train our teacher policy more efficiently. In particular, we209

first utilize a diffusion model to learn the conditional data distribution from the collected experiences210

τ = {(sut , aut , rut , s
p,′
t )}. Later we can use the reverse chain in the diffusion model to generate the211

synthetic trajectories that can be used to help train the teacher agent, thereby alleviating the need212

for extensive and time-consuming collection of upper-level teacher experiences. We deal with two213

different types of timesteps in this section: one for the diffusion process and the other for the upper-214

level teacher agent, respectively. We use subscripts k ∈ 1, . . . ,K to represent diffusion timesteps215

and subscripts t ∈ 1, . . . , T to represent trajectory timesteps in the teacher’s experience.216

In the image domain, the diffusion process is implemented across all pixel values of the image. In our217

setting, we diffuse over the next state su,′ conditioned the given state su and action au. We construct218

our generative model according to the conditional diffusion process:219

q(su,′k |su,′k−1), pϕ(s
u,′
k−1|s

u,′
k , su, au)

As usual, q(su,′k |su,′k−1) is the predefined forward noising process while pϕ(s
u,′
k−1|s

u,′
k , su, au) is the220

trainable reverse denoising process. We begin by randomly sampling the collected experiences221

τ = {(sut , aut , rut , s
u,′
t )} from the real experience buffer Breal. Giving the observed state su and222

action au, we use the reverse process pϕ to represent the generation of the next state su,′:223

pϕ(s
u,′
0:K |su, au) = N (su,′K ; 0, I)

K∏
k=1

pϕ(s
u,′
k−1|s

u,′
k , su, au)

At the end of the reverse chain, the sample su,′0 , is the generated next state su,′. Similar to Ho et al.
[6], we parameterize pϕ(s′k−1|s′k, su, au) as a noise prediction model with the covariance matrix
fixed as Σϕ(s

u,′
k , su, au, k) = βiI, and the mean is

µϕ(s
u,′
i , su, au, k) =

1
√
αk

(
su,′k − βk√

1− ᾱk
ϵϕ(s

u,′
k , su, au, k)

)
ϵϕ(s

u,′
k , su, au, k) is the trainable denoising function, which aims to estimate the noise ϵ in the noisy224

input su,′k at step k.225

Training objective. We employ a similar simplified objective to train the conditional ϵ- model:226

L(ϕ) = E(su,au,su,′)∼τ,k∼U,ϵ∼N (0,I)

[
∥ϵ− ϵϕ(s

u,′
k , su, au, k)∥2

]
(6)

Where su,′k =
√
ᾱks

u,′ +
√
1− ᾱkϵ. The intuition for the loss function L(ϕ) is to predict the noise227

ϵ ∼ N (0, I) at the denoising step k, and the diffusion model is essentially learning the student228

policy involution trajectories collected in the real experience buffer Breals. Note that the reverse229

process necessitates a substantial number of steps K [15]. Recent research by Xiao et al. [22] has230

demonstrated that enabling denoising with large steps can reduce the total number of denoising steps231

K. To expedite the relatively slow reverse sampling process (as it requires computing ϵϕ networks232

K times), we use a small value of K. Similar to Wang et al. [20], while simultaneously setting233

βmin = 0.1 and βmax = 10.0, we define:234

βk = 1− exp

(
βmin × 1

K
− 0.5(βmax − βmin)

2k − 1

K2

)
This noise schedule is derived from the variance-preserving Stochastic Differential Equation by Song235

et al. [16].236
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Generate synthetic trajectories.Once the diffusion model has been trained, it can be used to generate237

synthetic experience data by starting with a draw from the prior su,′K ∼ N (0, I) and successively238

generating denoised next state, conditioned on the given su and au through the reverse chain pϕ.239

Note that the giving condition action a can either be randomly sampled from the action space or use240

another diffusion model to learn the action distribution giving the initial state su. This new diffusion241

model is essentially a behavior-cloning model that aims to learn the teacher policy Λ(au|su). This242

process is similar to the work of Wang et al. [20]. We discuss this process in detail in the appendix.243

In this paper, we randomly sample au as it is straightforward and can also increase the diversity in244

the generated synthetic experience to help train a more robust teacher agent.245

After obtaining the generated next state su,′ conditioned on su, au, we compute reward ru using246

teacher’s reward function R(su, au, su,′). The specifics of how the reward function is chosen are247

explained in the following section.248

3.3 Rewards and Choice of evaluate environments249

Selection of evaluation environments. The upper-level teacher generates environments tailored250

for the lower-level student to improve its general capability. Thus it is important to select a set of251

diverse suitable evaluation environments as the performance vector reflects the student agent’s general252

capabilities and serves as an approximation of the policy’s embedding. Fontaine and Nikolaidis253

[5] propose the use of quality diversity (QD) optimization to collect high-quality environments that254

exhibit diversity for the agent behaviors. Similarly, Bhatt et al. [1] introduce a QD-based algorithm for255

dynamically designing such evaluation environments based on the current agent’s behavior. However,256

it’s worth noting that this QD-based approach can be tedious and time-consuming, and the collected257

evaluation environments heavily rely on the given agent policy.258

Given these considerations, it is natural to take advantage of the domain randomization algorithm,259

as it has demonstrated compelling results in generating diverse environments and training generally260

capable agents. In our approach, we first discretize the environment parameters into different ranges,261

then randomly sample from these ranges, and combine these parameters to generate evaluation262

environments. This method can generate environments that may induce a diverse performance for the263

same policy, and it shows promising empirical results in the final experiments.264

Reward design. We define the reward function for the upper-level teacher policy as a parameterized265

function based on the improvement in student performance in the evaluation environments after266

training in the generated environment:267

R(su, au, su,′) =

m∑
i=1

(p′i − pi)

This reward function gives positive rewards to the upper-level teacher for taking action to create268

the right environment to improve the overall performance of students across diverse environments.269

However, it may encourage the teacher to obtain higher rewards by sacrificing student performance270

in one subset of evaluation environments to improve student performance in another subset, which271

conflicts with our objective to develop a student agent with general capabilities. Therefore, we need272

to consider fairness in the reward function to ensure that the generated environment can improve273

student’s general capabilities. Similar to [4], we build our fairness metric on top of the change274

in student’s performance in each evaluation environment, denoted as ωi = p′i − pi, and we have275

ω̄ = 1
m

∑m
i=1 ωi. We then measure the fairness of the teacher’s action using the coefficient of276

variation of student performances:277

cv(su, au, su,′) =

√
1

m− 1

∑
i

(ωi − ω̄)2

ω̄2
(7)

A teacher is considered to be fair if and only if the cv is smaller. As a result, our reward function is:278

R(su, au, su,′) =

m∑
i=1

(p′i − pi)− η · cv(su, au, su,′) (8)

Here η is the coefficient that balances the weight of fairness in the reward function (We set a small279

value to η). This reward function motivates the teacher to generate training environments that can280

improve student’s general capability.281
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Figure 3: Left: The average zero-shot transfer performances on the test environments in the Lunar
lander environment (mean and standard error). Right: The average zero-shot transfer performances
on the test environments in the BipedalWalker (mean and standard error).

4 Experiments282

In this section, we conduct experiments to compare SHED to other leading approaches on three283

domains: Lunar Lander, maze and a modified BipedalWalker environment. Experimental details and284

hyperparameters can be found in the Appendix. Specifically, our primary comparisons involve SHED285

and h-MDP (our proposed hierarchical approach without diffusion model aiding in training) against286

four baselines: domain randomization [19], ACCEL, [10], Edited ACCEL(with slight modifications287

that it does not revisit the previously generated environments), PAIRED [3]. In all cases, we288

train a student agent via Proximal Policy Optimization (PPO [13], and train the teacher agent via289

Deterministic policy gradient algorithms(DDPG [14]), because DDPG is an off-policy algorithm and290

can learn from both real experiences and the synthetic experiences.291

Setup. For each domain, we construct a set of evaluation environments and a set of test environments.292

The vector of student performances in the evaluation environments is used as the approximation of293

the student policy (as the observation to teacher agent), and the performances in the test environments294

are used to represent the student’s zero-shot transfer performances (general capabilities). Note that in295

order to obtain a fair comparison of zero-shot transfer performance, the evaluation environments and296

test environments do not share the same environment and they are not present during training.297

Lunar Lander. This is a classic rocket trajectory optimization problem. In this domain, student298

agents are tasked with controlling a lander’s engine to safely land the vehicle. Before the start of each299

episode, teacher algorithms determine the environment parameters that are used to generate environ-300

ments in a given play-through, which includes gravity, wind power, and turbulence power. These301

parameters directly alter the difficulty of landing the vehicle safely. The state is an 8-dimensional302

vector, which includes the coordinates of the lander, its linear velocities, its angle, its angular velocity,303

and two booleans that represent whether each leg is in contact with the ground or not.304

We train the student agent for 1e6 environment time steps and periodically test the agent in test305

environments. The parameters for the test environments are randomly generated and fixed during306

training. We report the experiment results on the left side of Figure 3. As we can see, student307

agents trained under SHED consistently outperform other baselines and have minimal variance in308

transfer performance. During training, the baselines, except h-MDP, show a performance dip in the309

middle. This phenomenon could potentially be attributed to the inherent challenge of designing the310

appropriate environment instance in the large environment parameter space. This further demonstrates311

the effectiveness of our hierarchical design (SHED and h-MDP), which can successfully create312

environments that are appropriate to the current skill level of the students.313

Bipedalwalker. We also evaluate SHED in the modified BipedalWalker from Parker-Holder et al.314

[10]. In this domain, the student agent is required to control a bipedal vehicle and navigate across the315

terrain, and the student receives a 24-dimensional proprioceptive state with respect to its lidar sensors,316

angles, and contacts. The teacher is tasked to select eight variables (including ground roughness, the317
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number of stairs steps, min/max range of pit gap width, min/max range of stump height, and min/max318

range of stair height) to generate the corresponding terrain.319

We use similar experiment settings in prior UED works, we train all the algorithms for 1e7 environ-320

ment time steps, and then evaluate their generalization ability on ten distinct test environments in321

Bipedal-Walker domain. The parameters for the test environments are randomly generated and fixed322

during training. As shown in Figure 3, our proposed method SHED surpasses all other baselines and323

achieves performance levels nearly on par with the SOTA (ACCEL). Meanwhile, SHED maintains a324

slight edge in terms of stability and overall performance and PAIRED suffers from a considerable325

degree of variance in its performance.326

Partially observable Maze. Here we study navigation tasks, where an agent must explore to find a327

goal while navigating around obstacles. The environment is partially observable, and the agent’s field328

of view is limited to a 3× 3 grid area. Unlike the previously mentioned domains, maze environments329

are non-parametric and cannot be directly represented by compact parameter vectors due to their330

high complexity. To solve this challenge, we propose a novel method to generate maze by leveraging331

advances in large language models (e.g., ChatGPT). Specifically, we implement a retrieval-augmented332

generation (RAG) process to optimize the ChatGPT’s output such that it can generate desired maze333

environments. This process ensures that large language models reference authoritative knowledge334

bases to generate feasible mazes. To simplify the teacher’s action space, we extracted several key335

factors that constitute the teacher’s action space (environmental parameters) for maze generation.336

Details on maze generation are provided in Appendix D.3, and prompt are included in Appendix D.4.337

Figure 4: Average zero-shot transfer performance on the test
environments in the maze environments.

The average zero-shot transfer perfor-338

mances are reported in Figure 4. No-339

tably, SHED demonstrates the highest340

performance, consistently improving341

and achieving the highest cumulative342

rewards. The performance of h-MDP343

steadily improves but does not reach344

the highest levels, which further high-345

lights the advantages of incorporat-346

ing the generated synthetic datasets347

to train an effective RL teacher agent.348

Meanwhile, Accel-Edit and Accel349

show higher variances in performance,350

indicating that random teachers are351

less stable in finding a suitable envi-352

ronment to train student agents.353

Ablation and additional Experi-354

ments In Appendix C, we evaluate355

the ability of the diffusion model to generate the synthetic student policy involution trajectories. We356

further provide ablation studies to assess the impact of different design choices in Appendix E.1.357

Additionally, in Appendix E.2, we conduct experiments to show how the algorithm performs under358

different settings, including scenarios with a larger budget constraint on the number of generated359

environments or a larger weight assigned to CV fairness rewards. Notably, all results consistently360

demonstrate the effectiveness of our approach.361

5 Conclusion362

In this paper, we introduce an adaptive approach for efficiently training a generally capable agent363

under resource constraints. Our approach is general, utilizing an upper-level MDP teacher agent364

that can guide the training of the lower-level MDP student agent agent. The hierarchical framework365

can incorporate techniques from existing UED works, such as prioritized level replay (revisiting366

environments with high learning potential). Furthermore, we have described a method to assist the367

experience collection for the teacher when it is trained in an off-policy manner. Our experiment368

demonstrates that our method outperforms existing UED methods, highlighting its effectiveness as a369

curriculum-based learning approach within the UED framework.370
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A Theorem434

Theorem 1 There exists a finite evaluation environment set that can capture the student’s general435

capabilities and the performance vector [p1, . . . , pm] is a good representation of the student policy.436

To prove this, we first provide the following Assumption:437

Assumption 1 Let p(π, θ⃗) denote the performance of student policy π in an environment θ⃗. For ∀i-th438

dimension of the environment parameters, denoted as θi, when changing the θi to θ′i to get a new439

environment θ⃗′ while keeping other environment parameters fixed, there ∃δi > 0, if |θ′i − θi| ≤ δi, we440

have |p(π, θ⃗′)− p(π, θ⃗)| ≤ ϵi, where ϵi → 0.441

If this is true, we then can construct a finite set of environments, and the student performances in442

those environments can represent the performances in all potential environments generated within443

the certain environment parameters open interval combinations, and the set of those open intervals444

combinations cover the environment parameter space Θ.445

We begin from the simplest case where we only consider using one environment parameter to generate446

environments, denoted as θi. We can construct a finite environment parameter set for environment447

parameters, which is {θmin
i +1/2 ∗ δi, θmin

i +3/2 ∗ δi, θmin
i +7/2 ∗ δi, . . . , θmax

i − δi/2}. Assume448

the set size is Li. We let the set {θ⃗i}Li
i=1 denote the corresponding generated environments. This is449

served as the representative environment set. Then the student performances in those environments450

are denoted as {p(π, θ⃗i)}Li
i=1, which we call it as representative performance vector set. We can451

divide the space for θi into a finite set of open intervals with size Li, which is {[θmin
i , θmin

i + 3/2 ∗452

δi), (θ
min
i +1/2∗δi, θmin

i +5/2δi), (θ
min
i +5/2∗δi, θmin

i +9/2∗δi), . . . , (θmax
i −3/2∗δi, θmax

i ]},453

which we call it as representative parameter interval set, also denoted as {(θi − δ, θi + δ)}Li
i=1.454

For any environment generated in those intervals, denoted as θ⃗′i, the performance p(π, θ⃗′i) can always455

be represented by the p(π, θ⃗i) which is in the same interval, as |p(π, θ⃗′i) − p(π, θ⃗i)| ≤ ϵi, where456

ϵi → 0. In such cases, the finite set of environmental parameter intervals {θmin
i + 1/2 ∗ δi, θmin

i +457

3/2 ∗ δi, θmin
i + 7/2 ∗ δi, . . . , θmax

i − δi/2} fully covers the entire parameter space Θ. We can find458

a representative environment set {θ⃗i}Li
i=1 that is capable of approximating the performance of the459

student policy within the open parameter intervals combination. This set effectively characterizes the460

general performance capabilities of the student policy π.461

Then we extend to two environment parameter design space cases. Let’s assume that the environment462

is generated by two-dimension environment parameters. Then, for each environment parameter,463

θi ∈ {θ1, θ2}. We can find the same open interval set for each parameter. Specifically, for each θi,464

there exists a δi, such that if |θ′i − θi| ≤ δi, we have |p(π, θ⃗′)− p(π, θ⃗)| ≤ ϵi, where ϵi → 0. Hence,465

we let δ = min{δ1, δ2} and ϵ = ϵ1 + ϵ2. Thus the new representative environment set is the set466

that includes the any combination of {[θ1, θ2]} where θ1 ∈ {θ⃗i}L1
i=1 and θ2 ∈ {θ⃗j}L2

j=1. We can get467

the representative performance vector set as {p(π, [θ⃗i, θ⃗j ])}i∈[1,L1],j∈[1,L2]. We then can construct468

the representative parameter interval set as {[(θi − δ, θi + δ), (θj − δ, θj + δ)]}i∈[1,L1],j∈[1,Lj ].469

As a result, for any new environments [θ⃗′i, θ⃗
′
j ], we can find the representative environment whose470

environment parameters are in the same parameter interval [θ⃗i, θ⃗j ], such that their performance471

difference is smaller than ϵ = ϵ1 + ϵ2 for all ∀i ∈ [1, L1],∀j ∈ [1, L2]:472

|p(π, [θ⃗′i, θ⃗′j ])− p(π, [θ⃗i, θ⃗j ])| = |p(π, [θ⃗′i, θ⃗′j ])− p(π, [θ⃗′i, θ⃗j ]) + p(π, [θ⃗′i, θ⃗j ])− p(π, [θ⃗i, θ⃗j ])|

≤ |p(π, [θ⃗′i, θ⃗′j ])− p(π, [θ⃗′i, θ⃗j ])|+ |p(π, [θ⃗′i, θ⃗j ])− p(π, [θ⃗i, θ⃗j ])|
≤ δj + δi
= δ

(9)

In such cases, the finite set of environmental parameter intervals {[(θi − δ, θi + δ), (θj − δ, θj +473

δ)]}i∈[1,L1],j∈[1,Lj ] fully covers the entire parameter space Θ. We can find a representative environ-474

ment set {θ⃗i}Li
i=1 that is capable of approximating the performance of the student policy within the475

12



Table 1: The teacher policies corresponding to the three approaches for UED. U(Θ) is a uniform
distribution over environment parameter space, D̃π is a baseline distribution, θ̄π is the trajectory
which maximizes regret of π, and vπ is the value above the baseline distribution that π achieves on
that trajectory, cπ is the negative of the worst-case regret of π. Details are described in PAIRED [3].

UED Approaches Teacher Policy Decision Rule

DR [19] Λ(π) = U(Θ) Randomly sample
PARIED [3] Λ(π) = {θ̄π : cπ

vπ
, D̃π : otherwise} Minimax Regret

SHED (ours) Λ(π) = argmax
θ⃗∈Θ

Qπ(s = π, a = θ⃗) Maximize reward

open parameter intervals combination. This set effectively characterizes the general performance476

capabilities of the student policy π.477

Similarly, we can show this still holds when the environment is constructed by a larger dimension478

environment parameters, where we set δ = min{δi}, and ϵ =
∑

i ϵi, and we have δ > 0, ϵ→ 0. The479

overall logic is that we can find a finite set, which is called representative environment set, and480

we can use performances in this set to represent any performances in the environments generated481

in the representative parameter interval set, which is called representative performance vector482

set. Finally, we can show that representative parameter interval set fully covers the environment483

parameter space. Thus there exists a finite evaluation environment set that can capture the student’s484

general capabilities and the performance vector, called representative performance vector set,485

[p1, . . . , pm] is a good representation of the student policy.486

B Details about the Generative model487

B.1 Generative model to generate synthetic next state488

Here, we describe how to leverage the diffusion model to learn the conditional data distribution in the489

collected experiences τ = {(sut , aut , rut , s
u,′
t )}. Later we can use the trainable reverse chain in the490

diffusion model to generate the synthetic trajectories that can be used to help train the teacher agent,491

resulting in reducing the resource-intensive and time-consuming collection of upper-level teacher492

experiences. We deal with two different types of timesteps in this section: one for the diffusion493

process and the other for the upper-level teacher agent, respectively. We use subscripts k ∈ 1, . . . ,K494

to represent diffusion timesteps and subscripts t ∈ 1, . . . , T to represent trajectory timesteps in the495

teacher’s experience.496

In the image domain, the diffusion process is implemented across all pixel values of the image. In our497

setting, we diffuse over the next state su,′ conditioned the given state su and action au. We construct498

our generative model according to the conditional diffusion process:499

q(su,′k |su,′k−1), pϕ(s
u,′
k−1|s

u,′
k , su, au)

As usual, q(su,′k |su,′k−1) is the predefined forward noising process while pϕ(s
u,′
k−1|s

u,′
k , su, au) is the500

trainable reverse denoising process. We begin by randomly sampling the collected experiences501

τ = {(sut , aut , rut , s
u,′
t )} from the real experience buffer Breal.502

We drop the superscript u here for ease of explanation. Giving the observed state s and action a, we503

use the reverse process pϕ to represent the generation of the next state s′:504

pϕ(s
′
0:K |s, a) = N (s′K ; 0, I)

K∏
k=1

pϕ(s
′
k−1|s′k, s, a) (10)

At the end of the reverse chain, the sample s′0, is the generated next state s′. As
shown in Section 2.2, pϕ(s

′
k−1|, s′k, s, a) could be modeled as a Gaussian distribution

N (s′k−1;µθ(s
′
k, s, a, k),Σθ(s

′
k, s, a, k)). Similar to Ho et al. [6], we parameterize pϕ(s′k−1|s′k, s, a)

as a noise prediction model with the covariance matrix fixed as

Σθ(s
′
k, s, a, k) = βiI
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and mean is

µθ(s
′
i, s, a, k) =

1
√
αk

(
s′k − βk√

1− ᾱk
ϵθ(s

′
k, s, a, k)

)
Where ϵθ(s′k, s, a, k) is the trainable denoising function, which aims to estimate the noise ϵ in the505

noisy input s′k at step k. Specifically, giving the sampled experience (s, a, s′), we begin by sampling506

s′K ∼ N (0, I) and then proceed with the reverse diffusion chain pϕ(s′k−1|, s′k, s, a) for k = K, . . . , 1.507

The detailed expression for s′k−1 is as follows:508

s′k√
αk

− βk√
αk(1− ᾱk)

ϵθ(s
′
k, s, a, k) +

√
βkϵ, (11)

where ϵ ∼ N (0, I). Note that ϵ = 0 when k = 1.509

Training objective. We employ a similar simplified objective, as proposed by Ho et al. [6] to train510

the conditional ϵ- model through the following process:511

L(θ) = E(s,a,s′)∼τ,k∼U,ϵ∼N (0,I)

[
∥ϵ− ϵϕ(s

′
k, s, a, k)∥2

]
(12)

Where s′k =
√
ᾱks

′+
√
1− ᾱkϵ. U represents a uniform distribution over the discrete set {1, . . . ,K}.512

The intuition for the loss function L(θ) tries to predict the noise ϵ ∼ N (0, I) at the denoising step k,513

and the diffusion model is essentially learning the student policy involution trajectories collected in514

the real experience buffer Breals. Note that the reverse process necessitates a substantial number of515

steps K, as the Gaussian assumption holds true primarily under the condition of the infinitesimally516

limit of small denoising steps [15]. Recent research by Xiao et al. [22] has demonstrated that enabling517

denoising with large steps can reduce the total number of denoising stepsK. To expedite the relatively518

slow reverse sampling process outlined in Equation 3.2 (as it requires computing ϵϕ networks K519

times), we use a small value of K, while simultaneously setting βmin = 0.1 and βmax = 10.0.520

Similar to Wang et al. [20], we define:521

βk = 1− αk

= 1− exp

(
βmin × 1

K
− 0.5(βmax − βmin)

2k − 1

K2

)
This noise schedule is derived from the variance-preserving Stochastic Differential Equation by Song522

et al. [16].523

Generate synthetic trajectories. Once the diffusion model has been trained, it can be used524

to generate synthetic experience data by starting with a draw from the prior s′K ∼ N (0, I) and525

successively generating denoised next state, conditioned on the given s and a through the reverse526

chain pϕ in Equation 3.2. Note that the giving condition action a can either be randomly sampled527

from the action space (which is also the environment parameter space) or use another diffusion model528

to learn the action distribution giving the initial state s. In such case, this new diffusion model is529

essentially a behavior-cloning model that aims to learn the teacher policy Λ(a|s). This process is530

similar to the work of Wang et al. [20]. We discuss this process in detail in the appendix. In this paper,531

we randomly sample a as it is straightforward and can also increase the diversity in the generated532

synthetic experience to help train a more robust teacher agent.533

B.2 Generative model to generate synthetic action534

Once the diffusion model has been trained, it can be used to generate synthetic experience data535

by starting with a draw from the prior s′K ∼ N (0, I) and successively generating denoised next536

state, conditioned on the given s and a through the reverse chain pϕ in Equation 3.2. Note that the537

giving condition action a can either be randomly sampled from the action space (which is also the538

environment parameter space) or we can train another diffusion model to learn the action distribution539

giving the initial state s, and then use the trained new diffusion model to sample the action a giving540

the state s. This process is similar to the work of Wang et al. [20].541

In particular, We construct another conditional diffusion model as:542

q(ak|ak−1), pϕ(ak−1|ak, s)
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Figure 5: The distribution of the real s′ and the synthetic s′ conditioned on (s, a).

As usual, q(ak|ak−1) is the predefined forward noising process while pϕ(ak−1|ak, s) is the trainable543

reverse denoising process. we represent the action generation process via the reverse chain of the544

conditional diffusion model as545

pϕ(a0:K |s) = N (aK ; 0, I)

K∏
k=1

pϕ(ak−1|ak, s) (13)

At the end of the reverse chain, the sample a0, is the generated action a for the giving state s.
Similarly, we parameterize pϕ(ak−1|ak, s) as a noise prediction model with the covariance matrix
fixed as

Σθ(ak, s, k) = βiI

and mean is

µθ(ai, s, k) =
1

√
αk

(
ak − βk√

1− ᾱk
ϵθ(ak, s, k)

)
Similarly, the simplified loss function is546

La(θ) = E(s,a)∼τ,k∼U,ϵ∼N (0,I)

[
∥ϵ− ϵϕ(ak, s, k)∥2

]
(14)

Where ak =
√
ᾱka+

√
1− ᾱkϵ. U represents a uniform distribution over the discrete set {1, . . . ,K}.547

The intuition for the loss function La(θ) tries to predict the noise ϵ ∼ N (0, I) at the denoising step k,548

and the diffusion model is essentially a behavior cloning model to learn the student policy collected549

in the real experience buffer Breals.550

Once this new diffusion model is trained, the generation of the synthetic experience can be formulated551

as:552

• we first randomly sample the state from the collected real trajectories s ∼ τ ;553

• we use the new diffusion model discussed above to mimic the teacher’s policy to generate554

the actions a;555

• giving the state s and action a, we use the first diffusion model presented in the main paper556

to generate the next state s′;557

• we compute the reward r according to the reward function, and add the final generated558

synthetic experience (s, a, r, s′) to the synthetic experience buffer Bsyn to help train the559

teacher agent.560
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Figure 6: The distribution of the real [s′1, s
′
2, s

′
3](red) and the synthetic [s′1, s

′
2, s

′
3](blue) giving the

fixed (su, au). Specifically, the noise ε in f(su, au) is (i).left figure: ε = ϵ, (ii).middle figure:
ε = 3 ∗ ϵ, (iii).right figure: ε = 10 ∗ ϵ, where ϵ ∼ N (0, 1).

C Empirical analysis of generative model561

C.1 Ability to generate good synthetic trajectories562

We begin by investigating SHED’s ability to assist in collecting experiences for the upper-level MDP563

teacher. This involves the necessity for SHED to prove its ability to accurately generate synthetic564

experiences for teacher agents. To check the quality of these generated synthetic experiences, we565

employ a diffusion model to simulate some data for validation (even though Diffusion models have566

demonstrated remarkable success across vision and NLP tasks).567

We design the following experiment: given the teacher’s observed state su = [p1, p2, p3, p4, p5],568

where pi denotes the student performance on i-th evaluation environment. and given the teacher’s569

action au = [a1, a2, a3], which is the environment parameters and are used to generate corresponding570

environment instances. We use a neural network f(su, au) to mimic the involution trajectories of571

the student policy π. That is, with the input of the state su and action au into the neural network, it572

outputs the next observed state su,′ = [p′1, p
′
2, p

′
3, p

′
4, p

′
5], indicating the updated student performance573

vector on the evaluation environments after training in the environment generated by au. In particular,574

we add a noise ε into su,′ to represent the uncertainty in the transition. We first train our diffusion575

model on the real dataset (su, au, su,′) generated by neural network f(su, au). We then set a fixed576

(su, au) pair and input them into f(su, au) to generate 200 samples of real su,′. The trained diffusion577

model is then used to generate 200 synthetic su,′ conditioned on the fixed (su, au) pair.578

The results are presented in Figure 6, we can see that the generative model can effectively capture579

the distribution of real experience even if there is a large uncertainty in the transition, indicated by580

the value of ε. This provides evidence that the diffusion model can generate useful experiences581

conditioned on (su, au). It is important to note that the marginal distribution derived from the reverse582

diffusion chain provides an implicit, expressive distribution, such distribution has the capability to583

capture complex distribution properties, including skewness and multi-modality.584

C.2 addition experiments on diffusion model585

We further provide more results to show the ability of our generative model to generate synthetic586

trajectories where the noise is extremely small. In such cases, the actual next state s′ will converge to587

a certain value, and the synthetic next state ssyn,′ generated by the diffusion model should also be588

very close to that value, then the diffusion model has the ability to sample the next state ssyn,′0 which589

can accurately represent the next state. We present the results in Figure 5. Specifically, this figure590

shows when the noise is very small in the actual next state, which is 0.05∗ ϵ, and ϵ ∼ N (0, 1). Giving591

any condition (s, a) pair, we selectively report on (si, ai), where x-axis is the ai value, and y-axis592

is the si value. The student policy with initial performance vector s is trained on the environments593

generated by the teacher’s action a. We report the new performance s′i of student policy on i-th594

environments after training in the z-axis. In particular, if two points s′i and ssyn,′i are close, it indicates595

that the diffusion model can successfully generate the actual next state. As we can see, when the596

noise is extremely small, our diffusion model can accurately predict the next state of s′i giving any597

condition (s, a) pair.598

16



Figure 7: Left: The ablation study in the Lunar lander environment which investigates the effect of
the size of the evaluation environment set. We provide the average zero-shot transfer performances
on the test environments (mean and standard error). Right: Zero-shot transfer performance on the test
environments under a longer time horizon in Lunar lander environments(mean and standard error).

D Additional Experiment Details599

D.1 Hyperparameters600

We set the learning rate 1e−3 for actor, and 3e−3 for critic, we set gamma γ = 0.999, λ = 0.95, and601

set coefficient for the entropy bonus (to encourage exploration) as 0.01. For each environment, we602

conduct 50 PPO updates for the student agent, and We can train on up to 50 environments, including603

replay. For our diffusion model, the diffusion discount is 0.99, and batch size is 64, τ is 0.005,604

learning rate is 3e− 4. The synthetic buffer size is 1000, and the ratio is 0.25.605

D.2 Experiments Compute Resources606

All the models were trained on a single NVIDIA GeForce RTX 3090 GPU and 16 CPUs.607

D.3 Maze document608

Here we provide the document shows the instruction to generate feasible maze environments.609

There are several factors that can affect the difficulty of a maze. Here are610

some key factors to consider:611

1. Maze Size: Larger mazes generally increase the complexity and difficulty612

as the agent has more states to explore. Typically, the maze size should be613

larger than 4x4 and smaller than 15*15.614

- If the size is 7*7 or smaller, the maze size is considered easy.615

- If the size is larger than 7*7 but smaller than 10*10, the maze size is616

considered medium.617

- If the maze size is larger than 10x10 but smaller than 15*15, the maze618

size is considered hard.619

2. Maze Structure: The complexity of the paths, including the number of twists,620

turns, and dead-ends, can significantly impact navigation strategies. The621

presence of narrow corridors versus wide-open spaces also plays a role.622

- If there are fewer than 2 turns in the feasible path from the start position623

to the end position, the maze structure is considered easy.624

- If there are more than 2 turns but fewer than 4 turns in the path from the625

start position to the end position, the maze structure is considered medium.626

- If there are 4 or more turns in the path from the start position to the end627

position, the maze structure is considered hard.628

3. Goal Location: The distance from the starting position to the end position629

also affects difficulty.630

- If the path from the start position to the end position requires fewer than631
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5 steps, the goal location is considered easy.632

- If the path from the start position to the end position requires 5 to 10633

steps, the goal location is considered medium.634

- If the path from the start position to the end position requires more than635

10 steps, the goal location is considered hard.636

4. Start Location: The starting position can also affect the difficulty of637

the maze. The starting position is categorized into five levels:638

- If the start position is close to 1, it means it should be located as close639

to the top left of the maze.640

- If the start position is close to 2, it means it should be located as close641

to the top right of the maze.642

- If the start position is close to 3, it means it should be located as close643

to the bottom left of the maze.644

- If the start position is close to 4, it means it should be located as close645

to the bottom right of the maze.646

- If the start position is close to 5, it means it should be located as close647

to the center of the maze.648

Please note that the generated maze uses -1 to represent blocks, 0 to649

represent the feasible path, 1 to represent the start position, and 2 to represent650

the end position. Must ensure that there is a feasible path in the generated maze!651

A feasible path means that 1 and 2 are connected directly through 0s, or 1 and 2652

are connected directly. For example:653

Feasible Maze:654

Maze = [655

[0, -1, -1, 2],656

[1, -1, 0, 0],657

[0, -1, 0, -1],658

[0, 0, 0, -1],659

]660

Non-Feasible Mazes:661

Maze = [662

[0, -1, -1, 2],663

[1, -1, 0, 0],664

[0, -1, -1, 0],665

[0, 0, 0, -1],666

]667

Or668

Maze = [669

[1, -1],670

[-1, 2]671

]672

These second example does not have any feasible path.673

674

675

D.4 Prompt for RAG676

We provide our prompt for the Retrieval Augmented Generation as follows:677

Please refer to the document, and generate a maze with feasible path. The678

difficulty level for the maze size is {maze_size_level}, and the difficulty679

level for the maze structure is {maze_structure_level}, he difficulty level680

for the goal location is {goal_location_level}, he difficulty level for681

the start location is {start_position_level}.682
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E Additional experiments683

E.1 Additional experiments about ablation studies684

We also provide ablation analysis to evaluate the impact of different design choices in Lunar lander685

domain, including (a) a larger evaluation environment set; (b) a bigger budget for constraint on the686

number of generated environments (which incurs a longer training time horizon). The results are687

reported in Figure 7.688

We explore the impact of introducing the diffusion model in collecting synthetic teacher’s experience689

and varying the size of the evaluation environment set. Specifically, as we can see from the right side690

of Figure 7, the SHED consistently outperforms h-MDP, indicating the effectiveness of introducing691

the generative model to help train the upper-level teacher policy. Furthermore, we find that when692

increasing the size of the evaluation environment set, we can have a better result in the student693

transfer performances. The intuition is that a larger evaluation environment set, encompassing a more694

diverse range of environments, provides a better approximation of the student policy according to the695

Theorem 1. However, the reason why SHED with 30 evaluation environments slightly outperforms696

SHED with 40 evaluation environments is perhaps attributed to the increase in the dimension of the697

student performance vector, which amplifies the challenge of training an effective diffusion model698

with a limited dataset.699

We conduct experiments in Lunar lander under a longer time horizon. The results are provided on the700

right side of Figure 7. As we can see, our proposed algorithm SHED can efficiently train the student701

agent to achieve the general capability in a shorter time horizon, This observation indicates that702

our proposed environment generation process can better generate the suitable environments for the703

current student policy, thereby enhancing its general capability, especially when there is a constraint704

on the number of generated environments.705

E.2 Additional experiments on Lunar lander706

we also conduct experiments to show how the algorithm performs under different settings, such707

as a larger weight of cv fairness rewards (η = 10). The results are provided in Figure 8. We708

noticed an interesting finding: when fairness reward has a high weightage, our algorithm tends to709

generate environments at the onset that lead to a rapid decline and subsequent improvement in student710

performance across all test environments. This is done to avoid acquiring a substantial negative711

fairness reward and thereby maximize the teacher’s cumulative reward. Notably, the student’s final712

performance still surpasses other baselines at the end of training.

Figure 8: Zero-shot transfer performance on the test environments with a larger cv value coefficient
in Lunar lander environments.

713

We further show in detail how the performance of different methods changes in each testing environ-714

ment during training (see Figure 9 and Figure 10 ).715
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Figure 9: Detail how the performance of different methods changes in each testing environment
during training (mean and error)

E.3 Additional experiments on Maze716

We selectively report some results of zero-shot transfer performances in maze environments. The717

results are provided in Figure718

F Discussion719

F.1 Limitations720

The limitation of this work comes from the UED framework, as UED is limited to the use of721

parameterized environments. This results in our experimental domain being relatively simple.722
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Figure 10: Detail how the performance of different methods changes in each testing environment
during training (mean and error)

(f) small maze (g) medium maze (h) large maze (i) four rooms maze (j) corridor maze

Figure 11: Zeros-shot transfer performance on test environments in maze environemnts

However, our work proposes a new hierarchical structure, and our policy representation is not only of723

great help for UED, but also has certain inspirations for hierarchical RL. Additionally, in the world724

model of UED (Genie [2]), the environment generator (teacher) focuses on creating video games, a725

domain that is compatible with our proposed application of upsampling the teacher agent’s experience726

using a diffusion model (since the state is image-based).727
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NeurIPS Paper Checklist728

1. Claims729

Question: Do the main claims made in the abstract and introduction accurately reflect the730

paper’s contributions and scope?731

Answer: [Yes]732

Justification: Yes, the main claims made in the abstract and introduction accurately reflect733

the paper’s contributions and scope.734

Guidelines:735

• The answer NA means that the abstract and introduction do not include the claims736

made in the paper.737

• The abstract and/or introduction should clearly state the claims made, including the738

contributions made in the paper and important assumptions and limitations. A No or739

NA answer to this question will not be perceived well by the reviewers.740

• The claims made should match theoretical and experimental results, and reflect how741

much the results can be expected to generalize to other settings.742

• It is fine to include aspirational goals as motivation as long as it is clear that these goals743

are not attained by the paper.744

2. Limitations745

Question: Does the paper discuss the limitations of the work performed by the authors?746

Answer: [Yes]747

Justification: The limitations of this work is discussed in Appendix F.1.748

Guidelines:749

• The answer NA means that the paper has no limitation while the answer No means that750

the paper has limitations, but those are not discussed in the paper.751

• The authors are encouraged to create a separate "Limitations" section in their paper.752

• The paper should point out any strong assumptions and how robust the results are to753

violations of these assumptions (e.g., independence assumptions, noiseless settings,754

model well-specification, asymptotic approximations only holding locally). The authors755

should reflect on how these assumptions might be violated in practice and what the756

implications would be.757

• The authors should reflect on the scope of the claims made, e.g., if the approach was758

only tested on a few datasets or with a few runs. In general, empirical results often759

depend on implicit assumptions, which should be articulated.760

• The authors should reflect on the factors that influence the performance of the approach.761

For example, a facial recognition algorithm may perform poorly when image resolution762

is low or images are taken in low lighting. Or a speech-to-text system might not be763

used reliably to provide closed captions for online lectures because it fails to handle764

technical jargon.765

• The authors should discuss the computational efficiency of the proposed algorithms766

and how they scale with dataset size.767

• If applicable, the authors should discuss possible limitations of their approach to768

address problems of privacy and fairness.769

• While the authors might fear that complete honesty about limitations might be used by770

reviewers as grounds for rejection, a worse outcome might be that reviewers discover771

limitations that aren’t acknowledged in the paper. The authors should use their best772

judgment and recognize that individual actions in favor of transparency play an impor-773

tant role in developing norms that preserve the integrity of the community. Reviewers774

will be specifically instructed to not penalize honesty concerning limitations.775

3. Theory Assumptions and Proofs776

Question: For each theoretical result, does the paper provide the full set of assumptions and777

a complete (and correct) proof?778

Answer: [Yes]779
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Justification: See the theoretical result in Appendix 1.780

Guidelines:781

• The answer NA means that the paper does not include theoretical results.782

• All the theorems, formulas, and proofs in the paper should be numbered and cross-783

referenced.784

• All assumptions should be clearly stated or referenced in the statement of any theorems.785

• The proofs can either appear in the main paper or the supplemental material, but if786

they appear in the supplemental material, the authors are encouraged to provide a short787

proof sketch to provide intuition.788

• Inversely, any informal proof provided in the core of the paper should be complemented789

by formal proofs provided in appendix or supplemental material.790

• Theorems and Lemmas that the proof relies upon should be properly referenced.791

4. Experimental Result Reproducibility792

Question: Does the paper fully disclose all the information needed to reproduce the main ex-793

perimental results of the paper to the extent that it affects the main claims and/or conclusions794

of the paper (regardless of whether the code and data are provided or not)?795

Answer: [Yes]796

Justification: We disclose all the information needed to reproduce the main experimental797

results of the paper to the extent that it affects the main claims and conclusions of the paper,798

detailed in Section 3 and Appendix D.1.799

Guidelines:800

• The answer NA means that the paper does not include experiments.801

• If the paper includes experiments, a No answer to this question will not be perceived802

well by the reviewers: Making the paper reproducible is important, regardless of803

whether the code and data are provided or not.804

• If the contribution is a dataset and/or model, the authors should describe the steps taken805

to make their results reproducible or verifiable.806

• Depending on the contribution, reproducibility can be accomplished in various ways.807

For example, if the contribution is a novel architecture, describing the architecture fully808

might suffice, or if the contribution is a specific model and empirical evaluation, it may809

be necessary to either make it possible for others to replicate the model with the same810

dataset, or provide access to the model. In general. releasing code and data is often811

one good way to accomplish this, but reproducibility can also be provided via detailed812

instructions for how to replicate the results, access to a hosted model (e.g., in the case813

of a large language model), releasing of a model checkpoint, or other means that are814

appropriate to the research performed.815

• While NeurIPS does not require releasing code, the conference does require all submis-816

sions to provide some reasonable avenue for reproducibility, which may depend on the817

nature of the contribution. For example818

(a) If the contribution is primarily a new algorithm, the paper should make it clear how819

to reproduce that algorithm.820

(b) If the contribution is primarily a new model architecture, the paper should describe821

the architecture clearly and fully.822

(c) If the contribution is a new model (e.g., a large language model), then there should823

either be a way to access this model for reproducing the results or a way to reproduce824

the model (e.g., with an open-source dataset or instructions for how to construct825

the dataset).826

(d) We recognize that reproducibility may be tricky in some cases, in which case827

authors are welcome to describe the particular way they provide for reproducibility.828

In the case of closed-source models, it may be that access to the model is limited in829

some way (e.g., to registered users), but it should be possible for other researchers830

to have some path to reproducing or verifying the results.831

5. Open access to data and code832
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tions to faithfully reproduce the main experimental results, as described in supplemental834

material?835

Answer: [Yes]836

Justification: The code is provided in the supplementary marterial.837
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• While we encourage the release of code and data, we understand that this might not be842

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not843
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benchmark).845

• The instructions should contain the exact command and environment needed to run to846

reproduce the results. See the NeurIPS code and data submission guidelines (https:847

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.848

• The authors should provide instructions on data access and preparation, including how849

to access the raw data, preprocessed data, intermediate data, and generated data, etc.850

• The authors should provide scripts to reproduce all experimental results for the new851

proposed method and baselines. If only a subset of experiments are reproducible, they852

should state which ones are omitted from the script and why.853

• At submission time, to preserve anonymity, the authors should release anonymized854

versions (if applicable).855

• Providing as much information as possible in supplemental material (appended to the856

paper) is recommended, but including URLs to data and code is permitted.857

6. Experimental Setting/Details858

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-859

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the860

results?861

Answer: [Yes]862
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• The answer NA means that the paper does not include experiments.866
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that is necessary to appreciate the results and make sense of them.868

• The full details can be provided either with the code, in appendix, or as supplemental869

material.870

7. Experiment Statistical Significance871
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Answer: [Yes]874
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run with given experimental conditions).884
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• The method for calculating the error bars should be explained (closed form formula,885
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error rates).895

• If error bars are reported in tables or plots, The authors should explain in the text how896

they were calculated and reference the corresponding figures or tables in the text.897

8. Experiments Compute Resources898

Question: For each experiment, does the paper provide sufficient information on the com-899

puter resources (type of compute workers, memory, time of execution) needed to reproduce900

the experiments?901

Answer: [Yes]902

Justification: The detailed configuration of the experiments is listed with required computa-903

tional resources.904
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• The answer NA means that the paper does not include experiments.906

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,907

or cloud provider, including relevant memory and storage.908

• The paper should provide the amount of compute required for each of the individual909

experimental runs as well as estimate the total compute.910

• The paper should disclose whether the full research project required more compute911

than the experiments reported in the paper (e.g., preliminary or failed experiments that912

didn’t make it into the paper).913

9. Code Of Ethics914

Question: Does the research conducted in the paper conform, in every respect, with the915

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?916

Answer: [Yes]917

Justification: We confirm that the research conducted in the paper conform, in every respect,918

with the NeurIPS Code of Ethics, and all the authors preserve anonymity.919
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.921

• If the authors answer No, they should explain the special circumstances that require a922

deviation from the Code of Ethics.923

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-924

eration due to laws or regulations in their jurisdiction).925

10. Broader Impacts926

Question: Does the paper discuss both potential positive societal impacts and negative927

societal impacts of the work performed?928

Answer: [Yes]929
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• The answer NA means that there is no societal impact of the work performed.932

• If the authors answer NA or No, they should explain why their work has no societal933
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• Examples of negative societal impacts include potential malicious or unintended uses935

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations936

(e.g., deployment of technologies that could make decisions that unfairly impact specific937

groups), privacy considerations, and security considerations.938

• The conference expects that many papers will be foundational research and not tied939

to particular applications, let alone deployments. However, if there is a direct path to940

any negative applications, the authors should point it out. For example, it is legitimate941

to point out that an improvement in the quality of generative models could be used to942

generate deepfakes for disinformation. On the other hand, it is not needed to point out943
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models that generate Deepfakes faster.945
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being used as intended and functioning correctly, harms that could arise when the947

technology is being used as intended but gives incorrect results, and harms following948
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11. Safeguards954
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release of data or models that have a high risk for misuse (e.g., pretrained language models,956

image generators, or scraped datasets)?957

Answer: [NA]958
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• We recognize that providing effective safeguards is challenging, and many papers do968

not require this, but we encourage authors to take this into account and make a best969

faith effort.970
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• We recognize that the procedures for this may vary significantly between institutions1037

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1038

guidelines for their institution.1039

• For initial submissions, do not include any information that would break anonymity (if1040

applicable), such as the institution conducting the review.1041
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