
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DISCOVERING HIERARCHICAL SOFTWARE ENGINEER-
ING AGENTS VIA BANDIT OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) are increasingly applied to software engineering
(SWE), but they struggle on real-world tasks that are long-horizon and often out
of distribution. Current systems typically adopt monolithic designs where a sin-
gle model attempts to interpret ambiguous issues, navigate large codebases, and
implement fixes in one extended reasoning chain. This design makes it difficult
to generalize beyond training data. Inspired by how human engineers decompose
problems into sub-tasks, we argue that SWE agents should be structured as or-
chestrators coordinating specialized sub-agents, each responsible for a specific
sub-task such as bug reproduction, fault localization, code modification, or valida-
tion. The central challenge is how to design these hierarchies effectively. Manual
decompositions follow human workflows but often mismatch LLM capabilities,
while automated search methods such as evolutionary strategies require evaluating
a very large number of candidates, making them prohibitively expensive for SWE.
We show that formulating hierarchy discovery as a multi-armed bandit problem
enables efficient exploration of sub-agent designs under limited budgets. On SWE-
bench-Verified, this approach outperforms single-agent systems and manually
designed multi-agent systems. On SWE-bench-Live, which features recent and
out-of-distribution issues, our system ranks 2nd on the leaderboard with a 36B
model, surpassing larger systems such as GPT-4 and Claude. This provides the
first evidence that hierarchical multi-agent systems improves generalization on
challenging long-horizon SWE tasks.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable progress in natural language processing
[41] and reasoning [18], and are increasingly adopted in solving complex coding problems [61].
Yet solving real-world software engineering (SWE) problems remains challenging [24] for LLMs,
particularly for issues that fall outside the training distribution [58]. Despite strong results on SWE-
bench-Verified [24], state-of-the-art systems struggle on more recent and out-of-distribution issues in
SWE-bench-Live [58].

One possible cause is the long-horizon nature of SWE tasks: Current LLM agents typically rely on
a single model to interpret underspecified problem statements, navigate large and interdependent
codebases, and carry out all sub-tasks—reproducing the bug, localizing the fault, editing the code,
and validating the fix—within one extended reasoning chain. This monolithic design hinders gen-
eralization: long contexts dilute attention and reduce retrieval accuracy [38; 39; 21], while jointly
solving all sub-tasks prevents modularity and hinders robustness [59; 60].

Inspired by how human engineers approach complex problems, we posit that explicit hierarchy can
help LLM-based agents manage long workflows. Cognitive science shows that people reduce mental
effort by decomposing tasks into smaller sub-tasks [31; 40; 33]; in software engineering, this typically
involves bug reproduction, fault localization, code modification, and validation [49; 23; 29]. This
same idea appears as temporal abstraction in hierarchical reinforcement learning (HRL) [10]: instead
of solving everything step by step, problems are handled by delegating to reusable sub-agents, each
defined as a policy for a specific sub-task [44]. An orchestrator coordinates these sub-agents by
choosing which one to activate, and each runs until it finishes its sub-task [44; 16; 9]. By planning
with sub-agents rather than individual steps, the orchestrator shortens the reasoning horizon, which

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

reduces distraction from irrelevant details and isolates reusable patterns. This not only makes complex
problems more manageable but also improves generalization, since effective sub-agents can be reused
across different tasks and contexts.

Approaches to hierarchical multi-agent system design range from manual to automated. At one
end, engineers manually design decompositions, specifying sub-tasks and sub-agents that follow
human workflows [8; 35; 11]. These designs require substantial effort, and workflows that are natural
for humans do not necessarily translate into effective performance on LLM agents as shown in
our experiments (Section 5). At the other end, automated methods such as evolutionary search
generate designs automatically [56; 25; 22], but require evaluating large numbers of candidates. This
is practical in domains with cheap evaluation, such as multi-hop question answering [53; 30], but
infeasible for software engineering (SWE). In SWE, evaluations are expensive and long-horizon:
validating a single design can take up to an hour, requiring multi-step sandboxed runs and full
integration tests. The difficulty of credit assignment [42; 36] makes this even worse: determining
which sub-agents actually contributed to success would typically require extensive sampling, which
is prohibitively costly.

To address these challenges, we draw inspiration from multi-armed bandit (MAB) [14; 1; 17; 54] and
formulate the design of hierarchical multi-agent systems as a sequential decision-making process. We
term our method Bandit Optimization for Agent Design (BOAD). In MAB problems, a learner must
identify the best arm from a pool with limited performance queries, where outcomes are stochastic.
The learner balances exploration (testing new or uncertain arms) with exploitation (selecting the
arm with the highest observed reward so far). In our setting, each arm corresponds to a sub-agent
design (i.e., an agent prompt). We first optimize sub-agents and then fix them before deriving an
orchestrator design using LLM prompting, since jointly optimizing both would be a costly bi-level
optimization problem [13]. Typical evolutionary algorithms [20] generate candidate designs, evaluate
them, discard them, and propose new ones by mutating the top performers. This process is wasteful:
useful sub-agents may be discarded and rarely rediscovered because evolution is stochastic. Instead,
we archive all generated designs, and adaptively choose promising combinations to evaluate next.
This ensures efficient reuse of past designs and increases the likelihood of retaining strong sub-agents.
To tackle the credit assignment problem, we go beyond binary success signals of entire sub-agent
sets. We use LLM-as-a-judge [27] to assess whether individual sub-agents contributed meaningfully
within a trajectory and use these “helpfulness” scores as rewards for the model selection algorithm.

We evaluate our BOAD on SWE-bench-Verified [24], a benchmark for software engineering tasks
grounded in real GitHub issues. On SWE-bench-Verified, our method consistently outperforms single-
agent systems and manually designed multi-agent systems. On SWE-bench-Live [28], which includes
more recently collected issues and presents out-of-distribution challenges, our system achieves 2nd
place on the leaderboard using a 36B model—outperforming larger-scale systems based on Claude
and GPT-4. To our best knowledge, our work is the first to show generalization improvements using
automatically discovered hierarchical multi-agent systems on challenging long-horizon interactive
tasks like SWE-bench.

2 RELATED WORKS

Meta-agent design. Recent research has explored automatically designing agent organizations
to reduce reliance on human intuition. Zhang et al. [56]; Hu et al. [22] propose frameworks for
workflow generation and system-level automation, while Kim et al. [25] use evolutionary strategies
for self-referential prompt refinement. Chen et al. [12] dynamically constructs role-based agents and
coordinates them per task, though these roles are ephemeral and not reusable across settings. Other
approaches, such as Misaki et al. [32], improve inference-time compute allocation by adaptively
deciding whether to explore new candidates or refine existing ones. However, a common limitation
of these meta-agent design methods is their reliance on frequent evaluations to guide search. They
perform well when feedback is cheap and abundant (e.g., reasoning benchmarks or simple QA
tasks), but become impractical in software engineering settings, where each candidate often requires
sandboxed execution or full unit testing. In contrast, our method evolves reusable sub-agents and an
orchestrator, reusing effective components to reduce redundant evaluations and maintain efficiency
even under expensive feedback conditions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Evolutionary strategies for LLMs. Evolutionary strategies has been applied broadly to improve
LLM-based systems, such as algorithm discovery via code mutation [34] and self-rewriting agents
that iteratively mutate their own source code [55]. Evolutionary strategies have also been widely
explored for prompt optimization: Kim et al. [25] use co-evolutionary refinement, Guo et al. [19]
apply genetic search to discrete prompt tokens, and Agrawal et al. [2] leverage reflection with Pareto-
based selection for sample-efficient instruction tuning. These methods highlight how evolution can
reduce human effort and uncover novel strategies, but they typically rely on abundant, inexpensive
evaluations. In contrast, our method targets costly, long-horizon SWE tasks by maintaining a reusable
archive of sub-agents and casting sub-agent selection as a multi-armed bandit problem, improving
sample efficiency while preserving the benefits of hierarchical organization.

Multi-agent systems for SWE. Prior work has explored multi-agent designs for software engineering
tasks. Arora et al. [8]; Phan et al. [35]; Chen et al. [11] adopt modular or graph-based pipelines,
where subtasks and agent roles are manually defined. While structured, such pipelines require
heavy engineering and often fail to generalize. Other works exploit agent diversity through fixed
coordination schemes. Li et al. [28] engages specialized agents in a multi-round debate over candidate
bug-fix plans before producing the final repair, while Zhang et al. [57] introduce a meta-policy that
aggregates the code patch from multiple agents and identifies the most promising solution through
re-ranking. Although effective, these methods rely on predetermined pipelines or coordination rules,
which limit flexibility and adaptability. In contrast, our method learns hierarchical multi-agent
system automatically by jointly optimizing sub-agents and an orchestrator, avoiding manual task
decomposition and fixed ensemble strategies.

3 PRELIMINARIES

Software engineering agents We study the problem of using LLMs to resolve real-world GitHub
issues, where each issue consists of a textual description and a corresponding code repository. Since
issues are not self-contained, solving them requires identifying and modifying relevant parts of the
codebase. In this work, we focus exclusively on agentic methods [52], where an LLM interacts with
a runtime environment through tool use. Such agents can browse files, execute shell commands, run
tests, and edit code directly, giving them the flexibility to tackle long-horizon tasks end-to-end.

Markov Decision Process (MDP) We model agent–environment interaction as a finite-horizon
Markov decision process (MDP) [37], M = (S,A, r,H). At each step t, the agent observes
a state st ∈ S, consisting of the issue description x and the history of prior tool interactions
ht−1 = (a1, o1, . . . , at−1, ot−1). The agent samples an action at ∈ A from its policy π(at | st),
where A includes all available tools and commands. Executing at yields an observation ot ∈ O (e.g.,
logs, diffs, or test results), updating the state to st+1. A trajectory τ = (s0, a0, . . . , sT , y) terminates
at T ≤ H when the agent submits a patch y (forced at T = H if none is submitted earlier). Rewards
are sparse:

r(st, at) = 0 for t < T, r(sT , aT) =

{
1 if y passes all tests,
0 otherwise.

The agent’s goal is to maximize the expected rewards J(π) = Eτ∼π[r(sT , aT)]. With sparse rewards
and long horizons, discovering successful trajectories is challenging.

Temporal Abstraction via Semi-MDP (SMDP) Semi-Markov Decision Process (SMDP) frame-
work [43] is widely used to mitigate long-horizon sparse reward problems. Instead of issuing primitive
actions at ∈ A, the orchestrator selects a temporally extended action (option) ωt ∈ Ω. Each option
corresponds to a sub-agent that executes a sequence of actions (at, . . . , at+m−1) until termination,
after which control returns at st+m, where m denotes the duration of an sub-agent. This reduces
decision frequency and simplifies planning.

Multi-Armed Bandit (MAB) Multi-armed bandit (MAB) [26] is a special case of an MDP with a
single state and no transitions. At each round t, the learner selects an arm at ∈ A, receives a stochastic
reward rt ∈ [0, 1] drawn from an unknown distribution, and seeks to maximize the cumulative reward∑B

t=1 rt over a fixed interaction budget B. The MAB framework captures decision-making under
uncertainty when only a limited number of trials are available.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 METHOD: BANDIT OPTIMIZATION FOR AGENT DESIGN (BOAD)

Our goal is to automatically discover a set of K sub-agents Ω = {ω1, · · · , ωK} and an orchestrator
π that maximizes the expected reward of solving issues. A naive approach is to use evolutionary
search over (π,Ω):

max
π,Ω

Ex∼Ddesign,τ∼π [r(sT , aT)] , (1)

where Ddesign is a design set consisting of example problems. In this paper, both the sub-agent and
the orchestrator agent are parameterized by their prompt. However, this requires generating many
full trajectories τ and repeatedly querying the reward function r, which is prohibitively expensive.

Agent design as multi-armed bandit: We formulate the discovery of orchestrators and sub-agents as
a multi-armed bandit (MAB) problem [26], where each arm corresponds to a particular sub-agent and
at every round t, K sub-agents are chosen. This framing directs more evaluations toward promising
designs while continuing to explore new ones, reducing wasted trajectories on poor candidates.
Consequently, it makes automatic discovery of multi-agent systems tractable despite the high cost of
evaluations in SWE. A detailed formulation is given in Section 4.1. However, this direct approach
faces two challenges.

1. The space of possible orchestrators and sub-agent sets is extremely large and initially unknown,
making it impractical to enumerate arms in advance.

2. Even if we evaluate a sub-agent along with an orchestrator and the other sub-agents, credit
assignment is ambiguous: some sub-agents may succeed only by “free-riding” on others, so the
observed reward does not necessarily reflect their individual contribution.

Next, we illustrate how we tackle these challenges in the following sections.

4.1 AGENT DESIGN AS A MULTI-ARMED BANDIT PROBLEM

The space of orchestrator–subagent pairs (π,Ω) is vast and infeasible to enumerate. To make the
search tractable, we maintain an archive Γ of candidate sub-agents. Instead of treating each subset
of sub-agents Ω as an arm, we treat each sub-agent ω ∈ Γ as an arm, enabling information sharing
across different sub-agents (will be explained below). At each round t, the algorithm selects a subset
Ωt ⊆ Γ by choosing K arms, instantiates an orchestrator πt for Ωt, evaluates (πt,Ωt) on example
problems from a design set, and propagates feedback to all participating sub-agents. Feedback
is calculated for each sub-agent independently to tackle the credit assignment problem (details in
4.2). Because sub-agents appear in multiple subsets, each evaluation, even if unsuccessful, provides
signal for multiple subsets at the same time. This formulation supports efficient credit assignment,
reduces redundant exploration, and progressively refines estimates uω for each ω ∈ Γ. Algorithm 1
summarizes the procedure, with further details provided below.

Bootstrapping a sub-agent archive We begin with an initial archive Γ0 of candidate sub-agents.
This archive is generated by prompting an LLM with the template in Appendix A.1.2. However,
simply generating sub-agents is insufficient because the orchestrator may not know how to invoke
them. We present sub-agents as tools to the orchestrator and adopt the standard tool-calling protocol
from SWE-agent [52]. To call a sub-agent, the orchestrator must parse its docstring to understand
the functionality and supply the required inputs. For example, an issue-localizer sub-agent requires
the issue summary as input; without it, the sub-agent cannot operate. To ensure this, we introduce
a warm-up stage that rewrites each generated sub-agent’s docstring into a precise specification of
its inputs and outputs, enabling the orchestrator to integrate it correctly. Details are provided in
Appendix A.1.1.

Sub-agent evaluation At each round t, we select a set of K sub-agents Ωt = {ω1, . . . , ωK} ⊆
Γt−1. Given this set, an orchestrator πt is instantiated by prompting an LLM (see Appendix A.1.3),
and the system (πt,Ωt) is evaluated on a subset of example problems from a design set. This
evaluation yields a performance score uω ∈ [0, 1] for each sub-agent ω ∈ Ωt. A straightforward
choice for uω is the success rate of the system on the design set, but as discussed in Section 4.2, this
metric is suboptimal and we propose a more effective alternative.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Balancing exploration and exploitation on sub-agent selection After bootstrapping the archive,
the next challenge is deciding which sub-agents to evaluate in each round. To balance exploration
with exploitation, we adopt the Upper Confidence Bound (UCB) [26] strategy. For each sub-agent
ω ∈ Γt−1, we track its empirical mean µ̂ω(t) of the performance score of uω and selection count
nω(t) up to round t. The UCB score of a sub-agent ω at round t is defined as

UCBω(t) = µ̂ω(t) +

√
2 ln t

nω(t)
.

The first term favors sub-agents with high observed performance, while the second term gives an
optimism bonus to under-sampled sub-agents (i.e., exploration). At each round t, we select the
top-K sub-agents based on their UCB scores, ensuring that evaluations increasingly focus on strong
candidates while still allocating time to uncertain ones.

Expanding the archive A fixed archive risks stagnation: once UCB identifies a few strong sub-
agents, it will repeatedly exploit them, leaving little opportunity to discover new behaviors. To
address this, we expand the archive dynamically using a Chinese Restaurant Process (CRP) [3; 48].
At each round t, we prompt the LLM to generate a new sub-agent distinct from those in the current
archive Γt−1 (see Appendix A.1.2). The probability of introducing a new sub-agent is

Pr(new at t) =
θ

θ + |Γt−1|
,

where θ > 0 is a concentration parameter. This mechanism ensures diversity: when the archive is
small, new sub-agents are frequently added; as the archive grows, the probability decreases, shifting
the emphasis toward reuse of existing ones. Over time, the expected number of distinct sub-agents
after T rounds grows as O(θ log T), providing unbounded but controlled expansion. We also run the
warmup stage (Appendix A.1.1) to ensure the sub-agent is usable by the orchestrator.

Algorithm 1 Bandit Optimization for Agent Design (BOAD)

Require: budget B, number of sub-agents to select K, concentration θ
1: Initialize archive Γ0 ← BOOTSTRAP.
2: for t = 1, 2, . . . , B do
3: With probability θ

θ+|Γt−1| , create a new sub-agent ωnew and set Γt ← Γt−1 ∪ {ωnew};
otherwise set Γt ← Γt−1.

4: for each ω ∈ Γt do
5: if nω(t− 1) = 0 then
6: UCBω(t)← +∞ ▷ force initial exploration
7: else
8: UCBω(t)← µ̂ω(t− 1) +

√
2 ln t

nω(t−1)

9: end if
10: end for
11: Select top-K sub-agents based on UCB scores as a set of sub-agents Ωt.
12: Instantiate orchestrator πt conditioned on Ωt.
13: Evaluate (πt,Ωt) on a subset of training problems; observe performance score uω ∈ [0, 1]

(Sec. 4.2).
14: Update µ̂ω(t) and nω(t) for each ω ∈ Ωt.
15: end for

4.2 HINDSIGHT CREDIT ASSIGNMENT

A central challenge in our framework is defining the performance score uω of individual sub-agents
ω. A simple approach is to set the score of a sub-agent to the success rate of all trajectories that
include it:

uω =
1

|T t
ω |

∑
τ∈T t

ω

1{τ is successful},

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where T t
ω is the set of trajectories at round t in which ω is used by the orchestrator π. However,

this suffers from a “free-rider” problem: a sub-agent may appear effective simply because it often
co-occurs with strong sub-agents, even if it contributes little itself.

To overcome this, we adopt a hindsight-based credit assignment strategy. The idea is to reward
a sub-agent whenever its actions help the orchestrator make progress toward solving the problem,
even if the orchestrator ultimately fails. Thus, sub-agents that provide useful intermediate steps
are credited, while those that do not are penalized, regardless of the outcomes. Concretely, let
τ = (a1, o1, . . . , aT , oT) denote the trajectory of actions and observations produced during problem
solving. For each sub-agent ω that appears in τ , we query an LLM judge (Appendix A.1.4) with the
trajectory and obtain a binary label ℓω(τ) ∈ {0, 1}, where ℓω(τ) = 1 indicates that the LLM judge
deems ω’s contribution in the trajectory as helpful. The performance score of sub-agent ω is then
defined as the empirical average over all evaluated trajectories:

uω =
1

|T t
ω |

∑
τ∈T t

ω

ℓω(τ).

This hindsight-based score uω ∈ [0, 1] provides a more reliable estimate of the utility of ω than
success rates. By directly linking credit to judged contributions, it avoids free-riding effects.

5 EXPERIMENTS

Our experiments address the central question: Can properly designed hierarchical multi-agent
systems improve the generalization performance of SWE agents? We further analyze how the systems
discovered by our algorithm differ from human-designed ones and examine the contribution of each
design choice to the overall performance gains.

5.1 SETUP

Task format and datasets. We evaluate on the SWE-BENCH benchmarks: SWE-BENCH VERIFIED
(500 instances) [24] and SWE-BENCH LIVE (300 instances) [58]. VERIFIED is a curated, frozen
set of real GitHub issues, while LIVE continuously adds newly collected, human-verified issues
from active repositories, making it more resistant to data contamination [50] and better suited for
testing generalization to out-of-distribution problems. Each instance includes a GitHub issue, a
repository-specific container image, and an executable test harness. The agent must interact with the
repository (files and, when available, history) and produce a patch that resolves the issue by passing
all tests (pass-to-pass and fail-to-pass).

To avoid overfitting and limit design-time compute, we construct a small design set by sampling
one random issue per repository (12 total) from VERIFIED, ensuring diversity while keeping the set
small. The design set is disjoint from all issues in LIVE. All results in Tables 2 and 3 are reported on
VERIFIED and LIVE (lite) splits. We also report the result of BOAD on VERIFIED (HELD OUT) that
exclude the 12 issues used in the design set.

Optimization Details During BOAD optimization, we run B = 20 rounds of the bandit loop
(Algorithm 1) (testing on up to 100 rounds shows that sub-agents created after around 20 rounds
are generally worse, and 20 iterations is enough to converge to a state where helpful rate and UCB
rankings align). Each time a new sub-agent is created, the sub-agent first goes through a warm-
up process, which uses randomly sampled instances from the design set to iteratively refine the
documentation/instance prompt of the sub-agent, ensuring that the sub-agent is usable. We use
W = 4 rounds for the warm-up process. Each round samples K = 3 sub-agents and evaluates
them on the design set. The optimization took around 12 hours on a machine with 56 CPU cores
and 440GB RAM. For running SWE-agent (orchestrator and sub-agent LLM inference), we deploy
Seed-OSS-36B-Instruct on one H100 GPU node. Note that by the tenth iteration, the top-2 most
helpful subagents are the same as the ones converged on later. Running B = 10 iterations took less
than 7 hours.

Implementation. All experiments use the SWE-AGENT scaffold with a set of default tools from
SWE-agent [52]: edit anthropic (file viewing/editing), bash (restricted shell commands),

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

and submit. The orchestrator calls sub-agents through the same API, passing information via a
context parameter; sub-agents return outputs through this channel without access to the orchestrator’s
history. We use Claude-4 to generate candidate designs (Section 4.1) with temperature 0.0 and
evaluate sub-agent helpfulness (Section 4.2). For execution, both orchestrator and sub-agents use
Seed-OSS-36B-Instruct with temperature 0.0, unless specified, a strong instruction-following model
that is not heavily tuned on SWE tasks. This choice ensures improvements reflect the benefit
of orchestration rather than fine-tuning on SWE-task specific data. Each sub-agent is equipped
with prompts discovered by BOAD, defined with docstrings and argument specs, and invoked via
XML-based tool calling.

Finally, for evaluation, we use the two subagents with the highest helpfulness score (the hindsight-
based score) found during the subagent discovery (Appendix A.2.1). We also ablate by varying k in
the top-k selection and by using success rate instead of helpfulness as the ranking metric (Section 5.3).

5.2 MAIN RESULTS

Table 1: Success rate on SWE-BENCH VERIFIED and SWE-BENCH LIVE.

Scale Model Scaffold Verified Resolved (%) Live Resolved (%)

Large

GPT-4o [52] SWE-agent 23.0 10.0
GPT-4o [51] Agentless 38.8 11.7
Claude 3.5 Sonnet [5] Agentless 50.8 –
Claude 3.5 Sonnet [5] OpenHands 53.0 –
Claude 3.7 Sonnet [4] SWE-agent 62.4 13.71

Claude 4.0 Sonnet [6] SWE-agent 66.8 –
Claude 4.0 Sonnet [6] OpenHands 70.4 –
DeepSeek-R1 [18] Agentless 49.2 –
DeepSeek-V3 [15] Agentless 42.0 13.3
GLM-4.5-Air [45] OpenHands 57.6 –
GLM-4.5-Air [45] SWE-Agent – 17.7
Qwen3-Coder 480B/A35B Instruct [47] OpenHands 69.6 24.7

Small
Qwen3-Coder-30B-A3B-Instruct [47] SWE-agent – 17.0
Qwen3-Coder-30B-A3B-Instruct [47] OpenHands 51.6 –
Devstral-Small-2505 [7] OpenHands 46.8 –
Seed-OSS-36B-Instruct [46] SWE-agent (baseline) 49.8 12.3
Seed-OSS-36B-Instruct [46] SWE-agent + Manual Sub-agent 47.4 14.0
Seed-OSS-36B-Instruct [46] SWE-agent + Evolutionary Search 46.0 17.0
Seed-OSS-36B-Instruct [46] SWE-agent + BOAD 53.22 20.0

Success Rate Table 1 shows that with Seed-OSS-36B-Instruct, BOAD resolves 20.0% of issues
on LIVE, ranking second on the leaderboard and outperforming larger models in popular scaffolds
(e.g., GPT-4o, DeepSeek-V3, GLM-4.5-Air, Claude 3.7 Sonnet). This is a 63% improvement over
the same model with default SWE-agent tools. On VERIFIED, BOAD achieves 53.12%, surpassing
many larger models (e.g., GPT-4o, Claude 3.5 Sonnet OpenHands, DeepSeek-R1, DeepSeek-V3)
and setting a new state of the art among smaller models (e.g., Qwen3-Coder-30B-A3B-Instruct,
Devstral-Small-2505), with a 13.4% gain over the default SWE-agent. Interestingly, adding manually
designed sub-agents (Appendix A.2.4) from prior work [8; 35; 11] lowers performance, indicating that
human-crafted roles can be misaligned with LLM behavior. Overall, these results demonstrate that
BOAD automatically discovers orchestrator–sub-agent structures that not only boost in-distribution
performance but also generalize more effectively to out-of-distribution tasks.

Comparison with Evolutionary Baseline We also implement an evolutionary search for a multi-
agent system adapted from Automated Design of Agentic Systems [22], as a baseline to compare
BOAD against. Implementation details for the evolutionary search are provided in Appendix A.4.1.
When using the same number of evaluation instances (i.e number of SWE-Bench patches generated),
we find that the sub-agents generated by the evolutionary search achieve worse performance (17.0%
vs 20.0% on SWE-Bench-Live) than BOAD. Additionally, for the same number of iterations, the

1The SWE-bench-live leaderboard score was 17.7, based on an earlier issue set from April 2025.
253.1 on the SWE-bench-verified set excluding the 12 issues used in the design set.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

cost of Claude API calls is more than double than that of BOAD due to the need of generating many
sub-agents at each iteration, whereas BOAD reuses subagents across iterations.

Token Analysis In addition to success rate, we analyze the test-time token usage of the hierar-
chical multi-agent system discovered by BOAD in comparison to the default single-agent system.
Hierarchical multi-agent systems introduce communication overhead, since agents must exchange
information, but they can also reduce context length: sub-agents focus on specialized sub-tasks while
the orchestrator handles high-level coordination without low-level details. Table 2 compares token
usage between SWE-agent and BOAD. Total tokens refer to the average sum of input and output
tokens per issue, while max input tokens capture the average maximum input length per instance.
Surprisingly, the total token count is comparable—and even lower on SWE-bench-live—than in
the original SWE-agent. Moreover, BOAD consistently reduces input tokens, confirming that task
decomposition shortens context length.

Table 2: Token usage. BOAD lowers input token counts, thus shortening the model’s input context length.

Metric Setting Verified Live

Total tokens (M) SWE-agent 0.92 1.49
SWE-agent + BOAD 0.93 (+0.7%) 1.13 (-23.8%)

Max input tokens SWE-agent 34.6k 49.0k
SWE-agent+BOAD 30.5k (-11.6%) 36.7k (-25.0%)

5.3 ABLATION STUDIES AND ANALYSIS

Table 3: Ablation studies and analysis. Each row corresponds to one research question. Results are reported on
SWE-bench Live using Seed-OSS-36B-Instruct unless otherwise specified.

Research Question Configuration SWE-Bench Live (%)

Does prompt optimization explain the
gains?

w/o Sub-agent 16.3
w Sub-agent 20.0

Do more sub-agents improve
performance?

Top-5 sub-agents 13.7
Top-4 sub-agents 16.7
Top-3 sub-agents 16.3
Top-2 sub-agents 20.0
Top-1 sub-agent 16.3

Do we need to customize the
orchestrator?

w/o customization 16.7
w customization 20.0

Is expanding the sub-agent archive
needed?

w/o expansion 17.0
w expansion 20.0

Is hindsight credit assignment
necessary?

Top-3 subagents (success rate) 11.3
Top-3 subagents (helpfulness) 16.3
Top-2 subagents (success rate) 15.3
Top-2 subagents (helpfulness) 20.0

Are discovered sub-agents transferable
to other models?

Claude 3.7 Sonnet 13.7
+ Top-2 sub-agents (helpfulness) 16.3

Does prompt optimization explain the gains? One possible explanation for BOAD ’s performance
improvement is that it simply arises from better prompt optimization of SWE-agent. To test this, we
introduce a baseline that optimizes the SWE-agent prompt without adding sub-agents (w/o Sub-agent).
We run 10 iterations: in each, a new SWE-agent prompt is generated by prompting Claude-4 with
the template shown in A.1.5, evaluated on 12 issues (the same setting as BOAD). The first iteration
is initialized without history, and from the second onward, prompt generation is conditioned on the
top five prompts from previous rounds, ranked by performance. Results in Table 3 show that prompt
optimization alone does not reach the performance of BOAD, indicating that the gains are not solely
due to prompt tuning but from the discovery of effective sub-agents and orchestration.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Do more sub-agents improve performance? One might expect performance to improve as more
sub-agents are added, since each can specialize. To test this, we vary the number of top-K sub-agents
from 1 to 5 based on the helpfulness score (Section 4.2) and evaluate on LIVE. Surprisingly, Table
3 shows that performance peaks with exactly two sub-agents, achieving 60/300 (20.0%). A single
sub-agent (49/300) fails to leverage specialization, while larger teams of three (49/300), four (50/300),
or five (41/300) reduce performance due to communication and coordination overhead. These results
suggest that small, focused teams strike the best balance, outperforming both minimal and overly
large teams of sub-agents.

Do we need to customize the orchestrator? We next ask whether gains come solely from sub-agent
discovery or if the orchestrator must also adapt to its team. We compare two prompting strategies:
(i) a generic prompt encouraging sub-agent calls (Appendix A.1.1), and (ii) a customized prompt
generated by Claude-4 that explicitly references the top two sub-agents (selected by helpfulness
scores) and outlines a plan for using them. Both settings use the same sub-agent set, but only the
customized prompt allows the orchestrator to reason about and plan calls to specific sub-agents.
Results in Table 3 show the customized orchestrator (w customization) achieves 60/300 (20.0%),
versus 50/300 (16.7%) (w/o customization) for the generic one. This indicates that while sub-agents
provide new capabilities, the orchestrator must also be specialized to effectively coordinate them.

Is expanding the sub-agent archive needed? As discussed in Section 4.1, the initial archive may be
limited, and adding new sub-agents during the design process could be necessary to discover stronger
ones. To test this, we compare orchestrator performance using (i) sub-agents from the initial archive
(w/o expansion) and (ii) sub-agents selected at the end of the design process (w expansion). Both
settings use two sub-agents, consistent with our best configuration in Section 5.2, and the orchestrator
is generated as described in Section 4.1. Results in Table 3 show that final sub-agents outperform
those from the initial archive, highlighting the importance of expanding the archive over time.

Is hindsight credit assignment necessary? To address free-riding issues in sub-agent selection
(Section 4.1), we use a helpfulness score to measure each sub-agent’s contribution. To test its
importance, we compare orchestrator performance when sub-agents are selected by (i) individual
success rate versus (ii) helpfulness score. As shown in Table 3, helpfulness-based selection consis-
tently outperforms success-rate selection, indicating that hindsight credit assignment (Section 4.2) is
essential for identifying useful sub-agents.

Are discovered sub-agents transferable to other models? Since BOAD optimizes sub-agents
for a specific model, we ask whether the best sub-agents differ across models and whether effective
sub-agents can transfer. To test this, we apply the sub-agents from Section 5.2 to SWE-agent+Claude-
3.7-Sonnet. As shown in Table 3, the discovered sub-agents do transfer to some extent, though the
gains are smaller than those achieved with Seed-OSS-36B-Instruct, the model used for sub-agent
optimization.

5.4 QUALITATIVE ANALYSIS OF SINGLE- VS MULTI-AGENT OUTCOMES

We manually inspected trajectories in which the single- and multi-agent systems produced different
outcomes. Three recurring patterns emerged:

1. Over-editing (multi-agent advantage). Single agents frequently produced extremely long
patches, including attempts to create new tests and edits outside the scope of the bug. Such patches
inflate apply time and increase the chance of failing pass-to-pass, even if the agent is able
to address the primary fault. In contrast, the multi-agent system tended to emit short, localized
patches, highlighting the advantage of separating phases like localization and editing/testing.

2. Multi-site fixes and coverage (multi-agent advantage). When the fix required edits at multiple
call sites or modules, the single agent often either over-edited unrelated regions or missed one
or more necessary locations. The hierarchical system mitigated both omission and extraneous
edits by delegating to a sub-agent for localization, which did a thorough analysis of the repository
before making any targetted modifications.

3. Error propagation from unvalidated sub-agent outputs (multi-agent failure mode). In a
minority of cases, the multi-agent system failed while the single agent succeeded. Inspecting these
outputs, we found that erroneous sub-agent outputs (e.g., incomplete span identification, misinter-
pretation of the issue) were accepted as ground truth by the orchestrator, leading subsequent steps

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

astray. Because there is no intermediate validation or self-checking, the orchestrator has limited
ability to recover from such upstream.

These observations align with our hypothesis: hierarchical delegation constrains edit scope and
improves coverage of multi-site fixes, but introduces a new dependency on the quality of sub-agent
handoffs. Incorporating lightweight verification (e.g., span cross-checks, invariant tests, or dual-read
localization) is a promising mitigation for the third failure mode.

6 DISCUSSION & CONCLUSION

We present BOAD, a framework that formulates hierarchical multi-agent design as a sequential,
online decision making problem to automatically discover multi-agent systems for long-horizon
software engineering tasks. Our experiments show that automatically discovered sub-agents, when
combined with a customized orchestrator, outperform single-agent and manually designed multi-agent
systems on both SWE-BENCH VERIFIED and SWE-BENCH LIVE.

Limitations and Future Work: We find that discovered sub-agents transfer across models only
partially and failure cases highlight error propagation when orchestrators unconditionally accept
sub-agent outputs. Future work should explore evolution on large models, adaptive team sizing,
verification, as well as extending the framework to domains beyond software engineering.

ETHICS STATEMENT

Coding agents hold strong promise for automating code generation and bug fixing, but they also
carry risks of unintended or harmful outputs. For instance, an LLM-based agent may produce
commands that could compromise a system (e.g., downloading unauthorized packages or deleting
user files with rm -rf). To mitigate these risks in our study, all experiments were conducted within
Docker containers, providing isolated and sandboxed environments that prevent harmful commands
from impacting real user devices and substantially reducing the potential for actual harm. Our
implementation also builds upon the SWE-Agent framework, which has been previously published
and reviewed under established ethical standards. We carefully follow its curated protocols and
licensing requirements.

Nevertheless, as with any AI-based coding agent framework, there remains the risk of deliberate
misuse, for example, a malicious user prompting the system to generate harmful or hacking code.
While our contribution is centered on advancing the technical design of hierarchical coding agents,
we emphasize that real-world deployment should be coupled with responsible auditing and oversight,
so that potential misuse and unintended consequences can be effectively mitigated.

REPRODUCIBILITY STATEMENT

For all open-source LLMs (e.g., Seed-OSS-36B-Instruct, Qwen3-Coder-30B-A3B-Instruct), we rely
on their official releases. Commercial LLMs and LLM-based tools are accessed through their official
APIs and reference implementations. We provide detailed implementation notes of BOAD, including
the prompt design for meta-agents, sub-agents, and LLM judges, in Section 5.1. To further support
reproducibility and foster future research, we will also release all of our code, used data, and prompts.

REFERENCES

[1] Alekh Agarwal, Haipeng Luo, Behnam Neyshabur, and Robert E Schapire. Corralling a band
of bandit algorithms. In Conference on Learning Theory, pp. 12–38. PMLR, 2017.

[2] Lakshya A Agrawal, Shangyin Tan, Dilara Soylu, Noah Ziems, Rishi Khare, Krista Opsahl-
Ong, Arnav Singhvi, Herumb Shandilya, Michael J Ryan, Meng Jiang, Christopher Potts,
Koushik Sen, Alexandros G. Dimakis, Ion Stoica, Dan Klein, Matei Zaharia, and Omar Khattab.
Gepa: Reflective prompt evolution can outperform reinforcement learning, 2025. URL https:
//arxiv.org/abs/2507.19457.

10

https://arxiv.org/abs/2507.19457
https://arxiv.org/abs/2507.19457

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

[3] David J Aldous. Exchangeability and related topics. In École d’Été de Probabilités de Saint-
Flour XIII—1983, pp. 1–198. Springer, 2006.

[4] Anthropic. Claude 3.7 sonnet and claude code, 2025. URL https://www.anthropic.
com/news/claude-3-7-sonnet.

[5] Anthropic. Claude 3.5 sonnet, 2025. URL https://www.anthropic.com/news/
claude-3-5-sonnet.

[6] Anthropic. Introducing claude 4, 2025. URL https://www.anthropic.com/news/
claude-4.

[7] Anthropic. Devstral, 2025. URL https://mistral.ai/news/devstral.

[8] Daman Arora, Atharv Sonwane, Nalin Wadhwa, Abhav Mehrotra, Saiteja Utpala, Ramakrishna
Bairi, Aditya Kanade, and Nagarajan Natarajan. Masai: Modular architecture for software-
engineering ai agents. arXiv preprint arXiv:2406.11638, 2024.

[9] Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement
learning. Discrete Event Dynamic Systems, 13(4):341–379, 2003.

[10] Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement
learning. Discrete event dynamic systems, 13(4):341–379, 2003.

[11] Dong Chen, Shaoxin Lin, Muhan Zeng, Daoguang Zan, Jian-Gang Wang, Anton Cheshkov, Jun
Sun, Hao Yu, Guoliang Dong, Artem Aliev, et al. Coder: Issue resolving with multi-agent and
task graphs. arXiv preprint arXiv:2406.01304, 2024.

[12] Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Jaward Sesay, Börje Karlsson, Jie Fu, and
Yemin Shi. Autoagents: A framework for automatic agent generation. In Proceedings of the
Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI 2024, Jeju, South
Korea, August 3-9, 2024, pp. 22–30. ijcai.org, 2024. URL https://www.ijcai.org/
proceedings/2024/3.

[13] Benoı̂t Colson, Patrice Marcotte, and Gilles Savard. An overview of bilevel optimization.
Annals of operations research, 153(1):235–256, 2007.

[14] Chris Dann, Claudio Gentile, and Aldo Pacchiano. Data-driven online model selection with
regret guarantees. In International Conference on Artificial Intelligence and Statistics, pp.
1531–1539. PMLR, 2024.

[15] DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu,
Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian
Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang,
Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo,
Jiaqi Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong
Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li,
Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian,
Panpan Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du,
R. J. Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu
Zhang, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu,
Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng
Zhou, Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng,
Wanjia Zhao, Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang,
X. Q. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen,
Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang,
Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi
Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei,
Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying

11

https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://mistral.ai/news/devstral
https://www.ijcai.org/proceedings/2024/3
https://www.ijcai.org/proceedings/2024/3

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo,
Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha,
Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang,
Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong
Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu,
Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report,
2025. URL https://arxiv.org/abs/2412.19437.

[16] Thomas G Dietterich. Hierarchical reinforcement learning with the maxq value function
decomposition. In Proceedings of the 17th International Conference on Machine Learning
(ICML), pp. 118–126. Morgan Kaufmann, 2000.

[17] Dylan J Foster, Akshay Krishnamurthy, and Haipeng Luo. Model selection for contextual
bandits. Advances in Neural Information Processing Systems, 32, 2019.

[18] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[19] Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=ZG3RaNIsO8.

[20] Nikolaus Hansen. The cma evolution strategy: a comparing review. In Towards a new
evolutionary computation, pp. 75–102. Springer, 2006.

[21] Mengkang Hu, Tianxing Chen, Qiguang Chen, Yao Mu, Wenqi Shao, and Ping Luo. HiAgent:
Hierarchical working memory management for solving long-horizon agent tasks with large
language model. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher
Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 32779–32798, Vienna, Austria, July 2025. Association
for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1575.
URL https://aclanthology.org/2025.acl-long.1575/.

[22] Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. arXiv preprint
arXiv:2408.08435, 2024.

[23] Yu Jiang, Ke Wang, Xin Wang, Yanyan Zhao, and Zhiqiang Zhang. Extracting concise bug-
fixing patches from human-written patches in version control systems. In Proceedings of the
43rd International Conference on Software Engineering (ICSE), pp. 1351–1362. IEEE/ACM,
2021.

[24] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

[25] Jaehun Kim, Shunyu Yao, Howard Chen, Karthik Narasimhan, et al. Promptbreeder: Self-
referential self-improvement via prompt evolution. In International Conference on Learning
Representations (ICLR), 2024.

[26] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. 2020.

[27] Haitao Li, Qian Dong, Junjie Chen, Huixue Su, Yujia Zhou, Qingyao Ai, Ziyi Ye, and Yiqun
Liu. Llms-as-judges: a comprehensive survey on llm-based evaluation methods. arXiv preprint
arXiv:2412.05579, 2024.

[28] Han Li, Yuling Shi, Shaoxin Lin, Xiaodong Gu, Heng Lian, Xin Wang, Yantao Jia, Tao Huang,
and Qianxiang Wang. Swe-debate: Competitive multi-agent debate for software issue resolution.
arXiv preprint arXiv:2507.23348, 2025.

12

https://arxiv.org/abs/2412.19437
https://openreview.net/forum?id=ZG3RaNIsO8
https://aclanthology.org/2025.acl-long.1575/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

[29] Fernanda Madeiral, Thomas Durieux, Matias Martinez, and Martin Monperrus. Bears: An
extensible java bug benchmark for automatic program repair studies. In Proceedings of the 26th
IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER),
pp. 468–478. IEEE, 2019.

[30] Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations, 2023.

[31] George A Miller. The magical number seven, plus or minus two: Some limits on our capacity
for processing information. Psychological review, 63(2):81, 1956.

[32] Kou Misaki, Yuichi Inoue, Yuki Imajuku, So Kuroki, Taishi Nakamura, and Takuya Akiba.
Wider or deeper? scaling LLM inference-time compute with adaptive branching tree search. In
ICLR 2025 Workshop on Foundation Models in the Wild, 2025. URL https://openreview.
net/forum?id=3HF6yogDEm.

[33] Allen Newell and Herbert A Simon. Computer science as empirical inquiry: Symbols and
search. Communications of the ACM, 19(3):113–126, 1976.

[34] Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco J. R. Ruiz, Abbas Mehrabian,
M. Pawan Kumar, Abigail See, Swarat Chaudhuri, George Holland, Alex Davies, Sebastian
Nowozin, Pushmeet Kohli, and Matej Balog. Alphaevolve: A coding agent for scientific and
algorithmic discovery, 2025. URL https://arxiv.org/abs/2506.13131.

[35] Huy Nhat Phan, Tien N Nguyen, Phong X Nguyen, and Nghi DQ Bui. Hyperagent: Generalist
software engineering agents to solve coding tasks at scale. arXiv preprint arXiv:2409.16299,
2024.

[36] Eduardo Pignatelli, Johan Ferret, Matthieu Geist, Thomas Mesnard, Hado van Hasselt, Olivier
Pietquin, and Laura Toni. A survey of temporal credit assignment in deep reinforcement
learning. arXiv preprint arXiv:2312.01072, 2023.

[37] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

[38] Jielin Qiu, Zuxin Liu, Zhiwei Liu, Rithesh Murthy, Jianguo Zhang, Haolin Chen, Shiyu Wang,
Ming Zhu, Liangwei Yang, Juntao Tan, et al. Locobench: A benchmark for long-context large
language models in complex software engineering. arXiv preprint arXiv:2509.09614, 2025.

[39] Stefano Rando, Luca Romani, Alessio Sampieri, Luca Franco, John Yang, Yuta Kyuragi, Fabio
Galasso, and Tatsunori Hashimoto. Longcodebench: Evaluating coding llms at 1m context
windows. In Proceedings of the Conference on Language Modeling (COLM), 2025. URL
https://openreview.net/forum?id=GFPoM8Ylp8. COLM 2025.

[40] Herbert A Simon. The structure of ill structured problems. Artificial intelligence, 4(3-4):
181–201, 1973.

[41] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback.
Advances in Neural Information Processing Systems, 33:3008–3021, 2020.

[42] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. 2018.

[43] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A
framework for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):
181–211, 1999.

[44] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A
framework for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1-2):
181–211, 1999.

13

https://openreview.net/forum?id=3HF6yogDEm
https://openreview.net/forum?id=3HF6yogDEm
https://arxiv.org/abs/2506.13131
https://openreview.net/forum?id=GFPoM8Ylp8

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

[45] 5 Team, Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang
Wang, Da Yin, Hao Zeng, Jiajie Zhang, Kedong Wang, Lucen Zhong, Mingdao Liu, Rui Lu,
Shulin Cao, Xiaohan Zhang, Xuancheng Huang, Yao Wei, Yean Cheng, Yifan An, Yilin Niu,
Yuanhao Wen, Yushi Bai, Zhengxiao Du, Zihan Wang, Zilin Zhu, Bohan Zhang, Bosi Wen,
Bowen Wu, Bowen Xu, Can Huang, Casey Zhao, Changpeng Cai, Chao Yu, Chen Li, Chendi
Ge, Chenghua Huang, Chenhui Zhang, Chenxi Xu, Chenzheng Zhu, Chuang Li, Congfeng
Yin, Daoyan Lin, Dayong Yang, Dazhi Jiang, Ding Ai, Erle Zhu, Fei Wang, Gengzheng Pan,
Guo Wang, Hailong Sun, Haitao Li, Haiyang Li, Haiyi Hu, Hanyu Zhang, Hao Peng, Hao Tai,
Haoke Zhang, Haoran Wang, Haoyu Yang, He Liu, He Zhao, Hongwei Liu, Hongxi Yan, Huan
Liu, Huilong Chen, Ji Li, Jiajing Zhao, Jiamin Ren, Jian Jiao, Jiani Zhao, Jianyang Yan, Jiaqi
Wang, Jiayi Gui, Jiayue Zhao, Jie Liu, Jijie Li, Jing Li, Jing Lu, Jingsen Wang, Jingwei Yuan,
Jingxuan Li, Jingzhao Du, Jinhua Du, Jinxin Liu, Junkai Zhi, Junli Gao, Ke Wang, Lekang Yang,
Liang Xu, Lin Fan, Lindong Wu, Lintao Ding, Lu Wang, Man Zhang, Minghao Li, Minghuan
Xu, Mingming Zhao, Mingshu Zhai, Pengfan Du, Qian Dong, Shangde Lei, Shangqing Tu,
Shangtong Yang, Shaoyou Lu, Shijie Li, Shuang Li, Shuang-Li, Shuxun Yang, Sibo Yi, Tianshu
Yu, Wei Tian, Weihan Wang, Wenbo Yu, Weng Lam Tam, Wenjie Liang, Wentao Liu, Xiao
Wang, Xiaohan Jia, Xiaotao Gu, Xiaoying Ling, Xin Wang, Xing Fan, Xingru Pan, Xinyuan
Zhang, Xinze Zhang, Xiuqing Fu, Xunkai Zhang, Yabo Xu, Yandong Wu, Yida Lu, Yidong
Wang, Yilin Zhou, Yiming Pan, Ying Zhang, Yingli Wang, Yingru Li, Yinpei Su, Yipeng
Geng, Yitong Zhu, Yongkun Yang, Yuhang Li, Yuhao Wu, Yujiang Li, Yunan Liu, Yunqing
Wang, Yuntao Li, Yuxuan Zhang, Zezhen Liu, Zhen Yang, Zhengda Zhou, Zhongpei Qiao,
Zhuoer Feng, Zhuorui Liu, Zichen Zhang, Zihan Wang, Zijun Yao, Zikang Wang, Ziqiang Liu,
Ziwei Chai, Zixuan Li, Zuodong Zhao, Wenguang Chen, Jidong Zhai, Bin Xu, Minlie Huang,
Hongning Wang, Juanzi Li, Yuxiao Dong, and Jie Tang. Glm-4.5: Agentic, reasoning, and
coding (arc) foundation models, 2025. URL https://arxiv.org/abs/2508.06471.

[46] ByteDance Seed Team. Seed-oss open-source models. https://github.com/
ByteDance-Seed/seed-oss, 2025.

[47] Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.
09388.

[48] Yee Whye Teh, Michael I Jordan, Matthew J Beal, and David M Blei. Hierarchical dirichlet
processes. Journal of the american statistical association, 101(476):1566–1581, 2006.

[49] Dong Wang, Yu Li, Ming Jiang, Lu Zhang, and Zhiqiang Chen. A systematic mapping study of
bug reproduction and fault localization. Information and Software Technology, 167:107316,
2024.

[50] Mingqi Wu, Zhihao Zhang, Qiaole Dong, Zhiheng Xi, Jun Zhao, Senjie Jin, Xiaoran Fan,
Yuhao Zhou, Huijie Lv, Ming Zhang, et al. Reasoning or memorization? unreliable results of
reinforcement learning due to data contamination. arXiv preprint arXiv:2507.10532, 2025.

[51] Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
llm-based software engineering agents, 2024. URL https://arxiv.org/abs/2407.
01489.

[52] John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik
Narasimhan, and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software
engineering. Advances in Neural Information Processing Systems, 37:50528–50652, 2024.

[53] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhut-
dinov, and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop
question answering. arXiv preprint arXiv:1809.09600, 2018.

[54] Chen Bo Calvin Zhang, Zhang-Wei Hong, Aldo Pacchiano, and Pulkit Agrawal. Orso: Ac-
celerating reward design via online reward selection and policy optimization. arXiv preprint
arXiv:2410.13837, 2024.

[55] Jenny Zhang, Shengran Hu, Cong Lu, Robert Lange, and Jeff Clune. Darwin godel machine:
Open-ended evolution of self-improving agents, 2025. URL https://arxiv.org/abs/
2505.22954.

14

https://arxiv.org/abs/2508.06471
https://github.com/ByteDance-Seed/seed-oss
https://github.com/ByteDance-Seed/seed-oss
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2407.01489
https://arxiv.org/abs/2407.01489
https://arxiv.org/abs/2505.22954
https://arxiv.org/abs/2505.22954

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

[56] Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow
generation. arXiv preprint arXiv:2410.10762, 2024.

[57] Kexun Zhang, Weiran Yao, Zuxin Liu, Yihao Feng, Zhiwei Liu, Rithesh Murthy, Tian Lan, Lei
Li, Renze Lou, Jiacheng Xu, et al. Diversity empowers intelligence: Integrating expertise of
software engineering agents. arXiv preprint arXiv:2408.07060, 2024.

[58] Linghao Zhang, Shilin He, Chaoyun Zhang, Yu Kang, Bowen Li, Chengxing Xie, Junhao
Wang, Maoquan Wang, Yufan Huang, Shengyu Fu, et al. Swe-bench goes live! arXiv preprint
arXiv:2505.23419, 2025.

[59] Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister, Rui Zhang, and Sercan Ö. Arik. Chain of
agents: Large language models collaborating on long-context tasks. In Amir Globersons, Lester
Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang
(eds.), Advances in Neural Information Processing Systems 38: Annual Conference on Neural
Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December
10 - 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/
hash/ee71a4b14ec26710b39ee6be113d7750-Abstract-Conference.html.

[60] Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang.
Language agent tree search unifies reasoning, acting, and planning in language models. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett,
and Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learning Research, pp. 62138–62160. PMLR,
21–27 Jul 2024. URL https://proceedings.mlr.press/v235/zhou24r.html.

[61] Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-
marking code generation with diverse function calls and complex instructions. arXiv preprint
arXiv:2406.15877, 2024.

15

http://papers.nips.cc/paper_files/paper/2024/hash/ee71a4b14ec26710b39ee6be113d7750-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/ee71a4b14ec26710b39ee6be113d7750-Abstract-Conference.html
https://proceedings.mlr.press/v235/zhou24r.html

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A EXPERIMENT DETAILS

A.1 PROMPT TEMPLATES

A.1.1 PROMPT TEMPLATE FOR REFINING SUBAGENT DURING WARMUP STAGE

Prompt template for refining subagent during warmup stage

You are improving a subagent's prompts/config for a software engineering (SWE) automation system, based
on recent run trajectories. The subagent is used by an AI main agent to address code issues.↪→

CONTEXT
- You will receive trajectory summaries below, starting with the main agent's trajectory, followed by

any subagent trajectories in call order.↪→
- Each summary shows what the agent did, what was observed, and how far it progressed.

GOAL
Analyze the subagent's performance and suggest improvements to make it:
1. More discoverable by the main agent (when appropriate)
2. More reliable in its behavior
3. More useful in its output

ANALYSIS FRAMEWORK
Consider these questions:
- Did the main agent discover and use the subagent when it should have?
- Did the subagent behave as expected and return useful information?
- Were there missed opportunities or inefficient behaviors?

IMPROVEMENT TYPES
Focus on one or more of these areas:
1. **docstring**: Make the subagent easier for the main agent to discover and choose appropriately.

CRITICAL: Make sure to include "[subagent]" at the beginning of the docstring.↪→
2. **context_description**: Improve the description of the 'context' argument (the only argument) to be

clearer and more helpful↪→
3. **instance_template**: Better incorporation of context, clearer framing for each problem instance

Note that the docstring and context_description are visible only to the main agent, while the
instance_template is visible only to the subagent.↪→

Thus, if the subagent was not called, you should not edit instance_template. Similarly, if the only
issue is the subagent's trajectory, not how it was called, do not edit docstring or
context_description.

↪→
↪→

PRINCIPLES
- Make surgical, targeted improvements rather than broad rewrites
- Preserve existing style and capabilities. Only edit components that need improvement.
- Focus on clarity, discoverability, and reliability
- Ensure generality. Avoid repo- or issue-specific assumptions.
- CRITICAL: DO NOT WRITE ANYTHING SPECIFIC TO THE PARTICULAR CODEBASE, PROJECT, OR DOMAIN.

OUTPUT FORMAT
First, explain your reasoning about what issues you noticed with the provided trajectory and what

improvements you're making. Then, output the YAML in a code block.↪→
IMPORTANT: Only suggest edits when you identify a clear, specific problem. If the entire subagent

is working well, use an empty updates dictionary.↪→

Sample outputs:

When improvements are needed:
Explain your reasoning here.
```yaml
updates:
docstring: "<improved docstring if needed>"
context_description: "<improved context argument description if needed>"
instance_template: "<improved instance template if needed>"

```

RULES
- Only include keys that you intend to change.
- Start with `updates:` as the top-level key. If there are no updates to make, the value for `updates`

should be an empty dictionary.↪→
- You may update any combination of the three fields (docstring, context_description,

instance_template), but only include a field if it needs improvement.↪→
- No explanations or extra content in the YAML
- Keep each field concise but complete

HEURISTICS
- **Discovery issues**: Strengthen docstring with clear use cases and when to invoke
- **Insufficient context passed to subagent**: Improve context_description with clearer argument

explanation↪→
- **Subagent behavior and output (Incorrect subagent trajectory or return information)**: Improve

instance_template with better instructions and output specifications↪→

{{TRAJECTORIES}}

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.1.2 META AGENT PROMPTS

Prompt for generating a new subagent configuration

You are an expert at designing custom tools for SWE-agent, an autonomous agent that can resolve code
issues in large repositories.↪→

YOUR TASK
Invent a subagent tool for SWE-agent.
- The subagent should enable the main agent to better perform its task of automatically resolving code

issues in large static repositories.↪→
- Design for broad applicability across the full workflow. Create broad subagents that are can solve an

entire step of the pipeline, such as:↪→
- code localization
- reproducing issues and running scripts/tests
- code editing/patching
- code testing

- The subagents created should ONLY be focused on correctness of the final patch (e.g. style,
complexity of code does not matter)↪→

- PRIORITIZE TOKEN EFFICIENCY: Design concise, focused subagents that use minimal tokens. Avoid verbose
explanations or redundant information that wastes tokens.↪→

- If you see a subagent that looks good but has bad token efficieny, you may generate a similar
subagent with the same function but better implementation.↪→

- The subagent takes a SINGLE argument that is a string, called "context".
- BE NOVEL! Think carefully about how to help the main agent perform one of its subtasks.
- Example subagents include localize, patch_editor, or code_tester.

- Do not create a subagent that overlaps with previous subagents (other than the token efficiency
situation).↪→

- In your reasoning, you must explicitly list which steps the subagent supports (examples: explore,
read/search, edit, run, validate) and the expected outputs for each supported step.↪→

- CRITICAL: Output exactly ONE YAML document with the tool under a single key, which is the name of
the tool.↪→

- The name of the tool should be simple and descriptive.
- The docstring for each tool should be comprehensive and describe what the output contains, as well

as the state of the repository after the subagent is finished (if files will be edited or not,
etc.).

↪→
↪→

The structure must be exactly as follows:
Add reasoning here about WHY you design this subgaent...
```yaml
tool_name:
signature: "tool_name <context>"
docstring: docstring: "comprehensive description of this subagent, the output, and the state of

repository on completion. Starts with '[subagent]:"↪→
arguments:

- name: context
type: string
description: "detailed description of what the context parameter should contain"
required: true

subagent: true
```

Sample output:
It may be useful to have a patch editor subagent. This would go well with previous subagents and help

the main agent more efficiently patch the issue.↪→
```yaml
patch_editor:
signature: "patch_editor <context>"
docstring: "[subagent] Fixes a specific part of code that has errors. Outputs the changes made with

reasoning. After calling, the correct changes are already implemented in the repository."↪→
arguments:

- name: context
type: string
description: "A string containing the specific file path to make edits in, the lines where edits

need to be made, a comprehensive description of the issue with the code (do not assume the
subagent has any information about the repository or problem statement), and what to edit."

↪→
↪→
required: true

subagent: true
```
{{PREVIOUS_ITERATION_FEEBACK}}

Prompt for generating subagent templates

You are an expert at creating SWE-agent subagent configuration files for automating code-patching tasks
in large GitHub repositories.↪→

Given a description of the subagent, you need to generate the system_template and instance_template
parts that will be used in the subagent configuration.↪→

IMPORTANT FORMATTING RULES:
- First output your reasoning that details your thinking process for creating the templates. Then,

output a yaml block with both templates.↪→
- Use MINIMAL spacing - avoid excessive blank lines
- Use only SINGLE blank lines between sections (never double or triple spacing)
- Keep templates compact and readable without unnecessary whitespace
- CRITICAL: Use YAML literal block syntax with | and |- (see example below)
- Do NOT use quoted strings - use literal blocks to avoid quotes in output

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

- Replace ONLY text in [] with text specific to the subagent. Do NOT MODIFY any other parts.
- Copy EXACTLY the parts other than [], including how to call the functions (e.g.

"<function=example_function_here>")↪→

Output format:
[Reasoning here...]
```yaml
system_template: |
You are a helpful [role] assistant that can interact with a computer to [main task].
<IMPORTANT>

* If user provides a path, you should NOT assume it's relative to the current working directory.
Instead, you should explore the file system to find the file before working on it.↪→

</IMPORTANT>

You have access to the following functions:
{{command_docs}}

If you choose to call a function, you must ONLY reply in the following format with NO suffix:
Provide any reasoning for the function call here.
<function=example_function_name>
<parameter=example_parameter_1>value_1</parameter>
<parameter=example_parameter_2>
This is the value for the second parameter
that can span
multiple lines
</parameter>
</function>
(You must use the exact text function=" and "parameter=" for each function and argument, respectively,

e.g. <parameter=command>value</parameter>)↪→

<IMPORTANT>
Reminder:
- Function calls MUST follow the specified format, start with <function= and end with </function>
- Required parameters MUST be specified
- CRITICAL: Only call ONE function at a time
- Always provide reasoning for your function call in natural language BEFORE the function call (not

after)↪→
</IMPORTANT>

<pr_description>
{{problem_statement}}
</pr_description>

CRITICAL: Use the submit_subagent function to provide the results when you are finished with your
task.↪→

You are ONLY responsible for your specific assigned task. Do NOT attempt to resolve entire
pr_description, only your task.↪→

Your goal is to complete your task in the MINIMAL NUMBER of steps. Resolve the issue fast and call
submit_subagent as soon as possible.↪→

instance_template: |-

Your task:
[Provide detailed, step-by-step instructions for your assigned subagent task, tailored to your

specific role. The instructions must ONLY reference this subagent's function.]↪→
[If a context argument is provided, you MUST include its contents by inserting "{{context}}" here and

explaining what the parameter is.]↪→

**CRITICAL: STAY IN YOUR LANE**
- You are ONLY responsible for your specific assigned task
- You are NOT responsible for solving the entire issue
- You are NOT responsible for other subagent tasks
- Focus EXCLUSIVELY on your assigned task and nothing else
- CRITICAL: Call EXACTLY one function in your output!
- CRITICAL: When you are finished, immediately call submit_subagent. Do not call any other tools or

produce additional output.↪→

Focus exclusively on your assigned task and strictly follow these instructions. Do not attempt to
address unrelated parts of the PR or perform work outside your specific subagent role.↪→

Use the submit_subagent tool after you are finished with your specific task to provide a clear and
complete summary of your findings or changes.↪→

Your thinking should be thorough and so it's fine if it's very long.
```

Rules for generating templates:
1. The system_template should clearly define the subagent's role and capabilities based on the

available tools↪→
2. The instance_template should provide clear instructions for each task
3. Both templates should maintain consistent formatting with the base template
4. Ensure the templates encourage thorough analysis and clear documentation
5. MUST use literal block syntax: system_template: | and instance_template: |-
6. Never use quoted strings for templates
7. You should copy the given system template exactly other than the first sentence.
8. Modify the system template in the spots with [].

{{PREVIOUS_ITERATION_FEEDBACK}}

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.1.3 CUSTOM ORCHESTRATOR PLAN PROMPT

Prompt template for generating a custom orchestrator plan given a set of subagents

You are a master workflow architect for automated software engineering. Your job is to design
innovative, strategic workflows that maximize the effectiveness of available tools.↪→

CONTEXT: You're designing workflows for an AI assistant that solves coding problems in software
repositories. The assistant receives a problem description (like a bug report, feature request, or
code issue) and needs to systematically work through the codebase to understand, fix, and validate
the solution. The assistant has access to specialized "subagents" - each designed for specific
aspects of the coding workflow.

↪→
↪→
↪→
↪→

You will be given a toolkit of specialized "subagents" - each with unique capabilities. Your challenge
is to:↪→

1. **Design** a comprehensive problem-solving plan that addresses the coding issue systematically
2. **Integrate** subagents strategically where they add the most value to your workflow
3. **Optimize** the sequence and wording of the plan to minimize the number of steps that the AI

assistant takes while remaining effective↪→

Think like a senior engineer designing a solution strategy. Consider:
- What are the key phases needed to solve this type of coding problem?
- Which subagents would be most valuable for specific phases?
- How can you combine subagent work with direct problem-solving phases?
- What's the most logical progression to integrate subagent input and output to solve the issue?
- How can you utilize subagents to minimize language model token usage and number of steps?

INPUT
- The available subagents will be provided inline between the following tags:
<available_subagents>
{{subagents_overview}}
</available_subagents>
The content in <available_subagents> lists each subagent with its name and short docs

(summary/description). Treat it as the authoritative source for tool names and purposes.↪→

WHAT TO OUTPUT
- Output ONLY your strategic plan as plain text (no YAML, no code fences, no headers).
- Each phase MUST start with a number and a period, e.g. "1. ...".
- For subagent phases, use the exact form: "Use the <name> subagent to ..."
- For direct phases, describe the action clearly without mentioning subagents, ensuring that it can be

applied to any problem.↪→
- Be creative and strategic - design workflows that combine different approaches effectively
- Keep 3 to 7 steps total, but make each step purposeful and well-reasoned
- Make sure the last steps are:
- After you have solved the issue, delete any test files or temporary files you created.
- Use the submit tool to submit the changes to the repository.

- Do not mention any function-call formats or system details

EXAMPLE (illustrative only; adapt to the given input)
<available_subagents>
- name: issue_localizer | Identify files and code regions relevant to the issue.
- name: error_reproducer | Reproduce the failing behavior and capture commands/outputs.
- name: code_tester | Run tests/commands to verify the fix and regressions.
</available_subagents>

Expected output EXAMPLE (plain text only):
1. Use the issue_localizer subagent to map the problem space and identify all potentially affected

files and code regions.↪→
2. Analyze the problem description and examine the identified files to understand the root cause and

requirements.↪→
3. Use the error_reproducer subagent to create a reproducible test case and capture the exact failure

conditions.↪→
4. Design and implement the fix based on the analysis, focusing on the specific files and code areas

identified.↪→
5. Use the code_tester subagent to validate the fix against the original failure case and run

regression tests.↪→
6. After you have solved the issue, delete any test files or temporary files you created.
7. Use the submit tool to submit the changes to the repository.

Now, based on the provided subagents, produce ONLY the numbered plan as plain text:

A.1.4 PROMPT TEMPLATE FOR CHECKING IF A SUBAGENT WAS HELPFUL IN A GIVEN
INSTANCE

Prompt template for checking if a subagent was helpful in a given instance

CONTEXT:
These trajectories show a software engineering agent trying to fix a bug or implement a

feature. The agent can use various tools including subagents (specialized AI
assistants) to help solve the problem.

↪→
↪→

TRAJECTORIES:
{{TRAJECTORIES}}

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

TOOL TO ANALYZE: {{TOOL_NAME}}

Your task is to determine if the subagent "{{TOOL_NAME}}" was helpful in this set of
trajectories.↪→

A tool is considered helpful if:
1. It was called/invoked by the main agent in the main agent trajectory
2. It provided useful information, analysis, or insights that contributed to solving the

problem↪→
3. The main agent made progress after using this tool (e.g., identified the issue, made

code changes, validated results, etc.)↪→
4. It completed its task as intended (followed proper analysis process, not just got

lucky results)↪→

Look for positive evidence such as:
- The subagent being called with appropriate parameters
- The subagent providing insights that led to code changes or problem understanding
- The main agent referencing or building upon the subagent's output
- The subagent's output being used in subsequent reasoning or actions

Look for negative evidence such as:
- The subagent not being called by the main agent, or called incorrectly
- The subagent providing irrelevant or incorrect information that was not later used
- The subagent's response was valid but did not move the main agent closer to resolving

the problem.↪→
- The subagent failed to execute properly or had many errors during the its run.
- The subagent's output appeared correct, but its trajectory did not actually achieve

those results (e.g., claimed to test code but just reported all tests passed).↪→
- The main agent had to call the subagent over and over again to get the proper results.
- The subagent trajectory was unnecessarily long or verbose, taking many steps to

complete its task↪→
- The main agent trajectory became inefficient due to excessive subagent calls or overly

verbose subagent responses↪→
- The subagent's results did not actually help the main agent make progress in resolve

the issue. If a subagent did not contribute to producing the correct patch, e.g. only
improved performance, style, or documentation, this is NOT helpful.

↪→
↪→

Respond with YAML format (exactly):
```yaml
helpful: true/false
reasoning: |

Brief explanation of why the tool was or wasn't helpful, including specific evidence
from the trajectories↪→

```

- Always use the block scalar `|` for `reasoning` and indent its text by two spaces.
- Only respond with the YAML block; no additional text before or after.

A.1.5 ORCHESTRATOR-ONLY PROMPT

Prompt template for generating an orchestrator prompt under orchestrator-only settings

You are a master workflow architect for automated software engineering. Your job is to design effective
workflows that solve coding problems efficiently.↪→

CONTEXT: You're designing workflows for an AI assistant that solves coding problems in software
repositories. The assistant receives a problem description (like a bug report, feature request, or
code issue) and needs to work through the codebase to understand, implement changes, and validate
the solution.

↪→
↪→
↪→

Your goal is to create workflows that are both effective at solving problems and efficient in their
execution. Focus on designing strategic approaches that lead to successful problem resolution.↪→

CONTEXT FOR PLAN USAGE:
Your generated plan will be inserted into this agent template context:

```
I've uploaded a python code repository in the directory {{working_dir}}. Consider the following PR

description:↪→

<pr_description>
{{problem_statement}}
</pr_description>

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Can you help me implement the necessary changes to the repository so that the requirements specified in
the <pr_description> are met? I've already taken care of all changes to any of the test files
described in the <pr_description>. This means you DON'T have to modify the testing logic or any of
the tests in any way! Your task is to make the minimal changes to non-test files in the
{{working_dir}} directory to ensure the <pr_description> is satisfied. When solving the task,

**first create a plan by breaking the problem into subtasks**. Think systematically about the steps
needed to understand the problem, locate relevant code, implement changes, and verify the solution.
Follow this process:

↪→
↪→
↪→
↪→
↪→
↪→
↪→
{{plan}} <-- YOUR PLAN GOES HERE
You MUST follow the plan exactly.
```

AVAILABLE TOOLS:
- bash: Execute shell commands for searching, testing, running scripts, exploring codebase structure
- str_replace_editor: View, create, and edit files with precise string replacement capabilities
- submit: Submit the final solution

LEARNING FROM HISTORY:
<sampled_templates>
{{sampled_templates_summary}}
</sampled_templates>

If historical templates are provided above, identify what made the highest-scoring approaches
successful and what caused failures. Look for patterns in tool usage, step efficiency, and
problem-solving strategies. If no history exists, design breakthrough approaches that challenge
conventional software engineering workflows.

↪→
↪→
↪→

WHAT TO OUTPUT:
- Create a step-by-step plan that an AI agent can execute systematically
- Each step must clearly specify tool usage ("Use bash to..." or "Use str_replace_editor to...") and

expected outcomes↪→
- Design for Python repositories and PR-based problem solving
- Focus on minimal, targeted changes rather than broad exploration
- Structure as numbered steps (1., 2., 3., etc.) with logical flow
- Final step must use submit tool to deliver the solution
- Make each step actionable and specific enough for precise execution
- Output ONLY the numbered plan as plain text (no formatting, headers, or explanations)

A.2 SUBAGENTS

A.2.1 BOAD TOP 2 DISCOVERED SUBAGENT CONFIGURATIONS FOR
SEED-OSS-36B-INSTRUCT

issue analyzer configuration

docstring:
[subagent] Analyzes and structures issue descriptions, bug reports, or feature requests to extract key

information for systematic resolution planning. Best used at the beginning of issue resolution to
understand requirements, extract technical details, and plan investigation approach. Outputs
structured analysis including problem summary, affected components, reproduction criteria, success
conditions, and recommended investigation approach. Repository state unchanged - only analyzes the
provided issue context.

↪→
↪→
↪→
↪→
↪→

argument:
context (string) [required] : The complete issue description, bug report, feature request, or problem

statement text that needs to be analyzed and structured. Include the full original text to ensure
all requirements, technical details, constraints, and implementation notes are captured for
systematic analysis.

↪→
↪→
↪→

instance template:
Your task: Analyze and structure the provided issue description to extract key information for

systematic resolution planning, based on the provided context: {{context}}↪→

Follow these steps:
1. Parse the issue description to extract core information: - Issue type (bug report, feature request,

enhancement, etc.) - Problem statement and symptoms - Expected vs actual behavior - Error messages
or failure descriptions - Affected functionality or components

↪→
↪→
2. Identify technical details: - File paths, function names, or code references mentioned - Stack

traces or error logs - Version information or environment details - Dependencies or configuration
issues

↪→
↪→
3. Structure reproduction criteria: - Steps to reproduce the issue - Required conditions or setup -

Input data or test cases needed - Expected failure modes or symptoms↪→
4. Define success conditions: - Clear criteria for issue resolution - Expected behavior after fix -

Verification methods or tests needed - Performance or quality requirements5. Recommend
investigation approach: - Priority areas to examine first - Suggested debugging or analysis methods
- Related components that may be affected - Potential root cause categories.

↪→
↪→
↪→
6. Provide structured analysis including: - Concise problem summary - Categorized technical details -

Clear reproduction steps - Measurable success criteria - Systematic investigation plan - Risk
assessment and impact analysis

↪→
↪→
CRITICAL: STAY IN YOUR LANE- You are ONLY responsible for your specific assigned task- You are NOT

responsible for solving the entire issue- You are NOT responsible for other subagent tasks- Focus
EXCLUSIVELY on your assigned task and nothing else-

↪→
↪→
CRITICAL: Call EXACTLY one function in your output!-

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

CRITICAL: When you are finished, immediately call submit_subagent. Do not call any other tools or
produce additional output.Focus exclusively on your assigned task and strictly follow these
instructions. Do not attempt to address unrelated parts of the PR or perform work outside your
specific subagent role.

↪→
↪→
↪→
Use the submit_subagent tool after you are finished with your specific task to provide a clear and

complete summary of your findings or changes.↪→
Your thinking should be thorough and so it's fine if it's very long.

code navigator configuration

docstring:
[subagent] Explores and maps relevant code structure in large repositories. Outputs structured

information about key files, functions, classes, and their relationships. Repository state
unchanged - only reads and analyzes code without modifications.

↪→
↪→

argument:
context (string) [required] : A string containing the issue description, error messages, stack traces,

or specific code elements to investigate. Should include any relevant file paths, function names,
class names, or keywords that might help locate the problematic code.

↪→
↪→

instance template:
Your task: Explore and map the relevant code structure in the repository based on the provided context:

{{context}}↪→
Follow these steps:
1. Parse the provided context to identify key elements to investigate (file paths, function names,

class names, error messages, etc.)↪→
2. Navigate through the repository structure to locate relevant files and directories.
3. Examine and analyze the identified code elements including: - Key files and their purposes -

Important functions and their signatures - Classes and their methods/attributes - Module
dependencies and imports - Code relationships and call hierarchies

↪→
↪→
4. Map the structure and relationships between different code components
5. Provide structured information including: - File locations and their roles in the codebase -

Function/class definitions and their responsibilities - Dependencies between modules/components -
Code patterns and architectural insights - Relevant code snippets that relate to the context

↪→
↪→
**CRITICAL: When you finish your analysis, immediately call submit_subagent with a comprehensive

summary of your findings.**↪→
CRITICAL: STAY IN YOUR LANE - You are ONLY responsible for your specific assigned task - You are

NOT responsible for solving the entire issue - You are NOT responsible for other subagent tasks -
Focus EXCLUSIVELY on your assigned task and nothing else - Do not attempt to address unrelated
parts of the PR or perform work outside your specific subagent role

↪→
↪→
↪→
Use submit_subagent to provide a clear and complete summary of your findings when finished.

A.2.2 ALL BOAD DISCOVERED SUBAGENTS

Here we report all sub-agents discovered over 100 iterations of BOAD. For each sub-agent, we report
the iteration number where it was first proposed (Generated Iteration), the number of times it was
selected during optimization (n), and its final hindsight helpfulness rate.

Subagent Generated Iteration n Helpfulness
code navigator 1 1140 0.933
test runner 1 120 0.625
code fixer 1 36 0.361
fix validator 2 36 0.333
issue reproducer 3 564 0.768
dependency resolver 5 24 0.125
test analyzer 6 24 0.083
issue analyzer 7 1116 0.982
precision editor 8 120 0.642
multi file coordinator 10 24 0.042
code detective 11 60 0.500
config manager 14 12 0.000
git resolver 26 12 0.000
error debugger 32 12 0.000
api analyzer 36 24 0.208
performance analyzer 46 36 0.250
compatibility checker 48 36 0.333
spec analyzer 53 36 0.361
data flow analyzer 60 96 0.562
refactor architect 96 24 0.042

Table 4: Subagent statistics sorted by exp num after 100 iterations of BOAD

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

A.2.3 ALL EVOLUTION DISCOVERED SUBAGENTS

Here we report all bundles discovered over 20 iterations of BOAD (one for each iteration). For each
sub-agent, we report its iteration number, the generated subagents, and the bundle’s success rate. Note
that sub-agents with the same name across different iterations may have different system/instance
templates because sub-agents are not reused. On evaluation, we choose the bundle with the highest
success rate (latest bundle if tied).

Sub-agents focused on problem analysis or file localization—such as issue analyzer (0.968
average helpfulness), code navigator (0.917), and issue reproducer (0.817)—consistently
appear more useful. Our observation is that these agents provide value independently of how later
stages unfold: even if code editing or testing fails, identifying the correct files and clarifying the
underlying issue is almost always beneficial.

In contrast, sub-agents whose usefulness depends on earlier steps tend to show lower average
helpfulness. For example, test analyzer (0.167) is only useful after the system has already
identified the faulty files and produced a candidate patch; if either prerequisite fails, it cannot
contribute, which naturally lowers its average helpfulness.

Specialized sub-agents such as dependency resolver (0.250) and config manager (0.000)
also have low average helpfulness, largely because dependency or configuration issues appear in only
a small fraction of tasks.

Finally, once core analysis is completed and the faulty files are correctly located, the orchestrator
can often complete the remaining code-editing steps on its own. This explains why code-editing
sub-agents like code fixer do not exhibit high average helpfulness.

Iteration Subagents Success Rate
1 issue localizer, issue reproducer, patch editor 0.333
2 fix validator, fix planner, code explorer 0.500
3 issue localizer, test runner, code patcher 0.417
4 repo mapper, code searcher, fix validator 0.500
5 code editor, issue reproducer, issue localizer 0.182
6 fix validator, code locator, problem analyzer 0.583
7 test runner, code editor, code analyzer 0.583
8 code locator, fix validator, issue reproducer 0.417
9 code editor, repo analyzer, test runner 0.250
10 code locator, issue reproducer, solution planner 0.417
11 code patcher, test validator, repo explorer 0.417
12 issue reproducer, code locator, fix implementer 0.364
13 fix validator, code analyzer, code editor 0.500
14 issue reproducer, code locator, bug analyzer 0.417
15 test validator, patch editor, repo explorer 0.500
16 code locator, issue reproducer, bug analyzer 0.455
17 test validator, patch editor, codebase explorer 0.583
18 issue reproducer, bug localizer, bug analyzer 0.250
19 code patcher, fix validator, issue analyzer 0.417
20 code locator, reproducer, code editor 0.417

Table 5: Subagents and success rates per iteration for the evolutionary baseline.

A.2.4 MANUALLY DESIGNED SUBAGENT CONFIGURATIONS

issue localizer configuration

docstring: A subagent that localizes the issue in the repository. Takes a context string specifying the
brief description of the issue. Outputs a brief report about which files and lines are relevant to
the issue.

↪→
↪→

argument: context (string) [required] { A string containing the brief description of the issue.

instance template:
Issue description:
{{context}}

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Please identify which files and specific lines or functions are most relevant to this issue. Output a
short, clear report that mentions:↪→

- File paths
- Line numbers or function names
- A one-sentence explanation for why each location is relevant

Keep the report concise and focused on helping later agents work on the correct parts of the
repository.↪→

error reproducer configuration

docstring: A subagent that creates and executes test scripts to verify reported errors. Outputs the
result of the tests and locations of test files created.↪→

argument: context (string) [required] { A string containing error details, file paths and line numbers
of code relevant to the error, and expected vs actual behavior.↪→

instance template:
Error context:
{{context}}

Please create and execute a temporary reproduction script to verify this error. You should:
- Create temporary files (prefixed with 'tmp_')
- Include only what's needed to reproduce the error
- Report whether the error reproduces exactly as described
- Note any deviations from expected behavior

Output a short, clear report that mentions:
- Result of the tests
- Locations of test files created

code editor configuration

docstring: A subagent that implements specified code changes in the repository. Outputs the specific
code changes made, file paths/line numbers edited, and what should be tested to verify the fix.↪→

argument: context (string) [required] { A string containing the code snippet(s) to modify and file
path(s), and the changes to be applied.↪→

instance template:
Context for code changes:
{{context}}

Please implement the specified code changes in the repository. You should:

- Identify the relevant files and code sections
- Make precise edits according to the specification
- Maintain code quality and consistency
- Output a short, clear report that mentions:
- File paths/line numbers edited
- What should be tested to verify the fix

code tester configuration

docstring: A subagent that tests code after edits have been made to verify the fix works correctly.
Outputs the result of the tests.↪→

argument: context (string) [required] { A string containing the specific code changes made, file paths,
and original error.↪→

instance template:
Code changes made:
{{context}}

Please test the code after the edits to verify the fix works correctly. You should:

Use existing test files if available (prefixed with 'tmp_'), or create new ones as needed

- Test the specific functionality that was changed
- Determine whether or not the original error is fixed.
- Output a short, clear report that mentions:
- List of tests run and results of the tests
- Whether the original error is fixed, and if any new errors were introduced

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

A.3 ADDITIONAL EXPERIMENTAL RESULTS

A.3.1 EFFECT OF DESIGN-SET SIZE

We evaluated whether the size of the design set affects the performance of the discovered sub-agents
and found no meaningful impact. We sample 6 unique problems from SWE-Bench-Verified and
sample one problem from each to make a small design set of 6 problems, and sample two problems
from each to make a large design set of 24 problems. Across different design-set sizes, the resulting
sub-agents achieve similar performance as shown in Table 6.

Design Set Size Resolution Rate
6 21%
12 20%
24 19%

Table 6: Performance of discovered sub-agents across different design-set sizes.

A.4 ADDITIONAL EXPERIMENTAL SETUP DETAILS

A.4.1 IMPLEMENTATION DETAILS FOR EVOLUTIONARY BASELINE

For comparison with BOAD, we implemented an evolutionary multi-agent design baseline where the
orchestrator and three sub-agent prompts are bundled together and treated as a single evolutionary
individual. We use three sub-agents paired with an orchestrator because BOAD chooses three sub-
agents when optimizing the sub-agents in the experiments (Section 5.2). At each iteration of the
evolution, the system generates three new subagents sequentially, given the previous round subagent
configurations and their measured helpfulness and success rates (using the same prompts as BOAD,
provided in A.1.2). Next, both the sub-agent warm-up and the orchestrator construction follow the
same procedures used in BOAD. The generated orchestrator and subagents are then run on the same
design set to get the helpfulness and success rate for the next iteration.

A.4.2 API COST COMPARISON WITH BOAD

The evolutionary baseline also requires Claude calls—both to propose new orchestrator/sub-agent
prompts and to perform LLM-as-judge scoring. Under the same setup, each evolution iteration costs
$2.33, whereas each BOAD iteration costs $0.96, indicating that evolution is substantially more
expensive to run. Evolution incurs higher cost because it mutate the bundle of orchestrator and
sub-agents at each iteration.

B THE USAGE OF LARGE LANGUAGE MODELS (LLMS)

In our work, we used large language models (LLMs) for two purposes: (1) as a general writing
assistant to check the grammar of the manuscript for readability, and (2) as the model component of
our proposed system BOAD, where LLMs function as the evolution engine, meta-/sub-agents, and
evaluation judges in experiments with mainstream coding agents. All research ideas, methodological
contributions, and conclusions are solely those of the authors, who take full responsibility for the
content of this work.

25

	Introduction
	Related works
	Preliminaries
	Method: Bandit Optimization for Agent Design (BOAD)
	Agent Design as a Multi-Armed Bandit Problem
	Hindsight Credit Assignment

	Experiments
	Setup
	Main results
	Ablation Studies and Analysis
	Qualitative Analysis of Single- vs Multi-Agent Outcomes

	Discussion & Conclusion
	Experiment Details
	Prompt templates
	Prompt template for refining subagent during warmup stage
	Meta agent prompts
	Custom orchestrator plan prompt
	Prompt template for checking if a subagent was helpful in a given instance
	Orchestrator-only Prompt

	Subagents
	BOAD Top 2 Discovered Subagent Configurations for Seed-OSS-36B-Instruct
	All BOAD Discovered Subagents
	All Evolution Discovered Subagents
	Manually Designed Subagent Configurations

	Additional Experimental Results
	Effect of Design-Set Size

	Additional Experimental Setup Details
	Implementation Details for Evolutionary Baseline
	API Cost Comparison with BOAD

	The Usage of Large Language Models (LLMs)

