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ABSTRACT

Large language models (LLMs) are increasingly applied to software engineering
(SWE), but they struggle on real-world tasks that are long-horizon and often out
of distribution. Current systems typically adopt monolithic designs where a sin-
gle model attempts to interpret ambiguous issues, navigate large codebases, and
implement fixes in one extended reasoning chain. This design makes it difficult
to generalize beyond training data. Inspired by how human engineers decompose
problems into sub-tasks, we argue that SWE agents should be structured as or-
chestrators coordinating specialized sub-agents, each responsible for a specific
sub-task such as bug reproduction, fault localization, code modification, or valida-
tion. The central challenge is how to design these hierarchies effectively. Manual
decompositions follow human workflows but often mismatch LLM capabilities,
while automated search methods such as evolutionary strategies require evaluating
a very large number of candidates, making them prohibitively expensive for SWE.
We show that formulating hierarchy discovery as a multi-armed bandit problem
enables efficient exploration of sub-agent designs under limited budgets. On SWE-
bench-Verified, this approach outperforms single-agent systems and manually
designed multi-agent systems. On SWE-bench-Live, which features recent and
out-of-distribution issues, our system ranks 2nd on the leaderboard with a 36B
model, surpassing larger systems such as GPT-4 and Claude. This provides the
first evidence that hierarchical multi-agent systems improves generalization on
challenging long-horizon SWE tasks.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable progress in natural language processing
[41] and reasoning [18], and are increasingly adopted in solving complex coding problems [61].
Yet solving real-world software engineering (SWE) problems remains challenging [24] for LLMs,
particularly for issues that fall outside the training distribution [58]. Despite strong results on SWE-
bench-Verified [24], state-of-the-art systems struggle on more recent and out-of-distribution issues in
SWE-bench-Live [58].

One possible cause is the long-horizon nature of SWE tasks: Current LLM agents typically rely on
a single model to interpret underspecified problem statements, navigate large and interdependent
codebases, and carry out all sub-tasks—reproducing the bug, localizing the fault, editing the code,
and validating the fix—within one extended reasoning chain. This monolithic design hinders gen-
eralization: long contexts dilute attention and reduce retrieval accuracy [38; 39; 21], while jointly
solving all sub-tasks prevents modularity and hinders robustness [59; 60].

Inspired by how human engineers approach complex problems, we posit that explicit hierarchy can
help LLM-based agents manage long workflows. Cognitive science shows that people reduce mental
effort by decomposing tasks into smaller sub-tasks [31; 40; 33]; in software engineering, this typically
involves bug reproduction, fault localization, code modification, and validation [49; 23; 29]. This
same idea appears as temporal abstraction in hierarchical reinforcement learning (HRL) [10]: instead
of solving everything step by step, problems are handled by delegating to reusable sub-agents, each
defined as a policy for a specific sub-task [44]. An orchestrator coordinates these sub-agents by
choosing which one to activate, and each runs until it finishes its sub-task [44; 16; 9]. By planning
with sub-agents rather than individual steps, the orchestrator shortens the reasoning horizon, which
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reduces distraction from irrelevant details and isolates reusable patterns. This not only makes complex
problems more manageable but also improves generalization, since effective sub-agents can be reused
across different tasks and contexts.

Approaches to hierarchical multi-agent system design range from manual to automated. At one
end, engineers manually design decompositions, specifying sub-tasks and sub-agents that follow
human workflows [8; 35; 11]. These designs require substantial effort, and workflows that are natural
for humans do not necessarily translate into effective performance on LLM agents as shown in
our experiments (Section 5). At the other end, automated methods such as evolutionary search
generate designs automatically [56; 25; 22], but require evaluating large numbers of candidates. This
is practical in domains with cheap evaluation, such as multi-hop question answering [53; 30], but
infeasible for software engineering (SWE). In SWE, evaluations are expensive and long-horizon:
validating a single design can take up to an hour, requiring multi-step sandboxed runs and full
integration tests. The difficulty of credit assignment [42; 36] makes this even worse: determining
which sub-agents actually contributed to success would typically require extensive sampling, which
is prohibitively costly.

To address these challenges, we draw inspiration from multi-armed bandit (MAB) [14; 1; 17; 54] and
formulate the design of hierarchical multi-agent systems as a sequential decision-making process. We
term our method Bandit Optimization for Agent Design (BOAD). In MAB problems, a learner must
identify the best arm from a pool with limited performance queries, where outcomes are stochastic.
The learner balances exploration (testing new or uncertain arms) with exploitation (selecting the
arm with the highest observed reward so far). In our setting, each arm corresponds to a sub-agent
design (i.e., an agent prompt). We first optimize sub-agents and then fix them before deriving an
orchestrator design using LLM prompting, since jointly optimizing both would be a costly bi-level
optimization problem [13]. Typical evolutionary algorithms [20] generate candidate designs, evaluate
them, discard them, and propose new ones by mutating the top performers. This process is wasteful:
useful sub-agents may be discarded and rarely rediscovered because evolution is stochastic. Instead,
we archive all generated designs, and adaptively choose promising combinations to evaluate next.
This ensures efficient reuse of past designs and increases the likelihood of retaining strong sub-agents.
To tackle the credit assignment problem, we go beyond binary success signals of entire sub-agent
sets. We use LLM-as-a-judge [27] to assess whether individual sub-agents contributed meaningfully
within a trajectory and use these “helpfulness” scores as rewards for the model selection algorithm.

We evaluate our BOAD on SWE-bench-Verified [24], a benchmark for software engineering tasks
grounded in real GitHub issues. On SWE-bench-Verified, our method consistently outperforms single-
agent systems and manually designed multi-agent systems. On SWE-bench-Live [28], which includes
more recently collected issues and presents out-of-distribution challenges, our system achieves 2nd
place on the leaderboard using a 36B model—outperforming larger-scale systems based on Claude
and GPT-4. To our best knowledge, our work is the first to show generalization improvements using
automatically discovered hierarchical multi-agent systems on challenging long-horizon interactive
tasks like SWE-bench.

2 RELATED WORKS

Meta-agent design. Recent research has explored automatically designing agent organizations
to reduce reliance on human intuition. Zhang et al. [56]; Hu et al. [22] propose frameworks for
workflow generation and system-level automation, while Kim et al. [25] use evolutionary strategies
for self-referential prompt refinement. Chen et al. [12] dynamically constructs role-based agents and
coordinates them per task, though these roles are ephemeral and not reusable across settings. Other
approaches, such as Misaki et al. [32], improve inference-time compute allocation by adaptively
deciding whether to explore new candidates or refine existing ones. However, a common limitation
of these meta-agent design methods is their reliance on frequent evaluations to guide search. They
perform well when feedback is cheap and abundant (e.g., reasoning benchmarks or simple QA
tasks), but become impractical in software engineering settings, where each candidate often requires
sandboxed execution or full unit testing. In contrast, our method evolves reusable sub-agents and an
orchestrator, reusing effective components to reduce redundant evaluations and maintain efficiency
even under expensive feedback conditions.
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Evolutionary strategies for LLMs. Evolutionary strategies has been applied broadly to improve
LLM-based systems, such as algorithm discovery via code mutation [34] and self-rewriting agents
that iteratively mutate their own source code [55]. Evolutionary strategies have also been widely
explored for prompt optimization: Kim et al. [25] use co-evolutionary refinement, Guo et al. [19]
apply genetic search to discrete prompt tokens, and Agrawal et al. [2] leverage reflection with Pareto-
based selection for sample-efficient instruction tuning. These methods highlight how evolution can
reduce human effort and uncover novel strategies, but they typically rely on abundant, inexpensive
evaluations. In contrast, our method targets costly, long-horizon SWE tasks by maintaining a reusable
archive of sub-agents and casting sub-agent selection as a multi-armed bandit problem, improving
sample efficiency while preserving the benefits of hierarchical organization.

Multi-agent systems for SWE. Prior work has explored multi-agent designs for software engineering
tasks. Arora et al. [8]; Phan et al. [35]; Chen et al. [11] adopt modular or graph-based pipelines,
where subtasks and agent roles are manually defined. While structured, such pipelines require
heavy engineering and often fail to generalize. Other works exploit agent diversity through fixed
coordination schemes. Li et al. [28] engages specialized agents in a multi-round debate over candidate
bug-fix plans before producing the final repair, while Zhang et al. [57] introduce a meta-policy that
aggregates the code patch from multiple agents and identifies the most promising solution through
re-ranking. Although effective, these methods rely on predetermined pipelines or coordination rules,
which limit flexibility and adaptability. In contrast, our method learns hierarchical multi-agent
system automatically by jointly optimizing sub-agents and an orchestrator, avoiding manual task
decomposition and fixed ensemble strategies.

3 PRELIMINARIES

Software engineering agents We study the problem of using LLMs to resolve real-world GitHub
issues, where each issue consists of a textual description and a corresponding code repository. Since
issues are not self-contained, solving them requires identifying and modifying relevant parts of the
codebase. In this work, we focus exclusively on agentic methods [52], where an LLM interacts with
a runtime environment through tool use. Such agents can browse files, execute shell commands, run
tests, and edit code directly, giving them the flexibility to tackle long-horizon tasks end-to-end.

Markov Decision Process (MDP) We model agent—environment interaction as a finite-horizon
Markov decision process (MDP) [37], M = (S, A,r, H). At each step t, the agent observes
a state s; € S, consisting of the issue description z and the history of prior tool interactions
hi—1 = (a1,01,...,a;—1,0;—1). The agent samples an action a; € A from its policy 7(a; | s¢),
where A includes all available tools and commands. Executing a, yields an observation o; € O (e.g.,
logs, diffs, or test results), updating the state to s;1. A trajectory 7 = (sg, ag, . - - , ST, y) terminates
at T < H when the agent submits a patch y (forced at T' = H if none is submitted earlier). Rewards
are sparse:

1 if y passes all tests,

r(styar) = 0fort < T, r(sr.ar) = {O otherwise

The agent’s goal is to maximize the expected rewards J(7) = E, . [r(s7, ar)]. With sparse rewards
and long horizons, discovering successful trajectories is challenging.

Temporal Abstraction via Semi-MDP (SMDP) Semi-Markov Decision Process (SMDP) frame-
work [43] is widely used to mitigate long-horizon sparse reward problems. Instead of issuing primitive
actions a; € A, the orchestrator selects a temporally extended action (option) w; € 2. Each option
corresponds to a sub-agent that executes a sequence of actions (ay, . . . , @¢4m—1) until termination,
after which control returns at s;4,,, where m denotes the duration of an sub-agent. This reduces
decision frequency and simplifies planning.

Multi-Armed Bandit (MAB) Multi-armed bandit (MAB) [26] is a special case of an MDP with a
single state and no transitions. At each round ¢, the learner selects an arm a; € A, receives a stochastic
reward 7, € [0, 1] drawn from an unknown distribution, and seeks to maximize the cumulative reward
Zil r¢ over a fixed interaction budget B. The MAB framework captures decision-making under
uncertainty when only a limited number of trials are available.
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4 METHOD: BANDIT OPTIMIZATION FOR AGENT DESIGN (BOAD)

Our goal is to automatically discover a set of K sub-agents 2 = {w1, - ,wx } and an orchestrator
« that maximizes the expected reward of solving issues. A naive approach is to use evolutionary
search over (7, Q):

max E-TNDdqun,TN‘ﬂ' [T(STv aT)] ) (1)
7‘—7
where Dyesign 18 a design set consisting of example problems. In this paper, both the sub-agent and
the orchestrator agent are parameterized by their prompt. However, this requires generating many
full trajectories 7 and repeatedly querying the reward function r, which is prohibitively expensive.

Agent design as multi-armed bandit: We formulate the discovery of orchestrators and sub-agents as
a multi-armed bandit (MAB) problem [26], where each arm corresponds to a particular sub-agent and
at every round ¢, K sub-agents are chosen. This framing directs more evaluations toward promising
designs while continuing to explore new ones, reducing wasted trajectories on poor candidates.
Consequently, it makes automatic discovery of multi-agent systems tractable despite the high cost of
evaluations in SWE. A detailed formulation is given in Section 4.1. However, this direct approach
faces two challenges.

1. The space of possible orchestrators and sub-agent sets is extremely large and initially unknown,
making it impractical to enumerate arms in advance.

2. Even if we evaluate a sub-agent along with an orchestrator and the other sub-agents, credit
assignment is ambiguous: some sub-agents may succeed only by “free-riding” on others, so the
observed reward does not necessarily reflect their individual contribution.

Next, we illustrate how we tackle these challenges in the following sections.

4.1 AGENT DESIGN AS A MULTI-ARMED BANDIT PROBLEM

The space of orchestrator—subagent pairs (7, §2) is vast and infeasible to enumerate. To make the
search tractable, we maintain an archive I' of candidate sub-agents. Instead of treating each subset
of sub-agents (2 as an arm, we treat each sub-agent w € I" as an arm, enabling information sharing
across different sub-agents (will be explained below). At each round ¢, the algorithm selects a subset
Q; C T by choosing K arms, instantiates an orchestrator 7, for {2, evaluates (¢, {2;) on example
problems from a design set, and propagates feedback to all participating sub-agents. Because sub-
agents appear in multiple subsets, even unsuccessful combinations can provide useful signals. This
formulation supports efficient credit assignment, reduces redundant exploration, and progressively
refines estimates u,, for each w € I'. Algorithm | summarizes the procedure, with further details
provided below.

Bootstrapping a sub-agent archive We begin with an initial archive I' of candidate sub-agents.
This archive is generated by prompting an LLM with the template in Appendix A.1.2. However,
simply generating sub-agents is insufficient because the orchestrator may not know how to invoke
them. We present sub-agents as tools to the orchestrator and adopt the standard tool-calling protocol
from SWE-agent [52]. To call a sub-agent, the orchestrator must parse its docstring to understand
the functionality and supply the required inputs. For example, an issue-localizer sub-agent requires
the issue summary as input; without it, the sub-agent cannot operate. To ensure this, we introduce
a warm-up stage that rewrites each generated sub-agent’s docstring into a precise specification of
its inputs and outputs, enabling the orchestrator to integrate it correctly. Details are provided in
Appendix A.1.1.

Sub-agent evaluation At each round ¢, we select a set of K sub-agents ; = {wq,...,wk} C
I";_;. Given this set, an orchestrator 7, is instantiated by prompting an LLM (see Appendix A.1.3),
and the system (¢, €2;) is evaluated on a subset of example problems from a design set. This
evaluation yields a performance score u,, € [0, 1] for each sub-agent w € Q;. A straightforward
choice for u,, is the success rate of the system on the design set, but as discussed in Section 4.2, this
metric is suboptimal and we propose a more effective alternative.
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Balancing exploration and exploitation on sub-agent selection After bootstrapping the archive,
the next challenge is deciding which sub-agents to evaluate in each round. To balance exploration
with exploitation, we adopt the Upper Confidence Bound (UCB) [26] strategy. For each sub-agent
w € I'y_1, we track its empirical mean /i, (t) of the performance score of u,, and selection count
Ny, (t) up to round ¢. The UCB score of a sub-agent w at round ¢ is defined as

2Int
N (t)

UCB,, (t) = fi () +

The first term favors sub-agents with high observed performance, while the second term gives an
optimism bonus to under-sampled sub-agents (i.e., exploration). At each round ¢, we select the
top-K sub-agents based on their UCB scores, ensuring that evaluations increasingly focus on strong
candidates while still allocating time to uncertain ones.

Expanding the archive A fixed archive risks stagnation: once UCB identifies a few strong sub-
agents, it will repeatedly exploit them, leaving little opportunity to discover new behaviors. To
address this, we expand the archive dynamically using a Chinese Restaurant Process (CRP) [3; 48].
At each round ¢, we prompt the LLM to generate a new sub-agent distinct from those in the current
archive I';_; (see Appendix A.1.2). The probability of introducing a new sub-agent is

0
Pr(new at t) = m,

where 6 > 0 is a concentration parameter. This mechanism ensures diversity: when the archive is
small, new sub-agents are frequently added; as the archive grows, the probability decreases, shifting
the emphasis toward reuse of existing ones. Over time, the expected number of distinct sub-agents
after T rounds grows as O(6log T'), providing unbounded but controlled expansion. We also run the
warmup stage (Appendix A.1.1) to ensure the sub-agent is usable by the orchestrator.

Algorithm 1 Bandit Optimization for Agent Design (BOAD)

Require: budget B, number of sub-agents to select K, concentration 6
1: Initialize archive I'g <~ BOOTSTRAP.
2: fort=1,2,...,Bdo

3: With probability ﬁ, create a new sub-agent wyeyw and set T'y < Ty U {Wnew };

otherwise set I'; «+ I';_1.

4 for eachw € T'; do
5 if n,(t — 1) = 0 then
6: UCB,,(t) < 400 > force initial exploration
7 else
g UCBL(1)  fult - 1) + /725
9: end if
10: end for
11: Select top- K sub-agents based on UCB scores as a set of sub-agents €2;.
12: Instantiate orchestrator 7; conditioned on 2.
13: Evaluate (¢, ;) on a subset of training problems; observe performance score u,, € [0, 1]
(Sec. 4.2).
14: Update /i, (t) and n,,(t) for each w € ;.
15: end for

4.2 HINDSIGHT CREDIT ASSIGNMENT

A central challenge in our framework is defining the performance score u,, of individual sub-agents
w. A simple approach is to set the score of a sub-agent to the success rate of all trajectories that
include it:

Z 1{7 is successful},
TETE

Uw

L
T
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where 7! is the set of trajectories at round ¢ in which w is used by the orchestrator . However,
this suffers from a “free-rider” problem: a sub-agent may appear effective simply because it often
co-occurs with strong sub-agents, even if it contributes little itself.

To overcome this, we adopt a hindsight-based credit assignment strategy. The idea is to reward
a sub-agent whenever its actions help the orchestrator make progress toward solving the problem,
even if the orchestrator ultimately fails. Thus, sub-agents that provide useful intermediate steps
are credited, while those that do not are penalized, regardless of the outcomes. Concretely, let
7= (a1,01,...,ar,or) denote the trajectory of actions and observations produced during problem
solving. For each sub-agent w that appears in 7, we query an LLM judge (Appendix A.1.4) with the
trajectory and obtain a binary label £,,(7) € {0, 1}, where £,,(7) = 1 indicates that the LLM judge
deems w’s contribution in the trajectory as helpful. The performance score of sub-agent w is then
defined as the empirical average over all evaluated trajectories:

1
o = > (7).

TETE

This hindsight-based score w,, € [0, 1] provides a more reliable estimate of the utility of w than
success rates. By directly linking credit to judged contributions, it avoids free-riding effects.

5 EXPERIMENTS

Our experiments address the central question: Can properly designed hierarchical multi-agent
systems improve the generalization performance of SWE agents? We further analyze how the systems
discovered by our algorithm differ from human-designed ones and examine the contribution of each
design choice to the overall performance gains.

5.1 SETUP

Task format and datasets. We evaluate on the SWE-BENCH benchmarks: SWE-BENCH VERIFIED
(500 instances) [24] and SWE-BENCH LIVE (300 instances) [58]. VERIFIED is a curated, frozen
set of real GitHub issues, while LIVE continuously adds newly collected, human-verified issues
from active repositories, making it more resistant to data contamination [50] and better suited for
testing generalization to out-of-distribution problems. Each instance includes a GitHub issue, a
repository-specific container image, and an executable test harness. The agent must interact with the
repository (files and, when available, history) and produce a patch that resolves the issue by passing
all tests (pass—-to—-pass and fail-to-pass).

To avoid overfitting and limit design-time compute, we construct a small design set by sampling
one random issue per repository (12 total) from VERIFIED, ensuring diversity while keeping the set
small. The design set is disjoint from all issues in LIVE. All results in Tables 2 and 3 are reported on
VERIFIED and LIVE (lite) splits. We also report the result of BOAD on VERIFIED (HELD OUT) that
exclude the 12 issues used in the design set.

Implementation. All experiments use the SWE-AGENT scaffold with a set of default tools from
SWE-agent [52]: edit_anthropic (file viewing/editing), bash (restricted shell commands),
and submit. The orchestrator calls sub-agents through the same API, passing information via a
context parameter; sub-agents return outputs through this channel without access to the orchestrator’s
history. We use Claude-4 to generate candidate designs (Section 4.1) with temperature 0.0 and
evaluate sub-agent helpfulness (Section 4.2). For execution, both orchestrator and sub-agents use
Seed-OSS-36B-Instruct with temperature 0.0, unless specificed, a strong instruction-following model
that is not heavily tuned on SWE tasks. This choice ensures improvements reflect the benefit
of orchestration rather than fine-tuning on SWE-task specific data. Each sub-agent is equipped
with prompts discovered by BOAD, defined with docstrings and argument specs, and invoked via
XML-based tool calling.
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5.2 MAIN RESULTS

Table 1: Success rate on SWE-BENCH VERIFIED and SWE-BENCH LIVE.

Scale Model Scaffold Verified Resolved (%) Live Resolved (%)
GPT-4o [52] SWE-agent 23.0 10.0
GPT-40 [51] Agentless 38.8 11.7
Claude 3.5 Sonnet [5] Agentless 50.8 -
Claude 3.5 Sonnet [5] OpenHands 53.0 -

Large Claude 3.7 Sonnet [4] SWE-agent 62.4 13.7"
Claude 4.0 Sonnet [6] SWE-agent 66.8 -
Claude 4.0 Sonnet [6] OpenHands 70.4 -
DeepSeek-R1 [18] Agentless 49.2 -
DeepSeek-V3 [15] Agentless 42.0 13.3
GLM-4.5-Air [45] OpenHands 57.6 -
GLM-4.5-Air [45] SWE-Agent - 17.7
Qwen3-Coder 480B/A35B Instruct [47]  OpenHands 69.6 24.7
Qwen3-Coder-30B-A3B-Instruct [47] SWE-agent - 17.0

Small Qwen3-Coder-30B-A3B-Instruct [47] OpenHands 51.6 -
Devstral-Small-2505 [7] OpenHands 46.8 -
Seed-OSS-36B-Instruct [46] SWE-agent (baseline) 49.8 123
Seed-OSS-36B-Instruct [46] SWE-agent + Manual Subagent 474 14.0
Seed-OSS-36B-Instruct [46] SWE-agent + BOAD 53.2° 20.0

Success Rate Table 1 shows that with Seed-OSS-36B-Instruct, BOAD resolves 20.0% of issues
on LIVE, ranking second on the leaderboard and outperforming larger models in popular scaffolds
(e.g., GPT-40, DeepSeek-V3, GLM-4.5-Air, Claude 3.7 Sonnet). This is a 63 % improvement over
the same model with default SWE-agent tools. On VERIFIED, BOAD achieves 53.12%, surpassing
many larger models (e.g., GPT-40, Claude 3.5 Sonnet OpenHands, DeepSeek-R1, DeepSeek-V3)
and setting a new state of the art among smaller models (e.g., Qwen3-Coder-30B-A3B-Instruct,
Devstral-Small-2505), with a 13.4% gain over the default SWE-agent. Interestingly, adding manually
designed sub-agents (Appendix A.1.5) from prior work [8; 35; 11] lowers performance, indicating that
human-crafted roles can be misaligned with LLM behavior. Overall, these results demonstrate that
BOAD automatically discovers orchestrator—sub-agent structures that not only boost in-distribution
performance but also generalize more effectively to out-of-distribution tasks.

Token Analysis In addition to success rate, we analyze token usage in BOAD. Hierarchical multi-
agent systems introduce communication overhead, since agents must exchange information, but they
can also reduce context length: sub-agents focus on specialized sub-tasks while the orchestrator
handles high-level coordination without low-level details. Table 2 compares token usage between
SWE-agent and BOAD. Total tokens refer to the average sum of input and output tokens per issue,
while max input tokens capture the average maximum input length per instance. Surprisingly, the total
token count is comparable—and even lower on SWE-bench-live—than in the original SWE-agent.
Moreover, BOAD consistently reduces input tokens, confirming that task decomposition shortens
context length.

Table 2: Token usage. BOAD lowers input token counts, thus shortening the model’s input context length.

Metric Setting Verified Live
SWE-agent 0.92 1.49
Total tokens (M) SWE-agent + BOAD 0.93 (+0.7%) 1.13 (-23.8%)
Max input tokens SWE-agent 34.6k 49.0k
P ) SWE-agent+BOAD 30.5k (-11.6%) 36.7k (-25.0%)

5.3 ABLATION STUDIES AND ANALYSIS

Does prompt optimization explain the gains? One possible explanation for BOAD ’s performance
improvement is that it simply arises from better prompt optimization of SWE-agent. To test this, we

'The SWE-bench-live leaderboard score was 17.7, based on an earlier issue set from April 2025.
253.1 on the SWE-bench-verified set excluding the 12 issues used in the design set.
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Table 3: Ablation studies and analysis. Each row corresponds to one research question. Results are reported on
SWE-bench Live using Seed-OSS-36B-Instruct unless otherwise specified.

Research Question Configuration SWE-Bench Live (%)
Does prompt optimization explain the ~ w/o Sub-agent 16.3
gains? w Sub-agent 20.0
Top-5 sub-agents 13.7
Do more sub-agents improve Top-4 sub-agents 16.7
erformance? Top-3 sub-agents 16.3
p ’ Top-2 sub-agents 20.0
Top-1 sub-agent 16.3
Do we need to customize the w/o customization 16.7
orchestrator? W customization 20.0
Is expanding the sub-agent archive w/o expansion 17.0
needed? W expansion 20.0
Top-3 subagents (success rate) 11.3
Is hindsight credit assignment Top-3 subagents (helpfulness) 16.3
necessary? Top-2 subagents (success rate) 15.3
Top-2 subagents (helpfulness) 20.0
Are discovered sub-agents transferable Claude 3.7 Sonnet 13.7
to other models? + Top-2 sub-agents (helpfulness) 16.3

introduce a baseline that optimizes the SWE-agent prompt without adding sub-agents (w/o Sub-agent).
We run 10 iterations: in each, a new SWE-agent prompt is generated by prompting Claude-4 with
the template shown in A.1.6, evaluated on 12 issues (the same setting as BOAD). The first iteration
is initialized without history, and from the second onward, prompt generation is conditioned on the
top five prompts from previous rounds, ranked by performance. Results in Table 3 show that prompt
optimization alone does not reach the performance of BOAD, indicating that the gains are not solely
due to prompt tuning but from the discovery of effective sub-agents and orchestration.

Do more sub-agents improve performance? One might expect performance to improve as more
sub-agents are added, since each can specialize. To test this, we vary the number of top- K sub-agents
from 1 to 5 based on the helpfulness score (Section 4.2) and evaluate on LIVE. Surprisingly, Table
3 shows that performance peaks with exactly two sub-agents, achieving 60/300 (20.0%). A single
sub-agent (49/300) fails to leverage specialization, while larger teams of three (49/300), four (50/300),
or five (41/300) reduce performance due to communication and coordination overhead. These results
suggest that small, focused teams strike the best balance, outperforming both minimal and overly
large teams of sub-agents.

Do we need to customize the orchestrator? We next ask whether gains come solely from sub-agent
discovery or if the orchestrator must also adapt to its team. We compare two prompting strategies:
(i) a generic prompt encouraging sub-agent calls (Appendix A.1.1), and (ii) a customized prompt
generated by Claude-4 that explicitly references the top two sub-agents (selected by helpfulness
scores) and outlines a plan for using them. Both settings use the same sub-agent set, but only the
customized prompt allows the orchestrator to reason about and plan calls to specific sub-agents.
Results in Table 3 show the customized orchestrator (w customization) achieves 60/300 (20.0%),
versus 50/300 (16.7%) (w/o customization) for the generic one. This indicates that while sub-agents
provide new capabilities, the orchestrator must also be specialized to effectively coordinate them.

Is expanding the sub-agent archive needed? As discussed in Section 4.1, the initial archive may be
limited, and adding new sub-agents during the design process could be necessary to discover stronger
ones. To test this, we compare orchestrator performance using (i) sub-agents from the initial archive
(w/o expansion) and (ii) sub-agents selected at the end of the design process (w expansion). Both
settings use two sub-agents, consistent with our best configuration in Section 5.2, and the orchestrator
is generated as described in Section 4.1. Results in Table 3 show that final sub-agents outperform
those from the initial archive, highlighting the importance of expanding the archive over time.
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Is hindsight credit assignment necessary? To address free-riding issues in sub-agent selection
(Section 4.1), we use a helpfulness score to measure each sub-agent’s contribution. To test its
importance, we compare orchestrator performance when sub-agents are selected by (i) individual
success rate versus (ii) helpfulness score. As shown in Table 3, helpfulness-based selection consis-
tently outperforms success-rate selection, indicating that hindsight credit assignment (Section 4.2) is
essential for identifying useful sub-agents.

Are discovered sub-agents transferable to other models? Since BOAD optimizes sub-agents
for a specific model, we ask whether the best sub-agents differ across models and whether effective
sub-agents can transfer. To test this, we apply the sub-agents from Section 5.2 to SWE-agent+Claude-
3.7-Sonnet. As shown in Table 3, the discovered sub-agents do transfer to some extent, though the
gains are smaller than those achieved with Seed-OSS-36B-Instruct, the model used for sub-agent
optimization.

5.4 QUALITATIVE ANALYSIS OF SINGLE- VS MULTI-AGENT OUTCOMES

We manually inspected trajectories in which the single- and multi-agent systems produced different
outcomes. Three recurring patterns emerged:

1. Over-editing (multi-agent advantage). Single agents frequently produced extremely long
patches, including attempts to create new tests and edits outside the scope of the bug. Such patches
inflate apply time and increase the chance of failing pass-to-pass, even if the agent is able
to address the primary fault. In contrast, the multi-agent system tended to emit short, localized
patches, highlighting the advantage of separating phases like localization and editing/testing.

2. Multi-site fixes and coverage (multi-agent advantage). When the fix required edits at multiple
call sites or modules, the single agent often either over-edited unrelated regions or missed one
or more necessary locations. The hierarchical system mitigated both omission and extraneous
edits by delegating to a sub-agent for localization, which did a thorough analysis of the repository
before making any targetted modifications.

3. Error propagation from unvalidated sub-agent outputs (multi-agent failure mode). In a
minority of cases, the multi-agent system failed while the single agent succeeded. Inspecting these
outputs, we found that erroneous sub-agent outputs (e.g., incomplete span identification, misinter-
pretation of the issue) were accepted as ground truth by the orchestrator, leading subsequent steps
astray. Because there is no intermediate validation or self-checking, the orchestrator has limited
ability to recover from such upstream.

These observations align with our hypothesis: hierarchical delegation constrains edit scope and
improves coverage of multi-site fixes, but introduces a new dependency on the quality of sub-agent
handoffs. Incorporating lightweight verification (e.g., span cross-checks, invariant tests, or dual-read
localization) is a promising mitigation for the third failure mode.

6 DISCUSSION & CONCLUSION

We present BOAD, a framework that formulates hierarchical multi-agent design as a sequential,
online decision making problem to automatically discover multi-agent systems for long-horizon
software engineering tasks. Our experiments show that automatically discovered sub-agents, when
combined with a customized orchestrator, outperform single-agent and manually designed multi-agent
systems on both SWE-BENCH VERIFIED and SWE-BENCH LIVE.

Limitations and Future Work: We find that discovered sub-agents transfer across models only
partially and failure cases highlight error propagation when orchestrators unconditionally accept
sub-agent outputs. Future work should explore evolution on large models, adaptive team sizing,
verification, as well as extending the framework to domains beyond software engineering.

ETHICS STATEMENT

Coding agents hold strong promise for automating code generation and bug fixing, but they also
carry risks of unintended or harmful outputs. For instance, an LLM-based agent may produce
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commands that could compromise a system (e.g., downloading unauthorized packages or deleting
user files with rm —rf). To mitigate these risks in our study, all experiments were conducted within
Docker containers, providing isolated and sandboxed environments that prevent harmful commands
from impacting real user devices and substantially reducing the potential for actual harm. Our
implementation also builds upon the SWE-Agent framework, which has been previously published
and reviewed under established ethical standards. We carefully follow its curated protocols and
licensing requirements.

Nevertheless, as with any Al-based coding agent framework, there remains the risk of deliberate
misuse, for example, a malicious user prompting the system to generate harmful or hacking code.
While our contribution is centered on advancing the technical design of hierarchical coding agents,
we emphasize that real-world deployment should be coupled with responsible auditing and oversight,
so that potential misuse and unintended consequences can be effectively mitigated.

REPRODUCIBILITY STATEMENT

For all open-source LLMs (e.g., Seed-OSS-36B-Instruct, Qwen3-Coder-30B-A3B-Instruct), we rely
on their official releases. Commercial LLMs and LLM-based tools are accessed through their official
APIs and reference implementations. We provide detailed implementation notes of BOAD, including
the prompt design for meta-agents, sub-agents, and LLM judges, in Section 5.1. To further support
reproducibility and foster future research, we will also release all of our code, used data, and prompts.
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A IMPLEMENTATION DETAILS

A.1 PROMPT TEMPLATES

A.1.1 PROMPT TEMPLATE FOR REFINING SUBAGENT DURING WARMUP STAGE

Prompt template for refining subagent during warmup stage

You are improving a subagent's prompts/config for a software engineering (SWE) automation system, based
<> on recent run trajectories. The subagent is used by an AI main agent to address code issues.

CONTEXT

- You will receive trajectory summaries below, starting with the main agent's trajectory, followed by
< any subagent trajectories in call order.

- Each summary shows what the agent did, what was observed, and how far it progressed.

GOAL

Analyze the subagent's performance and suggest improvements to make it:
1. More discoverable by the main agent (when appropriate)

2. More reliable in its behavior

3. More useful in its output

ANALYSIS FRAMEWORK

Consider these questions:

- Did the main agent discover and use the subagent when it should have?
- Did the subagent behave as expected and return useful information?

— Were there missed opportunities or inefficient behaviors?

IMPROVEMENT TYPES

Focus on one or more of these areas:

1. xxdocstringxx: Make the subagent easier for the main agent to discover and choose appropriately.

< CRITICAL: Make sure to include "[subagent]" at the beginning of the docstring.

2. *xcontext_description**: Improve the description of the 'context' argument (the only argument) to be
<> clearer and more helpful

3. *xinstance_templatex: Better incorporation of context, clearer framing for each problem instance

Note that the docstring and context_description are visible only to the main agent, while the

— instance_template is visible only to the subagent.

Thus, if the subagent was not called, you should not edit instance_template. Similarly, if the only
< 1issue is the subagent's trajectory, not how it was called, do not edit docstring or

< context_description.

PRINCIPLES

— Make surgical, targeted improvements rather than broad rewrites

— Preserve existing style and capabilities. Only edit components that need improvement.

- Focus on clarity, discoverability, and reliability

— Ensure generality. Avoid repo- or issue-specific assumptions.

— CRITICAL: DO NOT WRITE ANYTHING SPECIFIC TO THE PARTICULAR CODEBASE, PROJECT, OR DOMAIN.

OUTPUT FORMAT

First, explain your reasoning about what issues you noticed with the provided trajectory and what

< improvements you're making. Then, output the YAML in a code block.

+*IMPORTANT**: Only suggest edits when you identify a clear, specific problem. If the entire subagent
— 1is working well, use an empty updates dictionary.

Sample outputs:

*xWhen improvements are needed:x*x*

Explain your reasoning here.

ST yaml

updates:
docstring: "<improved docstring if needed>"
context_description: "<improved context argument description if needed>"
instance_template: "<improved instance template if needed>"

RULES

— Only include keys that you intend to change.

— Start with “updates:” as the top-level key. If there are no updates to make, the value for “updates~
<> should be an empty dictionary.

- You may update any combination of the three fields (docstring, context_description,

< instance_template), but only include a field if it needs improvement.

— No explanations or extra content in the YAML

— Keep each field concise but complete

HEURISTICS

- xxDiscovery issuesx*: Strengthen docstring with clear use cases and when to invoke

- xxInsufficient context passed to subagent*x: Improve context_description with clearer argument
< explanation

- xxSubagent behavior and output (Incorrect subagent trajectory or return information)x: Improve
<> instance_template with better instructions and output specifications

{ {TRAJECTORIES}}
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A.1.2 META AGENT PROMPTS

Prompt for generating a new subagent configuration

You are an expert at designing custom tools for SWE-agent, an autonomous agent that can resolve code
<> issues in large repositories.

YOUR TASK
Invent a subagent tool for SWE-agent.
- The subagent should enable the main agent to better perform its task of automatically resolving code
< 1issues in large static repositories.
— Design for broad applicability across the full workflow. Create broad subagents that are can solve an
< entire step of the pipeline, such as:
— code localization
— reproducing issues and running scripts/tests
- code editing/patching
- code testing
— The subagents created should ONLY be focused on correctness of the final patch (e.g. style,
<> complexity of code does not matter)
— PRIORITIZE TOKEN EFFICIENCY: Design concise, focused subagents that use minimal tokens. Avoid verbose
< explanations or redundant information that wastes tokens.
- If you see a subagent that looks good but has bad token efficieny, you may generate a similar
< subagent with the same function but better implementation.
- The subagent takes a SINGLE argument that is a string, called "context".
— BE NOVEL! Think carefully about how to help the main agent perform one of its subtasks.
— Example subagents include localize, patch_editor, or code_tester.
- Do not create a subagent that overlaps with previous subagents (other than the token efficiency
—» situation).
- In your reasoning, you must explicitly list which steps the subagent supports (examples: explore,
< read/search, edit, run, validate) and the expected outputs for each supported step.
— CRITICAL: Your output should be PLAIN TEXT in valid YAML format (not inside a YAML block), so that it
< can be directly parsed by pyYAML.
— CRITICAL: Output exactly ONE YAML document with the tool under a single key, which is the name of
<> the tool.
— The name of the tool should be simple and descriptive.
- The docstring for each tool should be comprehensive and describe what the output contains, as well
< as the state of the repository after the subagent is finished (if files will be edited or not,
&= @EEs) o

The structure must be exactly as follows:
Add reasoning here about WHY you design this subgaent...
T yaml
tool_name:
signature: "tool_name <context>"
docstring: docstring: "comprehensive description of this subagent, the output, and the state of
< repository on completion. Starts with '[subagent]:"
arguments:
— name: context
type: string
description: "detailed description of what the context parameter should contain"
required: true
subagent: true

Sample output:
To address step 3, it may be useful to have a patch editor subagent. This would go well with previosu
<> subagents and help the main agent more efficiently patch the issue.

T yaml

patch_editor:
signature: "patch_editor <context>"
docstring: "[subagent] Fixes a specific part of code that has errors. Outputs the changes made with
< reasoning. After calling, the correct changes are already implemented in the repository."
arguments:

— name: context
type: string
description: "A string containing the specific file path to make edits in, the lines where edits
< need to be made, a comprehensive description of the issue with the code (do not assume the
< subagent has any information about the repository or problem statement), and what to edit."
required: true
subagent: true

{{PREVIOUS_ITERATION_FEEBACK} }

Prompt for generating subagent templates

You are an expert at creating SWE-agent subagent configuration files for automating code-patching tasks
< in large GitHub repositories.

Given a description of the subagent, you need to generate the system_template and instance_template

< parts that will be used in the subagent configuration.

IMPORTANT FORMATTING RULES:

- First output your reasoning that details your thinking process for creating the templates. Then,
<> output a yaml block with both templates.

— Use MINIMAL spacing - avoid excessive blank lines

- Use only SINGLE blank lines between sections (never double or triple spacing)

- Keep templates compact and readable without unnecessary whitespace
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— CRITICAL: Use YAML literal block syntax with | and |- (see example below)
— Do NOT use quoted strings - use literal blocks to avoid quotes in output
- Replace ONLY text in [] with text specific to the subagent. Do NOT MODIFY any other parts.

— Copy EXACTLY the parts other than [], including how to call the functions (e.g.
< "<function=example_function_here>")

Output format:

[Reasoning here...]

ST yaml

system_template: |
You are a helpful [role] assistant that can interact with a computer to [main task].
<IMPORTANT>
* If user provides a path, you should NOT assume it's relative to the current working directory.
< Instead, you should explore the file system to find the file before working on it.
</IMPORTANT>

You have access to the following functions:
{{command_docs}}

If you choose to call a function, you must ONLY reply in the following format with NO suffix:
Provide any reasoning for the function call here.

<function=example_function_name>

<parameter=example_parameter_l>value_l</parameter>

<parameter=example_parameter_2>

This is the value for the second parameter

that can span

multiple lines

</parameter>

</function>

(You must use the exact text function=" and "parameter=" for each function and argument, respectively,
< e.g. <parameter=command>value</parameter>

<IMPORTANT>

Reminder:

— Function calls MUST follow the specified format, start with <function= and end with </function>

- Required parameters MUST be specified

— CRITICAL: Only call ONE function at a time

- Always provide reasoning for your function call in natural language BEFORE the function call (not
— after)

</IMPORTANT>

<pr_description>
{{problem_statement}}
</pr_description>

CRITICAL: Use the submit_subagent function to provide the results when you are finished with your
— task.

You are ONLY responsible for your specific assigned task. Do NOT attempt to resolve entire

< pr_description, only your task.

Your goal is to complete your task in the MINIMAL NUMBER of steps. Resolve the issue fast and call
< submit_subagent as soon as possible.

instance_template: |-

Your task:

[Provide detailed, step-by-step instructions for your assigned subagent task, tailored to your

<> specific role. The instructions must ONLY reference this subagent's function.]

[If a context argument is provided, you MUST include its contents by inserting "{{context}}" here and
< explaining what the parameter is.]

**CRITICAL: STAY IN YOUR LANE*=*

- You are ONLY responsible for your specific assigned task

— You are NOT responsible for solving the entire issue

— You are NOT responsible for other subagent tasks

— Focus EXCLUSIVELY on your assigned task and nothing else

— CRITICAL: Call EXACTLY one function in your output!

— CRITICAL: When you are finished, immediately call submit_subagent. Do not call any other tools or
< produce additional output.

Focus exclusively on your assigned task and strictly follow these instructions. Do not attempt to
<> address unrelated parts of the PR or perform work outside your specific subagent role.

Use the submit_subagent tool after you are finished with your specific task to provide a clear and
<> complete summary of your findings or changes.

Your thinking should be thorough and so it's fine if it's very long.

Rules for generating templates:

1. The system _template should clearly define the subagent's role and capabilities based on the
<— available tools

2. The instance_template should provide clear instructions for each task

Both templates should maintain consistent formatting with the base template

Ensure the templates encourage thorough analysis and clear documentation

MUST use literal block syntax: system_template: | and instance_template: |-

Never use quoted strings for templates

You should copy the given system template exactly other than the first sentence.

Modify the system template in the spots with [].

© oUW

{{PREVIOUS_ITERATION_FEEDBACK} }
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A.1.3 CUSTOM ORCHESTRATOR PLAN PROMPT

Prompt template for generating a custo chestrator plan given a set of subagents

You are a master workflow architect for automated software engineering. Your Jjob is to design
< innovative, strategic workflows that maximize the effectiveness of available tools.

CONTEXT: You're designing workflows for an AI assistant that solves coding problems in software

<> repositories. The assistant receives a problem description (like a bug report, feature request, or
< code issue) and needs to systematically work through the codebase to understand, fix, and validate
< the solution. The assistant has access to specialized "subagents" - each designed for specific

< aspects of the coding workflow.

You will be given a toolkit of specialized "subagents" - each with unique capabilities. Your challenge
— 1is to:

1. xxDesign+* a comprehensive problem-solving plan that addresses the coding issue systematically

2. xxIntegratexx subagents strategically where they add the most value to your workflow

3. xxOptimizexx the sequence and wording of the plan to minimize the number of steps that the AT

< assistant takes while remaining effective

Think like a senior engineer designing a solution strategy. Consider:
What are the key phases needed to solve this type of coding problem?
— Which subagents would be most valuable for specific phases?
— How can you combine subagent work with direct problem-solving phases?
- What's the most logical progression to integrate subagent input and output to solve the issue?
— How can you utilize subagents to minimize language model token usage and number of steps?

INPUT
— The available subagents will be provided inline between the following tags:

<available_subagents>
{{subagents_overview}}
</available_subagents>

The content in <available_subagents> lists each subagent with its name and short docs
< (summary/description). Treat it as the authoritative source for tool names and purposes.

WHAT TO OUTPUT
— Output ONLY your strategic plan as plain text (no YAML, no code fences, no headers).
- Each phase MUST start with a number and a period, e.g. "1. ..."
- For subagent phases, use the exact form: "Use the <name> subagent E® coc™
— For direct phases, describe the action clearly without mentioning subagents, ensuring that it can be
< applied to any problem.
- Be creative and strategic - design workflows that combine different approaches effectively
- Keep 3 to 7 steps total, but make each step purposeful and well-reasoned
— Make sure the last steps are:
— After you have solved the issue, delete any test files or temporary files you created.
- Use the submit tool to submit the changes to the repository.
- Do not mention any function-call formats or system details

EXAMPLE (illustrative only; adapt to the given input)

<available_subagents>

— name: issue_localizer | Identify files and code regions relevant to the issue.

- name: error_reproducer | Reproduce the failing behavior and capture commands/outputs.
— name: code_tester | Run tests/commands to verify the fix and regressions.
</available_subagents>

Expected output EXAMPLE (plain text only):
1. Use the issue_localizer subagent to map the problem space and identify all potentially affected

Use the code_tester subagent to validate the fix against the original failure case and run
regression tests.

After you have solved the issue, delete any test files or temporary files you created.

Use the submit tool to submit the changes to the repository.

< files and code regions.

2. Analyze the problem description and examine the identified files to understand the root cause and
< requirements.

3. Use the error_reproducer subagent to create a reproducible test case and capture the exact failure
< conditions.

4. Design and implement the fix based on the analysis, focusing on the specific files and code areas
< identified.

5

[

6.

Vo

Now, based on the provided subagents, produce ONLY the numbered plan as plain text:

A.1.4 PROMPT TEMPLATE FOR CHECKING IF A SUBAGENT WAS HELPFUL IN A GIVEN
INSTANCE

Prompt template for checking if a subagent was helpful in a given instance

CONTEXT:

These trajectories show a software engineering agent trying to fix a bug or implement a
< feature. The agent can use various tools including subagents (specialized AL

<> assistants) to help solve the problem.
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TRAJECTORIES:
{{TRAJECTORIES}}

TOOL TO ANALYZE: {{TOOL_NAME}}

Your task is to determine if the subagent "{{TOOL_NAME}}" was helpful in this set of

— trajectories.

A tool is considered helpful if:

1. It was called/invoked by the main agent in the main agent trajectory

2. It provided useful information, analysis, or insights that contributed to solving the
<~ problem

3. The main agent made progress after using this tool (e.g., identified the issue, made
— code changes, validated results, etc.)

4. It completed its task as intended (followed proper analysis process, not just got

— lucky results)

Look for positive evidence such as:

- The subagent being called with appropriate parameters

— The subagent providing insights that led to code changes or problem understanding
— The main agent referencing or building upon the subagent's output

— The subagent's output being used in subsequent reasoning or actions

Look for negative evidence such as:

— The subagent not being called by the main agent, or called incorrectly

— The subagent providing irrelevant or incorrect information that was not later used

— The subagent's response was valid but did not move the main agent closer to resolving
<~ the problem.

- The subagent failed to execute properly or had many errors during the its run.

— The subagent's output appeared correct, but its trajectory did not actually achieve

< those results (e.g., claimed to test code but just reported all tests passed).

- The main agent had to call the subagent over and over again to get the proper results.
— The subagent trajectory was unnecessarily long or verbose, taking many steps to

— complete its task

— The main agent trajectory became inefficient due to excessive subagent calls or overly
— verbose subagent responses

— The subagent's results did not actually help the main agent make progress in resolve
— the issue. If a subagent did not contribute to producing the correct patch, e.g. only
— improved performance, style, or documentation, this is NOT helpful.

Respond with YAML format (exactly):

ST yaml

helpful: true/false

reasoning: |
Brief explanation of why the tool was or wasn't helpful, including specific evidence
— from the trajectories

- Always use the block scalar |  for “reasoning™ and indent its text by two spaces.
— Only respond with the YAML block; no additional text before or after.

A.1.5 MANUALLY DESIGNED SUBAGENT CONFIGURATIONS

issue_localizer configuration

\textbf{docstring}: A subagent that localizes the issue in the repository. Takes a context string

<> specifying the brief description of the issue. Outputs a brief report about which files and lines
< are relevant to the issue.

\textbf{argument}: context (string) [required] { A string containing the brief description of the

— issue.

\textbf{instance template}:

Issue description:

{{context}}

Please identify which files and specific lines or functions are most relevant to this issue. Output a
< short, clear report that mentions:

- File paths
- Line numbers or function names
— A one-sentence explanation for why each location is relevant

Keep the report concise and focused on helping later agents work on the correct parts of the
< repository.
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error_reproducer configuration

\textbf{docstring}: A subagent that creates and executes test scripts to verify reported errors.

< Outputs the result of the tests and locations of test files created.

\textbf{argument}: context (string) [required] { A string containing error details, file paths and line
< numbers of code relevant to the error, and expected vs actual behavior.

\textbf{instance template}:

Error context:

{{context}}

Please create and execute a temporary reproduction script to verify this error. You should:
- Create temporary files (prefixed with 'tmp_')

— Include only what's needed to reproduce the error

— Report whether the error reproduces exactly as described

— Note any deviations from expected behavior

Output a short, clear report that mentions:
— Result of the tests
- Locations of test files created

code_editor configuration

\textbf{docstring}: A subagent that implements specified code changes in the repository. Outputs the
< specific code changes made, file paths/line numbers edited, and what should be tested to verify the
— fix.

\textbf{argument}: context (string) [required] { A string containing the code snippet (s) to modify and
< file path(s), and the changes to be applied.

\textbf{instance template}:

Context for code changes:

{{context}}

Please implement the specified code changes in the repository. You should:

— Identify the relevant files and code sections

— Make precise edits according to the specification
- Maintain code quality and consistency

— Output a short, clear report that mentions:

- File paths/line numbers edited

— What should be tested to verify the fix

code_tester configuration

\textbf{docstring}: A subagent that tests code after edits have been made to verify the fix works
< correctly. Outputs the result of the tests.

\textbf{argument}: context (string) [required] { A string containing the specific code changes made,
< file paths, and original error.

\textbf{instance template}:

Code changes made:

{{context}}

Please test the code after the edits to verify the fix works correctly. You should:
Use existing test files if available (prefixed with 'tmp_'), or create new ones as needed

— Test the specific functionality that was changed

— Determine whether or not the original error is fixed.

— Output a short, clear report that mentions:

- List of tests run and results of the tests

— Whether the original error is fixed, and if any new errors were introduced

A.1.6 PROMPT TEMPLATE FOR GENERATE PROMPT FOR ORCHESTRATOR UNDER
ORCHESTRATOR ONLY SETINGS

Prompt Template for generate prompt for orchestrator under orchestrator only setings

You are a master workflow architect for automated software engineering. Your job is to design effective
— workflows that solve coding problems efficiently.

CONTEXT: You're designing workflows for an AI assistant that solves coding problems in software

< repositories. The assistant receives a problem description (like a bug report, feature request, or
< code issue) and needs to work through the codebase to understand, implement changes, and validate
< the solution.

Your goal is to create workflows that are both effective at solving problems and efficient in their
< execution. Focus on designing strategic approaches that lead to successful problem resolution.

CONTEXT FOR PLAN USAGE:
Your generated plan will be inserted into this agent template context:
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I've uploaded a python code repository in the directory {{working_dir}}. Consider the following PR
< description:

<pr_description>
{{problem_statement}}
</pr_description>

Can you help me implement the necessary changes to the repository so that the requirements specified in
the <pr_description> are met? I've already taken care of all changes to any of the test files
described in the <pr_description>. This means you DON'T have to modify the testing logic or any of
the tests in any way! Your task is to make the minimal changes to non-test files in the
{{working_dir}} directory to ensure the <pr_description> is satisfied. When solving the task,
*xfirst create a plan by breaking the problem into subtasks*x. Think systematically about the steps
needed to understand the problem, locate relevant code, implement changes, and verify the solution.
Follow this process:

FELOELL

{{plan}} <-- YOUR PLAN GOES HERE

You MUST follow the plan exactly.

AVAILABLE TOOLS:

- bash: Execute shell commands for searching, testing, running scripts, exploring codebase structure
- str_replace_editor: View, create, and edit files with precise string replacement capabilities

- submit: Submit the final solution

LEARNING FROM HISTORY:
<sampled_templates>
{{sampled_templates_summary}}
</sampled_templates>

If historical templates are provided above, identify what made the highest-scoring approaches

< successful and what caused failures. Look for patterns in tool usage, step efficiency, and

< problem-solving strategies. If no history exists, design breakthrough approaches that challenge
< conventional software engineering workflows.

WHAT TO OUTPUT:

— Create a step-by-step plan that an AI agent can execute systematically

— Each step must clearly specify tool usage ("Use bash to..." or "Use str_replace_editor to...") and
— expected outcomes

— Design for Python repositories and PR-based problem solving

— Focus on minimal, targeted changes rather than broad exploration

- Structure as numbered steps (1., 2., 3., etc.) with logical flow

- Final step must use submit tool to deliver the solution

— Make each step actionable and specific enough for precise execution

— Output ONLY the numbered plan as plain text (no formatting, headers, or explanations

B THE USAGE OF LARGE LANGUAGE MODELS (LLMS)

In our work, we used large language models (LLMs) for two purposes: (1) as a general writing
assistant to check the grammar of the manuscript for readability, and (2) as the model component of
our proposed system BOAD, where LLMs function as the evolution engine, meta-/sub-agents, and
evaluation judges in experiments with mainstream coding agents. All research ideas, methodological
contributions, and conclusions are solely those of the authors, who take full responsibility for the

content of this work.
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