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ABSTRACT

Graph neural networks (GNNs) have shown significant success in modeling graph-
structured data. However, their performance often deteriorates when faced with a
change in the graph structure between training and test time, such as edge addition
or removal—a common scenario considering the dynamic nature of graphs. To ad-
dress this challenge, we propose FILLER (Framework for Integrating Layer-Level
Edge-shift Recovery), a post-processing method which enhances the robustness of
a GNN against edge sparsification while maintaining its adaptability to informa-
tive edge addition. Our key idea is to fill in the representation gap caused by edge
distribution shift by injecting the Edge-shift Recovery (ER) layer into each layer of
the GNN. Our ER layer is carefully designed to allow a GNN to maintain its high
performance in dynamic graph environments even without any additional training,
and its effectiveness is shown both theoretically and empirically. Our experiments
on ten datasets for node classification and five GNN architectures demonstrate that
FILLER is broadly applicable across diverse models and scenarios.

1 INTRODUCTION

Graph-structured data are commonly observed across various fields and applications. Since graphs
capture crucial information about the relationships between entities, graph neural networks (GNNs)
have proven particularly effective in semi-supervised learning, where observed data are insufficient
to fully capture the relationship between features X and labels Y (Kipf & Welling, 2016; Hamilton
et al., 2017; Veličković et al., 2017; Gasteiger et al., 2019; Brody et al., 2022). In these scenarios,
the graph structure serves as a key manifold of high-dimensional features, significantly improving
the estimation of the conditional distribution p(Y |X) even with limited observations.

However, due to the dynamic nature of graphs, their structural information can change after training
time, with edges being removed, sparsified, or new informative edges being added (Hu et al., 2020;
Kazemi et al., 2020; Fu & He, 2022). Such changes can occur naturally in dynamic environments,
but can also be introduced artificially for various purposes. For example, graphs are often sparsified
to reduce the receptive field and enable faster inference (Ying et al., 2018; Chen et al., 2017; 2018).
Conversely, edges are often added to give additional information to GNNs, enhancing performance
(Chen et al., 2020; Alon & Yahav, 2020). As a consequence, it is common for a graph’s connectivity
to differ between training and testing time, a phenomenon referred to as edge distribution shift.

This shift is particularly problematic when edges are sparsified during inference, since it leads to a
significant performance drop for most GNN models. The reduction in neighbor information limits
the effectiveness of message propagation, which heavily depends on the graph’s structure. Previous
works (Hu et al., 2021; Yoo et al., 2019; Zhang et al., 2021b; Tian et al., 2022; Yang et al., 2024)
have tackled this problem by using the graph structure only at training time and then discarding it
at inference. Some approaches combine a multi-layer perceptron (MLP) with message propagation
(Yoo et al., 2019), allowing the MLP to learn from the graph. Others distill the knowledge from a
trained GNN into an MLP for similar purposes (Zhang et al., 2021b; Tian et al., 2022; Yang et al.,
2024). These methods have demonstrated that structure-aware MLPs can match or even outperform
GNNs, particularly when the test graph is sparsified due to edge distribution shift.

However, we argue that discarding edge information entirely during inference is not a fundamental
solution for building models robust to edge distribution shift. Edges are not only removed but can
also be added, introducing new, informative signals in dynamic graph environments. An optimally
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Figure 1: Performance change of SAGE with edge distribution shift: (left) gradual edge removal
and (right) gradual addition of informative edges (i.e., edge restoration). The red line represents the
base model, while progressively darker lines indicate the iterative application of our post-processing
method, FILLER; it consistently improves the base performance on 7 different datasets.

robust model should be capable of leveraging these additional signals during test time to enhance its
performance. None of the existing approaches fully address this crucial aspect of edge robustness:
maintaining adaptability to newly added edges while ensuring robustness against edge removal.

In this work, we introduce FILLER (Framework for Integrating Layer-Level Edge-shift Recovery),
a general post-processing method that can enhance any trained GNN to be robust against edge distri-
bution shift. The key idea of FILLER is to inject an Edge-shift Recovery (ER) layer into each GNN
layer, addressing the representation gap caused by the edge distribution shift, thereby restoring the
model’s original performance on test-time graphs. FILLER updates the ER layer through iterations,
gradually improving the edge robustness of GNNs as illustrated in Fig 1. To the best of our knowl-
edge, FILLER is the first approach that enhances the robustness of a trained GNN without requiring
any additional training, while not discarding the graph structure given at inference.

We run extensive experiments on ten node classification benchmarks and demonstrate that FILLER
consistently improves the robustness of GNNs across various types of datasets. Additionally, we
apply FILLER to five well-known GNN architectures, showing its versatility and ability to be effec-
tively integrated into existing GNN models. Our code is provided in the supplementary material.

2 PRELIMINARIES

Notations. Let G = (V,E) be an undirected graph, where V is the set of nodes and E is the set of
edges. We denote the adjacency matrix of the graph by A ∈ {0, 1}|V |×|V |, where Aij = 1 if there is
an edge between nodes i and j, and Aij = 0 otherwise. The feature matrix of the nodes is denoted
by X ∈ R|V |×d0 , where d0 is the dimensionality of node features.

Graph Neural Networks. Graph neural networks (GNNs) consist of multiple layers, where each
layer performs two key operations: aggregation (AGG) and update (UPDATE) (Gilmer et al., 2017;
Hu et al., 2019). The AGG operation gathers information from neighboring nodes, while the UP-
DATE operation combines this aggregated information with the node’s previous representation. We
denote the node representations after the l-th layer by H(l) ∈ R|V |×dl , where dl is its dimensional-
ity. We also set H(0) = X . Then, the l-th GNN layer is formally presented as

H
(l)
N = AGG(l)(H(l−1),A), H(l) = UPDATE(l)(H

(l)
N ,H(l−1)).

Based on these AGG and UPDATE operations, we define a GNN f with L layers as a function of
X and A parameterized with its layers: H(L) = f(X,A; {AGG(l),UPDATE(l)}Ll=1).

3 PROPOSED METHOD

We propose FILLER, a general post-processing method that can enhance the robustness of a trained
GNN without requiring additional training. FILLER directly updates the GNN’s message-passing
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Figure 2: (left) FILLER enhances a trained GNN as a general post-processing method, (middle) by
inserting our carefully-designed Edge-shift Recovery (ER) layer to each GNN layer, (right) which
compensates for the altered signals that result from edge distribution shift at test time.

architecture, rather than creating a new model based on its learned knowledge, resulting in two key
advantages: (a) our approach is broadly applicable to all GNNs that consist of AGG and UPDATE
operations, and (b) the resulting model preserves its original characteristics when the graph remains
intact while improving its performance when new, informative edges are added. A detailed algorithm
that describes the overall process of FILLER is provided in Appendix A.

3.1 OVERVIEW OF FILLER

Our key idea is to modify the GNN architecture in a layer-wise manner by introducing an Edge-shift
Recovery (ER) layer as in Fig 2. The ER layer aims to recover for the perturbed edge connections
that the model may encounter during inference. By addressing each layer individually, we can more
effectively mitigate the impact of edge distribution shift, whose effect may vary across different lay-
ers. Specifically, our post-processing focuses on the AGG operation at each layer, since UPDATE
is independent of the adjacency matrix. We formulate the layer-wise post-processing as follows:

AGG
(l)
t+1(H

(l−1)
t ,A) = AGG

(l)
t (H

(l−1)
t ,A) + k · g(H(l−1)

t ), (1)

where t is the number of post-processing iterations applied to the model and k > 0 is the step size
which controls the magnitude of each update. Based on this framework, we aim to find a good ER
layer g that can effectively mitigate the performance degradation caused by edge shift.

GAP. To derive the objective of ER, we first define edge distribution shift as a test-time change of
the adjacency matrix A, which generates a perturbed adjacency matrix Ã. Given Ã at test time, the
l-th GNN layer produces perturbed node representations as follows:

H̃
(l)
N = AGG(l)(H(l−1), Ã), H̃(l) = UPDATE(l)(H̃

(l)
N ,H(l−1)).

To address the performance degradation, at each layer l, the ER layer g aims to restore the perturbed
node representations to their original states given the output of layer l − 1. Thus, g is defined as a
solution to the following problem, which we call GNN Aggregation Perturbation (GAP):

g(H(l−1)) = argming′∥(H(l)
N − H̃

(l)
N )− g′(H(l−1))∥F. (2)

By focusing on the aggregated node representations before the UPDATE operation is applied, we
leverage the fact that most activation functions used in GNNs are Lipschitz-continuous. This prop-
erty ensures the difference in post-UPDATE representations is proportionally bounded by the differ-
ence in pre-UPDATE representations. Proofs of Lipschitz continuity for commonly used activation
functions—ReLU, Sigmoid, and GELU—are provided in Appendix B.

Essential Linearity of ER. While the function g could take any form, it is essential for our method
that g is a linear transformation: g(H(l−1)) = H(l−1)W (l), for two key reasons. First, the transfor-
mation can be computed efficiently in parallel with the original AGG operation as shown in Fig. 2.
As g takes less time to calculate than AGG does, which already includes a linear transformation in
most GNN architectures, the addition of g does not increase the inference time. Second, as we apply
our post-processing iteratively, the linearity of g enables us to consolidate multiple linear transfor-
mations across iterations into a single weight matrix. This prevents the model size from growing as
the number of post-processing iterations increases, ensuring full scalability.
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3.2 BASIC VERSION OF EDGE-SHIFT RECOVERY

Surrogate Problem. One challenge to solve GAP as in Eq. 2 is that H̃(l)
N is not observable during

training time since edge distribution shift happens at test time. Thus, we propose virtual perturbation
to simulate potential changes in the graph structure before testing. Assuming a random perturbation
function ϕ which generalizes both edge removal and addition, we define virtual perturbation as the
expected value of the perturbed node representations which can be calculated empirically:

Eϕ[H̃
(l)
N ] =

1

N

∑N
i=1AGG(l)(H(l−1), ϕ(A)), (3)

where N is the number of trials to estimate the expectation.

ER-Basic Layer. With virtual perturbation, we propose the basic version of our Edge-shift Recov-
ery (ER) layer as a solution to the solvable surrogate problem of GAP (GAP-surrogate) as follows:

gB(H
(l−1)) = argming′∥(H(l)

N − Eϕ[H̃
(l)
N ])− g′(H(l−1))∥F. (4)

The choice of ϕ is a hyperparameter, with various algorithmic options available, including all types
of graph structural augmentation (You et al., 2020; Zhang et al., 2021a; Li et al., 2023), sparsification
(Rong et al., 2019; Chen et al., 2021), and partitioning (Chiang et al., 2019). In our framework, we
make the simplest choice of ϕ, setting ϕ(A) = O to simulate the most extreme case of edge removal
which leaves no edges at test time. This approach is particularly efficient for virtual perturbation, as
it eliminates the need for N repetitive computations to estimate the expectation.

Since gB is a linear transformation, its weight matrix can be directly computed as follows:

W (l) = H(l−1)+(H
(l)
N − E[H̃(l)

N ]), (5)

where + denotes the pseudoinverse of a matrix, which can be computed effectively through singular
value decomposition (SVD). This method is more stable than training the weight matrix from scratch
with an objective. Additional experiments comparing both methods are provided in Appendix C.

The time complexity of pseudoinverse is dominated by SVD, which is O(mn ·min(m,n)) given a
matrix of size m× n (Vasudevan & Ramakrishna, 2017). In our case, the target of pseudoinverse is
H(l−1) ∈ R|V |×dl−1 , and it simplifies the complexity into O(|V |d2l−1) based on the safe assumption
that dl−1 ≤ |V |. This is the same complexity as that of a linear transformation if dl−1 = dl, making
our approach highly scalable to large graphs while not requiring backpropagation for gradient-based
updates. Actual time consumption for pseudoinverse computation is provided in Appendix C.

3.3 ADVANCED VERSION OF EDGE-SHIFT RECOVERY

Bridging GAP-surrogate to GAP. As described in Eq. 2, an ideal ER should perform well across
all types of perturbations. However, since gB is the solution to the GAP-surrogate problem, directly
injecting gB into each GNN layer only guarantees improved performance when the test-time graph
matches the virtual perturbation used during post-processing. We cannot be certain whether gB will
result in a beneficial representation shift when the test graph differs from the virtually perturbed one.
This is particularly important for practical use, as the processed model should maintain its original
performance when the graph remains unchanged or undergoes minimal alteration.

To address this problem, we propose to generalize gB into gD = h(gB(H
(l−1)),A) by introducing

a wrapper function h which takes the adjacency matrix A as an additional input at test time. Its role
is to adapt gB to a test graph unseen at both training and post-processing time, ensuring robustness
for various perturbations. Let ϵ(l)(t1, t2,A1,A2) = AGG

(l)
t1 (H

(l−1),A1)−AGG
(l)
t2 (H

(l−1),A2)
be the difference between the node representations at the t1-th iteration with A1 and those at the
t2-th iteration with A2. We introduce three conditions h should satisfy as follows:

C1. Recovery. ER should fully compensate when the graph is perturbed equivalently to the virtual
perturbation, which we set to O in our framework: h(H(l−1)W (l),O) = H(l−1)W (l).

C2. Stability. After each post-processing iteration, the new AGG function should be less deviated
from the original AGG when there is no edge distribution shift compared to when such a shift
occurs: ∥ϵ(l)(t+ 1, t,A,A)∥F < ∥ϵ(l)(t+ 1, t, Ã, Ã)∥F for all t and l.
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Figure 3: Illustration for a change in node representations before and after injecting ER. The right
plots show the average cosine similarity between two representation matrices as the post-processing
iterates, comparing ER-Basic (gray) and ER-Advanced (navy). ER-Advanced preserves the similar-
ity in 1⃝ while increasing it in 2⃝, demonstrating that is achieves C2 and C3 respectively.

C3. Robustness. The gap between node representations with and without perturbation, for any Ã,
decreases monotonically and eventually converges to zero as the number t of post-processing
iterations increases: δ(l)t+1 < δ

(l)
t and δ

(l)
∞ = 0 for all t and l where δ

(l)
t = ∥ϵ(l)(t, t,A, Ã)∥F.

In this way, the GNN is optimized not only for the specific virtual perturbation, but also for various
unseen perturbations including the original graph itself. While C1 and C2 are relatively straightfor-
ward to design with a satisfying function, C3 is challenging to implement and even harder to prove.
Therefore, we propose a more intuitive condition that can ensure C3 (and even C2) as Lemma 3.1.
Lemma 3.1. The following process-wise condition guarantees that both C2 and C3 hold:

∀l, ∀t, ∥ϵ(l)(t+ 1, t, Ã, Ã)∥F
∥ϵ(l)(t+ 1, t,A,A)∥F

≥ 1 + α,

where Ã is a matrix obtained by masking some of the elements of A to zero, α > 0 is any fixed
constant, and ∥ · ∥F represents the Frobenius norm.

Proof. The proof is in Appendix D.

ER-Advanced Layer. We propose hD, the simplest and intuitive form of h that satisfies all three
conditions through multiplying a proper scaling coefficient to the transformation as follows:

hD(gB(H
(l−1)),A) =

(
|V |∑|V |

i=1

∑|V |
j=1Âi,j

)n

·H(l−1)W (l),

where Â = A+I is the adjacency matrix with self-loops, and n ≥ 0 is a hyperparameter which we
set to 1 in all experiments. hD satisfies all three conditions above as stated in Theorem 3.2. Fig. 3
gives empirical evidence on how ER-Advanced achieves the proposed conditions. ER-Advanced
maintains similarity in 1⃝ and gradually increases similarity in 2⃝, demonstrating its stability and
robustness, respectively. In contrast, ER-Basic begins to fail as t increases.
Theorem 3.2. hD satisfies all three conditions C1, C2, and C3 above.

Proof. The proof is in Appendix D.

4 RELATED WORKS

Graph Distribution Shift. Recent works have explored on addressing distribution shifts in graph
learning, which occur when graph structures, node features, or labels change between training and
inference (Wu et al., 2024). Graph domain adaptation aims to transfer knowledge from a training
domain to a test domain (Xiao et al., 2024; Dai et al., 2022), while graph out-of-distribution learning
focuses on generalizing models to unseen test graphs (Li et al., 2022). Graph continual learning ad-
dresses evolving graphs, where models aims to adapt to temporal changes while retaining previously
learned information (Febrinanto et al., 2023). While these approaches typically focus on distribution
shifts in specific scenarios, our work takes a different approach. In this work, we solve the problem
focusing on edge distribution shift, where the edges can be removed or even added at test time.
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Using MLPs for Graph Tasks. Recent works have considered multi-layer perceptrons (MLPs) as
a scalable and robust alternative to graph neural networks (GNNs) for graph-based tasks. Unlike
GNNs, MLPs do not rely on neighborhood information during inference, which makes them inher-
ently robust to edge removal. BPN (Yoo et al., 2019) trains a structure-aware MLP by introducing
a novel loss function that minimizes the difference between prior distributions and their post-belief
propagation values. Graph-MLP (Hu et al., 2021) employs a contrastive loss to implicitly utilize the
graph adjacency information during training, achieving effective performance even without explicit
neighborhood information at test time. Other methods including NOSMOG (Tian et al., 2022) and
GLNN (Zhang et al., 2021b) utilize knowledge distillation from GNNs to MLPs to transfer struc-
tural knowledge, achieving performance competitive with the teacher GNNs. VQGraph (Yang et al.,
2024) extends this approach by learning discrete representations of local graph structures, enhancing
MLP performance across various datasets. However, as MLPs ignore the neighborhood information
at test graphs, they are unable to leverage new, informative edges given at test time; they lose edge
adaptability, which is the core aspect of GNNs. In this work, we design a post-processing technique
that can improve the robustness of GNNs while preserving their edge-adaptability.

5 EXPERIMENTS

Datasets and Evaluation. We measure node classification accuracy for seven small-scale datasets
(Cora, Citeseer, Pubmed, Computers, Photo, CS, and Physics (Shchur et al., 2018)) and three large-
scale datasets (Flickr (Zeng et al., 2019), Ogbn-arxiv (Hu et al., 2020), and Reddit (Hamilton et al.,
2017)) in our experiments. For the small-scale datasets, we follow the data split configurations from
previous work (Shchur et al., 2018) and repeat each scenario 10 times with random data splits and
parameter initialization. For the large-scale datasets, we employ batch training with neighborhood
sampling for scalability. We use the fixed public data splits due to the high variance in these datasets
and run each experiment 5 times with random initialization.

GNN Architectures. We conduct experiments using five GNN architectures as base models: SAGE
(Hamilton et al., 2017), GCN (Kipf & Welling, 2016), SGC (Wu et al., 2019), GAT (Veličković et al.,
2017), and GIN (Xu et al., 2018), comparing their accuracy before and after applying FILLER. It is
notable that we exclude GIN (Xu et al., 2018) from the large-scale experiments as it is not designed
to work with neighbor sampling; GIN is originally designed to solve graph-level tasks such as graph
classification. See Appendix E for how the AGG operation is defined in these GNN models.

Hyperparameters. For the small-scale datasets, we adopt GNNs with 2 layers and a hidden size
of 64 (Shchur et al., 2018). For the large-scale datasets, we increase the model size to 3 layers with a
hidden size of 256, which is a common practice for improved performance (Zeng et al., 2021). Other
hyperparameters are kept as consistent as possible across the different architectures, as our primary
objective is to evaluate performance gains from the post-processing rather than optimize individual
models. The only exception is GIN (Xu et al., 2018), which requires different settings to train due
to its unique design, as is not specifically designed for node classification tasks. Full details of the
hyperparameters used in our experiments can be found in Appendix F.

5.1 MAIN EVALUATION

Our main experiments are designed to answer to the following three questions. We report accuracy
on all GNN architectures for Q1, but focus on SAGE for Q2 and Q3 due to the lack of space. Refer
to Appendix G for the full experimental results on different GNN architectures. Note that our results
are consistent across the five different GNN architectures.

Q1. Does FILLER preserve the original accuracy of GNNs when the graph is intact?
Q2. Does FILLER improve the robustness of GNNs against edge removal?
Q3. Does FILLER maintain the adaptability of GNNs to the addition of new edges?

Q1. Preserving Original Accuracy. We first show that FILLER preserves or often improves the
accuracy of GNNs on the original graph when there is no edge distribution shift. This is particularly
important for using FILLER in practice as a general post-processing method. In Table 1, we compare
post-processed models with their original models when there is no edge distribution shift. We run
paired t-tests for thorough comparison, and FILLER preserves the original accuracy in 42 out of 47
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cases, demonstrating its practical stability. Additionally, in 12 cases, FILLER not only preserves but
also improves the original performance at the 1% level. Later in ablation studies, we show that such
a performance preservation is possible due to our well-designed ER-Advanced layer.

Table 1: Accuracy change after applying FILLER when there is no edge distribution shift. The bold
indicates statistically significant at the 5% level (p < 0.05), while the color highlights the 1% level
(p < 0.01), with red for improvements and blue for decrements.

Cora Citeser Pubemd Computers Photo CS Physics Flickr Ogbn-arxiv Reddit

SAGE 80.8± 2.0 70.7± 2.4 74.4± 2.4 81.4± 3.4 90.5± 2.7 90.8± 0.5 92.1± 1.3 53.1± 0.2 71.2± 0.2 96.3± 0.0
+FILLER 81.0± 2.0 70.8± 2.2 74.7± 2.2 81.4± 3.3 90.5± 2.7 90.9± 0.4 92.2± 1.3 52.9± 0.2 71.1± 0.2 96.3± 0.0

∆ ↑ 0.2% ↑ 0.2% ↑ 0.4% ↑ 0.1% ↑ 0.0% ↑ 0.1% ↑ 0.1% ↓ 0.3% ↓ 0.2% ↓ 0.0%
p-value 0.0975 0.1519 0.0432 0.0655 0.3880 0.0053 0.0058 0.0002 0.0014 0.7780

GCN 82.4± 1.3 71.0± 1.9 77.5± 1.6 83.5± 2.3 91.3± 1.5 91.0± 0.4 92.7± 0.9 52.7± 0.2 71.3± 0.1 94.0± 0.0
+FILLER 82.8± 1.4 71.5± 1.9 77.7± 1.6 83.6± 2.3 91.3± 1.5 91.1± 0.3 92.8± 0.9 52.0± 0.2 71.2± 0.1 94.0± 0.0

∆ ↑ 0.4% ↑ 0.7% ↑ 0.2% ↑ 0.0% ↓ 0.0% ↑ 0.0% ↑ 0.1% ↓ 1.3% ↓ 0.1% ↓ 0.0%
p-value 0.0280 0.0012 0.2618 0.4586 0.8504 0.0638 0.0003 0.0033 0.1150 0.0205

SGC 82.0± 1.7 69.8± 1.8 75.8± 2.3 83.3± 1.5 91.0± 1.8 90.9± 0.6 92.7± 1.3 51.5± 0.1 69.1± 0.1 94.2± 0.0
+FILLER 82.3± 1.5 70.1± 1.9 75.9± 2.4 83.3± 1.5 91.0± 1.8 91.0± 0.6 92.8± 1.3 51.0± 0.1 69.1± 0.1 94.1± 0.0

∆ ↑ 0.4% ↑ 0.4% ↑ 0.2% ↑ 0.0% ↑ 0.0% ↑ 0.1% ↑ 0.1% ↓ 0.9% ↓ 0.1% ↓ 0.0%
p-value 0.0077 0.0320 0.1879 0.3321 0.4090 0.0035 0.0011 0.0012 0.0391 0.1708

GAT 82.0± 1.6 70.9± 1.5 77.4± 1.8 84.3± 2.1 91.5± 1.3 89.5± 0.4 91.6± 1.6 54.1± 0.2 71.5± 0.2 94.0± 0.1
+FILLER 82.3± 1.5 71.0± 1.5 78.0± 1.7 84.4± 2.0 91.5± 1.2 89.5± 0.4 91.7± 1.5 53.5± 0.1 71.4± 0.1 94.0± 0.1

∆ ↑ 0.3% ↑ 0.1% ↑ 0.7% ↑ 0.1% ↓ 0.0% ↓ 0.0% ↑ 0.1% ↓ 1.3% ↓ 0.2% ↓ 0.0%
p-value 0.0914 0.6248 0.0058 0.2167 0.7192 0.7028 0.0038 0.0008 0.0350 0.2635

GIN 79.5± 2.3 67.7± 2.7 75.3± 3.2 76.9± 3.1 87.2± 2.1 85.3± 1.1 89.9± 1.5 - - -
+FILLER 79.5± 2.0 67.4± 2.7 75.8± 3.3 77.0± 3.1 87.5± 2.1 85.8± 1.1 90.2± 1.4 - - -

∆ ↓ 0.0% ↓ 0.4% ↑ 0.7% ↑ 0.1% ↑ 0.3% ↑ 0.7% ↑ 0.3% - - -
p-value 0.9181 0.3165 0.1691 0.0300 0.0000 0.0000 0.0001 - - -

Q2. Robustness Against Edge Removal. To evaluate how well FILLER improves the robustness
of GNNs against edge removal, we run experiments by gradually removing edges from the original
graphs. We train each GNN on the original graph with all edges, and drop 50%, 75%, and 100% of
the edges randomly at test time. FILLER is applied right after the training of GNNs.

As shown in Table 2, FILLER significantly enhances the performance of SAGE on sparsified graphs
across all datasets. On average across all datasets, FILLER improves performance by 0.70%, 2.66%,
and 21.5% when 50%, 75%, and 100% of the edges are removed, respectively. Although we report
detailed results only for SAGE to save space, FILLER shows consistent improvement over the base
models across various types of GNN architectures as presented in Appendix G.

Table 2: Accuracy after applying FILLER with 50%, 75%, and 100% removal of edges. The num-
bers are in bold and colored in the same manner as in Table 1. FILLER consistently and significantly
improves the accuracy of the base model, showing its effectiveness for improving robustness.

-50% -75% -100%
Dataset SAGE + FILLER ∆ SAGE + FILLER ∆ SAGE + FILLER ∆

Cora 74.7± 2.6 76.9± 2.0 ↑ 2.9% 68.7± 3.5 74.1± 2.3 ↑ 7.8% 57.9± 4.9 74.6± 2.1 ↑ 28.9%
Citeseer 66.5± 2.4 68.5± 2.0 ↑ 3.0% 62.7± 2.7 68.5± 2.2 ↑ 9.3% 56.4± 4.5 69.4± 2.5 ↑ 23.1%
Pubmed 71.9± 4.0 72.2± 4.2 ↑ 0.4% 69.5± 5.5 71.7± 5.6 ↑ 3.2% 65.4± 8.8 73.6± 3.9 ↑ 12.5%
Computers 79.6± 3.3 79.8± 3.3 ↑ 0.2% 76.3± 3.6 77.2± 3.2 ↑ 1.2% 43.5± 10.1 69.2± 4.8 ↑ 58.9%
Photo 89.4± 2.8 89.4± 2.7 ↑ 0.0% 87.3± 2.8 87.8± 2.8 ↑ 0.6% 67.8± 7.5 85.4± 2.4 ↑ 25.9%
CS 88.8± 0.5 89.4± 0.5 ↑ 0.6% 86.5± 0.8 88.2± 0.5 ↑ 2.0% 82.8± 2.4 90.6± 0.5 ↑ 9.3%
Physics 91.0± 1.5 91.3± 1.4 ↑ 0.3% 89.0± 2.0 90.1± 1.6 ↑ 1.2% 80.6± 5.7 90.4± 1.6 ↑ 12.1%
Flickr 50.2± 0.2 50.1± 0.2 ↓ 0.4% 46.2± 0.6 46.4± 0.5 ↑ 0.5% 41.9± 0.5 46.2± 0.3 ↑ 10.2%
Ogbn-arxiv 67.2± 0.2 67.1± 0.2 ↓ 0.1% 61.7± 0.3 62.3± 0.1 ↑ 0.9% 44.3± 1.1 49.8± 1.0 ↑ 12.6%
Reddit 95.7± 0.0 95.7± 0.0 ↑ 0.0% 94.9± 0.1 94.9± 0.1 ↑ 0.0% 45.9± 1.1 55.9± 1.2 ↑ 21.9%

Q3. Adaptability to Edge Addition. Edge distribution shift is not limited to edge removal; edges
can also be added to the test graph. However, simulating edge addition through a random function,
as done with edge removal, introduces noisy edges that do not contribute meaningful information to
solving the task. Therefore, we propose an edge restoration scenario, where a GNN is trained on a
graph with a predefined fraction of edges removed and tested as these removed edges are gradually
restored. In this way, the added edges are informative since they come from the original graph. The
goal of this experiment is to evaluate the model’s adaptability to new, informative edges.

We present the results in Table 3, where GNNs are trained on 60% of the edges and tested with 0%,
50%, and 100% of the excluded edges restored. The post-processed models improve their accuracy
as the base models do as more informative edges are restored, demonstrating that FILLER preserves
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the edge-adaptability of GNNs. Specifically, the post-processed SAGE do not show accuracy drop
at the 1% significance level in all 30 cases, while showing an improvement in 9 cases.

Table 3: Accuracy change after applying FILLER with 0%, 50%, and 100% restoration of missing
edges. The numbers are in bold and colored in the same way as in Table 1. FILLER does not lose
the adaptability of GNNs to informative edges even after improving their robustness.

0% +50% +100%
Dataset SAGE + FILLER ∆ SAGE + FILLER ∆ SAGE + FILLER ∆

Cora 74.2± 2.3 75.1± 2.0 ↑ 1.3% 77.0± 2.0 77.6± 2.1 ↑ 0.8% 79.1± 1.9 79.4± 2.0 ↑ 0.4%
Citeseer 66.0± 3.1 66.9± 3.3 ↑ 1.4% 68.6± 2.8 68.6± 2.9 ↑ 0.0% 69.6± 2.3 70.0± 2.3 ↑ 0.7%
Pubmed 72.6± 2.6 72.8± 3.0 ↑ 0.3% 73.6± 2.8 73.4± 2.8 ↓ 0.3% 74.6± 2.7 74.1± 2.9 ↓ 0.6%
Computers 78.4± 2.9 78.5± 2.9 ↑ 0.1% 79.1± 3.1 79.1± 3.0 ↑ 0.1% 79.6± 3.1 79.6± 3.1 ↑ 0.0%
Photo 90.3± 2.3 90.4± 2.3 ↑ 0.1% 90.8± 2.2 90.9± 2.2 ↑ 0.1% 91.1± 2.1 91.1± 2.1 ↑ 0.0%
CS 89.2± 0.4 89.7± 0.4 ↑ 0.5% 90.4± 0.5 90.5± 0.5 ↑ 0.1% 91.1± 0.5 91.2± 0.5 ↑ 0.1%
Physics 91.2± 0.8 91.3± 0.9 ↑ 0.2% 91.7± 0.9 91.8± 1.0 ↑ 0.1% 92.1± 1.0 92.1± 1.0 ↑ 0.1%
Flickr 50.9± 0.2 50.9± 0.1 ↓ 0.0% 51.6± 0.2 51.5± 0.2 ↓ 0.3% 52.0± 0.3 51.9± 0.3 ↓ 0.1%
Ogbn-arxiv 69.0± 0.0 68.9± 0.1 ↓ 0.1% 70.2± 0.1 70.1± 0.0 ↓ 0.2% 71.0± 0.2 71.0± 0.1 ↓ 0.1%
Reddit 95.9± 0.1 95.9± 0.1 ↓ 0.0% 96.1± 0.0 96.1± 0.0 ↑ 0.0% 96.3± 0.0 96.3± 0.0 ↓ 0.0%

5.2 ABLATION STUDIES

Our ablation studies consist of various experiments to provide a better understanding of FILLER for
the following perspectives, going beyond typical hyperparameter studies:

Q4. How much better is ER-Advanced compared to ER-Basic?

Q5. How does the random perturbation function ϕ(A) affect FILLER?

Q6. Does FILLER work across different GNN hyperparameters?

Q7. Is it better to create ER layers through pseudoinverse than gradient-based training?

Q4. Effectiveness of ER-Advanced. In Fig. 4, we evaluate the effectiveness of the ER-Advanced
layer compared to ER-Basic through experiments. As anticipated, ER-Basic struggles to maintain
performance on the original graph (related to C2) and shows inconsistent results across varying lev-
els of edge removal (related to C3), while it performs well when the edge removal ratio is 1 (related
to C1) since this case aligns with the virtual perturbation. In contrast, ER-Advanced demonstrates
consistent, robust performance improvements, validating the effectiveness of its design.

Figure 4: Comparison between ER-Advanced and ER-Basic. ER-Advanced (bottom) consistently
improves performance on various perturbed test graphs, while ER-Basic (top) does not.

Q5. Non-deterministic Virtual Perturbation. In our experiments, we used full edge removal as
the simplest deterministic perturbation function ϕ for virtual perturbation, though it can be replaced
with other alternatives. Here we test the random edge removal function as ϕp(A), which removes a
fraction p of edges from the graph non-deterministically. We run ϕ for 10 times at each iteration to
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compute the expected value as shown in Eq. 3. Then, to meet our first condition (C1) of the wrapper
function in ER-Advanced, we define a new wrapper function hR as follows:

hR(gB(H
(l−1)),A) =

(
2(1− p) · |Etrain|+ |V |∑|V |

i=1

∑|V |
j=1Âi,j

)n

·H(l−1)W (l),

where p is set to 0.25, 0.5, 0.75, or 1.0, and |Etrain| is the number of edges in the training graph.
We skip to prove how hR satisfies all three conditions C1, C2, and C3 since it is straightforward.

As shown in Table 4, the post-processed models consistently improve the base models regardless of
which perturbation function is used. Nevertheless, our simplest version ϕ(A) = O works generally
well, while being the fastest due to its deterministic nature. This is possibly because the model can be
post-processed expecting the most extreme edge perturbation in a stable way. Thus, we recommend
using the deterministic perturbation function as the default option for practical use.

Table 4: Accuracy change of SAGE after applying FILLER with random perturbation functions ϕp.
FILLER improves the base model in all choices, while our deterministic version works best.

Cora Citeseer Pubmed

−50% −75% −100% −50% −75% −100% −50% −75% −100%
Base 74.7± 2.6 68.7± 3.5 57.9± 4.9 66.5± 2.4 62.7± 2.7 56.4± 4.5 71.9± 4.0 69.5± 5.5 65.4± 8.8

ϕ0.25 75.2± 1.9 69.8± 3.0 61.9± 3.9 67.3± 1.9 65.2± 2.5 61.5± 3.4 72.0± 4.1 71.1± 5.3 70.9± 7.1
ϕ0.5 76.0± 2.0 71.7± 2.8 66.9± 2.8 68.0± 1.8 66.6± 2.7 64.5± 3.4 72.1± 4.2 72.1± 5.5 73.8± 3.3
ϕ0.75 76.7± 1.9 73.5± 2.3 72.0± 1.9 68.5± 1.9 67.8± 2.4 67.5± 2.4 72.3± 4.2 72.2± 5.4 74.2± 3.1

ϕ1.0 (ours) 76.9± 2.0 74.1± 2.3 74.6± 2.1 68.5± 2.0 68.5± 2.2 69.4± 2.5 72.2± 4.2 71.7± 5.6 73.6± 3.9

Q6. GNN Architectural Hyperparameters. As a general post-processing framework, we expect
FILLER to succeed not only for various GNN models, but also for various choices of their architec-
tural hyperparameters. In Figure 5, we run experiments by varying key hyperparameters of SAGE,
including the number of layers, hidden dimension sizes, and activation functions. FILLER enhances
the performance consistently across all tested configurations, even when the base model shows poor
accuracy as it has too many layers or too small hidden size. This indicates that FILLER is broadly
applicable to various GNN models regardless of their hyperparameter configurations.

Figure 5: The effectiveness of FILLER for edge removal at Cora with various architectural hyper-
parameters of SAGE. The dashed lines represent the base models, while the solid lines represent the
post-processed models. FILLER consistently improves the base accuracy in all cases.

Q7. Advantage of Psuedoinverse. We compare our pseudoinverse-based way to get W (l) in ER
layers with the gradient-based training. Detailed results are in Appendix C. We find that our method
is more effective than the gradient-based approach, while being faster especially in large graphs.

6 CONCLUSION

In this work, we introduce FILLER (Framework for Integrating Layer-Level Edge-shift Recovery), a
general post-processing method for enhancing the robustness and adaptability of GNN models in the
face of edge distribution shift during inference. By inserting the Edge-shift Recovery (ER) module
into each GNN layer, FILLER effectively mitigates performance degradation while capitalizing on
newly introduced, informative edges. The effectiveness of our approach is theoretically justified in
terms of key characteristics–recovery, stability, and robustness, and empirically demonstrated on ten
node classification benchmarks and five different GNN architectures.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Man Wu, Xin Zheng, Qin Zhang, Xiao Shen, Xiong Luo, Xingquan Zhu, and Shirui Pan.
Graph learning under distribution shifts: A comprehensive survey on domain adaptation, out-
of-distribution, and continual learning. arXiv preprint arXiv:2402.16374, 2024.

Zhiqing Xiao, Haobo Wang, Ying Jin, Lei Feng, Gang Chen, Fei Huang, and Junbo Zhao. Spa:
a graph spectral alignment perspective for domain adaptation. Advances in Neural Information
Processing Systems, 36, 2024.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Ling Yang, Ye Tian, Minkai Xu, Zhongyi Liu, Shenda Hong, Wei Qu, Wentao Zhang, CUI Bin,
Muhan Zhang, and Jure Leskovec. Vqgraph: Rethinking graph representation space for bridging
gnns and mlps. In The Twelfth International Conference on Learning Representations, 2024.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974–
983, 2018.

Jaemin Yoo, Hyunsik Jeon, and U Kang. Belief propagation network for hard inductive semi-
supervised learning. In IJCAI, pp. 4178–4184, 2019.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in neural information processing systems, 33:
5812–5823, 2020.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kan-
nan, Viktor Prasanna, Long Jin, and Ren Chen. Decoupling the depth and scope of graph neural
networks. Advances in Neural Information Processing Systems, 34:19665–19679, 2021.

Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and Philip S Yu. From canonical correlation
analysis to self-supervised graph neural networks. Advances in Neural Information Processing
Systems, 34:76–89, 2021a.

Shichang Zhang, Yozen Liu, Yizhou Sun, and Neil Shah. Graph-less neural networks: Teaching old
mlps new tricks via distillation. arXiv preprint arXiv:2110.08727, 2021b.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A ALGORITHMIC EXPLANATION OF FILLER

FILLER can be broken down into three key steps. First, as in Algorithm 1, node representations
extraction is performed during a single inference pass on the training graph.

Algorithm 1 Constructing Layer-wise and Aggregated Node Representations
1: Input: Graph G = (V,E) with node features X , adjacency matrix A, and a trained GNN with

L layers.
2: Output: Layer-wise node representations {H(0),H(1), . . . ,H(L)} and aggregated representa-

tions {H(1)
N ,H

(2)
N , . . . ,H

(L)
N }.

3: Initialize input features: H(0) ←X
4: Initialize set of layer-wise representations: H ← {H(0)}
5: Initialize set of aggregated representations: HN ← {}
6: for each layer l = 1 to L do
7: Compute aggregated representation and add to aggregated set:

H
(l)
N ← AGG(l)(H(l−1),A), HN ← HN ∪ {H(l)

N }

8: Update node representation at layer l and add to layer-wuse set:

H(l) ← UPDATE(l)(H
(l)
N ,H(l−1)), H ← H∪ {H(l)}

9: end for
10: Return: Layer-wise representationsH and aggregated representationsHN .

Next, in Algorithm 2, the weight matrix for the ER layer is computed. This involves calculating the
virtual perturbation, pseudoinverse, and performing matrix subtraction and multiplication at each
layer. Since we use a deterministic approach for virtual perturbation, this part can be completed
efficiently with a single AGG operation.

Algorithm 2 Calculating Weight Matrices for ER Layer at Each Layer

1: Input: Layer-wise node representations H = {H(0),H(1), . . . ,H(L)}, aggregated represen-
tations HN = {H(1)

N ,H
(2)
N , . . . ,H

(L)
N }, adjacency matrix A, random perturbation function ϕ

and a trained GNN with L layers.
2: Output: Set of weight matrices {W (1), . . . ,W (L)} for the ER layer at each layer.
3: Initialize set of weight matrices: W ← {}
4: for each layer l = 1 to L do
5: Calculate virtual perturbation empirically:

Eϕ[H̃
(l)
N ] =

1

N

∑N
i=1AGG(l)(H(l−1), ϕ(A))

6: Compute pseudoinverse of node representations at previous layer: H(l−1)+

7: Compute weight matrix for layer l and add to weight set:

W (l) = H(l−1)+(H
(l)
N − E[H̃(l)

N ]), W ←W ∪ {W (l)}

8: end for
9: Return: Set of weight matricesW

Finally, FILLER updates the architecture of the trained GNN using the set of obtained weight matri-
cesW = {W (1), . . . ,W (L)} and an appropriately designed wrapper function hD, integrating the
ER layer in parallel with the AGG operation.

AGG
(l)
t+1(H

(l−1)
t ,A) = AGG

(l)
t (H

(l−1)
t ,A) + k · hD(H(l−1)W (l))
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B LIPSCHITZ CONTINUITY

Activation functions play a pivotal role in Graph Neural Networks (GNNs) by introducing non-
linearity, which enables the network to model complex relationships within graph-structured data.
Ensuring that these activation functions are Lipschitz continuous is essential for guaranteeing that
similarly aggregated representation can result a simliar output after applying the activation function.
In this section, we formally derive the Lipschitz continuity of three widely used activation functions:
Rectified Linear Unit (ReLU), Sigmoid, and Gaussian Error Linear Unit(GELU).

B.1 DEFINITION OF LIPSCHITZ CONTINUITY

A function f : R→ R is said to be Lipschitz continuous if there exists a constant L ≥ 0 such that
for all x, y ∈ R,

|f(x)− f(y)| ≤ L|x− y|.

B.2 RECTIFIED LINEAR UNIT (RELU)

The Rectified Linear Unit (ReLU) activation function is defined as:

ReLU(x) = max(0, x).

To prove that ReLU is 1-Lipschitz continuous, we need to show that:

|ReLU(x)− ReLU(y)| ≤ |x− y| ∀x, y ∈ R.

Case 1: x ≥ 0 and y ≥ 0

In this case,

ReLU(x) = x and ReLU(y) = y.

Thus,

|ReLU(x)− ReLU(y)| = |x− y| ≤ |x− y|.

Case 2: x < 0 and y < 0

Here,

ReLU(x) = 0 and ReLU(y) = 0.

Therefore,

|ReLU(x)− ReLU(y)| = |0− 0| = 0 ≤ |x− y|.

Case 3: x ≥ 0 and y < 0 (without loss of generality)

In this scenario,

ReLU(x) = x and ReLU(y) = 0.

Thus,

|ReLU(x)− ReLU(y)| = |x− 0| = |x| ≤ |x− y|.

This inequality holds because x ≥ 0 and y < 0, implying |x| ≤ |x− y|.

In all cases, |ReLU(x)− ReLU(y)| ≤ |x− y|. Therefore, ReLU is 1-Lipschitz continuous.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B.3 SIGMOID FUNCTION

The Sigmoid activation function is defined as:

σ(x) =
1

1 + e−x
.

The derivative of the Sigmoid function is:

σ′(x) = σ(x)(1− σ(x)).

Using the fact that ∀x ∈ R, σ(x) > 0, 1− σ(x) > 0, we apply AM-GM inequality:

σ(x) + (1− σ(x))

2
=

1

2
≥

√
σ(x)(1− σ(x)).

Squaring both sides, (
1

2

)2

=
1

4
≥ σ(x)(1− σ(x)).

Thus,

0 ≤ σ′(x) = σ(x)(1− σ(x)) ≤ 1

4
.

By the Mean Value Theorem, for any x, y ∈ R, there exists some c between x and y such that:

|σ(x)− σ(y)| = |σ′(c)||x− y|.

Using that |σ′(c)| ≤ 1
4 , we have for all x, y ∈ R

|σ(x)− σ(y)| ≤ 1

4
|x− y|.

Therfore, Sigmoid is 1
4 -Lipschitz continuous.

B.4 GAUSSIAN ERROR LINEAR UNIT(GELU)

The GELU activation function is expressed as:

GELU(x) = xΦ(x),

where Φ(x) is the cumulative distribution function (CDF) of the standard normal distribution:

Φ(x) =
1

2

(
1 + erf

(
x√
2

))
.

First, we compute the derivative of GELU(x):

d

dx
GELU(x) = Φ(x) + xϕ(x),

where ϕ(x) is the probability density function (PDF) of the standard normal distribution:

ϕ(x) =
1√
2π

e−x2/2.

In order to show the boundedness of the derivative, we examine the second derivative:
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d2

dx2
GELU(x) = 2ϕ(x)− x2ϕ(x).

Setting the second derivative equal to zero to find critical points:

d2

dx2
GELU(x) = 0 =⇒ ϕ(x)(2− x2) = 0.

Since ϕ(x) > 0 for all x ∈ R, the extrema of
d

dx
GELU(x) occurs at x = ±

√
2.

Hence, it is enough to examine the value of
d

dx
GELU(x) = Φ(x) + xϕ(x) at ±∞,±

√
2 :

lim
x→∞

d

dx
GELU(x) = lim

x→∞
Φ(x) + lim

x→∞
xϕ(x) = 1 + 0 = 1

lim
x→−∞

d

dx
GELU(x) = lim

x→−∞
Φ(x) + lim

x→−∞
xϕ(x) = 0 + 0 = 0

d

dx
GELU(

√
2) = Φ(

√
2) +

√
2 · ϕ(

√
2) =

1

2
(1 + erf(1)) +

√
2

1√
2π

e−1 ≈ 1.129

d

dx
GELU(−

√
2) = Φ(−

√
2)−

√
2 · ϕ(−

√
2) =

1

2
(1 + erf(−1))−

√
2

1√
2π

e−1 ≈ −0.129

using that

lim
x→∞

Φ(x) = 1, lim
x→−∞

Φ(x) = 0, lim
x→±∞

xϕ(x) = lim
x→±∞

1√
2π

xe−x2/2 = 0

Thus, ∣∣∣∣ ddxGELU(x)

∣∣∣∣ ≤ 1.13, ∀x ∈ R.

Therefore, GELU is 1.13-Lipschitz continuous.

C PSEUDOINVERSE AND GRADIENT-BASED TRAINING

Performance Comparison Between Pseudoinverse and Training. While we used the pseudoin-
verse to compute the weight matrix in the ER layer, as shown in Equation (5), it is also possible to
obtain this weight matrix through gradient-based training. For this comparison, we set up a mean
squared error (MSE) loss between H

(l)
N − Eϕ[H̃

(l)
N ] and H(l−1)W (l), and optimized it using the

Adam optimizer with a learning rate of 0.01, applying early stopping with a patience of 10 epochs.

As shown in Table 5, the pseudoinverse generally provided better performance, demonstrating its
effectiveness compared to training. However, training also produced comparable results in most
cases. Since computation time varies by dataset, as discussed in the next paragraph, we suggest that
training can be considered a viable alternative to the pseudoinverse within the FILLER framework.

Time consumption comparison between using pseudoinverse and training. We measured the
average time consumption of the pseudoinverse computation during a single iteration of our pro-
posed method, FILLER. Since the pseudoinverse is computed separately at each layer, the values
reported represent the sum over all L layers of the GNN. We also measured the time consumption
of gradient-based training in a single iteration as an alternative of pseudoinverse. The detailed time
measurements are presented in Table 6.
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Table 5: Performance comparison between post-processed models using either the pseudoinverse
or gradient-based training to obtain the weight matrix in FILLER. Bold numbers indicate higher
accuracy, and colored values highlight statistically significant differences at the 5% level (p < 0.05).
The pseudoinverse outperforms training in 25 out of 30 cases.

-50% -75% -100%
Dataset P-inverse Train ∆ P-inverse Train ∆ P-inverse Train ∆

Cora 76.9± 2.0 76.8± 2.0 ↓ 0.1% 74.1± 2.3 73.8± 2.3 ↓ 0.4% 74.6± 2.1 74.1± 2.0 ↓ 0.7%
Citeseer 68.5± 2.0 68.3± 2.1 ↓ 0.2% 68.5± 2.2 68.5± 2.3 ↓ 0.0% 69.4± 2.5 69.3± 2.6 ↓ 0.1%
Pubmed 72.2± 4.2 71.9± 4.4 ↓ 0.5% 71.7± 5.6 71.4± 5.9 ↓ 0.5% 73.6± 3.9 72.7± 3.7 ↓ 1.3%
Computers 79.8± 3.3 79.8± 3.3 ↓ 0.0% 77.2± 3.2 77.2± 3.2 ↓ 0.0% 69.2± 4.8 68.0± 6.1 ↓ 1.7%
Photo 89.4± 2.7 89.4± 2.7 ↓ 0.0% 87.8± 2.8 87.8± 2.9 ↓ 0.1% 85.4± 2.4 84.5± 2.3 ↓ 1.0%
CS 89.4± 0.5 89.4± 0.5 ↑ 0.0% 88.2± 0.5 88.2± 0.5 ↑ 0.0% 90.6± 0.5 90.6± 0.5 ↑ 0.0%
Physics 91.3± 1.4 91.2± 1.4 ↓ 0.0% 90.1± 1.6 90.1± 1.6 ↑ 0.0% 90.4± 1.6 90.3± 1.8 ↓ 0.1%
Flickr 50.1± 0.2 50.1± 0.2 ↓ 0.0% 46.4± 0.5 46.4± 0.6 ↑ 0.0% 46.2± 0.3 46.2± 0.3 ↓ 0.0%
Ogbn-arxiv 67.1± 0.2 67.1± 0.2 ↓ 0.0% 62.3± 0.1 62.2± 0.1 ↓ 0.1% 49.8± 1.0 48.6± 1.1 ↓ 2.5%
Reddit 95.7± 0.0 95.7± 0.0 ↓ 0.0% 94.9± 0.1 94.9± 0.1 ↓ 0.0% 55.9± 1.2 54.9± 1.6 ↓ 1.7%

The time complexity of the pseudoinverse is quadratic in the feature dimension d and linear in the
number of nodes n. Consequently, its computational cost is significantly influenced by the feature
size of the graph dataset. As shown in Table 6, the pseudoinverse takes longer than training when
the feature dimension is relatively large while faster when feature dimension is small. Conversely,
when the graph size increases but the feature dimension is small, training time increases while the
pseudoinverse computation becomes relatively faster due to the reduced feature size. Graph datasets
usually utilize node features processed from raw data (Hou et al., 2023), such as bag-of-words
representations in Cora or average word embeddings from skip-gram in OGBN-Arxiv (Hu et al.,
2020), resulting in typically small feature dimensions. Therefore, the pseudoinverse computation is
a realistic and even scalable solution for large-scale graphs datasets.

However, for graphs with a large number of features (e.g., raw features), the computational cost of
the pseudoinverse becomes prohibitive. In such situations, alternative methods can be employed,
such as using gradient-based training instead of the pseudoinverse or applying dimensionality re-
duction techniques like PCA as a pre-processing of dataset. As described in previous paragraph, the
pseudoinverse provides better and more stable results in our post-processing framework. Therefore,
whenever feasible, we recommend using the pseudoinverse computation for improved performance.

Table 6: Dataset statistics and time consumption for pseudoinverse and gradient-based training in a
single iteration of FILLER. Time is measured in seconds (s).

Cora Citeser Pubemd Computers Photo CS Physics Flickr Ogbn-arxiv Reddit

P-inv 0.176 0.477 0.039 0.072 0.059 14.992 55.382 0.051 0.041 0.086
Train 0.074 0.079 0.038 0.085 0.083 0.253 0.471 0.135 0.175 0.269

# nodes 2, 708 3, 327 19, 717 13, 752 7, 650 18, 333 34, 493 89, 250 169, 343 232, 965
# edges 10, 556 9, 104 88, 648 491, 722 238, 162 163, 788 495, 924 899, 756 1, 166, 243 114, 615, 892

# features 1, 433 3, 703 500 767 745 6, 805 8, 415 500 128 602
# classes 7 6 3 10 8 15 5 7 40 41

D CONDITION FOR CONVERGENCE

Lemma D.1. The following process-wise condition guarantees that both C2 and C3 hold:

∀l, ∀t, ∥ϵ(l)(t+ 1, t, Ã, Ã)∥F
∥ϵ(l)(t+ 1, t,A,A)∥F

≥ 1 + α,

where Ã is a matrix obtained by masking some of the elements of A to zero, α > 0 is any fixed
constant, and ∥ · ∥F represents the Frobenius norm.

Proof. Assume that the above condition holds. By triangle inequality,

∥ϵ(l)(t+ 1, t+ 1,A, Ã)∥F ≤ ∥ϵ(l)(t+ 1, t,A,A)∥F + ∥ϵ(l)(t, t+ 1,A, Ã)∥F. · · · (∗)
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Here, note that

∥ϵ(l)(t, t+ 1,A, Ã)∥F = (1− k)∥ϵ(l)(t, t,A, Ã)∥F

holds by our construction Eq(1) and collinearity of ϵ(l)(t, t+ 1,A, Ã) and ϵ(l)(t, t,A, Ã).

Also, by the condition,

∥ϵ(l)(t+ 1, t,A,A)∥F ≤
1

1 + α
∥ϵ(l)(t+ 1, t, Ã, Ã)∥F =

1

1 + α
k∥ϵ(l)(t, t,A, Ã)∥F.

Combining all together, ∗ can be extended as follows:

δ
(l)
t+1 = ∥ϵ(l)(t+ 1, t+ 1,A, Ã)∥F ≤

(
1− α

1 + α
k

)
∥ϵ(l)(t, t,A, Ã)∥F =

(
1− α

1 + α
k

)
δ
(l)
t

This demonstrates that after every iteration, the gap between AGG
(l)
t (H(l−1),A) and

AGG
(l)
t (H(l−1), Ã) is bounded by 1− α

1 + α
k (< 1) ratio of the previous term w.r.t. t.

Recursively applying this inequality leads to

δ
(l)
t ≤

(
1− α

1 + α
k

)t

δ
(l)
0

where convergence can be proved after taking t→∞

0 ≤ δ(l)∞ ≤ lim
t→∞

(
1− α

1 + α
k

)t

δ
(l)
0 = 0

Theorem D.2. Our proposed hD, the simplest and intuitive form of h, satisfies the all three condi-
tions C1, C2, and C3.

Proof. Put h = hD where hD is constructed as follows:

hD(H(l−1)W (l),A) =

(
|V |∑|V |

i=1

∑|V |
j=1Âi,j

)n

·H(l−1)W (l)

(1) (Condition C1) Let A = O, then Â = A+ I|V | = I|V |.

hD(H(l−1)W (l),O) =

(
|V |∑|V |

i=1

∑|V |
j=1(I|V |)i,j

)n

·H(l−1)W (l) = H(l−1)W (l)

(2) (Condition C2, C3) It suffices to show that hD satisfies the condition in Lemma 3.1.

∥ϵ(l)(t+ 1, t, Ã, Ã)∥F
∥ϵ(l)(t+ 1, t,A,A)∥F

=
∥khD(H(l−1)W (l), Ã)∥F
∥khD(H(l−1)W (l),A)∥F

=

∥∥∥∥∥∥∥∥∥∥
k

(
|V |∑|V |

i=1

∑|V |
j=1

ˆ̃Ai,j

)n

·H(l−1)W (l)

k

(
|V |∑|V |

i=1

∑|V |
j=1Âi,j

)n

·H(l−1)W (l)

∥∥∥∥∥∥∥∥∥∥
F
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=

∑|V |
i=1

∑|V |
j=1 Âi,j∑|V |

i=1

∑|V |
j=1

ˆ̃Ai,j

n

=

(
|V |+ 2|E|
|V |+ 2|Ẽ|

)n

where Ẽ denotes the edge set of the graph associated with Ã.

Note that Ẽ contains strictly fewer edges than E, i.e. |Ẽ| ≤ |E| − 1.

Thus,

(
|V |+ 2|E|
|V |+ 2|Ẽ|

)n

≥
(

|V |+ 2|E|
|V |+ 2(|E| − 1)

)n

=

(
1 +

2

|V |+ 2|E| − 2

)n

and α can be set to
2

|V |+ 2|E| − 2
to satisfy the condition of the Lemma 3.1.

Remark. In large graph datasets, the α mentioned in the above proposition tends to be very small.
However, this is solely because we have set α to be a small value intentionally for the purpose of
mathematical proof. In practice, when comparing with a graph where edges are perturbed to some
extent, α can be set to a reasonably large value, resulting in faster convergence rates.

For example, suppose that edges are removed by 50% in Reddit dataset as in our experiment. In
such case,

(
|V |+ 2|E|
|V |+ 2|Ẽ|

)
=

(
232965 + 114615892

232965 + 57307946

)
≥ 1.99

Then we can set α = 0.99 assuming that n = 1, k = 0.2.

By the proof of the theorem, we have

∥ϵ(l)(5, 5,A, Ã)∥F
∥ϵ(l)(0, 0,A, Ã)∥F

≤
(
1− 0.99

1 + 0.99
· 0.2

)5

≃ 0.59

which implies the gap between the original aggregated representation and perturbed one has re-
duced by more than 40% compared to the initial point.

Similarly, if edges are removed by 75%,

(
|V |+ 2|E|
|V |+ 2|Ẽ|

)
=

(
232965 + 114615892

232965 + 28653973

)
≥ 3.97.

Here, we can set α = 2.97 which results to

∥ϵ(l)(5, 5,A, Ã)∥F
∥ϵ(l)(0, 0,A, Ã)∥F

≤
(
1− 2.97

1 + 2.97
· 0.2

)5

≃ 0.44.

Finally, for the complete absence of the edges, we get

(
|V |+ 2|E|
|V |+ 2|Ẽ|

)
=

(
232965 + 114615892

232965

)
≥ 492.

Setting α = 491 leads to
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∥ϵ(l)(5, 5,A, Ã)∥F
∥ϵ(l)(0, 0,A, Ã)∥F

≤
(
1− 491

1 + 491
· 0.2

)5

≃ 0.33.

These computational results demonstrate that the GAP can be effectively bridged even with min-
imal post-processing and small k. Furthermore, in graphs with fully removed edges, merely five
processing steps suffice to reduce the gap by less than one-third.

E ARCHITECTURE DETAILS

We used five different architectures in our experiments: SAGE, GCN, SGC, GAT, and GIN. The
AGG and UPDATE functions are defined differently depending on the specific architecture. Even
within the same architecture, there can be multiple ways to define these operations. Therefore, we
provide the exact definitions of AGG and UPDATE used for each architecture in our experiments.
Additionally, for larger datasets, we employed the inductive variants of GCN and SGC, as their
original forms are not designed for neighbor sampling.

Graph Convolutional Network (Kipf & Welling, 2016) GCN performs a linear transformation
followed by normalized aggregation of node features and the node features are updated with a non-
linear activation:

H
(l)
N = D̂−1/2ÂD̂−1/2H(l−1)W (l), H(l) = σ(H

(l)
N ),

where Â = A + I is the adjacency matrix with self-loops, and D̂ is the corresponding degree
matrix. W (l) is the weight matrix for the linear transformation at layer l. In the inductive version,
normalization can be formulated as:

H
(l)
N = D̂−1ÂH(l−1)W (l).

GraphSAGE (Hamilton et al., 2017) GraphSAGE aggregates information from neighbors using
various strategies (e.g., mean, LSTM, or max). In our case, we use the mean aggregation version:

H
(l)
N = MAH(l−1)W (l) +H(l−1)B(l), H(l) = σ(H

(l)
N )

where the diagonal matrix M normalizes based on node degrees, with diagonal elements defined
as:

Mii =

{
1

|N (i)| if |N (i)| > 0

0 if node i is isolated (i.e., no neighbors).

Here, B(l) is an additional weight matrix applied to the node’s own features, allowing the model to
combine both the aggregated neighbor information and the node’s previous representation. The final
node embeddings, H(l), are then obtained by applying a nonlinearity σ to the combined result.

Simplified Graph Convolution (Wu et al., 2019) SGC simplifies GCN by removing the non-
linear activation functions, making the UPDATE operation an identity function. While SGC can be
viewed as a single-layer model performing k-hop aggregation in one AGG operation, we treat each
1-hop aggregation as a separate layer’s AGG operation.

This incremental approach allows the ER to recover 1-hop aggregated representations step by step,
instead of recovering the entire k -hop aggregation at once. The formulation for SGC is as follows,
with the linear transformation applied only at the first layer:

• First layer:
H

(1)
N = D̂−1/2ÂD̂−1/2XW (1), H(l) = H

(l)
N

• Subsequent layers (without transformation):

H
(l)
N = D̂−1/2ÂD̂−1/2H(l−1) for l ≥ 2, H(l) = H

(l)
N

In the inductive version, normalization is handled similarly to GCN, as SGC can be considered a
linear variant of GCN.
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Graph Attention Network (Veličković et al., 2017) GAT introduces learnable attention weights
for each edge, enabling the model to weigh the importance of neighboring nodes during aggregation.
The aggregation is formulated as:

H
(l)
N = A∗(l)H

(l−1)
j W (l), H(l) = σ(H

(l)
N )

Where element of A∗(l), α(l)
ij is the attention coefficient for edge (i,j) , computed as:

α
(l)
ij =

exp
(

LeakyReLU
(
a⊤[W (l)h

(l−1)
i ∥W (l)h

(l−1)
j ]

))
∑

k∈N (i)∪{i} exp
(

LeakyReLU
(
a⊤[W (l)h

(l−1)
i ∥W (l)h

(l−1)
k ]

))
where a is a learnable vector, and ∥ denotes concatenation. Through this attention mechanism, GAT
allows each node to focus more on specific neighbors, enhancing the aggregation process based on
learned importance.

Graph Isomorphism Network (Xu et al., 2018) GIN aggregates information from neighbors
through summation and applies a multi-layer perceptron (MLP) for transformation, allowing it to
better distinguish between different graph structures:

H
(l)
N = MLP(l)(AH(l−1) + (1 + ϵ(l))H(l−1)), H(l) = σ(H

(l)
N ),

where ϵ(l) is a learnable scalar or a fixed constant; in our experiments, we used a learnable scalar.

GIN’s use of summation for neighbor aggregation leads to substantial differences in representation
when training with neighbor sampling versus using the full edge information during inference. As a
result, we excluded GIN from experiments on large-scale datasets.

As shown in Appendix G, FILLER enhances the robustness of GIN, despite its unique aggregation
(summation) and transformation (MLP) processes compared to other architectures. Notably, even
though GIN’s transformation layer is more expressive than the ER layer, ER is still able to mitigate
representation shifts to some extent. Interestingly, although the base GIN model initially showed
lower performance compared to other architectures, as it is not specifically designed for node clas-
sification tasks, FILLER significantly enhanced its performance.

F EXPERIMENT SETTING DETAILS

We evaluated our method, FILLER, using seven widely adopted small-scale node classification
datasets and three large-scale datasets. The small-scale datasets, based on prior work (Shchur
et al., 2018), include three citation networks (Cora, Citeseer, and Pubmed), two co-purchase
graphs (Amazon-Computers and Amazon-Photo), and two co-authorship networks (Coauthor-CS
and Coauthor-Physics). Following Shchur et al. (2018), we only considered the largest connected
component of each graph. For the citation networks, we used 20 nodes per class for training, 500
nodes for validation, and 1000 nodes for testing. For the other datasets, we allocated 20 nodes per
class for training, 30 nodes per class for validation, and the remaining nodes for testing.

In the large-scale experiments, we used the Flickr dataset (Zeng et al., 2019), the Reddit dataset
(Hamilton et al., 2017), and the OGBN-Arxiv dataset (Hu et al., 2020), following the fixed public
splits provided in the original papers.

The primary objective of our experiments was to assess whether FILLER enhances model robustness
without sacrificing adaptability, rather than optimizing individual model performance. Therefore,
we aimed to maintain consistent hyperparameters across datasets and architectures, as shown in
Table 7. For large-scale datasets, we used a separate set of hyperparameters with deeper and wider
architectures to account for the increased complexity of the relationships between inputs and labels
in larger graphs.

Some architecture-specific adjustments were made: (1) GAT: Due to its multi-head architecture,
we used 8 heads, which means hidden size is divided into 8 heads. The dropout probability for
attention coefficients was set to 0.3. (2) SGC: We did not apply dropout to the features, as the
original paper (Wu et al., 2019) does not use dropout for the node classification task. Additionally,
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Dataset Small Large

# layers 2 3
hidden dim 64 256
activation relu relu
learning rate 0.01 0.003
weight decay 0.001 0
dropout 0.5 0.5
max epochs 1000 200
patience 100 50
fan out - [15, 10, 5]

Table 7: Hyperparameter settings used for small and large datasets across different architectures.

no activation function was used, since SGC is a linear model. (3) GIN: A 2-layer MLP was used
with the hidden dimension set to 2×dl at layer l. Since GIN is not tailored for node classification, it
exhibited unstable performance and could not be trained on the co-purchase datasets under the same
settings. As a result, we adjusted the learning rate to 0.003 and applied feature normalization by
row-normalizing the features on the co-purchase datasets which ensure attributes summed to one.

For batch training, we employed the neighbor sampler (Hamilton et al., 2017) with a batch size of
1024. The model was trained in batches, while all edges were used during inference.

In the edge removal and restoration experiments, edges were treated as undirected. We used ran-
dom.sample to randomly select edges for removal or restoration. Additionally, the sequence of edge
removal and restoration was randomized independently for each run using a different random seed.

G FULL EXPERIMENT RESULTS

In the following two pages, we present the complete results of our edge removal (Table 8) and edge
restoration (Table 9) experiments across all datasets and architectures.

Edge Removal Experiments. For small-scale datasets, FILLER improves performance across all
architectures by an average of 1.35%, 4.01%, and 21.75% when 50%, 75%, and 100% of the edges
are removed, respectively. In large-scale datasets, FILLER delivers average improvements across
all architectures of 0.33%, 2.56%, and 28.49% under the same edge removal conditions. These
consistent improvements across all datasets and architectures highlight FILLER ’s effectiveness as
a general post-processing technique for GNNs.

Although performance gains are relatively smaller in larger datasets when edges are partially re-
moved(50%, 75%), FILLER shows substantial improvements when all edges are removed. This
can be explained by the use of neighbor sampling during training on large datasets, which allows
models to encounter graph perturbations during training. As a result, models experience less se-
vere performance degradation when moderate sparsification occurs. However, even with neighbor
sampling, models struggle to maintain robustness in highly sparsified graphs, leading to more signif-
icant performance declines when many edges are removed. In such cases, FILLER greatly improves
robustness, demonstrating its effectiveness on batch-trained models in large datasets.

Edge Restoration Experiments. In the edge restoration experiments, GNNs were trained on 60%
of the edges and tested with 0%, 50%, and 100% of the excluded edges restored. The post-processed
models shows improved accuracy as more informative edges were restored, just as the base models
did, demonstrating that FILLER preserves the edge-adaptability of GNNs. During edge restoration,
the post-processed models do not show performance drop compared to the base model in 127 out of
141 cases at the 1% significance level.

Most of the accuracy drops (14 cases) occurred in large-scale datasets, while accuracy improvements
were seen in small datasets. We hypothesize that this discrepancy is due to the use of neighbor sam-
pling during training on large-scale datasets. Since neighbor sampling exposes the model to a limited
number of edges during training, the model already experience adaptation to additional edges during
inference, since all edges are used in inference; even before they are explicitly restored in testing. In
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contrast, small-scale datasets, which rely on full-batch training, show a clearer relationship between
edge restoration and performance gains.

This suggests that edge restoration in batch-trained models may require a different level of edge
adaptability compared to models trained with full-batch methods. Further investigation into this
distinction is left for future work.

Table 8: Accuracy after applying FILLER with 50%, 75%, and 100% removal of edges. The num-
bers are in bold and colored in the same manner as in Table 1. FILLER consistently and significantly
improves the accuracy of the base model across all architectures, demonstrating its effectiveness and
versatility in enhancing the robustness of existing GNNs.

-50% -75% -100%
Dataset SAGE + FILLER ∆ SAGE + FILLER ∆ SAGE + FILLER ∆

Cora 74.7± 2.6 76.9± 2.0 ↑ 2.9% 68.7± 3.5 74.1± 2.3 ↑ 7.8% 57.9± 4.9 74.6± 2.1 ↑ 28.9%
Citeseer 66.5± 2.4 68.5± 2.0 ↑ 3.0% 62.7± 2.7 68.5± 2.2 ↑ 9.3% 56.4± 4.5 69.4± 2.5 ↑ 23.1%
Pubmed 71.9± 4.0 72.2± 4.2 ↑ 0.4% 69.5± 5.5 71.7± 5.6 ↑ 3.2% 65.4± 8.8 73.6± 3.9 ↑ 12.5%
Computers 79.6± 3.3 79.8± 3.3 ↑ 0.2% 76.3± 3.6 77.2± 3.2 ↑ 1.2% 43.5± 10.1 69.2± 4.8 ↑ 58.9%
Photo 89.4± 2.8 89.4± 2.7 ↑ 0.0% 87.3± 2.8 87.8± 2.8 ↑ 0.6% 67.8± 7.5 85.4± 2.4 ↑ 25.9%
CS 88.8± 0.5 89.4± 0.5 ↑ 0.6% 86.5± 0.8 88.2± 0.5 ↑ 2.0% 82.8± 2.4 90.6± 0.5 ↑ 9.3%
Physics 91.0± 1.5 91.3± 1.4 ↑ 0.3% 89.0± 2.0 90.1± 1.6 ↑ 1.2% 80.6± 5.7 90.4± 1.6 ↑ 12.1%
Flickr 50.2± 0.2 50.1± 0.2 ↓ 0.4% 46.2± 0.6 46.4± 0.5 ↑ 0.5% 41.9± 0.5 46.2± 0.3 ↑ 10.2%
Ogbn-arxiv 67.2± 0.2 67.1± 0.2 ↓ 0.1% 61.7± 0.3 62.3± 0.1 ↑ 0.9% 44.3± 1.1 49.8± 1.0 ↑ 12.6%
Reddit 95.7± 0.0 95.7± 0.0 ↑ 0.0% 94.9± 0.1 94.9± 0.1 ↑ 0.0% 45.9± 1.1 55.9± 1.2 ↑ 21.9%

-50% -75% -100%
Dataset GCN + FILLER ∆ GCN + FILLER ∆ GCN + FILLER ∆

Cora 77.8± 1.8 79.1± 1.0 ↑ 1.7% 74.2± 2.1 76.7± 1.7 ↑ 3.5% 69.2± 2.9 77.4± 1.6 ↑ 11.9%
Citeseer 68.7± 2.4 70.1± 2.4 ↑ 2.0% 66.7± 3.0 69.9± 2.2 ↑ 4.8% 64.2± 3.0 70.3± 2.2 ↑ 9.5%
Pubmed 76.4± 1.7 76.5± 1.9 ↑ 0.1% 75.5± 1.9 76.2± 2.1 ↑ 1.0% 73.6± 2.2 76.6± 2.1 ↑ 4.0%
Computers 82.6± 2.2 82.7± 2.3 ↑ 0.1% 81.1± 2.1 81.4± 2.1 ↑ 0.3% 69.2± 2.1 75.8± 2.8 ↑ 9.6%
Photo 90.6± 1.5 90.6± 1.5 ↑ 0.0% 89.5± 1.6 89.7± 1.5 ↑ 0.1% 82.6± 2.8 87.1± 2.0 ↑ 5.4%
CS 89.5± 0.3 89.7± 0.3 ↑ 0.2% 87.9± 0.4 88.6± 0.3 ↑ 0.7% 87.8± 0.8 91.6± 0.3 ↑ 4.4%
Physics 91.8± 1.0 92.0± 0.9 ↑ 0.2% 90.5± 1.2 91.1± 1.1 ↑ 0.6% 87.8± 2.0 92.0± 1.0 ↑ 4.8%
Flickr 47.0± 0.5 47.8± 0.3 ↑ 1.7% 38.8± 1.0 42.3± 0.6 ↑ 8.8% 27.7± 1.2 43.6± 0.5 ↑ 57.4%
Ogbn-arxiv 67.8± 0.1 67.8± 0.1 ↑ 0.0% 62.4± 0.2 63.1± 0.2 ↑ 1.1% 42.2± 0.6 48.8± 0.8 ↑ 15.8%
Reddit 93.6± 0.1 93.6± 0.0 ↑ 0.0% 92.9± 0.0 92.9± 0.0 ↑ 0.0% 43.4± 0.5 44.9± 1.3 ↑ 3.3%

-50% -75% -100%
Dataset SGC + FILLER ∆ SGC + FILLER ∆ SGC + FILLER ∆

Cora 77.2± 1.9 78.3± 1.6 ↑ 1.5% 73.5± 1.4 76.4± 1.8 ↑ 3.9% 68.3± 1.9 77.0± 1.7 ↑ 12.8%
Citeseer 67.2± 1.8 68.2± 2.0 ↑ 1.6% 64.9± 2.6 67.9± 2.5 ↑ 4.6% 62.1± 2.6 68.4± 1.8 ↑ 10.1%
Pubmed 74.9± 2.2 74.9± 2.2 ↑ 0.0% 74.3± 2.1 74.6± 1.9 ↑ 0.3% 73.2± 1.9 74.6± 2.3 ↑ 1.9%
Computers 82.5± 1.5 82.6± 1.5 ↑ 0.1% 81.4± 1.4 81.5± 1.5 ↑ 0.2% 72.5± 2.5 78.0± 1.3 ↑ 7.6%
Photo 90.4± 1.9 90.5± 2.0 ↑ 0.1% 89.4± 2.1 89.6± 1.9 ↑ 0.3% 83.7± 2.7 87.8± 1.9 ↑ 4.8%
CS 89.4± 0.6 89.6± 0.7 ↑ 0.2% 87.8± 0.5 88.5± 0.5 ↑ 0.9% 87.7± 0.7 91.5± 0.6 ↑ 4.3%
Physics 91.9± 1.3 92.0± 1.3 ↑ 0.2% 90.8± 1.4 91.2± 1.2 ↑ 0.5% 88.6± 1.7 92.0± 1.4 ↑ 3.8%
Flickr 46.1± 0.2 47.3± 0.1 ↑ 2.6% 37.3± 0.9 41.6± 0.6 ↑ 11.5% 25.8± 0.7 44.3± 0.3 ↑ 71.9%
Ogbn-arxiv 65.8± 0.1 65.9± 0.2 ↑ 0.1% 60.9± 0.2 61.7± 0.1 ↑ 1.2% 41.5± 0.1 49.8± 0.1 ↑ 19.9%
Reddit 93.6± 0.1 93.6± 0.1 ↑ 0.0% 92.6± 0.0 92.7± 0.1 ↑ 0.0% 29.6± 1.6 51.1± 1.1 ↑ 72.5%

-50% -75% -100%
Dataset GAT + FILLER ∆ GAT + FILLER ∆ GAT + FILLER ∆

Cora 77.7± 1.8 79.1± 1.6 ↑ 1.8% 74.5± 1.7 78.4± 2.0 ↑ 5.1% 69.9± 1.8 80.2± 1.6 ↑ 14.8%
Citeseer 69.2± 1.6 69.7± 1.9 ↑ 0.8% 67.2± 1.7 69.9± 1.7 ↑ 4.1% 65.6± 1.8 70.5± 1.6 ↑ 7.6%
Pubmed 75.8± 2.3 76.9± 2.2 ↑ 1.4% 74.8± 2.4 77.1± 2.4 ↑ 3.1% 73.3± 2.7 77.8± 2.3 ↑ 6.1%
Computers 83.1± 2.2 83.3± 2.1 ↑ 0.3% 80.9± 2.5 81.1± 2.3 ↑ 0.3% 65.3± 5.5 78.7± 2.8 ↑ 20.6%
Photo 91.1± 1.4 91.0± 1.3 ↓ 0.0% 89.8± 1.8 89.8± 1.4 ↓ 0.1% 80.7± 3.2 88.9± 1.8 ↑ 10.2%
CS 88.3± 0.4 88.6± 0.4 ↑ 0.3% 87.2± 0.4 87.8± 0.4 ↑ 0.8% 87.6± 0.8 89.4± 0.5 ↑ 2.1%
Physics 90.7± 1.7 91.0± 1.6 ↑ 0.3% 89.4± 2.1 90.2± 1.7 ↑ 0.9% 86.5± 3.2 90.6± 1.4 ↑ 4.7%
Flickr 49.5± 0.2 49.5± 0.2 ↓ 0.0% 42.3± 0.4 44.7± 0.3 ↑ 5.8% 29.5± 1.4 42.3± 0.0 ↑ 43.6%
Ogbn-arxiv 68.1± 0.2 68.1± 0.2 ↑ 0.0% 63.2± 0.1 63.8± 0.2 ↑ 1.0% 44.9± 0.2 51.4± 0.8 ↑ 14.3%
Reddit 93.7± 0.1 93.7± 0.1 ↑ 0.0% 93.1± 0.0 93.1± 0.1 ↑ 0.0% 51.9± 0.5 51.1± 0.5 ↓ 1.5%

-50% -75% -100%
Dataset GIN + FILLER ∆ GIN + FILLER ∆ GIN + FILLER ∆

Cora 71.6± 2.8 73.6± 1.4 ↑ 2.8% 63.1± 4.4 69.9± 2.6 ↑ 10.7% 49.2± 9.9 61.8± 4.2 ↑ 25.7%
Citeseer 61.7± 5.3 65.2± 3.0 ↑ 5.7% 56.9± 8.9 64.8± 3.4 ↑ 14.0% 47.9± 14.9 64.2± 4.2 ↑ 34.0%
Pubmed 69.3± 4.6 74.8± 3.3 ↑ 7.9% 65.4± 6.8 73.5± 4.0 ↑ 12.4% 56.2± 11.2 70.2± 4.9 ↑ 25.0%
Computers 71.7± 4.3 72.8± 4.2 ↑ 1.5% 57.6± 7.7 63.5± 6.5 ↑ 10.4% 21.4± 10.5 49.2± 4.1 ↑ 129.6%
Photo 82.2± 3.4 84.3± 3.2 ↑ 2.5% 69.9± 4.7 79.0± 3.6 ↑ 13.0% 24.8± 8.2 56.3± 4.2 ↑ 127.0%
CS 81.1± 1.5 84.8± 1.1 ↑ 4.6% 74.8± 3.0 84.2± 1.1 ↑ 12.6% 55.9± 10.1 80.9± 1.2 ↑ 44.8%
Physics 87.5± 2.4 89.2± 1.6 ↑ 1.9% 82.7± 4.0 87.8± 2.0 ↑ 6.1% 56.8± 17.2 81.5± 4.1 ↑ 43.6%
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Table 9: Accuracy change after applying FILLER with 0%, 50%, and 100% restoration of missing
edges. The numbers are in bold and colored in the same way as in Table 1. FILLER preserves
the adaptability of GNNs to informative edges while enhancing robustness across all architectures,
demonstrating its stability and versatility for GNNs.

0% +50% +100%
Dataset SAGE + FILLER ∆ SAGE + FILLER ∆ SAGE + FILLER ∆

Cora 74.2± 2.3 75.1± 2.0 ↑ 1.3% 77.0± 2.0 77.6± 2.1 ↑ 0.8% 79.1± 1.9 79.4± 2.0 ↑ 0.4%
Citeseer 66.0± 3.1 66.9± 3.3 ↑ 1.4% 68.6± 2.8 68.6± 2.9 ↑ 0.0% 69.6± 2.3 70.0± 2.3 ↑ 0.7%
Pubmed 72.6± 2.6 72.8± 3.0 ↑ 0.3% 73.6± 2.8 73.4± 2.8 ↓ 0.3% 74.6± 2.7 74.1± 2.9 ↓ 0.6%
Computers 78.4± 2.9 78.5± 2.9 ↑ 0.1% 79.1± 3.1 79.1± 3.0 ↑ 0.1% 79.6± 3.1 79.6± 3.1 ↑ 0.0%
Photo 90.3± 2.3 90.4± 2.3 ↑ 0.1% 90.8± 2.2 90.9± 2.2 ↑ 0.1% 91.1± 2.1 91.1± 2.1 ↑ 0.0%
CS 89.2± 0.4 89.7± 0.4 ↑ 0.5% 90.4± 0.5 90.5± 0.5 ↑ 0.1% 91.1± 0.5 91.2± 0.5 ↑ 0.1%
Physics 91.2± 0.8 91.3± 0.9 ↑ 0.2% 91.7± 0.9 91.8± 1.0 ↑ 0.1% 92.1± 1.0 92.1± 1.0 ↑ 0.1%
Flickr 50.9± 0.2 50.9± 0.1 ↓ 0.0% 51.6± 0.2 51.5± 0.2 ↓ 0.3% 52.0± 0.3 51.9± 0.3 ↓ 0.1%
Ogbn-arxiv 69.0± 0.0 68.9± 0.1 ↓ 0.1% 70.2± 0.1 70.1± 0.0 ↓ 0.2% 71.0± 0.2 71.0± 0.1 ↓ 0.1%
Reddit 95.9± 0.1 95.9± 0.1 ↓ 0.0% 96.1± 0.0 96.1± 0.0 ↑ 0.0% 96.3± 0.0 96.3± 0.0 ↓ 0.0%

0% +50% +100%
Dataset GCN + FILLER ∆ GCN + FILLER ∆ GCN + FILLER ∆

Cora 77.6± 1.5 78.2± 1.7 ↑ 0.8% 80.1± 1.7 80.4± 1.6 ↑ 0.4% 81.7± 1.5 82.1± 1.4 ↑ 0.5%
Citeseer 68.5± 2.0 68.9± 2.0 ↑ 0.6% 69.9± 2.2 69.9± 2.0 ↑ 0.0% 70.7± 2.0 70.9± 2.1 ↑ 0.3%
Pubmed 75.8± 1.9 75.9± 1.9 ↑ 0.1% 76.6± 1.7 76.5± 1.9 ↓ 0.1% 77.0± 1.7 76.9± 1.7 ↓ 0.1%
Computers 83.0± 1.5 83.0± 1.5 ↑ 0.0% 83.3± 1.5 83.4± 1.5 ↑ 0.1% 83.7± 1.6 83.6± 1.5 ↓ 0.0%
Photo 90.7± 1.6 90.7± 1.7 ↑ 0.0% 91.0± 1.7 91.0± 1.6 ↑ 0.0% 91.0± 1.7 91.0± 1.6 ↑ 0.0%
CS 89.9± 0.5 90.1± 0.5 ↑ 0.2% 90.6± 0.5 90.7± 0.5 ↑ 0.1% 91.1± 0.4 91.1± 0.4 ↑ 0.1%
Physics 92.2± 0.7 92.4± 0.7 ↑ 0.2% 92.6± 0.7 92.7± 0.7 ↑ 0.1% 92.9± 0.7 93.0± 0.7 ↑ 0.1%
Flickr 49.5± 0.1 49.2± 0.2 ↓ 0.6% 50.5± 0.2 50.1± 0.3 ↓ 1.0% 51.0± 0.3 50.4± 0.4 ↓ 1.2%
Ogbn-arxiv 68.8± 0.1 68.7± 0.1 ↓ 0.2% 70.0± 0.1 69.8± 0.2 ↓ 0.2% 70.7± 0.1 70.6± 0.2 ↓ 0.2%
Reddit 93.7± 0.1 93.7± 0.0 ↓ 0.0% 93.9± 0.0 93.9± 0.0 ↑ 0.0% 93.9± 0.0 93.9± 0.0 ↓ 0.0%

0% +50% +100%
Dataset SGC + FILLER ∆ SGC + FILLER ∆ SGC + FILLER ∆

Cora 76.4± 2.1 76.9± 2.2 ↑ 0.7% 79.0± 1.9 79.3± 2.0 ↑ 0.4% 80.9± 1.8 81.4± 1.7 ↑ 0.6%
Citeseer 67.1± 3.1 67.3± 3.0 ↑ 0.3% 68.8± 3.0 68.7± 2.8 ↓ 0.1% 69.9± 2.8 70.1± 2.9 ↑ 0.3%
Pubmed 74.1± 2.5 74.3± 2.4 ↑ 0.4% 74.6± 2.6 74.8± 2.6 ↑ 0.3% 74.8± 2.7 75.0± 2.7 ↑ 0.3%
Computers 82.7± 1.4 82.7± 1.4 ↑ 0.0% 82.9± 1.5 83.0± 1.4 ↑ 0.1% 83.1± 1.4 83.1± 1.4 ↑ 0.0%
Photo 90.3± 2.2 90.3± 2.3 ↑ 0.0% 90.5± 2.2 90.5± 2.3 ↑ 0.0% 90.7± 2.3 90.7± 2.3 ↑ 0.0%
CS 89.9± 0.8 90.0± 0.7 ↑ 0.1% 90.6± 0.8 90.7± 0.8 ↑ 0.0% 91.1± 0.8 91.1± 0.8 ↑ 0.0%
Physics 92.3± 1.0 92.5± 0.9 ↑ 0.1% 92.7± 0.9 92.8± 0.9 ↑ 0.1% 93.0± 0.9 93.1± 0.9 ↑ 0.1%
Flickr 48.9± 0.2 48.5± 0.1 ↓ 0.8% 49.7± 0.1 49.2± 0.2 ↓ 1.1% 50.2± 0.1 49.7± 0.3 ↓ 0.9%
Ogbn-arxiv 66.8± 0.1 66.6± 0.1 ↓ 0.3% 67.8± 0.1 67.7± 0.1 ↓ 0.3% 68.5± 0.1 68.3± 0.1 ↓ 0.3%
Reddit 93.8± 0.0 93.7± 0.0 ↓ 0.0% 94.0± 0.0 94.0± 0.0 ↑ 0.0% 94.1± 0.1 94.1± 0.1 ↓ 0.0%

0% +50% +100%
Dataset GAT + FILLER ∆ GAT + FILLER ∆ GAT + FILLER ∆

Cora 77.2± 1.6 77.5± 1.5 ↑ 0.4% 79.2± 1.7 79.7± 1.7 ↑ 0.6% 81.1± 1.8 81.4± 1.8 ↑ 0.4%
Citeseer 69.0± 2.2 69.2± 2.3 ↑ 0.2% 70.4± 2.1 70.3± 1.8 ↓ 0.2% 71.4± 1.6 71.5± 1.4 ↑ 0.2%
Pubmed 75.7± 1.8 76.1± 1.4 ↑ 0.6% 76.7± 1.6 76.7± 1.3 ↓ 0.0% 77.0± 1.4 77.2± 1.2 ↑ 0.3%
Computers 82.1± 2.3 82.3± 2.4 ↑ 0.2% 82.6± 2.4 82.8± 2.5 ↑ 0.2% 82.9± 2.4 82.9± 2.5 ↑ 0.1%
Photo 90.3± 1.6 90.2± 1.7 ↓ 0.1% 90.5± 1.6 90.4± 1.8 ↓ 0.1% 90.7± 1.8 90.5± 1.8 ↓ 0.1%
CS 89.0± 0.4 89.0± 0.4 ↓ 0.0% 89.6± 0.4 89.5± 0.3 ↓ 0.2% 89.9± 0.4 89.9± 0.3 ↓ 0.0%
Physics 91.3± 1.4 91.4± 1.3 ↑ 0.1% 91.6± 1.4 91.7± 1.4 ↑ 0.1% 91.8± 1.4 91.9± 1.4 ↑ 0.1%
Flickr 50.9± 0.1 50.3± 0.2 ↓ 1.1% 52.0± 0.4 51.5± 0.2 ↓ 0.9% 52.6± 0.4 52.1± 0.4 ↓ 0.9%
Ogbn-arxiv 69.1± 0.2 69.0± 0.2 ↓ 0.1% 70.3± 0.1 70.1± 0.2 ↓ 0.2% 71.0± 0.1 70.9± 0.1 ↓ 0.1%
Reddit 94.0± 0.1 94.0± 0.1 ↓ 0.0% 94.1± 0.0 94.1± 0.1 ↑ 0.0% 94.2± 0.0 94.2± 0.0 ↓ 0.0%

0% +50% +100%
Dataset GIN + FILLER ∆ GIN + FILLER ∆ GIN + FILLER ∆

Cora 72.7± 3.1 72.8± 2.5 ↑ 0.2% 75.5± 3.1 75.9± 3.3 ↑ 0.5% 77.7± 3.2 77.7± 3.2 ↓ 0.1%
Citeseer 63.6± 3.3 64.5± 2.7 ↑ 1.4% 66.4± 2.8 66.4± 2.9 ↑ 0.0% 68.3± 2.7 68.4± 2.9 ↑ 0.1%
Pubmed 71.8± 3.0 72.5± 3.3 ↑ 0.8% 72.7± 1.9 72.8± 2.5 ↑ 0.2% 73.6± 2.1 73.3± 2.5 ↓ 0.4%
Computers 76.3± 2.8 76.6± 2.7 ↑ 0.4% 76.4± 3.1 76.6± 3.0 ↑ 0.3% 75.9± 3.4 76.0± 3.4 ↑ 0.2%
Photo 86.5± 1.9 86.8± 2.0 ↑ 0.3% 87.1± 2.1 87.2± 2.1 ↑ 0.1% 87.0± 2.5 87.1± 2.5 ↑ 0.1%
CS 83.9± 1.2 84.8± 1.1 ↑ 1.1% 84.8± 1.1 85.2± 1.0 ↑ 0.5% 85.4± 1.1 85.7± 1.0 ↑ 0.3%
Physics 88.8± 2.1 89.2± 2.1 ↑ 0.5% 89.4± 2.1 89.6± 2.1 ↑ 0.3% 89.7± 2.1 89.8± 2.1 ↑ 0.1%
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