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Abstract
We tackle the problem of identifying whether a
variable is the cause of a specified target using ob-
servational data. State-of-the-art causal learning
algorithms that handle latent variables typically
rely on identifying the global causal structure, of-
ten represented as a partial ancestral graph (PAG),
to infer causal relationships. Although effective,
these approaches are often redundant and com-
putationally expensive when the focus is limited
to a specific causal relationship. In this work,
we introduce novel local characterizations that
are necessary and sufficient for various types of
causal relationships between two variables, en-
abling us to bypass the need for global structure
learning. Leveraging these local insights, we de-
velop efficient and fully localized algorithms that
accurately identify causal relationships from ob-
servational data. We theoretically demonstrate
the soundness and completeness of our approach.
Extensive experiments on benchmark networks
and two real-world datasets further validate the
effectiveness and efficiency of our method.

1. Introduction
Identifying causal relationships, known as causal discovery,
plays a crucial role in various fields, including computer sci-
ence (Jonas et al., 2017; Pearl, 2018; Schölkopf, 2022),
sociology (Spirtes et al., 2000), epidemiology (Hernán
& Robins, 2010), and neuroscience (Smith et al., 2011;
Sanchez-Romero et al., 2019). A key challenge in causal
discovery is determining whether one variable causes an-
other (Pearl, 2009). For instance, in medical diagnosis,
understanding the causal relationships between symptoms
and diseases is crucial for accurate diagnoses and the devel-
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Figure 1. (a) The underlying graph from (Spiegelhalter et al., 1993)
(CHILD network), where Cardiac Mixing is a latent variable and
the other variables are observed. (b) A DAG over the observed
variables in (a). (c) A MAG characterizing the causal relations
over the observed variables in (a).

opment of effective treatment plans. Such insights enable
healthcare professionals to efficiently identify root causes
and deliver targeted interventions.

The causal graphical model is one of the most widely
used models for graphically representing causal relations
among observed variables, which consists of vertices de-
noting variables and edges denoting causal relations (Pearl,
2009; Spirtes et al., 2000). Directed acyclic graphs (DAGs)
are widely used to represent causal relationships among
observed variables under the assumption of causal suffi-
ciency (Pearl, 2009; Spirtes et al., 2000), i.e. , the absence
of unobserved latent variables between observed variables.
However, when latent variables are present, DAGs may fail
to represent the causal relationships among observed vari-
ables(Richardson & Spirtes, 2002). As shown in Figure 1
(b), the DAG incorrectly depicts Hypoxia in O2 as a cause
of Hypoxia distribution, but there is no directed path from
Hypoxia in O2 to Hypoxia distribution in the underlying
graph. Therefore, directly employing methods that do not
account for the influence of latent variables (when the sys-
tem contains latent variables), such as those in Fang et al.
(2022); Zuo et al. (2022); Zheng et al. (2024), may result in
incorrect inferences about the causal relationships among
the observed variables.

Maximal Ancestral Graphs (MAGs), whose main advantage
is that, without explicitly including latent variables, they can
represent conditional independence and causal relationships
among observed variables (Richardson & Spirtes, 2002;
Zhang, 2008). In a MAG, a vertex X is an ancestor (cause)
of a vertex Y and Y is a descendant (effect) of X if there is
a directed path from X to Y (Zhang, 2006). As shown in
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Figure 1 (c), it correctly represents Hypoxia in O2 does not
cause Hypoxia distribution, and vice versa. However, from
the observational data, without additional distributional as-
sumptions or background knowledge, we generally learn a
Markov equivalence class (MEC) of MAGs that encodes
the invariant features of the underlying MAG, which can be
represented by a partial ancestral graph (PAG) (Spirtes &
Richardson, 1996; Zhang & Spirtes, 2005; Ali et al., 2005;
Zhao et al., 2005) 1. The undirected edges (or marks) in a
PAG imply that some causal relations among variables can-
not be read from the graph directly. Hence, given a Markov
equivalent class of MAGs, there are three possible types of
causal relationships 2:

1. A variable X is an invariant ancestor of a variable Y if
and only if there is a directed path from X to Y in every
equivalent MAG.

2. A variable X is an invariant non-ancestor of a variable
Y if and only if there is no directed path from X to Y
in any equivalent MAG.

3. A variable X is a possible ancestor of variable Y if
X is neither an invariant ancestor nor an invariant non-
ancestor of Y .

A direct approach to identifying the causal relationship be-
tween a pair of variables (X,Y ) is to first use methods like
FCI (Spirtes et al., 2000) or RFCI (Colombo et al., 2012) to
learn a PAG from observational data, and then enumerate
all MAGs within this class to determine whether X is an
invariant ancestor or non-ancestor of Y across all equivalent
MAGs. However, this approach becomes computationally
inefficient when the number of MAGs in the MEC is large
(Malinsky & Spirtes, 2016). In addition, these approaches
are often redundant and computationally expensive when
the focus is limited to a specific causal relationship. In
this paper, we address the challenge of locally identifying
the causal relationship between a pair of variables with-
out requiring the learning of a full PAG, the enumeration of
MAGs, or the assumption of causal sufficiency. Our primary
contributions are summarized as follows:

• We provide both sufficient and necessary local character-
izations for the invariant ancestor, invariant non-ancestor,
and possible ancestor relationships, relying solely on lo-
cal structure rather than the entire graph, even in the
presence of latent variables.

• We propose a novel algorithm, LocICR, that locally iden-
tifies the causal relationship between a pair of variables.
We provide theoretical proof of its completeness, demon-
strating that it can identify the same causal relationships

1Under the assumption of causal sufficiency, the Markov equiv-
alence class (MEC) of the underlying DAG is typically represented
by a completed partially directed acyclic graph (CPDAG).

2One may refer to Appendix A.3 for further clarification of
these causal relationships.

for a target pair of variables as state-of-the-art global
learning approaches.

• We conduct extensive experiments on benchmark net-
work structures and real-world datasets, showcasing the
effectiveness and efficiency of our method.

2. Related Works
This paper focuses on identifying causal relationships be-
tween variable pairs in the presence of latent variables. Ex-
isting methods generally fall into two categories: global
structure-based learning and local structure-based learning.

Global Structure-Based Learning. This category begins
by using FCI (Spirtes et al., 2000) and its variants (Colombo
et al., 2012; Claassen et al., 2013; Claassen & Heskes, 2011;
Ogarrio et al., 2016; Raghu et al., 2018; Tsirlis et al., 2018;
Akbari et al., 2021; Rohekar et al., 2021; Bhattacharya et al.,
2021; Claassen & Bucur, 2022) to learn the global causal
PAG. Then, it infers the causal relationships based on criteria
proposed by Zhang (2006) and Roumpelaki et al. (2016);
Mooij & Claassen (2020) or through causal effect estimation
methods, such as LV-IDA (Malinsky & Spirtes, 2016) and
its extensions (Maathuis et al., 2009; Nandy et al., 2017;
Liu et al., 2020a; Fang & He, 2020; Pensar et al., 2020;
Wang et al., 2023a). However, these methods rely on global
causal graph, which can be computationally expensive and
restrictive (Guo & Perkovic, 2021; Fang et al., 2022).

Local Structure-Based Learning. This category primarily
focuses on identifying relationships between a target vari-
able and its adjacent variables. Well-known algorithms in
this line include (Yin et al., 2008; Zhou et al., 2010; Wang
et al., 2014; Gao & Ji, 2015; Liu et al., 2020b; Yang et al.,
2021; Liang et al., 2023). Recently, Fang et al. (2022) and
its variants (Zheng et al., 2024) introduced local approaches
for identifying causal relationships among arbitrary pairs of
variables within a system. However, these methods require
the assumption of causal sufficiency. More recently, Xie
et al. (2024) proposed a method for identifying local causal
structures in the presence of latent variables. Nevertheless,
their approach focuses on relationships between a target
variable and its adjacent variables, without generalizing to
arbitrary pairs of variables.

To our knowledge, no method locally identifies the causal
relationship between an arbitrary pair of variables, without
assuming causal sufficiency and learning the full causal
PAG.

3. Preliminaries
3.1. Terminology

A univariate variable (or vertex) is denoted by an upper-
case letter (e.g., V ), while sets of variables (or vertices) are
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denoted by bold uppercase letters (e.g., V).

Graphs. A graph G = (V,E) consists of a set of vertices
V = {V1, . . . , Vn} and a set of edges E. The two ends
of an edge are called marks. A graph is directed mixed if
the edges in the graph are directed (→), or bi-directed (↔).
A directed mixed graph is ancestral if it doesn’t contain
a directed or almost directed cycle. An ancestral graph is
a maximal ancestral graph (MAG, denoted by M) if for
any two non-adjacent vertices, there exists a set of vertices
that m-separates them. Two MAGs are Markov equivalent
if they share the same m-separations. A class of Markov
equivalent MAGs, denoted as [M], can be represented as
a Partially Ancestral Graph (PAG, denoted by P), where a
tail ‘−’ or arrowhead ‘>’ occurs if the corresponding mark
is tail or arrowhead in all the Markov equivalent MAGs, and
a circle ‘◦’ occurs otherwise. For convenience, we use an
asterisk (*) to denote any possible mark of a PAG (◦, >,−)
or a MAG (>,−). For two vertices Vi and Vj in P , Vi is
a possibly parent/possibly child/neighbor of Vj if there is
Vi◦→ Vj /Vi ←◦Vj /Vi ◦−◦ Vj in P . A path is a collider
path if every non-endpoint vertex on it is a collider along
the path. A directed path from Vi to Vj is a path composed
of directed edges pointing towards Vj . A partially directed
path from Vi to Vj is a path where every edge without an
arrowhead at the mark near Vi. A path from Vi to Vj that is
not possibly causal is called a non-causal path from Vi to
Vj . The detailed graph-related definitions are provided in
Appendix A.1.

Markov Blanket. The Markov blanket(MB) of a variable X
is the smallest set conditioned on which all other variables
are statistically independent of X 3 . Graphically, assuming
faithfulness, in a DAG, this is the set of parents, children,
and children’s parents of vertex X . In a MAG, the Markova
blanket of a vertex X , noted as MB(X,M), consists of
the set of parents, children, children’s parents of X , as
well as the district of X and of the children of X , and the
parents of each vertex of these districts, where the district of
a vertex V is the set of all vertices reachable from V using
only bidirected edges. Figure 2 specifically illustrates the
Markov blanket of vertex X in a MAG. The vertices shaded
in blue belong to MB(X,M).

Let P represent the MEC ofM, the MB remains invariant
acrossM and P , i.e., MB(X,M) = MB(X,P). For sim-
plicity, MB(X) denotes MB(X,P) when unambiguous,
and MB+(X ) denotes {MB(X ) ∪X}.

Notations.4 We denote: Pa(Vi,G), De(Vi,G), Adj (Vi,G)
as the parent, descendant, and adjacent vertex sets of Vi in G;

3Some authors use the term “Markov blanket” without the
notion of minimality, and use “Markov boundary” to denote the
smallest Markov blanket. For clarity, we adopt the convention that
the Markov blanket refers to the minimal Markov blanket.

4The main symbols are summarized in Table 1 in Appendix A.
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Figure 2. The illustrative example for MB , where X is the target
of interest and the blue vertices belong to MB(X,M).

Ne(Vi,P) and PossCh(Vi,P) as the neighbor and possible
child sets of Vi in a PAG P; [P] as the Markov equiva-
lence class represented by PAG P . We use the notation
X ⊥⊥ Y|Z for “X is statistically independent of Y given
Z”, and X ⊥̸⊥ Y|Z for the negation of the same sentence.
We use the (X,Y ) to denote the target pair of variables,
identifying whether X is an invariant non-ancestor/invariant
ancestor/possible ancestor of Y .

3.2. Problem Definition

Our work is in the framework of causal graphical models
⟨G,ΘG⟩, where G represents the causal structure and ΘG

refers to the associated parameters with G (Pearl, 2009).
The causal structure G = ⟨V,E⟩ is a directed acyclic graph
(DAG) where V represents a set of vertices and E represents
a set of edges. The parameters ΘG specify a functional rela-
tionship for each Vi ∈ V, in the form Vi = fi(Pa(Vi), ui),
where ui represents independent errors due to omitted fac-
tors, and all error terms ui are assumed to be mutually
independent. The variable set V consists of the observed
variables O and the latent variables L.

Task. Under the standard assumptions of the causal Markov
condition and the causal Faithfulness condition, our objec-
tive is to characterize the local graphical features of different
types of causal relationships between a pair of variables X
and Y , where X,Y ∈ O. Subsequently, we aim to develop
a fully local algorithm to determine the causal relationship
between X and Y . Note that we do not assume causal
sufficiency, allowing for latent variables between observed
variables in the system.

4. Local Characterization of Causal Relations
4.1. Foundations of Local Characterization

In this section, we build on the well-established local
Markov property for DAGs to introduce the local Markov
property for MAGs, following the ordered local Markov
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Figure 3. (a) An underlying causal graph, where L1, L2, and L3 are latent variables, dashed directed edge denotes a directed path. (b) The
MAG characterizes the causal relations over the observed variables in (a). (c) The inferred PAG from observed variables.

property described in Richardson & Spirtes (2002). Specifi-
cally, the local Markov property states that a target variable
is independent of its non-descendants, given a particular
set of variables.

To define this particular set, we first introduce a particular
type of collider path, as outlined in Definition 1.
Definition 1 (Arrow-Collider Path). In a PAG or a MAG,
a path π = ⟨V0, . . . , Vn⟩ is called an arrow-collider path
from V0 to Vn if every non-endpoint vertex is a collider on
π, and the edge between V0 and V1 points into V0, i.e. ,
V0 ↔ V1 · · · ←∗Vn. If n = 1, π simplifies to V0 ←∗V1.

Building on Definition 1, we define the particular set graph-
ically in Definition 2.
Definition 2 (Augmented Parent Set). Let G be a PAG or
a MAG. The augmented parent set of a vertex X , denoted
as Pa∗(X,G), is defined as follows: for any vertex V ∈ O,
V ∈ Pa∗(X,G) if and only if there exists an arrow-collider
path π from X to V such that:

(1) in a MAG, X is a non-ancestor of every vertex on π,
including V .

(2) in a PAG, X is an invariant non-ancestor of all vertices
on π, including V .

In general, the augmented parent set of a target vertex in-
cludes not only its direct parents but also vertices connected
via arrow-collider paths. See Example 1 for illustrations of
Definitions 1 and 2.

Below, we introduce the local Markov property for MAGs
using the concept of the augmented parent set. Notably,
this result is theoretically equivalent to the ordered local
Markov property for MAGs proposed by Richardson &
Spirtes (2002). For details, see Theorem 7 in Appendix B.
Definition 3 (Local Markov Property for MAGs). Let
M be the MAG over O, and let Pre(X,M) denote the pre-
treatment vertices of X inM, i.e. , the vertices for which
X is not an ancestor. The local Markov property for the
MAG states that for every variable X ∈ O, the following
property holds:

X ⊥⊥ Pre(X,M) \ Pa∗(X,M) | Pa∗(X,M) (1)

If no latent variables exist in the system, the local Markov
property for MAGs reduces to the local Markov property

for DAGs, i.e., each variable in the DAG is independent of
its non-descendants given its parents.
Example 1. Consider the MAG M shown in Figure 3
(b), with J as the target vertex of interest. Each ver-
tex V ∈ {A,B,C, F,G} is connected to J by an arrow-
collider path from J to V . Additionally, the descendant set
of J inM is De(J,M) = {D,E, F,B}. As a result, the
augmented parent set of J is Pa∗(J,M) = {A,G} and
Pre(J,M) = {A,C,G,H}. Therefore, the local Markov
property is J ⊥⊥ {C,H} | {A,G}.

4.2. Local Characterization

As outlined in the introduction, causal relationships between
pairs of variables, inferred from non-experimental obser-
vational data can be classified into three types: invariant
non-ancestors, invariant ancestors, and possible ancestors.
In this section, we present local characterizations of these
causal relationships, which rely on the induced subgraph of
the PAG over MB+(X).

We begin by presenting the local characterization of invari-
ant non-ancestor relations, as shown in Theorem 1 below.
Theorem 1. Let P be the PAG over O. For any pair of
vertices (X,Y ) in P , X is an invariant non-ancestor of Y
if and only if X ⊥⊥ Y | Pa∗(X,P).

Intuitively, according to the local Markov property, given
a PAG (the MEC of MAGs), Pa∗(X,P) blocks all non-
causal paths from X to Y in P . If X is not an invariant
non-ancestor of Y (i.e. , there exists a directed path from
X to Y in a MAG M ∈ [P]), this implies X ⊥̸⊥ Y |
Pa∗(X,P). Conversely, if X ⊥⊥ Y | Pa∗(X,P), then
there is no directed path from X to Y in anyM∈ [P], and
X is an invariant non-ancestor of Y .
Example 2. Consider the PAG shown in Figure 3 (c),
with (J,C) as the target pair of interest. Each vertex in
{A,B,C, F,G} is connected to J by an arrow-collider path
from J to it. By Definition 2, we have Pa∗(J,P) = {A,G}.
Furthermore, there is no active path between J and C given
{A,G}, which implies J ⊥⊥ C | {A,G}. Consequently, J
is an invariant non-ancestor of C.

We now turn to the concept of the invariant ancestor relation.
To clarify its local characterization, we define the local
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features of the invariant ancestor relation, categorized into
two types: explicit invariant ancestor and implicit invariant
ancestor, as detailed in Definitions 4 and 5, respectively.

Definition 4 (Explicit Invariant Ancestor). Given a PAG
P , a vertex X is an explicit invariant ancestor of another
vertex Y if and only if a common directed path exists from
X to Y in every MAG within [P].
Definition 5 (Implicit Invariant Ancestor). Given a PAG
P , a vertex X is an implicit invariant ancestor of another
vertex Y if and only if X is an invariant ancestor of Y , but
there is no directed path from X to Y common to every
MAG within [P].
Remark 1. We define X as an invariant ancestor of Y if
there exists a directed path from X to Y in every MAG in
[P]. If these directed paths are identical across all MAGs in
[P], the invariant ancestor relation is explicit; otherwise, it
is implicit. Furthermore, if a common directed path from X
to Y exists in every MAG in [P], then a directed path from
X to Y must also exist in P (Zhang, 2006).

To graphically characterize these two types of invariant
ancestor relations, we define a specific type of collider path
in Definition 6, analogous to the arrow-collider path, and
a particular set in Definition 7, similar to the augmented
parent set.

Definition 6 (Circle-Collider Path). In a PAG, a path
π = ⟨V0, . . . , Vn⟩ is called a circle-collider path from V0 to
Vn if every non-endpoint vertex is a collider on π, and the
edge between V0 and V1 is undirected relative to V0, i.e. ,
V0◦→ V1 · · · ←∗Vn. If n = 1, π simplifies to V0 ◦−∗ V1.

Definition 7. Let P be a PAG, the augmented undirected
neighbor set of a vertex X , denoted as Ne∗(X,P), is de-
fined as follows: For any vertex V ∈ O, V ∈ Ne∗(X,P)
if and only if there exists a circle-collider path π =
⟨X = V0, V1, . . . , Vn = V ⟩ from X to V such that for every
2 ≤ i ≤ n, X is an invariant non-ancestor of Vi

5.

Remark 2. Note that in a PAG, Ne(X,P) consists of ver-
tices connected to X by edges of the form ◦−◦, Ne∗(X,P)
includes not only Ne(X,P) but also vertices connected by
circle-collider paths.

Next, we present the local characterization of explicit invari-
ant ancestor relations, as stated in Theorem 2.

Theorem 2. Let P be the PAG over O. For any pair of
vertices (X,Y ) in P , X is an explicit invariant ancestorof
Y if and only if X ⊥̸⊥ Y | Pa∗(X,P) ∪Ne∗(X,P).

Intuitively, given a PAG, Ne∗(X,P) blocks all partially
directed paths(except directed paths) from X to Y in P ,
while Pa∗(X,P) blocks all non-causal paths that from X

5When n = 1, the condition becomes redundant and may be
omitted.

to Y in P . If X is not an explicit invariant ancestor of
Y (i.e. , no directed path from X to Y exists in P), then
X ⊥⊥ Y | Pa∗(X,P) ∪ Ne∗(X,P). Conversely, if X ⊥̸⊥
Y | Pa∗(X,P) ∪Ne∗(X,P), a directed path from X to Y
exists in P , making X an explicit invariant ancestor of Y .

Example 3. Consider the PAG shown in Figure 3 (c), with
(J,B) be the target pair of interest. From Example 2, we
know Pa∗(J,P) = {A,G}. Additionally, Ne∗(J,P) = ∅
, as no vertex is connected to J by a circle-collider path.
Furthermore, there is an active path ⟨J,D,E, . . . , F,B⟩
between J and B, conditioned on {A,G}, implying J ⊥̸⊥
B | {A,G}. Thus, J is an invariant explicit ancestor of B.

We now characterize implicit invariant ancestor relations
locally based on Definition 8, as detailed in Theorem 3.

Definition 8. Let P be a PAG and let M represent the
set of maximal cliques 6 of the induced subgraph of P
over PossCh(X,P) ∪ Ne(X,P). The set of augmented
undirected neighbor of a vertex X relative to a maximal
clique M ∈ M, denoted as Ne∗(XM,P). For any vertex
V ∈ O, V ∈ Ne∗(XM,P) if and only if there exists a
circle-collider path π = ⟨X = V0, V1, . . . , Vn = V ⟩ from
X to V such that (1) for every 2 ≤ i ≤ n, X is an invariant
non-ancestor of Vi and (2) V1 ∈M.

Theorem 3. Let P be the PAG over O. For any pair of
vertices (X,Y ) in P , X is an implicit invariant ancestor
of Y if and only if

(1) X ⊥⊥ Y | Pa∗(X,P) ∪Ne∗(X,P), but
(2) X ⊥̸⊥ Y | Pa∗(X,P)∪Ne∗(XM,P) for every maximal

clique M ∈M.

The first condition implies that there is no common directed
path from X to Y in any MAG within [P]. Intuitively,
similar to the role of Ne∗(X,P) in P , Ne∗(XM,P) can
block all partially directed paths (excluding directed paths)
from X to Y that pass through M in P . If X ⊥̸⊥ Y |
Pa∗(X,P) ∪ Ne∗(XM,P) for a maximal clique M ∈ M,
this indicates the presence of partially directed paths from
X to Y in P , given Pa∗(X,P) ∪ Ne∗(XM,P). That is,
in some MAGs within [P] where a directed path from X
to Y exists, given Pa∗(X,P) ∪ Ne∗(XM,P). Moreover,
if X ⊥̸⊥ Y | Pa∗(X,P) ∪ Ne∗(XM,P) holds for every
M ∈M, then all MAGs within [P] contain a directed path
from X to Y , meaning X is an implicit invariant ancestor
of Y . Conversely, if X ⊥⊥ Y | Pa∗(X,P) ∪Ne∗(XM,P)
for a maximal clique M ∈M, this implies that some MAGs
within [P] lack a directed path from X to Y .

Example 4. Consider the PAG shown in Figure 3 (c) with
(G,D) as the target pair. PossCh(G,P) ∪ Ne(G,P) =
{H,J}, and the set M = {{H}, {J}}. Each vertex in
{H,J,A,B,C, F} is connected to G by a circle-collider

6The definition of maximal clique is given in Appendix A.1.
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path from G to it, with G as an invariant non-ancestor of
{A,C}. Thus, Ne∗(G,P) = {H,J,A}. For M = {H},
we have Ne∗(GM,P) = {H}. Similarly, for M = {J},
we have Ne∗(GM,P) = {J,A}. Observing that G ⊥⊥
D | {H,J,A}, G ⊥̸⊥ D | {H} and G ⊥̸⊥ D | {J,A}.
Consequently, G is an invariant implicit ancestor of D.

Based on Theorems 2 and 3, we provide a sound and com-
plete local characterization of invariant ancestor relations.

Corollary 1. Let P be the PAG over O, and let M denote
the set of maximal cliques of the induced subgraph of P
over PossCh(X,P) ∪Ne(X,P). For any pair of vertices
(X,Y ) in P , X is an invariant ancestor of Y if and only if

(1) X ⊥̸⊥ Y | Pa∗(X,P) ∪Ne∗(X,P), or
(2) X ⊥̸⊥ Y | Pa∗(X,P)∪Ne∗(XM,P) for every M ∈M

By Theorem 1 and Corollary 1, we can identify all stable
causal relationships (invariant non-ancestor and invariant
ancestor). Naturally, the remaining ones (possible ancestors)
are subject to change, as stated below.

Theorem 4. Let P be the PAG over O. For any pair of
vertices (X,Y ) in P , X is an possible ancestor of Y if and
only if neither Theorem 1 nor Corollary 1 applies.

5. The Local Identifying Algorithm
This section discusses how to locally learn the Conditional
Sets involved in the aforementioned theoretical results and
present the algorithm for locally identifying causal relations.

5.1. Locally Learning Conditional Sets

We incorporate the properties of Markov Blanket (MB) to
locally learn the conditional set used in the above results
of local characterizations, i.e. , Pa∗(X,P), Ne∗(X,P),
and Ne∗(XM,P). Specifically, we answer the following
questions:

• How to discover which vertices in MB(X) are con-
nected to X via arrow-collider paths or circle-collider
paths? This involves locally learning the induced sub-
graph of P over MB+(X), denoted as PMB+(X).

• How to determine whether X is an invariant non-
ancestor of the vertices on these paths? This requires
identifying all vertices in MB(X) for which X is an
invariant non-ancestor, denoted as IPreMB (X).

To address the first question, we extend the MMB-by-MMB
algorithm proposed by Xie et al. (2024) to learn PMB+(X).
Note that the original MMB-by-MMB algorithm focuses
solely on learning the structure involving the target variable
and its adjacent variables, whereas we generalize it to apply
to any variable, not limited to the target variable’s adjacent
variables. Specially, the PMB+(X)learning process is iter-
ative, with each step focusing on the local structure of a

variable Vi, denoted as LVi
, derived from the observed data

of MB+(Vi) and is relevant for constructing PMB+(X). Let
Waitlist store variables that are potentially relevant for
learning PMB+(X), and Donelist store variables removed
from Waitlist and P store true causal information, the
basic idea is as follows:

Learning PMB+(X)algorithm

1. Given a target variable X , observed data O. Initialize
Waitlist = {X}, Donelist = ∅, and P = ∅.

2. During each step, perform sequential iterations, focusing
on the first variable Vi in Waitlist. First, learn MB(Vi),
followed by the local structure LVi over the observed
data of MB+(Vi). Next, extract true edges and direction
information from LVi

(by Proposition 1 and Proposition
2) and update P . Orient P using standard orientation
criteria. Then, update Waitlist and Donlist.

3. The process ends when the stopping criteria (as defined
in Proposition 3) are met.

We outline the technical details of the algorithm below.

Proposition 1. (Theorem 1 in Xie et al. (2024)) Let X be
any vertex in O, and V be a vertex in MB(X ). Then X and
V are m-separated by a subset of O \ {X,V } if and only if
they are m-separated by a subset of MB(X ) \ {V }.

Proposition 1 ensures that the existence of an edge between
X and another vertex V ∈ MB(X ), as identified in LX , is
consistent with the edge identified in the PAG learned from
the observed data O.

Proposition 2. Let LX be the inferred PAG over MB+(X ).
Let Vi (1 ≤ i ≤ |MB(X )|) represent the vertices in
MB(X ). The following statements hold:

S1. The unshielded collider triples (V-structures) V1∗→
X ←∗V2 identified in LX are consistent with those in
the ground-truth PAG.

S2. The uncovered collider paths X∗→ V1 ↔ · · · ←∗Vi

identified in LX are consistent with those in the ground-
truth PAG.

Proposition 2 specifies the locally identified colliders that
are correct, representing the true directional information
that can be retained.

Proposition 3 (Stop Rules). Let X be the target variable of
interestand Waitlist represent the collection of variables
whose L will be learned. If any of the following rules are
satisfied, the learned PMB+(X)is equivalent to the structure
identified by global learning methods.

R1. The edges among the variables of MB+(X) are all
determined, i.e. , no circle present in the marks.
R2. The Waitlist is empty.
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R3. All paths from each vertex in MB+(X), which include
undirected edges (connected two vertices in MB+(X)),
are blocked by edges ∗→.

R1 and R2 indicate that all causal information of interest
has been identified, or L for all variables in O has been
learned. Broadly,R3 states that if all paths connecting the
undirected edges between two vertices in MB+(X) are all
blocked by the edge ∗→, further exploration of L for the
remaining variables will not contribute to determining the
direction of these undirected edges.

We address the second question. The basic idea is as follows:

Learning IPreMB (X) algorithm

1. Induced the subgraph PMB+(X)from P . Initialize
IPreMB (X) with vertices adjacent to X where the
edge is X ← ∗, and set CandSet = MB(X)\
Adj (X,PMB+(X)).

2. Perform sequential iterations, focusing on the first vari-
able Vi in CandSet during each step. If there exists a
set Z ⊆ IPreMB (X) such that X ⊥⊥ Vi | Z, add Vi to
IPreMB (X) and remove it from CandSet .

3. The process ends when no variable in CandSet can be
added in IPreMB (X).

Proposition 4 ensures the correctness of the above algorithm.

Proposition 4. Let P be the ground-truth PAG over
O, and let PMB+(X)denote the induced subgraph of P
over MB+(X). Let IPreMB (X) be the set of invariant
non-descendant of X . For a vertex V ∈ {MB(X) \
Adj (X,PMB+(X))}, X is an invariant non-ancestor of V
if and only if there exists a set Z ⊆ IPreMB (X) that m-
separates X and V .

After addressing the two main questions, we present the
local learning method for conditional sets in Algorithm
1. The detailed pseudocode is provided in Algorithm 1 in
Appendix D, with a complete example included in Appendix
E.

Theorem 5. Assuming oracle tests for conditional inde-
pendence, the outputs of Algorithm 1 are identical to those
obtained from the ground-truth PAG.

5.2. Local Identifying Causal Relations Algorithm

In this section, we introduce the Local Identifying Causal
Relations algorithm, referred to as the LocICR algorithm.

Theorem 6. Assuming the oracle tests for conditional in-
dependence. Algorithm 2 is both sound and complete for
identifying invariant non-ancestor, explicit invariant ances-
tor, implicit invariant ancestor, and possible ancestor causal
relationships between any pair of variables in O.

Complexity of Algorithm 2. Let r denote the number of lo-
cal structures to be learned sequentially in Algorithm 1, and
let n denote the size of the observed set O. The worst-case
complexity is O

[
r(2n−r−1)

2 + r|MB+|22|MB+| + |M|
]
,

where |M| is the number of maximal cliques of
PossCh(X,P)∪Ne(X,P), and |MB+| is the size of MB+.
The first two terms correspond to Line 1 (i.e., Algorithm
1), while the last term corresponds to Lines 2 ∼ 12. The
detailed calculation process is provided in Appendix F.

Algorithm 1 Local Learning Conditional Sets

Input: Target X , observed data O
1: The local structure PMB+(X) is obtained by invoking

the Learning PMB+(X)and Learning IPreMB (X) algo-
rithms.

2: Based on PMB+(X)and IPreMB (X), we derive
Pa∗(X,P), Ne∗(X,P), and Ne∗(XM,P) for each
M ∈M.

Output: Pa∗(X,P),Ne∗(X,P) and Ne∗(XM,P) for
each M ∈M.

Algorithm 2 LocICR

Input: Target variable pair (X,Y ) , observed data O
1: Pa∗(X,P), Ne∗(X,P), and Ne∗(XM,P) for each

M ∈M are obtained by invoking the Algorithm 1
2: if X ⊥⊥ Y | Pa∗(X,P) then
3: return X is an invariant non-ancestor of Y
4: end if
5: if X ⊥̸⊥ Y | {Pa∗(X,P) ∪Ne∗(X,P)} then
6: return X is an explicit invariant ancestor of Y
7: end if
8: M = the set of maximal cliques of {PossCh(X,P) ∪

Ne(X,P)}
9: if exist M ∈ M such that X ⊥⊥ Y | Pa∗(X,P) ∪

Ne∗(XM,P) then
10: return X is an possible ancestor of Y
11: end if
12: return X is a implicit invariant ancestor of Y
Output: The causal relation between X and Y .

6. Experimental Results
To evaluate the accuracy and efficiency of our algorithm,
we apply it to synthetic datasets generated from benchmark
networks, as well as to two real-world datasets. We utilize
the existing implementation of the Total Conditioning (TC)
discovery algorithm (Pellet & Elisseeff, 2008b) to identify
the Markov Blanket (MB) of a variable. Our source code is
available at https://github.com/zhengli0060/
LocICR.
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Figure 4. Performance of eight algorithms on four benchmark networks

6.1. Synthetic Data with Benchmark Networks

In this section, we compare the proposed LocICR algorithm
with global structure-based learning methods, including PC-
ITC (Spirtes & Glymour, 1991; Fang et al., 2022), RFCI-
Zhang (Colombo et al., 2012; Zhang, 2006), M3HC-Zhang
(Tsirlis et al., 2018), ICD-Zhang (Rohekar et al., 2021)
(based on criteria), and PC-IDA (Maathuis et al., 2009) as
well as RFCI-LVIDA (Malinsky & Spirtes, 2016)(using
causal effect estimation methods). We also compared it
with the local structure-based learning method, Local-ITC,
which does not account for latent variables (Fang et al.,
2022). Detailed descriptions of these methods are provided
in Appendix G.1.

Experimental setup: We use four benchmark networks vary-
ing dimensionality: MILDEW, ALARM, WIN95PTS, and
ANDES, containing 35, 37, 76, and 223 vertices, respec-
tively. 7. Following the convention in (Colombo et al.,
2012; Malinsky & Spirtes, 2016; Fang et al., 2022), the
benchmark networks are parameterized as linear Gaussian
structural causal models, with the causal strengths chosen
uniformly at random from the range ±(0.5, 1), and noises
drawn from the standard Gaussian distribution. The number
of latent variables is set to 4, 4, 6, and 10 for the respective
network. For each network, 100 datasets were randomly
generated, with latent variables randomly selected for each
dataset. Two observed variables were then randomly chosen
as the target pair (X,Y ) for each dataset. The reported

7Details of these networks can be found at https://www.
bnlearn.com/bnrepository/.

results are averaged across the 100 datasets.

Metrics: We use the following metrics:

• Weighted Precision (WP): the weighted average of per-
class precision, where each precision is the ratio of true
positives for the i-th class in the output to the total num-
ber of predictions made by the algorithm for the i-th
class.

• Weighted Recall (WR): the weighted average of per-
class recall, where each recall is the ratio of true positives
for the i-th class in the output to the total number of true
instances of the i-th class in the ground truth.

• Weighted F1 (WF1): the harmonic mean of WP and
WR, calculated as

WF1 =
2 ·WP ·WR

WP +WR
.

• nTest: the number of (conditional) independence tests
implemented by an algorithm.

Results: Due to space limitations, we present results for
two metrics in Figure 4, with complete results provided in
Appendix G. As shown, our proposed LocICR algorithm out-
performs other methods in Weighted F1 score across all net-
works and sample sizes, demonstrating its effectiveness. The
number of conditional independence tests required by our
method is significantly lower than that of global structure-
based methods, such as PC-ITC, PC-IDA, RFCI-LVIDA,
RFCI-ZHANG, and ICD-Zhang. Moreover, since M3HC is
a hybrid method rather than a purely constraint-based one,
we excluded it from the comparison regarding the nTest.
Notably, although the nTest value of the Local-ITC method
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is lower for most networks and sample sizes, our method
still outperforms Local-ITC on the other three metrics. This
is likely because Local-ITC only learns the local structure
of X’s adjacencies under the assumption of no latent vari-
ables. Additionally, methods assuming causal sufficiency,
such as PC-ITC, PC-IDA, and Local-ITC, show less satisfac-
tory results, highlighting their inability to handle situations
involving latent variables.

6.2. Application to Real-World Datasets

General Social Survey Data. We applied our method to a
dataset from the General Social Survey, a sociological data
repository available online https://gss.norc.org/
us/en/gss.html. The dataset contains six observed
variables: father’s occupation, son’s income, father’s edu-
cation, son’s occupation, son’s education, and number of
siblings, with a sample size of 1380. We use the hypothe-
sized model from Duncan et al. (1972) as a baseline. Their
graph, determined using domain knowledge and temporal
orders, is shown in Figure 5.

Father’s
Education

(V3)

Father’s
Occupation

(V1)

Number of
Siblings

(V6)

Son’s
Education

(V5)

Son’s
Occupation

(V4)

Son’s
Income

(V2)

Figure 5. Status attainment model based on domain knowledge
(Duncan et al., 1972; Shimizu et al., 2011). A directed edge be-
tween two vertices in the figure means that there could be a directed
edge between the two variables. A bi-directed edge between two
vertices means that the relation is not modeled.

Results: We selected four pairs of variables as target pairs,
with direct relationships and directed paths, as well as pairs
with no direct relationships or directed paths.

• We first selected the father’s occupation (X) and the
son’s education (Y ) as the target variable pair, connected
by a direct edge. Our method identifies the father’s oc-
cupation as an invariant ancestor of the son’s education.

• Next, we selected father’s occupation (X) and son’s
income (Y ), as well as father’s education (X) and son’s
income (Y ) as the target variable pairs. In both cases,
X and Y are connected by directed paths. Our method
identifies both father’s occupation and father’s education
as invariant ancestors of the son’s income.

• Finally, for son’s income (X) and number of siblings

(Y ), which are neither connected by a direct edge nor a
directed path from X to Y . Our method finds the son’s
income as an invariant non-ancestor of the number of
siblings.

These findings align with the domain knowledge in Duncan
et al. (1972).

Gene Expression Data. We applied our proposed method to
the gene expression dataset from Wille et al. (2004), which
contains measurements from Arabidopsis thaliana under
118 different experimental conditions, including variations
in light and darkness and exposure to growth hormones.
The dataset includes expression data for 33 genes. We here
adopt the model presented in Wille et al. (2004) (see Figure
3 of Wille et al. (2004)) as a baseline.

Results: We selected six pairs of genes as target pairs, with
direct relationships and directed paths, as well as pairs with
no direct relationships or directed paths.

• We first selected DXR (X) and MCT (Y ), as well as
HMGS (X) and HMGR1 (Y ), as the target pairs, both
of which are connected by a direct edge. Our method
identifies DXR as an invariant ancestor of MCT, and
similarly, HMGS as an invariant ancestor of HMGR1.

• Next, we selected AACT1 (X) and FPPS1 (Y ), as well as
DXPS3 (X) and CMK (Y ), where each pair is connected
by a directed path from X to Y . Our method identifies
AACT1 as an invariant ancestor of FPPS1, and likewise,
DXPS3 as an invariant ancestor of CMK.

• Finally, we considered PPDS1 (X) and DXPS1 (Y ), as
well as DXPS1 (X) and DXPS3 (Y ), neither of which
is connected by a direct edge or a directed path from X
to Y . Our method finds that PPDS1 is an invariant non-
ancestor of DXPS1, and similarly, DXPS1 is an invariant
non-ancestor of DXPS3.

These findings align with Wille et al. (2004).

7. Conclusion
We addressed the problem of locally learning causal re-
lations from observational data without assuming causal
sufficiency. First, we provided sufficient and necessary
local characterizations for identifying invariant ancestors,
invariant non-ancestors, and possible ancestors. Then, we
introduced LocICR, a novel algorithm for local causal dis-
covery. We proved that LocICR is complete, matching the
accuracy of existing methods. Experiments demonstrate its
effectiveness, efficiency, and robustness in handling latent
variables in complex environments. Future work could ex-
plore incorporating background knowledge, such as data
generation mechanisms (Kaltenpoth & Vreeken, 2023) or
expert insights (Wang et al., 2023b), to enhance causal dis-
covery within local structures in LocICR.
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A. More Details on Preliminaries

Table 1. The list of main symbols used in this paper
Symbol Description

G A directed acyclic graph (DAG)
M A Maximal Ancestral Graph (MAG)
P A Partial Ancestral Graph (PAG)
[M] A class of Markov equivalent MAGs
[P] The Markov equivalence class represented by PAG
V The set of all variables
O The set of observed variables
L The set of latent variables
MB(X,G) The Markov blanket of a vertex X in a DAG G
MB(X,M) The Markov blanket of a vertex X in a MAGM
MB(X,P), MB(X) The Markov blanket of a vertex X in a PAG P , we use MB(X) to denote

MB(X,P) when there is no loss in clarity
MB+(X ) The set of {MB(X ) ∪X}
|MB(X )| Number of variables in MB(X)
A B in P A and B are not adjacent
A ∗−∗B in P A and B are adjacent
A◦→ B in P B is a possible child of A, A is a possible parent of B
A ◦−◦B in P B is a neighbor of A, A is a neighbor of B
A→ B in P A is a parent of B, B is a child of A
A↔ B in P There is a latent common cause of A and B
Pa(X,P), Ch(X,P) The set of all parents (→ X) and children (← X) of X in a PAG P , respectively
Adj (X,G) The set of all variables that have direct edges connected to X
PossPa(X,P), PossCh(X,P), Ne(X,P) The set of all possible parents (◦→ X), possible children (←◦X) and neighbors

(◦−◦X) of X in a PAG P , respectively
Pa∗(X,P) The augmented parent set of X in a PAG P
Ne∗(X,P) The augmented undirected neighbor set of X in a PAG P
M The set of maximal cliques of the induced subgraph of P over PossCh(X,P)∪

Ne(X,P)
M A maximal clique
Ne∗(XM,P) The augmented undirected neighbor set of X relative to a maximal clique M
PMB+(X) The induced subgraph of P over MB+(X)
Pre(X,M) The set of non-descendant variables of X in a MAGM
IPreMB (X) The set of vertices in MB(X) such that X is an invariant non-ancestor of it
An(X,M), De(X,M) The set of all ancestors and descendants of X in a MAGM, respectively
(X ⊥⊥ Y|Z)G A set Z m-separates X and Y in G
X ⊥⊥ Y|Z X is statistically independent of Y given Z. We drop the subscript P whenever

it is clear from context.
X ⊥̸⊥ Y|Z X is not statistically independent of Y given Z
A→ B in G A is a cause of B, but B is not a cause of A
A↔ B in G A is not a cause of B, and B is not a cause of A
LV The local structure learned over MB+(V ), utilizing the test of conditional

independence and orientation of V-structures
MBalg The algorithm used for learning MB
WaitList The list of variables to be checked by Proposition 1 and Proposition 2
DoneList The list of variables whose local structures have been found

A.1. Detailed Definitions about Graph

Graphs. A graph G = (V,E) consists of a set of vertices V = {V1, . . . , Vn}, denoting variables, and a set of edges
E ⊆ V ×V, representing the relationships between variables. The two ends of an edge are called marks, there are three
types of marks: arrowhead ‘<’, tail ‘−’ , and circle ‘◦’. A graph is directed mixed if the edges in the graph are directed (→),
or bi-directed (↔). For two vertices Vi and Vj in G, Vi is a parent/child/spouse of Vj if there is Vi → Vj /Vi ← Vj /Vi ↔ Vj

in G. Vi and Vj are adjacent if there is an edge between them. A path p from Vi to Vj in G is a sequence of distinct variables
⟨V0, . . . , Vn⟩ such that for 0 ≤ i ≤ n− 1, Vi and Vi+1 are adjacent in G. The length of a path equals the number of edges on
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the path. A directed path from Vi to Vj is a path composed of directed edges pointing towards Vj , i.e. , Vi → . . .→ Vj . If
exists a directed path from Vi to Vj , Vi is an ancestor of Vj and Vj is a descendant of Vi. An almost directed cycle happens
when Vi is both a spouse and an ancestor of Vj . A directed cycle happens when Vi is both a child and an ancestor of Vj .

Definition 9 (m-connecting (Spirtes et al., 2000; Zhang, 2008)). In a directed mixed graph, a path π between vertices X
and Y is m-connecting(acitve) relative to a (possibly empty) set of vertices Z (X,Y /∈ Z) if (1) every non-collider on π is
not a member of Z; (2) every collider on π has a descendant in Z.

X and Y are said to be m-separated by Z if there is no active path between any vertex in X and any vertex in Y relative to
Z.

Definition 10 (Inducing Path). An inducing path between Vi and Vj is a path on which every non-endpoint vertex is a
collider on the path and every collider is an ancestor of either Vi or Vj .

Definition 11 (Maximal Ancestral Graph (Richardson & Spirtes, 2002; Zhang, 2008)). A directed mixed graph is ancestral
if it doesn’t contain a directed or almost directed cycle. An ancestral graph is called maximal if for any two non-adjacent
vertices, there is no inducing path between them, i.e. , there exists a set of vertices that m-separates them. A directed mixed
graph is called a maximal ancestral graph (MAG) if it is ancestral and maximal, denoted byM.

A MAG is a Directed Acyclic Graph (DAG) if it has only directed edges. Two MAGs are Markov equivalent if they share
the same m-separations.

Definition 12 (Partial Ancestral Graph (Spirtes et al., 2000; Zhang, 2006)). Let [M] be the Markov equivalence class of
an underlying MAGM. A partial ancestral graph (PAG, denoted by P) represents the equivalence class [M], where a tail

‘−’ or arrowhead ‘>’ occurs if the corresponding mark is tail or arrowhead in everyM ∈ [M], and a circle ‘◦’ occurs
otherwise.

For convenience, we use an asterisk (*) to denote any possible mark of a PAG (◦, >,−) or a MAG (>,−). Note that [P]
represents an equivalence class of MAGs. For two vertices Vi and Vj in P , Vi is a possibly parent/possibly child/neighbor
of Vj if there is Vi◦→ Vj /Vi ←◦Vj /Vi ◦−◦ Vj in P . A path is a collider path if every vertex on it (except for the endpoints)
is a collider along the path. A partially directed path (possibly causal path)from Vi to Vj is a path where every edge without
an arrowhead at the mark near Vi. A path from Vi to Vj that is not possibly causal is called a non-causal path from Vi to Vj .

Definition 13 (Uncovered Path). A path π = ⟨V0, . . . , Vn⟩ is said to be uncovered if for every 1 ≤ i ≤ n− 1, Vi−1 and
Vi+1 are not adjacent, i.e. , every consecutive triple ⟨Vi−1, Vi, Vi+1⟩ on the path is unshielded.

Definition 14 (Induced Subgraph). Given a graph G = ⟨V,E⟩, where V is a vertex set and E is an edge set. Given a
subset V′ of V, the induced subgraph of G over V′ is defined as G′ = ⟨V′,E′⟩, where E′ ⊂ E contains only edges between
vertices in V′.

Definition 15 (Complete Graph). In a graph, if there is an edge between any two vertices, then the graph is called
complete graph.

Definition 16 (Maximal Clique). Given a graph G = (V,E), a clique C in G is a subset of vertices, where C ⊆ V, such
that the induced subgraph GC of G over C is a complete graph. C is called a maximal clique in G if there exists no clique
C

′
in G such that C

′ ⊃ C.

Definition 17 (Causal Markov Condition (Spirtes et al., 2000)). Given a set of variables V whose causal structure is
represented by a DAG G, every variable in V is probabilistically independent of its non-descendants in G given its parents
in G.

Definition 18 (Causal Faithfulness Condition (Spirtes et al., 2000)). Given a set of variables V whose causal structure is
represented by a DAG G, the joint probability of V, P (V), is faithful to G in the sense that P (V) implies no conditional
independence relations not already entailed by the causal Markov condition.

Under the above two conditions, conditional independence relations among the observed variables correspond exactly to
m-separation in the MAG or PAG G, i.e., (X ⊥⊥ Y|Z)P ⇔ (X ⊥⊥ Y|Z)G .

A.2. More Details on Markov Blanket

The concept of the Markov blanket was first termed by Pearl (1988) and has become a widely used technique for reducing
the number of variables or features, thereby enabling more efficient and robust model construction (Guyon & Elisseeff,
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2003; Pellet & Elisseeff, 2008b; Gao & Ji, 2016). More specifically, the Markov blanket of a variable X is the smallest set
containing all variables carrying information about X that cannot be obtained from any other variable 8 (Aliferis et al., 2010).
Importantly, the Markov blanket possesses a unique and valuable property, which is formally described in Definition 19.

Definition 19 (Markov Blanket). The Markov blanket of a variable X is the smallest set of variables MB(X) such that
for all V ∈ V \ (MB(X) ∪ {X}, X is conditionally independent of V given MB(X):

X ⊥⊥ V | MB(X).

Graphically, assuming faithfulness, the Markov blanket of a vertex X in a DAG is defined as in Definition 20.

Definition 20 (Markov Blanket for DAGs (Pearl, 1988; 2000)). Assuming faithfulness, in a DAG, the Markov blanket of a
vertex X is unique, denoted as MB(X,G), includes the set of parents, children, and the parents of the children (spouses) of
X .

The Markov blanket of one vertex in a MAG is then defined as shown in Definition 21.

Definition 21 (Markov Blanket for MAGs (Richardson, 2003; Pellet & Elisseeff, 2008a)). Assuming faithfulness, in a
MAG, the Markov blanket of a vertex X , noted as MB(X,M), consists of the set of parents, children, children’s parents of
X , as well as the district of X and of the children of X , and the parents of each vertex of these districts, where the district
of a vertex V is the set of all vertices reachable from V using only bidirected edges.

A.3. Overview of Causal Relationships

In this section, we provide an overview of the causal relationships within the Markov equivalence class of a MAG, as
illustrated in Figure 6. Additionally, we present an example to clarify these causal relationships, as shown in Figure 7.

Causal relations. From observed data, without additional distributional assumptions, the causal relationships between a
pair of variables that can generally be identified are summarized as follows, with an overview provided in Figure 6:

• Invariant non-ancestor: a variable X is an invariant ancestor of a variable Y if and only if there is no directed path
from X to Y in every equivalent MAG.

• Invariant ancestor: a variable X is an invariant ancestor of a variable Y if and only if there is a directed path from X to
Y in every equivalent MAG.
– Explicit invariant ancestor: a variable X is an explicit invariant ancestor of a variable Y if and only if X has a

common directed path to Y in every equivalent MAG.
– Implicit invariant ancestor: a variable X is an implicit invariant ancestor of a variable Y if and only if X is an

invariant ancestor of Y but there is no common directed path to Y in every equivalent MAG.
• Possible ancestor: A variable X is a possible ancestor of a variable Y if X is neither an invariant ancestor nor an invariant

non-ancestor of Y. In other words, X is a possible ancestor of Y if there is a directed path from X to Y in some (but not
all) equivalent MAGs.

Examples. Consider the causal diagrams shown in Figure 7. We illustrate the above causal relationships with the following
examples:

• Invariant non-ancestor: Let X = D and Y = A. There is no directed path from D to A in Figure 7 (c-g), thus D
qualifies as an invariant non-ancestor of A.

• Invariant ancestor:
– Explicit invariant ancestor: Let X = D and Y = E. A common directed path D → E is present in every graph

within Figure 7 (c-g), thereby establishing D as an explicit invariant ancestor of E.
– Implicit invariant ancestor: Let X = A and Y = D. There is a directed path from A to D that can be observed in

every graph within Figure 7 (c-g), but there is no common directed path from A to D in these graphs. Therefore, A is
considered an implicit invariant ancestor of D.

• Possible ancestor: Let X = B and Y = C. A directed path from B to C exists in Figures 7 (f), but no directed path is
found from B to C in Figures 7 (c-e) and (g). Consequently, B is regarded as a possible ancestor of C.

8Some authors use the term “Markov blanket” without the notion of minimality, and use “Markov boundary” to denote the smallest
Markov blanket. For clarity, we adopt the convention that the Markov blanket refers to the minimal Markov blanket.
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Figure 6. Overview of Causal Relations in the Markov equivalence class (MEC) of a true MAG.
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Figure 7. The legend illustrates the causal relationships within the equivalence class of a true MAG. (a) A true MAG. (b) The corresponding
PAG of the MAG in (a). (c-g) The Markov equivalence class of MAGs represented by the PAG in (b).

B. Supplement Theorems
In this section, we present the ordered local Markov property for MAGs as proposed by Richardson (2003). We then show
Theorem 7, which states that the local Markov property in Definition 3 is consistent with the ordered local Markov property.
First, we introduce the following important definitions related to the ordered local Markov property.

Definition 22 (Total ordering). LetM be the MAG over O, the total ordering ≺ on the vertices ofM is defined such that
for any two vertices V,X ∈ O:

V ≺ X =⇒ X /∈ An(V,M),

where An(V,M) denotes the set of all ancestors of V inM.

Definition 23 (District). In a MAGM, the pulsed district of X , denoted as Dis+(X,M), is the set of vertices connected to
X by a path consisting entirely of bidirected edges (↔), including X itself. Formally:

Dis+(X,M) = {X} ∪ {V | X ↔ · · · ↔ V inM}.

The district of X is defined as:
Dis(X,M) = Dis+(X,M) \ {X}.
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The ordered local Markov property for MAGs proposed by Richardson (2003) is the following definition.

Definition 24 (Ordered local Markov property). LetM be the MAG over O, and let Pre(X,M) = {V | V ≺ X inM}
and Pre+(X,M) = Pre(X,M) ∪ {X}. DefineMPre+ as the induced subgraph ofM on Pre+(X,M). The ordered
local Markov property states that for every variable X ∈ O, the following conditional independence holds:

X ⊥⊥ Pre(X,M) \MB(X,MPre+) | MB(X,MPre+) (2)

where MB(X,MPre+) = Pa(Dis+(X,MPre+)) ∪Dis(X,MPre+).

Lemma 1. LetM be the MAG over O, and let Pre+(X,M) = {V | V ≺ X or V = X}. LetMPre+ denote the induced
subgraph ofM on the vertex set Pre+(X,M). For any vertex X ∈ O, the following equivalence holds:

MB(X,MPre+) ≡ Pa∗(X,M).

Proof. Without loss of generality, we assume that

MB(X,MPre+) ̸= Pa∗(X,M),

which implies that there exists a vertex V ∈ MB(X,MPre+) such that V /∈ Pa∗(X,M), or there exists a vertex
V /∈ MB(X,MPre+) such that V ∈ Pa∗(X,M).

If there exists a vertex V ∈ MB(X,MPre+), then there is one arrow-collider path from X to V inM. Assume that this
vertex V /∈ Pa∗(X,M), hence X is an ancestor of a vertex on this path (excluding X) inM. This contradicts the definition
of Pre+(X,M). Consequently, X is not an ancestor of any vertex on this path inM, which implies V ∈ Pa∗(X,M).

Conversely, if there exists a vertex V ∈ Pa∗(X,M), then, according to Definition 2, we have

V ∈ Pa(Dis+(X,MPre+)) ∪Dis(X,MPre+).

Thus, it follows that V ∈ MB(X,MPre+).

This completes the proof.

Theorem 7. LetM be the MAG over O, for any vertex X ∈ O, the local Markov property in Definition 3 is satisfied if and
only if the ordered local Markov property is satisfied.

Proof. By the definitions of the ordered local Markov property and the local Markov property, as well as Lemma 1, the
equivalence is immediate.

C. Proofs
C.1. Proof of Theorem 1

Lemma 2. (Zhang, 2006) Let P be the PAG over a set of variables O representing the invariant characteristics of equivalent
MAGs, X and Y are distinct vertices in P . X is an invariant non-ancestor of Y if and only if there is no partially directed
path from X to Y in P .

Proof. Suppose that there is no partially directed path in P from X to Y , hence there cannot be any directed path from X to
Y in the equivalent MAGs. Therefore, X is an invariant non-ancestor of Y . Conversely, suppose there is a partially directed
path from X to Y in P . This implies that there is a directed path from X to Y in some equivalent MAGsM∈ [P]. Thus,
X is not an invariant non-ancestor of Y .

Lemma 3 (A Crucial Property for PAG). (Lemma 3.3.1 in Zhang (2006)) In a PAG, the following property holds: for any
three vertices A, B, and C, if A∗→ B ◦−∗ C, then there is an edge between A and C with an arrowhead at C, namely
A∗→ C.

Now, we prove the Theorem 1 based on the above Lemma 2 and Lemma 3.
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Proof. Assume that X ⊥⊥ Y | Pa∗(X,P). To begin with, assume Y ∈ Pa∗(X,P). By the definition of Pa∗(X,P), Y
cannot be a descendant of X in any MAG M ∈ [P]. Hence, X is an invariant non-ancestor of Y . Secondly, assume
Y /∈ Pa∗(X,P). Since X ⊥⊥ Y | Pa∗(X,P), X and Y are m-separated by Pa∗(X,P). Moreover, by the definition of
Pa∗(X,P), every vertex in Pa∗(X,P) does not block any directed path from X to Y for any MAGM∈ [P]. Therefore,
there is no partially directed path from X to Y . If such a path existed, it would imply X ⊥̸⊥ Y | Pa∗(X,P), contradicting
the assumption. Thus, by Lemma 2, X is an invariant non-ancestor of Y .

Conversely, if X is an invariant non-ancestor of Y , then for every MAGM in the Markov equivalence class represented
by P , X is a non-ancestor of Y in everyM∈ [P]. If there is no active path between X and Y , then we have X ⊥⊥ Y | ∅.
By Definition 2, the set Pa∗(X,P) does not open any active path between X and Y , so X ⊥⊥ Y | Pa∗(X,P) holds. If
there is an active path π = ⟨X,V1, . . . , Vj , Z, . . . Y ⟩ between X and Y , by Lemma 2, there exists an edge Vj ←∗Z on π.
If the subpath of π between X and Vj forms X ← V1 · · · ← Vj , then π is blocked by Pa∗(X,P). Alternatively, if the
subpath of π between X and Vj forms X ∗−◦ V1 · · · ∗−◦ Vj , then, by Lemma 3, there exists an edge←∗Z between Z
and {X,V1, . . . , Vj}, then π also blocked by Pa∗(X,P). Consequently, no new active path will be opened, and therefore
X ⊥⊥ Y | Pa∗(X,P) holds.

C.2. Proof of Theorem 2

Before the proof begins, we quote the following lemma since it is used to prove Theorem 2.

Lemma 4 (Lemma 7.2 in (Maathuis & Colombo, 2015)). Let X and Y be two distinct vertices in P , where P is a PAG. If
there is an uncovered partially directed path π = ⟨X = V1, . . . , Vk = Y ⟩ from X to Y . Moreover, if Vi−1∗→ Vi for some
i ∈ {2, . . . , k}, then Vj−1 → Vj for all j ∈ {i+ 1, ..., k}.

Now, we prove the Theorem 2.

Proof. Assume that X is an explicit invariant ancestor of Y . Then, there is a directed path π from X to Y in P . Moreover,
this implies that there is a directed path from X to Y in every M ∈ [P]. According to Definitions 2 and 7, none of
the vertices in Pa∗(X,P) ∪ Ne∗(X,P) are part of the path π. Consequently, the path π remains active conditional on
Pa∗(X,P) ∪Ne∗(X,P). This implies that X ⊥̸⊥ Y | Pa∗(X,P) ∪Ne∗(X,P).

Suppose X ⊥̸⊥ Y | Pa∗(X,P) ∪ Ne∗(X,P), which imply there is an active path π between X and Y conditional on
Pa∗(X,P) ∪ Ne∗(X,P). If the length of π is 1, then π must be one of the following forms: X ←∗Y , X ◦−∗ Y , and
X → Y . Further, if π is one of the forms X ←∗Y or X ◦−∗ Y , then Y ∈ Pa∗(X,P) ∪Ne∗(X,P), which implies that π
is blocked by Pa∗(X,P) ∪Ne∗(X,P) and consequently, X is not an explicit invariant ancestor of Y . If π forms X → Y ,
then π is not blocked by Pa∗(X,P) ∪Ne∗(X,P) and X is an explicit invariant ancestor of Y . If the length of π is greater
than 1, let π = ⟨X,V, . . . , Y ⟩. The edge between X and V on π is one of following forms: X ←∗V , X ◦−∗ V , or X → V .
If the edge between X and V on π is either X ←∗V or X ◦−∗ V , then π is blocked by Pa∗(X,P) ∪ Ne∗(X,P) as
V ∈ Pa∗(X,P)∪Ne∗(X,P). If the edge between X and V on π is either X ↔ V or X◦→ V , a new active path π′ may be
created if V is a collider on π′. Let π′ = ⟨X,V,W . . . , Y ⟩, according to Definitions 2 and 7, W ∈ Pa∗(X,P)∪Ne∗(X,P).
Therefore, the new active path π′ is also blocked by Pa∗(X,P) ∪Ne∗(X,P). If W is a collider in another path similar to
π′, it will also be blocked by Pa∗(X,P) ∪Ne∗(X,P). If the edge between X and V on π is either X ←◦V or X ◦−◦ V ,
according to Lemma 3, no active path will be opened. Hence, the edge between X and V on π is X → V , by Lemma 4, π
is a directed path and not blocked by Pa∗(X,P) ∪Ne∗(X,P). Consequently, if X ⊥⊥ Y | Pa∗(X,P) ∪Ne∗(X,P), then
there is a directed path from X to Y in P , X is an explicit invariant ancestor of Y .

C.3. Proof of Theorem 3

Lemma 5. (Zhang, 2006; Roumpelaki et al., 2016) Let P be the PAG over a set of variables O representing the invariant
characteristics of equivalent MAGs, X and Y are distinct vertices in P . X is an implicit invariant ancestor of Y if and only
if there are two uncovered partially directed paths from X to Y in P such that the vertices adjacent to X on the two paths
respectively are distinct and are not adjacent.

Without loss of generality, we say the chordless partially directed path as the minimal uncovered partially directed path,
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where no edge joins any two nonconsecutive vertices on the path. Hence, Lemma 5 can be stated as follows: X is an implicit
invariant ancestor of Y if and only if there are two chordless partially directed paths from X to Y in P such that the vertices
adjacent to X on the two paths respectively are distinct and are not adjacent.

Now, we prove the Theorem 3.

Proof. Assume that X is an implicit invariant ancestor of Y . This implies that while there is no directed path from X
to Y in P , there exists a directed path π from X to Y in every M ∈ [P]. By Theorem 2, we know that X ⊥⊥ Y |
Pa∗(X,P) ∪ Ne∗(X,P) as X is not an explicit invariant ancestor of Y . Now, according to Lemma 5, we have that
|M| ≥ 2, where M = {M1,M2, . . . ,M|M|}. For any Mi ∈M, where 1 ≤ i ≤ |M|, there is a chordless partially directed
path π = ⟨X,V1, V2 . . . , Vn, Y ⟩ from X to Y such that V1 /∈ Mi. Since π is a chordless partially directed path, and by
Definitions 2 and 7, it follows that none of the vertices {V2 . . . , Vn, Y } can be invariant non-descendants of X . Consequently,
these vertices do not belong to Pa∗(X,P) ∪Ne∗(XMi ,P). Moreover, it is evident that V1 /∈ Pa∗(X,P) ∪Ne∗(XMi ,P).
Which ensures that π is active when conditioned on Pa∗(X,P) ∪ Ne∗(XMi ,P). Thus, for each Mi ∈ M, we conclude
that X ⊥̸⊥ Y | Pa∗(X,P) ∪Ne∗(XMi

,P).

Suppose X ⊥⊥ Y | Pa∗(X,P)∪Ne∗(X,P), which implies X is not an explicit invariant ancestor of Y and Y /∈ Ch(X,P).
Additionally, we have X ⊥̸⊥ Y | Pa∗(X,P) ∪ Ne∗(XM,P) for each M ∈ M, which leads to the conclusion that
Y /∈ Pa∗(X,P) ∪Ne∗(XM,P). Hence, Y /∈ Adj (X,P). Now, we assume that M = {M1,M2, . . . ,M|M|}. If |M| = 1,
we have Ne∗(XM1

,P) = Ne∗(X,P), leading to a contradiction: both X ⊥⊥ Y | Pa∗(X,P) ∪Ne∗(X,P) and X ⊥̸⊥ Y |
Pa∗(X,P) ∪Ne∗(XM1

,P) hold simultaneously. Therefore, |M| ≥ 2. Further, for each Mi ∈M where 1 ≤ i ≤ |M|, we
have X ⊥̸⊥ Y | Pa∗(X,P) ∪ Ne∗(XMi ,P), which implies that there exists an active path π between X and Y that not
blocked by Pa∗(X,P) ∪ Ne∗(XMi ,P). The length of π is greater than 1, let π = ⟨X,V, . . . , Y ⟩. If the edge between
X and V on π is X ←∗V , then π would be blocked by Pa∗(X,P), implying that X ⊥̸⊥ Y | Pa∗(X,P) ∪Ne∗(XMi

,P)
cannot hold. If the edge between X and V on π is X → V , π would form a directed path by Lemma 4, which contradicts
that X ⊥⊥ Y | Pa∗(X,P) ∪Ne∗(X,P). Hence, the edge between X and V on π must be X ◦−∗ V . Assume that the edge
between X and V on π is X ◦−◦ V , and π is not a partially directed path. Then there must be an edge Vj ←∗Z on π. By
Lemma 3, this implies that there is also an edge←∗Z between Z and {X,V, . . . , Vj−1}, which means that Z ∈ Pa∗(X,P).
Consequently, the assumption X ⊥̸⊥ Y | Pa∗(X,P)∪Ne∗(XMi ,P) would not hold. Therefore, π is an uncovered partially
directed path. And |M| ≥ 2, we conclude that X is an implicit invariant ancestor of Y .

C.4. Proof of Corollary 1

Proof. The result follows directly from Theorems 2 and 3.

C.5. Proof of Theorem 4

Proof. X is an invariant non-ancestor of Y if and only if Theorem 1 holds, and X is an invariant ancestor of Y if and only
if Corollary 1 holds. Thus, X is a possible ancestor of Y if and only if neither Theorem 1 nor Corollary 1 holds.

C.6. Proof of Proposition 2

Proof. For the proof of the statement S1 in Proposition 2, refer to Theorem 2 in Xie et al. (2024). We prove statement S2 in
Proposition 2 below. For notational convenience, let SX,Y denote the set of vertices that m-separates X and Y . Let P be the
ground-truth PAG over O.

Without loss of generality, suppose we identify an uncovered collider path in LX : X∗→ V1 ↔ · · · ←∗Vi. Here, all
intermediate vertices are collider vertices, implying that every consecutive triplet forms an unshielded collider. Consider the
first triplet ⟨X,V1, V2⟩. Since this triplet is obtained over MB+(X ), the following conditions hold: (1) ∀S ⊆ MB(X ), X ⊥̸⊥
V1 | S, (2) ∃SX,V2

⊆ MB(X ), X ⊥⊥ V2 | SX,V2
, (3) ∀S ⊆ MB+(X ), V1 ⊥̸⊥ V2 | S, and (4) V1 /∈ SX,V2

. According to
Proposition 1, condition (1) implies that the presence of a direct edge between X and V1 in LX is consistent with P . And
condition (2) implies that the absence of a direct edge between X and V2 in LX is also consistent with P . Assume that the
edge between X and V1 in P is X ∗−V1. Then, combining conditions (3) and (4), we have ∀S ⊆ MB(X ), X ⊥̸⊥ V2 | S,
which contradicts condition (2). Therefore, the edge between X and V1 must be X∗→ V1 in P .
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Next, assume the edge between V1 and V2 is spurious, meaning there is no direct edge between V1 and V2 in P but
at least one active path exists between them. We denote a specific set of vertices as Z = Pa∗(V1) ∪ SX,V2 , note that
Pa∗(V1) ⊂ MB(X) since X∗→ V1. We analyze the active paths as follows. First, if there exists an active path of the form
V1 ← A1 . . . V2, then A1 can block that path. If A1 is a collider on a path p1 : V1 · · · ∗ → A1 ← ∗ . . . V2, due to the graph
being ancestral and V1 ← A1, there must exist V1 ← A2 on p1. Thus A2 also blocks p1, and if A2 is also a collider on a
path, it falls back to the case where A1 is a collider. Second, if there exists an active path of the form V1 ↔ A3 → . . . V2,
then A3 can block that path. If A3 is a collider on a path p2 : V1 · · · ∗ → A3 ← ∗ . . . V2, due to the graph being ancestral
and A3 → . . . V2, there must exist a A3 ← ∗A4 on p2 . Thus A4 also blocks p2, and if A4 is also a collider on a path, it
falls back to the case where A3 or A1 is a collider. Here, all Ai belong to Pa∗(V1). Thrid, if there exists an active path of
the form V1 → . . . V2, then SX,V2

⊆ MB(X) can block that path due to X∗ → V1 and V1 /∈ SX,V2
. Thus, Z blocks all

active paths between V1 and V2, confirming that the edge V1 ←∗V2 in LX is consistent with P .

Then, consider the second triplet ⟨V1, V2, V3⟩. The following conditions hold: (1) ∀S ⊆ MB(X ), V1 ⊥̸⊥ V2 | S, (2)
∃SV1,V3

⊆ MB(X ), V1 ⊥⊥ V3 | SV1,V3
, (3) ∀S ⊆ MB+(X ), V2 ⊥̸⊥ V3 | S, and (4) V2 /∈ SV1,V3

. As discussed above,
the direct edge between V1 and V2 in LX is consistent with P , and the absence of a direct edge between V2 and V3 in
LX is also consistent with P . Assuming the edge between V1 and V2 in P is V1 ∗−V2, conditions (3) and (4) lead to
∀S ⊆ MB(X ), V1 ⊥̸⊥ V2 | S, which contradicts condition (2). Therefore, the edge between X and V1 must be X∗→ V1 in
P . Similarly, Pa∗(V2) ⊂ MB(X) since X∗→ V1 ↔ V2. Thus, the direct edge between V2 and V3 in LX is the same with
P .

The remaining unshielded collider triples along the path are similarly confirmed by the above analysis. Thus, the uncovered
collider paths X∗→ Vi ↔ · · · ←∗Vj we identify in LX must be consistent with those in the ground-truth PAG P .

C.7. Proof of Proposition 3

Rule R1 guarantees that all causal relationships among the variables in MB+(X)—including both the edges and the
directionalities—have been fully identified. Rule R2 ensures that every variable in O has been effectively incorporated
into the learning process, such that no variable remains available for further sequential learning. R1 and R2 are hold
by construction. Therefore, our focus shifts to verifying the validity of Rule R3. To support this, we first introduce the
following lemma, which will play a crucial role in provingR3 of Proposition 3.

Lemma 6 (Lemma 2 in Xie et al. (2024)). In a MAGM with a set of vertices O, consider K as a leaf vertex (i.e., K is not
an ancestor of any vertex in O). LetM′ be the new MAG obtained by removing K fromM, and O′ be the set of all vertices
inM′, then the following condition holds:

PM(O′) = PM′(O′) (3)

Lemma 6 establishes that the joint probability distribution of the remaining vertex set O′ in the modified MAGM′ is
identical to that in the original MAGM. In other words, the removal of the leaf vertex K fromM does not alter the joint
probability distribution of the vertices in O′. When considering a set of vertices that only includes the above-defined leaf
vertex, the following intuition can be derived.

Intuition: let O be a set of observed varibles,M be the MAG graph over O, and X′ = {O \Y}, where Y represents the
set of leaf vertices relative to X′ inM. According to Lemma 6, we can deduce that PM(X′) = PM′(X′), whereM′ is
the new MAG obtained by removing the leaf set Y fromM. Then, let X′′ = {O \Y ∪Y′}, where Y′ denotes the set
of leaf vertices relative to X′′ inM′. Subsequently, using Lemma 6, we can infer PM′(X′′) = PM′′(X′′), whereM′′

is the new MAG obtained by removing Y′ fromM′. By iterating this process, we arrive at a local MAGML, such that
PM(X) = PM′(X) = PM′′(X) = PML

(X), where X = {O \K}, and K represents the set of leaf vertices removed
during the iteration. It is worth noting that if we do not stop the process, ML will indeed become an empty graph. However,
by suitably removing leaf nodes, we can derive the local subgraph ML of interest from the global MAG M .

Building on the lemma above, we now proceed to prove RuleR3 of Proposition 3.

Proof. Assuming the sequential learning process terminates due to satisfyingR3, the result we learned is a sub-PAG of the
global P over some observed variables. Roughly speaking, the learned result is a PAG of a ML that by suitably removing
leaf nodes from the global MAGM.
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Let’s provide a more detailed explanation ofR3. Assuming that we have identified a set O′ (MB+(X) ⊆ O′) of variables
around MB+(X) in the sequential learning process. For each vertex T ∈ MB+(X), and another vertex V1 ∈ MB+(X).
Assume that we identify there is an edge between T and V1, and it is an undirected edge. If we identify that all paths
⟨T, V1, V2, . . . , Vn,K⟩ connected to this undirected edge possess the following characteristics: the edges between T and V1

on these path are undirected, while there is an edge form Vn → K or Vn◦→ K on these paths. When the undirected edge
between any two variables in MB+(X) satisfies this condition, thenR3 is satisfied, thus we can conclude the sequential
learning algorithm.

Then, We proceed to demonstrate why the sequential learning algorithm can be halted whenR3 is satisfied. In our learning
process, we identify that the edges between T and V1 on the paths are undirected, while Vn∗→ K. The edge between Vn

and K on these paths from T to K in underlyingML is either Vn ↔ K or Vn → K. Since we have identified ∗→ K,
we can infer that these K vertices belong to the leaf vertices of the underlyingML. Combining these K vertices into a
set K, according to Lemma 6, we can deduce that PM′

L
(O′′) = PML

(O′′), where O′′ = {O′ \K} andM′
L is the new

MAG obtained by removing K fromML. This implies that the joint probability distribution of the remaining vertices
set O′′ in M′

L is equivalent to the joint probability distribution of the same vertex set O′′ in the ML. Then, through
PM(X) = PM′(X) = PM′′(X) = PML

(X), we can get PM′
L
(O′′) = PM(O′′).

Assume that we failed to identify, based on the marginal distribution of O′′, that all paths connected to the undirected
edge between any two variables in MB+(X) are blocked by ∗→. Then, we will continue the learning process until all
paths connected to the undirected edge between any two variables in MB+(X) are blocked by ∗→ through the marginal
distribution of O′. To summarize, whenR3 is triggered, we can get PML

(O′) = PM(O′) which implies that continuing
this algorithm will not contribute to orienting the undirected edges between any two variables in MB+(X). Hence, upon
satisfaction ofR3, we can conclude the sequential learning PMB+(X).

C.8. Proof of Proposition 4

Proof. By Lemma 5, for a vertex V ∈ MB(X) \ Adj (X,PMB+(X )), X is an invariant non-ancestor of V if and only if
there no partially directed path from X to V . Assume that X is an invariant non-ancestor of V . If there no active path
between X and V , then X ⊥⊥ V | ∅ (∅ ⊂ IPreMB (X)). If an active path π exists between X and V , the length of π is
necessarily greater than 1, and π cannot be a partially directed path. Thus, there is an edge Vj ←∗Z on π. If the subpath
of π between X and Vj forms X ← V1 · · · ← Vj , then X and V are m-separated by V1, where V1 ∈ IPreMB (X). If the
subpath of π between X and Vj forms X ∗−◦ V1 · · · ∗−◦ Vj , then by Lemma 3, there exists an edge←∗Z between Z and
{X,V1, . . . , Vj}, where Z ∈ IPreMB (X). Conversely, assume X ⊥⊥ V | Z, where Z ⊆ IPreMB (X). If Z = ∅, then there
is no active path between X and V , and consequently, no partially directed path from X to V . If Z ̸= ∅, then there exists an
active path π between X and V . If π is a partially directed path from X to V , then the subpath of π between X and some
Z ∈ Z would also be a partially directed path. Hence, π is not a partially directed path from X to V . This completes the
proof.

C.9. Proof of Theorem 5

Proof. We first prove the learned PMB+(X)is identical to the induced subgraph of the ground-truth PAG P over MB+(X).
To establish the consistency between PMB+(X)and P , it is imperative to demonstrate the consistency of all edges and
orientations in the resulting graph PMB+(X).

Following Proposition 1, it is established that all edges in PMB+(X)are accurate. Subsequently, relying on Proposition 2, it
can be inferred that all colliders in PMB+(X)are correct. Following Zhang’s orientation methodology, the undirected edges
in PMB+(X)are oriented by checking the presence of edges and directions in PMB+(X). Ultimately, by Proposition 3, ifR1
is triggered, there are no circles on the edges among the of MB+(X) in PMB+(X). IfR2 is triggered, it means that the final
Donelist is equal to O. IfR3 is triggered, it means that learning the L of the remaining variables does not help determine
the undirected edges among the of MB+(X) in PMB+(X). Consequently, the resulting graph PMB+(X)is identical to the
induced subgraph of the ground-truth PAG over MB+(X).

Given the PMB+(X)that is identical to the induced subgraph of the ground-truth PAG over MB+(X). For any vertex
V ∈ Adj (X,PMB+(X)), V ∈ IPreMB (X) if and only if the edge between V and X is X ←∗V in PMB+(X). For any
vertex V ∈ MB(X) \Adj (X,PMB+(X)), according to the Proposition 4, we can completely identify whether it belongs to
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IPreMB (X).

Thus, the learned PMB+(X)corresponds to the induced subgraph of the true PAG over MB+(X). Moreover, the learned
IPreMB (X) includes all vertices in MB(X) for which X is an invariant non-ancestor. Consequently, the conditional sets
obtained from Algorithm 1 match those derived from the ground-truth PAG.

C.10. Proof of Theorem 6

Proof. According to Theorem 5, the condition set obtained by Algorithm 1 is consistent with those derived from the true
PAG. Furthermore, leveraging the sufficient and necessary local characterizations for invariant non-ancestors, invariant
ancestors, and possible ancestors, i.e. , Theorem 1, Corollary 1, and Theorem 4, Algorithm 2 ensures a sound and complete
identification of causal relationships between any pair of variables.

D. More Details on Local Learning Conditional Sets Algorithm (in Section 5.1)

Algorithm 1 Local Learning Conditional Sets

Input: Target X , observed data O

/*— Step one: Local learning PMB+(X)—*/

1: Initialize : Waitlist := {X}, Donelist := ∅, P = ∅.
2: repeat
3: Vi ← the head node of Waitlist.
4: MB(Vi)← MBalg(Vi) (See Algorithm 3).
5: if ∃Vj ∈Donelist,MB+(Vi) ⊆ MB+(Vj) then
6: LVi

← the substructure of LVj
over MB+(Vi);

7: else if MB+(Vi) ⊆ Donelist then
8: LVi

← the substructure of P over MB+(Vi);
9: else

10: Learn LVi over MB+(Vi).
11: end if
12: P ← select the edges connected to Vi , the V-structures containing Vi, and the uncovered collider paths from Vi.
13: P ← orient maximally the edge marks using the orientation rules of Zhang (2008).
14: Add Vi to Donelist, and remove Vi from the Waitlist.
15: Add {MB(Vi) \ (Waitlist ∪Donelist)} to Waitlist
16: until One of the stop RulesR1 ∼ R3 is met

/*— Step two: Local learning IPreMB (X) *—/

17: PMB+(X) ← induced subgraph from P
18: IPreMB (X) = {V ∈ MB(X) | X ←∗V in PMB+(X)}
19: CandSet = MB(X) \Adj (X,PMB+(X)).
20: repeat
21: V ← the head variable of CandSet ;
22: if ∃Z⊆IPreMB (X), X ⊥⊥ V | Z then
23: Add V to IPreMB (X), and remove V from the CandSet .
24: end if
25: until No variable in CandSet can be added in IPreMB (X).

/*— Step three: Obtain conditional sets *—/

26: According to PMB+(X), IPreMB (X), obtain Pa∗(X,P),Ne∗(X,P), Ne∗(XM,P) for each M ∈M.
Output: Pa∗(X,P),Ne∗(X,P) and Ne∗(XM,P) for each M ∈M.

23



Local Identifying Causal Relations in the Presence of Latent Variables

E. Illustration of Algorithms
In this section, we illustrate our LocICR algorithm with the graph in Figure 8(a). Here we are interested in the causal
relationship between the target variable pair (J, F ). We assume oracle tests for conditional independence.
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(a) Ground-truth PAG
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(g) Updated P after learning LF
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(h) The Final local P

Figure 8. The sequential process of step one in Algorithm 1 in the example, where the red edges indicate that the current local results
cannot be guaranteed to be consistent with the global learning results.
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(a) The Final PMB+(J)
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(b) The Final IPreMB (J ) = {G,A,H,C}
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(c) Pa∗(J,P) = {A,G}, Ne∗(J,P) = ∅

Figure 9. The process of steps two and three in Algorithm 1 in the example.

1. LocICR first executes the Algorithm 1, as detailed below (Line 1 of Algorithm 2).

Step one: Local learning PMB+(X).

• Initialize sets: Waitlist := {J},Donelist := ∅, and P = ∅ (Line 1 of Algorithm 1).
• After initialization, it runs MBalg(J ) and obtain MB(J ) = {A,G,F,B,C,D,H} (Lines 3 ∼ 4 of Algorithm 1).
• It then learns LJ over MB+(J ): H ◦−◦G◦→ J ↔ A↔ B ←◦C, H◦→ D ←◦J , and B ←◦F ◦−◦C, as shown

in Figure 8 (b) (Line 10 of Algorithm 1).
• Next, it updates P by selecting edges connected to J , V-structures involving J , and uncovered collider paths from
J (Line 12 of Algorithm 1). According to Propositions 1 and 2, these edges are:
G◦→ J ↔ A↔ B ←◦C, H◦→ D ←◦J , and B ←◦F .
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• Orient D ←◦J as D ← J by orientation rules (Line 13 of Algorithm 1). Consequently, it obtains P as shown in
Figure 8 (c) .

• Update Donelist={J}, and Waitlist = {A,G,F,B,C,D,H} (Lines 14 ∼ 15 of Algorithm 1).
• Sequentially, it runs MBalg(A) and obtain MB(A) = {B,C, F,G, J} . Since MB+(A) ⊂ MB+(J ), LA is an

induced substructure of LJ over MB+(A). (Line 6 of Algorithm 1)
• No new edges are introduced to P by LA (Lines 12 ∼ 14 of Algorithm 1).
• Update Donelist={A, J}, and Waitlist = {G,F,B,C,D,H}. (Lines 14 ∼ 15 of Algorithm 1)
• Run MBalg(G) to obtain MB(G) = {H,J,A,B,C, F}. Since MB+(G) ⊂ MB+(J ), LG is the induced

substructure of LJ over MB+(G), as depicted in Figure 8 (d). (Line 6 of Algorithm 1)
• Update P by selecting edges connected to G, V-structures involving G, and uncovered collider paths from G

(Line 12 of Algorithm 1). According to Propositions 1 and 2, these edges are:
H ◦−◦G◦→ J ↔ A↔ B ←◦C, and B ←◦F .

• Orient D ←◦H as D ← H by orientation rules (Line 13 of Algorithm 1). Consequently, it obtains P as shown in
Figure 8(e) .

• Update Donelist={J,A,G}, and Waitlist = {F,B,C,D,H}.
• It then runs MBalg(F ) and obtain MB(F ) = {I, A,B,C,G, J}. (Lines 3 ∼ 4 of Algorithm 1)
• Learn LF over MB+(F ): G◦→ J ↔ A ↔ B ←◦C, B ←◦F ←◦C, and F ←◦I , as depicted in Figure 8 (f)

(Line 10 of Algorithm 1).
• Next, it updates P by selecting the edges connected to F , the V-structures containing F , and the uncovered

collider paths from F (Line 12 of Algorithm 1). According to Proposition 1 and Proposition 2, these edges are:
G◦→ J ↔ A↔ B ←◦C, B ←◦F ←◦C, and F ←◦I .

• Orient B ←◦F as B ← F and C ←◦F as C ← F using orientation rules (Line 13 of Algorithm 1). Consequently,
it obtains P as shown in Figure 8 (g).

• Then, it updates Donelist={J,A,G, F}, and Waitlist = {B,C,D,H}.
• Finally, the repetition terminates upon reachingR3, yielding the final PAG P , as depicted in Figure 8 (h).

Step two: Local learning IPreMB (X).

• Obtain PMB+(X)induced from P , as depicted in Figure 9 (a). (Line 17 of Algorithm 1)
• Initialize: IPreMB (J )={G,A}, CandSet={H,B,C, F}. (Lines 18 ∼ 19 of Algorithm 1)
• For H: Since{G}⊆IPreMB (J ), J ⊥⊥ H | {G}, update:
IPreMB (J )={G,A,H}, CandSet={B,C, F}. (Lines 22 ∼ 23 of Algorithm 1)

• For C: Since J ⊥⊥ C | ∅, update:
IPreMB (J )={G,A,H,C}, CandSet={B,F}. (Lines 22 ∼ 23 of Algorithm 1)

• No subset Z ⊆ IPreMB (J ) satisfies J ⊥⊥ B | Z, and J ⊥⊥ F | Z, thus the iteration stops. (Line 25 of Algorithm
1)

• Final result: IPreMB (J ) = {G,A,H,C}.

Step three: Obtain conditional sets. (Line 26 of Algorithm 1)

• Based on PMB+(X), as depicted in Figure 9 (a), each vertex in the set{A,B,C, F,G} is connected to J via an
arrow-collider path from J to it. Meanwhile, no vertex is linked to J through a circle-collider path, implying that
no vertex satisfies Definition 7.

• Among these, the vertices {A,G} satisfy Definition 2. However, B does not, as the arrow-collider path from J to
B is J ↔ A↔ B, where B /∈ IPreMB (X). Similarly, C fails to satisfy Definition 2 because the arrow-collider
path connecting J to C is J ↔ A↔ B ← C, where B /∈ IPreMB (X). Likewise, F does not satisfy Definition
2 since the arrow-collider path from J to F is J ↔ A↔ B ← F , where B,F /∈ IPreMB (X).

• Consequently, we derive the following results: Pa∗(J,P) = {A,G}, Ne∗(J,P) = ∅ and M = ∅.

2. Building upon results, i.e. , Pa∗(J,P) = {A,G}, Ne∗(J,P) = ∅ and M = ∅, LocICR identifies the causal relationship
between the target variable pair (J, F ).

• Since J ⊥̸⊥ F | {A,G}, it follows that J is not an invariant non-ancestor of F . (Line 2 of Algorithm 2)
• Since J ⊥̸⊥ F | {A,G} ∪ ∅, it follows that J is an explicit invariant ancestor of F . (Lines 5 ∼ 6 of Algorithm 2)
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F. Complexity of Algorithm 2
Algorithm 2’s complexity mainly consists of the following two parts.

• Complexity of Algorithm 1 (Line 1 of Algorithm 2). The complexity of step one of the algorithm can be divided
into two parts: the first part involves finding MB, and the second part involves learning the local structure. Let r
denote the number of local structures to be learned sequentially in this step. We used the TC algorithm(Pellet &
Elisseeff, 2008b) to search for MB, the time complexity of finding MB among r variables out of n total variables is
O
(

r(2n−r−1)
2

)
, where n denotes the size of observed set O. When learning local structure, we apply the logic of the

PC algorithm to identify the skeleton over MB+(Vi). In the worst case, the complexity for learning a local structure
over m variables is O

(
m22m

)
. Let |MB+| denote the size of MB+(Vi). In the worst case, the complexity of the step

one is O
[
r(2n−r−1)

2 + r|MB+|22|MB+|
]
, the complexity of the step two is O

(
2|MB+|

)
. Therefore, in the worst

case, the complexity of Algorithm 1 is O
[
r(2n−r−1)

2 + r|MB+|22|MB+|
]
.

• Clearly, in the worst case, the complexity of Lines 2∼12 of Algorithm 2 is O (|M|), where |M| is the number of
maximal cliques of PossCh(X,P) ∪Ne(X,P).

In conclusion, the worst-case total complexity is given by:

O
[
r(2n− r − 1)

2
+ r|MB+|22|MB+| + |M|

]
.

G. More Details on Experimental Results
G.1. Overview of Comparison Methods

The following provides a detailed description of the comparison methods:

• PC-ITC: This method uses the PC-stable algorithm (Colombo et al., 2014) to learn the global causal structure, followed
by the global-ITC method (Fang et al., 2022) to identify the causal relationships of interest.

• RFCI-Zhang, M3HC-Zhang, ICD-Zhang: The RFCI (Colombo et al., 2014), M3HC (Tsirlis et al., 2018), ICD
(Rohekar et al., 2021) algorithms are employed to learn the global causal structure, and the criteria outlined in (Zhang,
2006; Roumpelaki et al., 2016) are then applied to identify the causal relations of interest.

• PC-IDA: The PC-stable algorithm (Colombo et al., 2014) is first used to learn the global causal structure. Causal
effects are then estimated using the IDA algorithm (Maathuis et al., 2009), followed by identification of the causal
relationships of interest based on the causal effect testing framework in Fang et al. (2022).

• RFCI-LVIDA: This method utilizes the RFCI algorithm (Colombo et al., 2014) to learn the global causal structure,
followed by the LV-IDA algorithm (Malinsky & Spirtes, 2016) for estimating causal effects. Finally, the causal relations
of interest are identified using the causal effect testing framework from Fang et al. (2022).

• Local-ITC: The MB-by-MB algorithm (Wang et al., 2014) is applied to learn the local causal structure of the target
variable X , followed by the local-ITC method (Fang et al., 2022) to identify the causal relationships of interest.

For the LV-IDA algorithm, we utilized the R implementation available at https://github.com/dmalinsk/lv-ida,
along with the RFCI and PC algorithms provided in the R package pcalg (Kalisch et al., 2012). The ICD algorithm was
implemented using the Python code from https://github.com/IntelLabs/causality-lab, while the M3HC
algorithm was implemented in MATLAB using the repository at https://github.com/mensxmachina/M3HC.

G.2. Evaluation Metrics

We evaluate the performance of the classifier using several commonly used metrics for multi-class classification problems.
These include Weighted Precision (WP), Weighted Recall (WR) and Weighted F1 Score (WF1).
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Weighted Precision (WP): The Weighted Precision is calculated as the weighted average of precision across all classes,
where each class’s precision is weighted by the number of true instances in that class. It is defined as:

WP =
1

n

3∑
i=1

wi ·
TPi

TPi + FPi

where:

• TPi is the number of true positives for class i,

• FPi is the number of false positives for class i,

• wi is the weight of class i, typically the proportion of samples belonging to that class.

Weighted Recall (WR): The Weighted Recall is the weighted average of recall across all classes, where each class’s recall
is weighted by the number of true instances in that class. It is given by:

WR =
1

n

3∑
i=1

wi ·
TPi

TPi + FNi

where:

• FNi is the number of false negatives for class i.

Weighted F1 Score (WF1): The Weighted F1 Score is the harmonic mean of Precision and Recall, weighted by the number
of true instances in each class. The formula for the Weighted F1 score is:

WF1 =
1

n

3∑
i=1

wi ·
2 · Precisioni · Recalli
Precisioni + Recalli

where:

• Precisioni and Recalli are the precision and recall for class i, respectively.

G.3. The Markov Blanket Learning Algorithm

Algorithm 3 MBalg(Pellet & Elisseeff, 2008b)

Input: Target Vi, observed data of O
1: Initialize : MB(Vi) := ∅.
2: for each Vj ∈ O \ Vi do
3: if Vi ⊥̸⊥ Vj | O \ {Vi, Vj} then
4: Add Vj to MB(Vi)
5: end if
6: end for
7: MB+(Vi) = {Vi ∪MB(Vi)}
Output: MB+(Vi)

In this section, we describe the procedure of the Total Conditioning (TC) algorithm (Pellet & Elisseeff, 2008b), which we
used to discover the Markov Blanket (MB).
Definition 25 (Total Conditioning (Pellet & Elisseeff, 2008b)). In the context of a faithful causal graph G, the following
holds:

∀X,Y ∈ V : (X ∈ Markov blanket(Y ))⇔ (X ⊥̸⊥ Y | V \X,Y ) (4)
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G.4. Complete Results

All experiments were performed with an Intel 2.70GHz CPU and 64 GB of memory. The complete experimental results for
the four benchmark Bayesian networks are presented in Figure 10. Table 2 provides a detailed overview of the network
statistics used in this paper 9.

Table 2. Statistics on the Networks.
Networks Num.nodes Number of arcs Max in-degree Avg degree
MILDEW 35 46 3 2.63
ALARM 37 46 4 2.49

WIN95PTS 76 112 7 2.95
ANDES 223 338 6 3.03

9Details of these networks can be found at https://www.bnlearn.com/bnrepository/.
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(a) Performance Comparisons on MILDEW.Net
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(b) Performance Comparisons on ALARM.Net
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(c) Performance Comparisons on WIN95PTS.Net
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(d) Performance Comparisons on ANDES.Net
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Figure 10. Performance of various algorithms on four benchmark networks
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