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Abstract
In most real-world reinforcement learning appli-
cations, state information is only partially observ-
able, which breaks the Markov decision process
assumption and leads to inferior performance for
algorithms that conflate observations with state.
Partially Observable Markov Decision Processes
(POMDPs), on the other hand, provide a general
framework that allows for partial observability
to be accounted for in learning, exploration and
planning, but presents significant computational
and statistical challenges. To address these dif-
ficulties, we develop a representation-based per-
spective that leads to a coherent framework and
tractable algorithmic approach for practical rein-
forcement learning from partial observations. We
provide a theoretical analysis for justifying the
statistical efficiency of the proposed algorithm,
and also empirically demonstrate the proposed al-
gorithm can surpass state-of-the-art performance
with partial observations across various bench-
marks, advancing reliable reinforcement learning
towards more practical applications.

1. Introduction
Reinforcement learning (RL) addresses the problem of mak-
ing sequential decisions that maximize a cumulative re-
ward through interaction and observation in an environ-
ment (Mnih et al., 2013; Levine et al., 2016). The Markov
decision process (MDP) has been the standard mathematical
model used for most RL algorithm design. However, the
success of MDP-based RL algorithms (Zhang et al., 2022;
Ren et al., 2023c) relies on an assumption that state infor-
mation is fully observable, which implies that the optimal
policy is memoryless, i.e., optimal actions can be selected
based purely on the current state (Puterman, 2014). How-
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ever, such an assumption typically does not hold in practice.
For example, in chatbot learning (Jiang et al., 2021) or video
game control (Mnih et al., 2013) only dialogue exchanges or
images are observed, from which state information only can
be partially inferred. The violation of full observability can
lead to significant performance degeneration of MDP-based
RL algorithms in such scenarios.

The Partially Observed Markov Decision Process (POMDP)
(Åström, 1965) has been proposed to extend the classical
MDP formulation by introducing observation variables that
only give partial information about the underlying latent
state (Hauskrecht & Fraser, 2000; Roy & Gordon, 2002;
Chen et al., 2016). This extension greatly expands the practi-
cal applicability of POMDPs over MDPs, but the additional
uncertainty over the underlying state given only observa-
tions creates a non-Markovian dependence between suc-
cessive observations, even though Markovian dependence
is preserved between latent states. Consequently, the op-
timal policy for a POMDP is no longer memoryless but
entire-history dependent, expanding the state complexity
exponentially w.r.t. horizon length. Such a non-Markovian
dependence creates significant computational and statistical
challenges in planning, and in learning and exploration. In
fact, without additional assumptions, computing an optimal
policy for a POMDP with known dynamics (i.e., planning)
is PSPACE-complete (Papadimitriou & Tsitsiklis, 1987),
while the sample complexity of learning for POMDPs grows
exponentially w.r.t. the horizon (Jin et al., 2020a).

Despite the worst case hardness of POMDPs, given their
importance in practice, there has been extensive work on de-
veloping practical RL algorithms that can cope with partial
observations. One common heuristic is to extend MDP-
based RL algorithms by maintaining a history window over
observations to encode a policy or value function, e.g., re-
current neural networks (Wierstra et al., 2007; Hausknecht
& Stone, 2015; Zhu et al., 2017). Such algorithms have been
applied to many real-world applications with image- or text-
based observations (Berner et al., 2019; Jiang et al., 2021),
sometimes even surpassing human-level performance (Mnih
et al., 2013; Kaufmann et al., 2023).

These empirical successes have motivated investigation into
structured POMDPs that allow some of the core compu-
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tational and statistical complexities to be overcome, and
provides an improved understanding of exploitable struc-
ture and practical new algorithms with rigorous justification.
For example, the concept of decodability has been used to
express POMDPs where the latent state can be exactly re-
covered from a window of past observations (Efroni et al.,
2022; Guo et al., 2023). Observability is another special
structure, where the m-step emission model is assumed to
be full-rank, allowing the latent state to be identified from
m future observation sequences (Jin et al., 2020a; Golowich
et al., 2022; Liu et al., 2022; 2023). Such structures elim-
inate unbounded history dependence, and thus, reduce the
computational and statistical complexity. However, most
works rely on the existence of an ideal computational oracle
for planning, which, unsurprisingly, is infeasible in most
cases, hence difficult to apply in practice. Although there
have been a few attempts to overcome the computational
complexity of POMDPS, these algorithms are either only
applicable to the tabular setting (Golowich et al., 2022) or
rely on an integration oracle that quickly become intractable
for large observation spaces (Guo et al., 2018). This gap
immediately motivates the question:

Can efficient and practical RL algorithms be designed for
partial observations by exploiting natural structures?

By “efficient" we mean the statistical complexity avoids an
exponential dependence on history length, while by “practi-
cal" we mean that every component of learning, planning
and exploration can be easily implemented and applied in
practical settings. In this paper, we provide an affirmative
answer to this question. More specifically,

• We reveal for the first time that an L-decodable POMDP
admits a sufficient representation, the Multi-step Latent
Variable Representation (µLV-Rep), that supports exact
and tractable linear representation of the value functions
(Section 4.1), breaking the fundamental computational
barriers explained in more detail in Section 3.

• We design a computationally efficient planning algorithm
that can implement both the principles of optimism and
pessimism in the face of uncertainty for online and offline
POMDPs respectively, by leveraging the learned sufficient
representation µLV-Rep (Section 4.2).

• We provide a theoretical analysis of the sample complex-
ity of the proposed algorithm, justifying its efficiency in
balancing exploitation versus exploration in Section 5.

• We conduct a comprehensive empirical comparison to
current existing RL algorithms for POMDPs on several
benchmarks, demonstrating the superior empirical perfor-
mance of µLV-Rep (Section 7).

2. Preliminaries
We follow the definition of a POMDP given in (Efroni et al.,
2022; Liu et al., 2022; 2023), which is formally denoted

as a tuple P = (S,A,O, r,H, ρ0,P,O), where S is the
state space, A is the action space, and O is the observation
space. The positive integer H denotes the horizon length,
ρ0 is the initial state distribution, r : O × A → [0, 1] is
the reward function, P(·|s, a) : S × A → ∆(S) is the
transition kernel capturing dynamics over latent states, and
O(·|s) : S → ∆(O) is the emission kernel, which induces
an observation from a given state.

Initially, the agent starts at a state s0 drawn from ρ0(s). At
each step h, the agent selects an action a from A. This
leads to the generation of a new state sh+1 following the
distribution P(·|sh, ah), from which the agent observes oh+1

according to O(·|sh+1). The agent also receives a reward
r(oh+1, ah+1). Observing o instead of the true state s leads
to a non-Markovian transition between observations, which
means we need to consider policies πh : O × (A×O)h →
∆(A) that depend on the entire history, denoted by τh =
{o0, a0, · · · , oh}. Let [H] := {0, . . . ,H}. Then the value
associated with policy π = {πh}h∈[H] is defined as vπ =

Eπ

[∑
h∈[H] r(oh, ah)

]
. The goal is to find the optimal

policy π∗ = argmaxπ v
π. Note that the MDP given by

M = (S,A, r,H, ρ0,P) is a special case of a POMDP,
where the state space S is equivalent to the observation space
O, and the emission kernel O(o|s) is defined as δ(o = s).

Define the belief function b(·) : O×(A×O)h → ∆(S). Let
b(s1|o1) = P(s1|o1). Then we can recursively compute:

b(sh+1|τh+1)∝
∫
S
b(sh|τh)P(sh+1|sh, ah)O(oh+1|sh+1)dsh.

(1)
With such a definition, one can convert a POMDP to
an equivalent MDP over beliefs, denoted as Mb =
(B,A, Rh, H, µb, Tb), where B ⊆ ∆(S) represents the set
of possible beliefs, µb(·) =

∫
b(·|o1)µ(o1)do1, and

Pb (bh+1|bh, ah)

=

∫
1bh+1=b(τh,ah,oh+1)P(oh+1|bh, ah)doh+1. (2)

Notice that b(·) ∈ B is a mapping b : O × (A × O)h →
∆(S), i.e., each belief corresponds to a density measure
over the state space, thus Pb (·|bh, ah) represents a con-
ditional operator that characterizes the transition between
belief distributions. For a given policy π : B → ∆(A), we
can define the state value function V π

h (bh) and state-action
value function Qπ

h(bh, ah) respectively for the belief MDP
(i.e., equivalently for the original POMDP) as:

V π
h (bh) = E

[∑H
t=h r(ot, at)|bh

]
,

Qπ
h(bh, ah) = E

[∑H
t=h r(ot, at)|bh, ah

]
. (3)

Therefore, the Bellman equation can be expressed as
V π
h (bh) = Eπ [Q

π
h(bh, ah)] ,

Qπ
h(bh, ah) = r(oh, ah) + EPb

[
V π
h+1(bh+1)

]
. (4)

Although this reformulation of a POMDP provides a re-
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duction to an equivalent MDP, it is crucial to recognize
that the equivalent MDP is based on beliefs, which are
also not directly observed. More importantly, these beliefs
are densities that depend on the entire history, hence the
joint distribution is supported on a space of growing dimen-
sion, leading to exponential representation complexity even
when the number of states is finite. These difficulties result
in infeasible computational and statistical complexity (Pa-
padimitriou & Tsitsiklis, 1987; Jin et al., 2020a), and reveal
the inherent suboptimality of directly applying MDP-based
RL algorithms in a POMDP. Moreover, incorporating func-
tion approximation in learning and planning is significantly
more involved in a POMDP than an MDP.

Consequently, several special structures have been inves-
tigated in the theoretical literature to reduce the statis-
tical complexity of learning in a POMDP. Specifically,
L-decodability and γ-observability have been introduced
in (Du et al., 2019; Efroni et al., 2022) and (Golowich et al.,
2022; Even-Dar et al., 2007) respectively.
Definition 1 (L-decodability (Efroni et al., 2022)). ∀h ∈
[H], define

xh ∈ X := (O ×A)L−1 ×O,
xh = (oh−L+1, ah−L+1, · · · , oh). (5)

A POMDP is L-decodable if there exists a decoder p∗ :
X → ∆(S) such that p∗(xh) = b(τh).

Definition 2 (γ-observability (Golowich et al., 2022; Even–
Dar et al., 2007)). Denote ⟨O, b⟩ :=

∫
Oh (·|s) b (s) ds,

for arbitrary beliefs b and b′ over states. A POMDP is
γ-observable if ∥⟨O, b⟩ − ⟨O, b′⟩∥1 ⩾ γ ∥b− b′∥1.

Note that we slightly generalize the decodability definition
of Efroni et al. (2022), which assumes b(τh) is a Dirac
measure on S. It is worth noticing that γ-observability
and L-decodability are highly related. Existing works have
shown that a γ-observable POMDP can be well approxi-
mated by a decodable POMDP with a history of suitable
length L (Golowich et al., 2022; Uehara et al., 2022; Guo
et al., 2023) (see Appendix B for a detailed discussion).
Hence, in the main text, we focus on L-decodable POMDPs,
which can be directly extended to γ-observable POMDPs.

Although these structural assumptions have been introduced
to ensure the sample complexity of learning in a structured
POMDP is reduced, the computational tractability of plan-
ning and exploring given such structures remains open.

3. Difficulties in Learning with POMDPs
Before attempting to design practical RL algorithms for
structured POMDPs, we first demonstrate the generic dif-
ficulties of learning in POMDPs, including the difficulty
of planning even in a known POMDP. These challenges
only become more difficult when combined with the need
to explore in an unknown POMDP during learning.

The major difficulty of planning in a known POMDP

lies in evaluating the value function (Ross et al., 2008),
which is necessary for both temporal-difference and policy
gradient based planning and learning methods. For clarity
in explaining the difficulties, consider estimating Qπ for a
given policy π. (The same difficulties arise in estimating
Q∗.) Based on the Bellman equation (4), we have:
Qπ

h (bh, ah) = r (oh, ah) + EP(oh+1|bh,ah)

[
V π
h+1 (bh+1)

]
.

To execute dynamic programming in the hth time step, i.e.,
to determine Qπ

h, we require several components:

i) The belief bh+1(·) must be calculated, as defined in (1),
which requires marginalization and renormalization, with
a computational complexity proportional to the number
of states. For continuous control, the calculation involves
integration, which is intractable in general.

ii) Representing the value function V π
h+1(·) quickly becomes

intractable, even for discrete state and action spaces. In
general, expressing V π

h+1(·) requires space proportional
to size of the support of beliefs, which is exponential w.r.t.
the horizon. (The optimal value function V ∗

h+1 (·) can be
represented by convex piece-wise linear function (Small-
wood & Sondik, 1973), but the number of components
can grow exponentially in the horizon.) For continuous
state POMDPS, no compact characterization is yet known
for the space of value functions.

iii) The expectation EP(oh+1|bh,ah) [V
π (bh+1)] requires in-

tegration w.r.t. the distribution P(oh+1|bh, ah) =∫
O(oh+1|sh+1)P (sh+1|sh, ah) bh (sh) dshdsh+1 with

computational cost proportional to the size of the sup-
port of beliefs, which is also exponential in the horizon.

These calculations are generally intractable in a POMDP,
particularly one with a continuous state space. Due to this
intractability, the exact calculation of the value function via
the Bellman equation is generally infeasible. Consequently,
many approximation methods have been proposed for each
component of planning (Ross et al., 2008). However, the
approximation error in each step can be amplified when
these steps are composed through the Bellman recursion,
leading to significantly suboptimal performance.

Due to promising theoretical results that exploit γ-
observability or L-decodability to reduce the exponential
dependence on horizon in terms of statistical complexity,
there have been many attempts to exploit these properties to
also achieve computationally tractable planning for RL in a
POMDP. Golowich et al. (2022) construct an approximate
MDP for an L-observable POMDP, whose approximation
error can be characterized for planning. However, the pro-
posed algorithm only works for POMDPs with discrete
observations, states and actions. Alternatively, Guo et al.
(2023) exploits low-rank latent dynamics in an L-decodable
POMDP, which induces a nonlinear representation for value
functions. Unfortunately, this nonlinear structure has not
been shown to support any practical algorithm. To imple-
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ment the backup step in dynamic programming for Qπ , the
algorithm in (Guo et al., 2023) requires an integration-oracle
to handle the nonlinearity, which is generally infeasible.

Another barrier to practical learning in a POMDP is ex-
ploration, which is usually implemented in planning by
appealing to the principle of optimism in the face of un-
certainty (OFU). Unfortunately, OFU usually requires not
only the estimation of the model or value function, but also
their uncertainty, e.g., a confidence interval in frequentist ap-
proaches (Liu et al., 2022; 2023) or the posterior in Bayesian
approaches (Simchowitz et al., 2021). Practical and general
implementations are not yet known in either case.

These major issues, which have not been carefully consid-
ered in empirical RL algorithms that leverage history-based
neural networks (Wierstra et al., 2007; Hausknecht & Stone,
2015; Zhu et al., 2017), interact in ways that exaggerate the
difficulty of developing efficient algorithms for POMDPs.

4. Multi-step Latent Variable Representation
In this section, we develop the first computationally effi-
cient planning and exploration algorithm by further lever-
aging the structure of an L-decodable POMDP. The main
contribution is to identify a latent variable representation
that can linearly represent the value function of an arbitrary
policy in an L-step decodable POMDP. From this represen-
tational perspective, we show that explicit belief calculation
can be bypassed and the backup step can be directly calcu-
lated via optimization. We then show how a latent variable
representation learning algorithm can be designed, based
upon (Ren et al., 2023b), that leads to the proposed Multi-
step Latent Variable Representation (µLV-Rep) method.

4.1. Efficient Policy Evaluation from Key Observations
Although the equivalent belief MDP provides a Markovian
Bellman recursion (4), as discussed in Section 3, this belief
viewpoint hampers tractability in planning. In the following,
we introduce the key observations that allow us to resolve
the aforementioned difficulties in planning step-by-step.
Belief Elimination. Our first key observation is that L-
decodability eliminates an aspect of exponential complexity:
• In an L-decodable POMDP, it is sufficient to recover the

belief state by an L-step memory xh rather than the entire
history τh.

This is exactly the definition of L-decodability given in
Definition 1. From this observation that beliefs bh (s)
can be represented with a decoder from L-step windows
xh (5), we obtain the simplification Qπ

h (bh (τh) , ah) =
Qπ

h (bh (xh) , ah). In addition, L-decodability also
helps reduce dependence in the dynamics, leading to
P (oh+1|bh (τh) , ah) = P (oh+1|bh (xh) , ah). This out-
come reduces the statistical complexity, as previously ex-
ploited in (Efroni et al., 2022; Guo et al., 2023). However, it
is not sufficient to ensure computationally friendly planning.

Next we make a second key observation that allows us to
eliminate the explicit use of beliefs in the Bellman equation:

• An observation-based value function and transition model
bypasses the necessity for belief computation.

That is, since bh (·) is a mapping from the history
xh to the space of probability densities over state, we
can reparametrize the composition Qπ

h (bh(xh), ah) as
Qπ

h (xh, ah), which is a function directly over (xh, ah).
Similarly, we can also consider the transition dynamics di-
rectly defined over the observation history, P (oh+1|xh, ah),
rather than work with the far more complex dynamics be-
tween successive beliefs. With such a reformulation, we
avoid explicit dependence on beliefs in the Qπ-function and
dynamics in the Bellman recursion (4). This resolves the
first difficulty that arises from explicit belief calculation,
leading to the simplified Bellman equation:
Qπ

h (xh, ah) = r (oh, ah) + EPπ(oh+1|xh,ah)

[
V π
h+1 (xh+1)

]
. (6)

Linear Representation for Qπ. Next, we address a sec-
ond key difficulty that arises in representing V π

h+1(xh+1) =

Ea∼π

[
Qπ

h+1 (xh+1, ah+1)
]
. We seek an exact represen-

tation that can be recursively maintained. Inspired by
the success of representing value functions exactly in lin-
ear MDPs (Jin et al., 2020b; Yang & Wang, 2020), it
is natural to consider xh as a mega-state (Efroni et al.,
2022) and factorize the observation distribution in (6) as
P (oh+1|bh, ah) = ⟨ϕ (xh, ah) , µ (oh+1)⟩ over basis func-
tions ϕ and µ. However, it is important to realize there is an
additional dependence of V π

h+1(xh+1) on (xh, ah), since
xh+1 = (oh−L+2, ah−L+2, · · · , oh, ah,oh+1)

has an overlap with
(xh, ah) = (oh−L+1, ah−L+1, oh−L+2, ah−L+2, · · · , oh, ah).
This overlap breaks the maintained linear structure, since
Qπ

h (bh, ah) = rh (oh, ah)+〈
ϕ (xh, ah) ,

∫
µ (oh+1)Vh+1 (xh, ah, oh+1) doh+1︸ ︷︷ ︸

w(xh,ah)

〉
.

That is, the nonlinearity in w (xh, ah) prevents the direct
extension of linear MDPs with mega-states (Efroni et al.,
2022) to the POMDP case (Guo et al., 2023).

Nevertheless, a linear representation for the value function
can still be recovered if the dependence of the h + 1-step
value function on (xh, ah) can be eliminated. The next key
observation shows how this overlap might be avoided:
• By L-step decodability, V π

h+L(xh+L) is independent of
(xh, ah).

This observation inspires us to consider the L-step Bellman
equation for Qπ

h (τh, ah), which can be easily derived by
expanding (4) forward in time to:
Qπ

h (xh, ah) = (7)

Eπ
xh+1:h+L|xh,ah

[∑h+L−1
i=h r(oi, ai) + V π

h+L(xh+L)
]
.
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At first glance, the L-step forward expansion only involves
V π
h+L(xh+L), which would seem to eliminate the overlap-

ping dependence of xh+L on (xh, ah) due to L-step decod-
ability. However, the forward steps are conducted according
to the policy πh+1:h+L−1, which still depends on parts of
(xh, ah), hence the distribution Pπ (xh+L|xh, ah) in the ex-
pectation in (7) still retains a dependence on (xh, ah).

We introduce the final key observation that allows us to fully
eliminate the dependence:
• For any policy π, there exists a corresponding policy νπ

that conditions on a sufficient latent variable to gener-
ate the same expected observation dynamics while being
independent of history older than L steps.

The νπ is known as the “moment matching policy" (Efroni
et al., 2022). The existence of such an equivalent νπ is
guaranteed by L-decodability: we defer the detailed con-
struction of νπ to Appendix C to avoid distraction, and focus
on algorithm design in the main text.

With such a policy νπ, the dependence of πh+1:h+L−1 on
(xh, ah) at the Lth-step in Pπ (xh+L|xh, ah) can be elimi-
nated. Specifically, consider

Pπ (xh+L|xh, ah)=
∫
p(zh+1|xh, ah)Pνπ (xh+L|zh+1) dzh+1

=⟨p(·|xh, ah),Pνπ (xh+L|·)⟩L2(µ)
, (8)

where z denotes the latent variable and the first equality
follows from the construction of νπ . We emphasize that the
idea of the moment matching policy was only considered as
a proof technique in (Efroni et al., 2022), and not previously
exploited to uncover linear structure for algorithm design.

Remark (Identifiability): It should be noted that we de-
liberately use a latent variable z rather than s in (8), to em-
phasize the learned latent variable structure can be different
from the ground truth state, thus avoiding an identifiabil-
ity assumption. Nevertheless, the learned structure has the
same effect in representing Qπ linearly.

Based on the above observations, we have addressed the
necessary components for a linear representation of the
value function, achieved by introducing (8) into (7). For the
first term in (7), for ∀k ∈ {1, . . . , L− 1}, we have
Eπ
oh+k|xh,ah

[r (oh+k, ah+k)] (9)

=

〈
p(·|xh, ah),

∫
Pνπ (oh+k, ah+k|·) r (oh+k, ah+k) doh+kdah+k︸ ︷︷ ︸

wπ
k (·)

〉
.

That is, using the “moment matching policy" trick, the pol-
icy νπ is independent of (xh, ah), while Pνπ (oh+k, ah+k|·)
is independent of history, leading to the linear representation
in (9). Similarly, for the second term in (7), we have

Eπ

[
V π
h+L (xh+L)

]
=

∫
Pπ (xh+L|xh, ah)V π (xh+L) dxh+L (10)

=

〈
p(·|xh, ah),

∫
Pνπ (xh+L|·)V π (xh+L) dxh+L︸ ︷︷ ︸

wπ
h+L(·)

〉
.

Recall that xh+L does not overlap with xh, so under νπ,
wπ

h+L (·) is independent of (xh, ah).

By combining (9) and (10) and definingwπ =
∑h+L

k=h w
π
h+k,

we conclude that, in an L-step decodable POMDP, the value
function Qπ can be represented linearly in p (·|xh, ah) as

Qπ
h (xh, ah) = ⟨p (·|xh, ah) , wπ(·)⟩L2(µ)

, (11)
under the assumption that r (oh, ah) = ⟨p(·|xh, ah), ωr(·)⟩,
which can be easily achieved by feature augmentation (Ren
et al., 2023a).

Least Square Policy Evaluation. The final difficulty in
a practical algorithm design is addressing the expectation
calculation in the Bellman equation (7). With the linear rep-
resentation established for the value function Qπ

h , the entire
backup step for dynamic programming with the Bellman
recursion can be replaced by a least squares regression in
the space spanned by ϕ (xh, ah). Specifically, at step h, we
seek an estimate of Qπ

h+L(xh+L, ax+L) that is expressed
as

〈
w̃π

h+L, p(·|xh+L, aa+L)
〉
, which can be obtained by the

optimization:

min
wπ

h

Eπ
xh+1:h+L,xh,ah

[(
⟨wπ

h , p(·|xh, ah)⟩− (12)

( h+L−1∑
i=h

r(oi, ai) +
〈
w̃π

h+L, p(·|xh+L, ah+L)
〉 ))2]

,

This problem can be easily solved by stochastic gradient
descent. Setting the gradient to zero, one obtains the optimal
solution to (12) as:

⟨wπ
h , p(·|xh, ah)⟩ =

Exh+1:h+L

[
h+L−1∑
i=h

r(oi, ai) +
〈
w̃π

h+L, p(·|xh+L, ah+L)
〉]
,

which completes the Bellman backup.

In summary, we obtain an efficient policy evaluation algo-
rithm for L-decodable POMDPs that only requires least
squares optimization upon a linear representation of an
observation-based value function.

Remark (Connection to Linear MDPs (Jin et al., 2020b;
Yang & Wang, 2020)): The linear structure we have re-
vealed for POMDP value functions has some similarity to
value function representations in linear MDPs. One key
difference between the factorization in (8) and that in a
linear MDP, i.e., P (s′|s, a) = ⟨ϕ (s, a) , µ (s′)⟩, is that the
latter factorizes for different transitions of the representa-
tion. Therefore, in a linear MDP, one obtains a policy-
independent decomposition, where both the components
ϕ (s, a) and µ (s′) from the transition dynamics are invari-
ant w.r.t. the policy. By contrast, in (8) for a POMDP, one
of the factors, Pνπ (xh+L|·), depends on the policy. Never-
theless, we have demonstrated that this does not affect the
linear representation ability of p (·|xh, ah) for Qπ .

Remark (Connection to PSR (Littman & Sutton, 2001):
Both the linear representation revealed in this paper and
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Algorithm 1 Online Exploration for L-step decodable
POMDPs with Latent Variable Representation

1: Input: Model Class M =
{{(ph(z|xh, ah), ph(oh+1|z)}h∈[H]}, Variational
Distribution Class Q = {{qh(z|xh, ah, oh+1)}h∈[H]},
Episode Number K.

2: Initialize πh
0 (s) = U(A),∀h ∈ [H] where U(A) de-

notes the uniform distribution on A; D0,h = ∅,D′
0,h =

∅,∀h ∈ [H].
3: for episode k = 1, · · · ,K do
4: Initialize Dk,h = Dk−1,h, D′

k,h = D′
k−1,h

5: for Step h = 1, · · · , H do
6: Collect the transition

(xh, ah, oh+1, ah+1, · · · , oh+L−1, ah+L−1, oh+L)

where xh ∼ dπk,h
P , ah:h+L−1 ∼ U(A),

oh+i ∼ PP(·|xh+i−1, ah+i−1),∀i ∈ [L].
7: Dk,h = Dk,h ∪ {xh, ah, oh+1}, D′

k,h+i =
D′

k,h+i ∪ {xh+i, ah+i, oh+i+1}, ∀i ∈ [L].
8: end for
9: Learn the latent variable model p̂k(z|xh, ah)

with Dk,h ∪ D′
k,h via maximizing the

ELBO, and obtain the learned model P̂k =
{(p̂h,k(z|xh, ah), p̂h,k(oh+1|z))}h∈[H].

10: (Optional) Set the exploration bonus b̂k,h(s, a).
11: Update policy πk = argmaxπ V

π
P̂k,r+b̂k

.
12: end for
13: Return π1, · · · , πK .

the predictive state representation (PSR) (Littman & Sut-
ton, 2001) bypass explicit belief calculation by factorizing
the observation transition system. However, there are sig-
nificant differences between the two structures that affect
planning and exploration. Specifically, the PSR is based
on the assumption that, for any finite sequence of events
yh+1:k = (oh+1:h+k, ah:h+k−1), k ∈ N+, following a
history xh, the probability can be linearly factorized as
P (oh+1:h+k|xh, ah:h+k−1) =

〈
ωyh+1:k

,P (U |xh)
〉
, where

ωyh+1:k
∈ Rd, U := [ui]

d
i=1 is a set of core test events,

and P (U |xh) is the predictive state representation at step h.
Then, the forward observation dynamics can be represented
in a PSR via Bayes’ rule, P (oh+2:k|xh, ah:h+k−1, oh+1) =
⟨ωyh+2:k

,P(U |xh)⟩
⟨ωyh+1

,P(U |xh)⟩ , which introduces a nonlinear operation,

making planning and exploration both extremely difficult.

4.2. Learning with Exploration
We have developed a linear representation for Qπ

h that en-
ables efficient planning. This section discusses how to learn
and explore on top of this representation. The full algorithm
is presented in Algorithm 1.
Variational Learning of µLV-Rep. As we generally do
not have the latent variable representation p(·|xh, ah) be-
forehand, it is essential to perform representation learning
with online collected data. One straightforward idea is to

apply maximum likelihood estimation on Pπ (xh+k|xh, ah).
Although this is theoretically correct, due to the overlap be-
tween xh+k and xh, a naive parametrization unnecessarily
wastes memory and computational costs. Recall that we
only need p (zh|xh) to represent Qπ

h, and from

p (oh+1:h+l|xh, ah) =
∫
Z
p(zh|xh, ah) (13)

·
l∏

i=1

[∫
Z
Pπ(zh+i|zh+i−1, ai)p(oh+i|zh+i)dzh+i

]
︸ ︷︷ ︸

Pπ(oh+1:h+l|zh)

dzh,

we can obtain p(·|xh, ah) by performing maximum likeli-
hood estimation (MLE) on p (oh+1:h+l|xh, ah) for arbitrary
l ∈ N+. To obtain a tractable surrogate for the MLE of the
latent variable model (13), we exploit the evidence lower
bound (ELBO) (Ren et al., 2023b):

log p (oh+1:h+l|xh, ah)

= log

∫
Z
p(zh|xh, ah)Pπ (oh+1:h+l|zh)

= log
∫
Z

p(zh|xh,ah)Pπ(oh+1:h+l|zh)
q(z|xh,ah,oh+1:h+l)

q(z|xh, ah, oh+1:h+l)

= max
q∈∆(Z)

Eq(·|xh,ah,oh+1:h+l) [logP
π (oh+1:h+l|zh)]

−DKL (q(z|xh, ah, oh+1:h+l)||p(zh|xh)) , (14)
where the last equation comes from Jensen’s inequal-
ity, with equality holding when q(z|xh, ah, oh+1:h+l) ∝
p(zh|xh, ah)Pπ (oh+1:h+l|zh). One can use (14) with data
to fit the µLV-Rep. For the ease of the presentation, we
choose l = 1 in Algorithm 1.

Practical Parametrization of Qπ with µLV-Rep.
With µLV-Rep, we can represent Qπ

h (xh, ah) =
⟨p(z|xh), wπ

h(z)⟩L2(µ)
. If the latent variable z in p(z|xh)

is an enumeratable discrete variable, Qπ (xh, ah) =∑
i=m wπ (zi) p(zi|xh), can be simply represented.

However, a discrete latent variable is not differentiable,
which causes difficulty in learning. Therefore, we use
a continuous latent variable z, which induces an infinite-
dimensional w(z). To address this challenge, we follow the
trick in LV-Rep (Ren et al., 2023b) that forms Qπ (xh, zh)
as an expectation:
Qπ (xh, ah) = ⟨p(z|xh), wπ(z)⟩ = Ep(z|xh) [w

π(z)]

which can then be approximated by a Monte-Carlo method
or random feature quadrature (Ren et al., 2023b):
Qπ (xh, ah) ≈ 1

m

∑m
i=1 w

π(zi) or 1
m

∑m
i=1 w̃

π(ξi)φ (zi, ξi)

with samples zi ∼ p(z|xh) and ξi ∼ P (ξ) as the random
feature measure for the RKHS containing w(z). Both ap-
proximations can be implemented by a neural network. Due
to space limitations, we defer the derivation of the random
feature quadrature to Appendix E.

Planning and Exploration with µLV-Rep. Given an ac-
curate estimator for Q functions, we can perform plan-
ning with standard dynamic programming (e.g. Munos &
Szepesvári, 2008). However, dynamic programming in-

6



Provable Representation with Efficient Planning for Partially Observable Reinforcement Learning

volves an argmax operation, which is only tractable when
|A| < ∞. To deal with continuous actions, we leverage
popular policy gradient methods like SAC (Haarnoja et al.,
2018), with the critic parameterized by µLV-Rep.

To improve the exploration, we can leverage the idea of Ue-
hara et al. (2021); Ren et al. (2023b) and add an additional
ellipsoid bonus to implement optimism in the face of uncer-
tainty. Specifically, if we use random feature quadrature, we
can compute such a bonus via:
ψ̂h,k(xh, ah) = [φ(zi; ξi)]i∈[m] ,

where {zi}i∈[m] ∼ p̂k,h(z|xh, ah), {ξi}i∈[m] ∼ P (ξ),

b̂k,h(s, a) = αkψ̂h,k(xh, ah)Σ̂
−1
k,hψ̂h,k(xh, ah),

where Σ̂k,h =
∑

Dk,h
ψ̂k,h(xh,i, ah,i)ψ̂k,h(xh,i, ah,i)

⊤ +
λI , and αk, λ are user-specified constants. Similarly, the
bonus can be used to implement pessimism in the face of un-
certainty for offline settings, which we defer to Appendix D.

5. Theoretical Analysis
In this section, we provide a formal sample complexity anal-
ysis of the proposed algorithm. We start from the following
assumptions, that are commonly used in the literature (e.g.
Agarwal et al., 2020; Uehara et al., 2021; Ren et al., 2023b).
Assumption 1 (Finite Candidate Class with Realizabil-
ity). |M| <∞ and {(p∗h(z|xh, ah), p∗h(oh+1|z))}h∈[H] ∈
M. Meanwhile, for all (ph(z|xh, ah), p(oh+1|z)) ∈ M,
ph(z|xh, ah, oh+1) ∈ Q.
Assumption 2 (Normalization Conditions). ∀P ∈
M, (xh, ah) ∈ X × A, ∥ph(·|xh, ah)∥HK

⩽ 1 for some
kernel K. Furthermore, ∀g : X → R such that ∥g∥∞ ⩽ 1,
we have

∥∥∫
X p(xh+L|·)g(xh+L)dxh+L

∥∥
HK

⩽ C.

Then, we have the following sample complexity bound for
µLV-Rep, with detailed proofs given in Appendix F.
Theorem 3 (PAC Guarantee, Informal version of Theo-
rem 13). Assume the kernel K satisfies the regularity condi-
tions in Appendix F.1. If we properly choose the exploration
bonus b̂k(x, a), we can obtain an ε-optimal policy with prob-
ability at least 1− δ after we interact with the environments
for N = poly

(
C,H, |A|L, L, ε, log(|M|/δ)

)
episodes.

6. Related Work
Representation has been previously considered in partially
observable reinforcement learning, but for different pur-
poses. Vision-based representations (Yarats et al., 2020; Seo
et al., 2023) have been designed to extract compact features
from raw pixel observations. We emphasize that this type
of observation feature does not explicitly capture dynam-
ics properties, and is essentially orthogonal to (but natu-
rally compatible with) the proposed representation. Many
dynamic-aware representation methods have been devel-
oped, such as bi-simulation (Ferns et al., 2004; Gelada et al.,
2019; Zhang et al., 2020), successor features (Dayan, 1993;
Barreto et al., 2017; Kulkarni et al., 2016), spectral repre-

sentation (Mahadevan & Maggioni, 2007; Wu et al., 2018;
Duan et al., 2019), and contrastive representation (Oord
et al., 2018; Nachum & Yang, 2021; Yang et al., 2021). Our
proposed representation for POMDPs has been inspired by
recent progress (Jin et al., 2020b; Yang & Wang, 2020; Agar-
wal et al., 2020; Uehara et al., 2022) in revealing low-rank
structure in the transition kernel of MDPs, and inducing
effective linear representations for the state-action value
function for an arbitrary policy. These prior discoveries
have led to a series of practical and provable RL algorithms
in the MDP setting, achieving a delicate balance between
learning, planning and exploration (Ren et al., 2022; Zhang
et al., 2022; Ren et al., 2023c;b). Although these algorithms
demonstrate theoretical and empirical benefits, they rely on
the Markovian assumption, hence are not applicable to the
POMDP setting we consider here.

There have been several attempts to exploit the low-rank
representation in POMDPs to reduce statistical complex-
ity (Efroni et al., 2022). Azizzadenesheli et al. (2016) and
Guo et al. (2016) exploit spectral learning for model estima-
tion without exploration; Jin et al. (2020a) explores within
an spectral estimation set; Uehara et al. (2022) builds upon
the Bellman error ball; Zhan et al. (2022); Liu et al. (2022)
consider the MLE confidence set for low-rank structured
models; and (Huang et al., 2023) construct a UCB-type algo-
rithm upon the MLE ball of PSR. However, these algorithms
rely on intractable oracles for planning, and fewer works
consider exploiting low-rank structure to achieve computa-
tionally tractable planning. One exception is (Zhang et al.,
2023; Guo et al., 2023), which still includes intractable
operations, i.e., infinite-dimensional operations or integrals.

7. Experimental Evaluation
We evaluate the proposed method on Meta-world (Yu et al.,
2019), which is an open-source simulated benchmark con-
sisting of 50 distinct robotic manipulation tasks with visual
observations. We also provide experiment results on partial
observable control problems constructed based on OpenAI
gym MuJoCo (Todorov et al., 2012) in Appendix H.2. Com-
parison on classic POMDP benchmarks, such as the Rock-
Sample problem, is worth further study. (Smith & Simmons,
2012; Kurniawati et al., 2009).

We notice that directly acquiring a robust control represen-
tation through predicting future visual observations can be
challenging due to the redundancy of information in images
for effective decision-making. As a result, a more advanta-
geous approach involves obtaining an image representation
first and subsequently learning a latent representation based
on this initial image representation. In particular, we em-
ploy visual observations with dimensions of 64 × 64 × 3 and
apply a variational autoendocer (VAE) (Kingma & Welling,
2013) to learn a representation of these visual observations.
The VAE is trained during the online learning procedure.
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Figure 1. Learning curves on visual robotic manipulation tasks from Meta-world measured by success rate. Our method shows better or
comparable sample efficiency compared to baseline methods. Learning curves on all 50 tasks are reported in Appendix H.
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Figure 2. The performance gain on 50 Meta-world tasks after 1 million interactions. Our results surpass or are comparable to (with a
difference of less than or equal to 10%) the best baselines on 41 out of the 50 tasks.

This produces compact vector representations for the im-
ages, which are then forwarded as input to the representation
learning method. As detailed in Section 4.2, we learn the
latent representations by making predictions about future
outcomes using a history of length L. To achieve this, we
employ a continuous latent variable model similar to (Ren
et al., 2023b; Hafner et al., 2020), approximating distri-
butions with Gaussians parameterized by their mean and
variance. We then apply Soft Actor-Critic (SAC) as the
planner (Haarnoja et al., 2018), which takes the learned rep-
resentation as input of the critic. We apply L = 3 across all
domains (with an ablation study provided in Appendix H.1).
More implementation details, including network architec-
tures and hyper-parameters, are provided in Appendix H.

We consider two baseline methods, DreamerV2 (Hafner
et al., 2021) and the Masked World Model (MWM) (Seo
et al., 2023). DreamerV2 is designed to acquire latent rep-
resentations, which are subsequently input into a recurrent
neural network for environment modeling. MWM utilizes
an autoencoder equipped with convolutional layers and vi-
sion transformers (ViT) rather than reconstructing visual
observations. This autoencoder is employed to reconstruct
pixels based on masked convolutional features, allowing
MWM to learn a latent dynamics model that operates on the
representations derived from the autoencoder.

Figure 1 presents the learning curves of all algorithms as
measured on the success rate for 1M environment steps,
averaged over 5 random seeds. We observe that µLV-Rep
exhibits superior performance compared to both DreamerV2

and MWM, demonstrating faster convergence and achiev-
ing higher final performance across all four tasks reported.
We also provide the learning curves for all 50 Meta-world
tasks in Appendix H.2. It is noteworthy that while MWM
achieves comparable sample efficiency with µLV-Rep in cer-
tain tasks, it incurs higher computational costs and longer
running times due to the incorporation of ViT network in
its model. In our experimental configurations, µLV-Rep
demonstrates a training speed of 21.3 steps per second, out-
performing MWM, which achieves a lower training speed of
8.1 steps per second. This highlights the computational effi-
ciency of the proposed method. Figure 5 illustrates the final
performance of µLV-Rep across 50 Meta-world tasks (blue
bars), comparing it with the best performance achieved by
DreamerV2 and MWM (gray bars). We observe that µLV-
Rep achieves better than 90% success on 33 tasks. It also
performs better or equivalent to (within 10% difference) the
best of DreamerV2 and MWM on 41 tasks.

8. Conclusion
In this paper, we aimed to develop a practical RL algorithm
for structured POMDPs that obtained efficiency in terms of
both statistical and computational complexity. We revealed
some of the challenges in computationally exploiting the
low-rank structure of a POMDP, then derived a linear repre-
sentation for the Qπ-function, which automatically implies
a practical learning method, with tractable planning and
exploration, as in µLV-Rep. We theoretically analyzed the
sub-optimality of the proposed µLV-Rep, and empirically
demonstrated its advantages on several benchmarks.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. More Related Work
Partially Observable RL. The majority of existing practical RL algorithms for partially observable settings can also be
categorized into model-based vs. model-free.

The model-based algorithms (Kaelbling et al., 1998) for partially observed scenarios are naturally derived based on the
definition of POMDPs, where both the emission and transition models are learned from data. The planning procedure for
optimal policy is conducted over the posterior of latent state, i.e., beliefs, which is approximately inferred based on learned
dynamics and emission model. With different model parametrizations, (ranging from Gaussian processes to deep models),
and different planning methods, a family of algorithms has been proposed (Deisenroth & Peters, 2012; Igl et al., 2018;
Gregor et al., 2019; Zhang et al., 2019; Lee et al., 2020; Hafner et al., 2021). However, due to the compounding errors from
i), mismatch in model parametrization, ii), inaccurate beliefs calculation, iii), approximation in planning over nonlinear
dynamics, and iv), neglecting of exploration, such methods might suffer from sub-optimal performances in practice.

As we discussed in Section 1, the memory-based policy and value function have been exploited to extend the MDP-based
model-free RL algorithms to handle the non-Markovian dependency induced by partial observations. For example, the
value-based algorithms introduces memory-based neural networks to Bellman recursion, including temporal difference
learning with explicit concatenation of 4 consecutive frames as input (Mnih et al., 2013) or recurrent neural networks for
longer windows (Bakker, 2001; Hausknecht & Stone, 2015; Zhu et al., 2017), and DICE (Nachum & Dai, 2020) with
features extracted from transformer (Jiang et al., 2021); the policy gradient-based algorithms have been extended to partially
observable setting by introducing recurrent neural network for policy parametrization (Schmidhuber, 1990; Wierstra et al.,
2007; Heess et al., 2015; Ni et al., 2021). The actor-critic approaches exploits memory-based value and policy together (Ni
et al., 2021; Meng et al., 2021). Despite their simplicity in the algorithm extension, these algorithms demonstrate potentials
in real-world applications. However, the it has been observed that the sample complexity for purely model-free RL with
partial observations is very high (Mnih et al., 2013; Barth-Maron et al., 2018; Yarats et al., 2021), and the exploration
remains difficult, and thus, largely neglected.

B. Observability Approximation
Although the proposed µLV-Rep is designed based on the L-step decodability in POMDPs, Golowich et al. (2022) shows that
the γ-observable POMDPs can be ϵ-approximated with a L = Õ

(
γ−4 log (|S|/ϵ)

)
-step decodable POMDP. By exploiting

the low-rank structure in the latent dynamics, this result has been extend with function approximator (Uehara et al., 2022).
Specifically,

Theorem 4 (Proprosition 7 (Guo et al., 2023), Lemma 12 (Uehara et al., 2022)). Given a γ-observable POMDP with d-rank
latent transition, there exists an L-step decodable POMDP M with L = Õ

(
γ−4 log (d/ϵ)

)
, ∀ϵ > 0, such that

Ea1:h,o2:h∼π

[∥∥Ph (oh+1|o1:h, a1:h)− PM
h (oh+1|xh, ah)

∥∥
1

]
⩽ ϵ. (15)

where πh ∈ ∆
(∏H

h=1 AHh

)
with Hh := Ah−1 ×Oh, is mapping the whole history to a distribution of action.

With this understanding, the proposed µLV-Rep can be directly applied for γ-observable POMDPs, while still maintains
theoretical guarantees. Due to the space limitation, please refer to (Uehara et al., 2022; Guo et al., 2023) for the details of
the proofs.

C. Moment Matching Policy
We provide a formal definition of the moment matching policy here.

Definition 5 (Moment Matching Policy (Efroni et al., 2022)). With the L-decodability assumption, for h ∈ [H], h′ ∈ [h−L+
1, h] and l = h′−h+L−1, we can define the moment matching policy νπ,h = {νh,πh′ : Sl×Ol×Al−1 → ∆(A)}hh′=h−L+1

introduced by Efroni et al. (2022) , such that
νπ,hh′ (ah′ |(sh−L+1:h′ , oh−L+1:h′ , ah−L+1:h′−1))

:= EP
π [πh′(ah′ |xh′)|(sh−L+1:h′ , oh−L+1:h′ , ah−L+1:h′−1)], ∀h′ ⩽ h− 1,

and νπ,hh = πh. We further define π̃h, which takes first h− L actions from π and the remaining L actions from νπ,h.

The main motivation to define such moment matching policy is that, we want to define a policy that is conditionally
independent from the past history for theoretical justification while indistinguishable from the history dependent policy
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Algorithm 2 Offline Learning for L-step decodable POMDPs with Latent Variable Representation
1: Input: Model Class M = {{(ph(z|xh, ah), ph(oh+1|z)}h∈[H]}, Variational Distribution Class Q =

{{qh(z|xh, ah, oh+1)}h∈[H]}, Offline Dataset {Dh}Hh=1

2: Learn the latent variable model p̂(z|xh, ah) with Dh via maximizing the ELBO, and obtain the learned model P̂ =
{(p̂h(z|xh, ah), p̂h(oh+1|z))}h∈[H].

3: Set the exploitation penalty b̂h(s, a) with Dk.
4: Learn the policy π̂∗ = argmaxπ V

π
P̂,r−b̂k

.
5: Return π̂∗.

to match the practical algorithm. By Lemma B.2 in Efroni et al. (2022), under the L-decodability assumption, for a
fixed h ∈ [H], we have dP,π

h (xh) = dP,π̃h

h (xh), for all L-step policy π and xh ∈ Xh. As νπ,hh = πh. we have

dP,π
h (xh, ah) = dP,π̃h

h (xh, ah), and hence EP
π (xh, ah) = EP

π̃h(xh, ah). This enables the factorization in (10) without the
dependency of the overlap observation trajectory.

D. Pessimism in the Offline Setting
Similar to Uehara et al. (2021); Ren et al. (2023b), the proposed algorithm can be directly extended to the offline setting by
converting the optimism into the pessimism. Specifically, we can learn the latent variable model, set the penalty with the
data and perform planning with the penalized reward. The whole algorithm is shown in Algorithm 2. Following the identical
proof strategy from Uehara et al. (2021); Ren et al. (2023b), we can obtain a similar sub-optimal gap guarantee for π̂∗.

E. Technical Background
In this section, we revisit several core concepts of the kernel and the reproducing kernel Hilbert space (RKHS) that will be
used in the theoretical analysis. For a complete introduction, we refer the reader to Ren et al. (2023b).
Definition 6 (Kernel and Reproducing Kernel Hilbert Space (RKHS) (Aronszajn, 1950; Paulsen & Raghupathi, 2016)).
The function k : X × X → R is called a kernel on X if there exists a Hilbert space H and a mapping ϕ : X → H (termed
as a feature map), such that ∀x, x′ ∈ X , k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H. The kernel k is said to be positive semi-definite if
∀n ⩾ 1, {ai}i∈[n] ⊂ R and mutually distinct {xi}i∈[n], we have∑

i∈[n]

∑
j∈[n]

aiajk(xi, xj) ⩾ 0.

The kernel k is said to be positive definite if the inequality is strict (which means we can replace ⩾ with >).

With a given kernel k, we can define the Hilbert space Hk consists of R-valued function on X as a reproducing kernel
Hilbert space associated with k if both of the following conditions hold:

• ∀x ∈ X , k(x, ·) ∈ Hk.

• Reproducing Property: ∀x ∈ X , f ∈ Hk, f(x) = ⟨f, k(x, ·)⟩Hk
.

The RKHS norm of f ∈ Hk is induced by the inner product, i.e. ∥f∥Hk
:=

√
⟨f, f⟩Hk

.
Theorem 7 (Mercer’s Theorem (Riesz & Nagy, 2012; Steinwart & Scovel, 2012)). Let k be a continuous positive definite
kernel defined on X × X . There exists at most countable {µi}i∈I such that µ1 ⩾ µ2 ⩾ · · · > 0 and a set of orthonormal
basis {ei}i∈I on L2(µ) where µ is a Borel measure on X , such that

∀x, x′ ∈ X , k(x, x′) =
∑
i∈I

µiei(x)ei(x
′),

where the convergence is absolute and uniform.
Definition 8 (Random Feature). The kernel k : X × X → R has a random feature representation if there exists a function
ψ : X × Ξ → R and a probability measure P over Ξ such that

k(x, x′) =

∫
Ξ

ψ(x; ξ)ψ(x′; ξ)dP (ξ).

Remark (random feature quadrature): We here justify the random feature quadrature (Ren et al., 2023b) for complete-
ness.
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We can represent Qπ
h as an expectation,

Qπ
h (xh, ah) = ⟨p(z|xh), wπ

h(z)⟩ = Ep(z|xh) [w
π
h(z)]L2(µ)

Under the assumption that wπ
h(·) ∈ Hk, where Hk denoting some RKHS with some kernel k (·, ·). When k (·, ·) can be

represented through random feature, i.e.,
k (x, y) = EP (ξ) [ψ (x; ξ)ψ (y; ξ)] ,

the wπ
h (z) admits a representation as

wπ
h (z) = EP (ξ) [w̃

π
h (ξ)ψ (z; ξ)] .

Therefore, we plug this random feature representation of wπ
h(z) to Qπ

h (xh, ah), we obtain
Qπ

h (xh, ah) = Ep(z|xh),P (ξ) [w̃
π
h(ξ)ψ (z; ξ)] . (16)

Applying Monte-Carlo approximation to (16), we obtain the random feature quadrature.

F. Theoretical Analysis
F.1. Technical Conditions

We adopt the following assumptions for the reproducing kernel, which have been used in Ren et al. (2023b) for the MDP
setting.

Assumption 3 (Regularity Conditions). Z is a compact metric space with respect to the Lebesgue measure ν when Z is
continuous. Furthermore,

∫
Z k(z, z)dν ⩽ 1.

Assumption 4 (Eigendecay Conditions). Assume {νi}i∈I defined in Theorem 7 satisfies one of the following conditions:

• β-finite spectrum: for some positive integer β, we have νi = 0, ∀i > β.

• β-polynomial decay: νi ⩽ C0i
−β with absolute constant C0 and β > 1.

• β-exponential decay: νi ⩽ C1 exp(−C2i
β), with absolute constants C1, C2 and β > 0.

We will use Cpoly to denote constants in the analysis of β-polynomial decay that only depends on C0 and β, and Cexp to
denote constants in the analysis of β-exponential decay that only depends on C1, C2 and β, to simplify the dependency of
the constant terms. Both of Cpoly and Cexp can be varied step by step.

F.2. Formal Proof

Before we proceed, we first define

ρk,h =
1

k

∑
i∈[K]

dπk

P,h,

and ◦LU(A) means uniformly taking actions in the consecutive L steps.

Lemma 9 (L-step back inequality for the true model). Given a set of functions [gh]h∈[H], where gh : X × A → R,
∥gh∥∞ ⩽ B, ∀h ∈ [H], we have that ∀π,∑

h∈[H]

EP
π [g(xh, ah)] ⩽

∑
h∈[H]

EP
(xh−L,ah−L)∼dπ

P,h−L

[
∥p∗(·|xh−L, ah−L)∥L2(µ),Σ

−1
ρk,h−L,p∗

]
·
√
k|A|L · E(x̃h,ãh)∼ρk,h−L◦LU(A) [g(x̃h, ãh)2] + λB2C

Proof. The proof can be adapted from the proof of Lemma 6 in Ren et al. (2023b), and we include it for the complete-
ness. Recall the moment matching policy νπ Since νπ,h does not depend on (xh−L, ah−L), we can make the following
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decomposition:
EP
π̃h(xh, ah)

=EP
(xh−L,ah−L)∼π

[∫
sh−L+1

⟨p∗(·|xh−L, ah−L), p
∗(sh−L+1|·)⟩L2(µ) · E

P
a
h−L+1:h∼νπ,h

[g(xh, ah)|sh−L+1]dsh−L+1

]
⩽EP

(xh−L,ah−L)∼π ∥p
∗(·|xh−L, ah−L)∥L2(µ),Σ

−1
ρk,h−L,p∗

·

∥∥∥∥∥
∫
sh−L+1

p∗(sh−L+1|·)E[g(xh, ah)|sh−L+1, ν
π,h]dsh−L+1

∥∥∥∥∥
L2(µ),Σρk,h−L,p∗

.

Direct computation shows that∥∥∥∥∥
∫
sh−L+1

p∗(sh−L+1|·)EP [g(xh, ah)|sh−L+1, ν
π,h]dsh−L+1

∥∥∥∥∥
L2(µ),Σρk,h−L,p∗

=kE(x̃h−L,ãh−L)∼ρk,h−L

[
EP
sh−L+1∼PP

h−L(·|xh−L,ah−L)[g(xh, ah)|sh−L+1, ν
π,h]

]2
+

∥∥∥∥∥
∫
sh−L+1

p∗(sh−L+1|·) · EP [g(xh, ah)|sh−L+1, ν
π,h]dsh−L+1

∥∥∥∥∥
2

H
⩽kE(x̃h−L,ãh−L)∼ρk,h−L

EP
sh−L+1∼PP

h−L(·|xh−L,ah−L),ah−L+1:h∼νπ,h [g(xh, ah)]
2
+ λB2C

⩽k|A|LEP
(x̃h,ãh)∼ρk,h−L◦LU(A)[g(x̃h, ãh)]

2 + λB2C,

which finishes the proof.

Lemma 10 (L-step back inequality for the learned model). Assume we have a set of functions [gh]h∈[H], where gh :

X ×A → R, ∥gh∥∞ ⩽ B, ∀h ∈ [H]. Given Lemma 15, we have that ∀π,∑
h∈[H]

EP̂k
π [g(xh, ah)] ⩽

∑
h∈[H]

EP̂k

(xh−L,ah−L)∼dπ
P̂k,h−L

]

[
∥p̂(·|xh−L, ah−L)∥L2(µ),Σ

−1

ρk,h−2L◦LU(A),p̂

]
·
√
k|A|L · E(x̃h,ãh)∼ρk,h−2L◦2LU(A) [g(x̃h, ãh)2] + λB2C + kL|A|L−1B2ζk

Proof. The proof can be adapted from the proof of Lemma 5 in Ren et al. (2023b), and we include it for the completeness.
We define a similar moment matching policy and make the following decomposition:

EP̂k
π (xh, ah)

=EP̂k

(xh−L,ah−L)∼π

[∫
sh−L+1

⟨p̂(·|xh−L, ah−L), p̂(sh−L+1|·)⟩L2(µ) · E
P̂k [g(xh, ah)|sh−L+1, ν

π,h]dsh−L+1

]
⩽EP̂k

(xh−L,ah−L)∼π ∥p̂(·|xh−L, ah−L)∥L2(µ),Σ
−1

ρk,h−2L◦LU(A),p̂

·

∥∥∥∥∥
∫
sh−L+1

p̂(sh−L+1|·)EP̂k [g(xh, ah)|sh−L+1, ν
π,h]dsh−L+1

∥∥∥∥∥
L2(µ),Σρk,h−2L◦LU(A),p̂

.
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Direct computation shows that∥∥∥∥∥
∫
sh−L+1

p̂(sh−L+1|·)EP̂k [g(xh, ah)|sh−L+1, ν
π,h]dsh−L+1

∥∥∥∥∥
2

L2(µ),Σρk,h−2L◦LU(A),p̂

=kE(x̃h−L,ãh−L)∼ρk,h−2L◦LU(A)

[
E
sh−L+1∼PP̂k

h−L(·|x̃h−L,ãh−L)
EP̂k [g(xh, ah)|sh−L+1, ν

π,h]

]2
+

∥∥∥∥∥
∫
sh−L+1

p̂(sh−L+1|·)E[g(xh, ah)|sh−L+1, ν
π,h]dsh−L+1

∥∥∥∥∥
2

H

⩽kE(x̃h−L,ãh−L)∼ρk,h−2L◦LU(A)EP̂k

sh−L+1∼PP̂k
h−L(·|x̃h−L,ãh−L),νπ,h

[g(xh, ah)]
2 + λB2C

⩽k|A|LE(x̃h−L,ãh−L)∼ρk,h−2L◦LU(A)EP̂k

ah−L+1:h∼◦LU(A)
[g(xh, ah)]

2 + λB2C

⩽k|A|LE(x̃h,ãh)∼ρk,h−2L◦2LU(A)[g(x̃h, ãh)]
2 + kL|A|L−1B2ζk + λB2C,

where we use the MLE guarantee for each individual step to obtain the last inequality. This finishes the proof.

Lemma 11 (Almost Optimism). For episode k ∈ [K], set

b̂k,h = min
{
αk∥p̂k(·|xh−L, ah−L)∥L2(µ),Σ̂

−1
k,h,p̂k

, 2
}
,

with αk =

√
5kL|A|Lζk+4λd

c ,

Σ̂k,h,p̂k
: L2(µ) → L2(µ), Σ̂k,h,p̂k

:=
∑

(xh,i,ah,i)∈Dk,h

[
p̂k(z|xh,i, ah,i)p̂k(z|xh,i, ah,i)⊤

]
+ λT−1

K

where TK is the integral operator associated with K (i.e. TKf =
∫
f(x)K(x, ·)dx) and λ is set for different eigendecay of

K as follows:

• β-finite spectrum: λ = Θ(β logK + log(K|P|/δ))

• β-polynomial decay: λ = Θ(CpolyK
1/(1+β) + log(K|P|/δ));

• β-exponential decay: λ = Θ(Cexp(logK)1/β + log(K|P|/δ));

c is an absolute constant, then with probability at least 1− δ, ∀k ∈ [K] we have

V π∗,P̂k,r+b̂k − V π∗,P,r ⩾ −
√

|A|L+1ζk

Proof. With Lemma 14, we have that

V π∗,P̂k,r+b̂k − V π∗,P,r

=
∑

h∈[H]

E(xh,ah)∼dπ∗
P̂k,h

[
b̂kh(xh, ah) + E

o′∼PP̂k
h (·|xh,ah)

[V π∗,P,r
h+1 (x′h+1)]− Eo′∼PP

h (·|xh,ah)[V
π∗,P,r
h+1 (x′h+1)]

]
⩾

∑
h∈[H]

E(xh,ah)∼dπ∗
P̂k,h

[
min

[
cαk ∥p̂(·|xh−L, ah−L)∥L2(µ),Σ

−1
ρk,h−L,p̂

, 2

]
+ E

o′∼PP̂k
h (·|xh,ah)

[V π∗,P,r
h+1 (x′h+1)]

−Eo′∼PP
h (·|xh,ah)[V

π∗,P,r
h+1 (x′h+1)]

]
,

where in the last step we replace the empirical covariance with the population counterpart thanks to Lemma 17 in Ren et al.
(2023b). Define

gh(zh, ah) = Eo′∼PP
h (·|xh,ah)[V

π∗,P,r
h+1 (x′h+1)]− E

o′∼PP̂k
h (·|xh,ah)

[V π∗,P,r
h+1 (x′h+1)],

With Hölder’s inequality, we have that ∥gh∥∞ ⩽ 2.
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Furthermore, with Lemma 10, we have that∑
h∈[H]

E(xh,ah)∼dπ∗
P̂k,h

[gh(xh, ah)]

⩽
∑

h∈[H]

E(xh−L,ah−L)∼dπ∗
P̂k,h

[
∥p̂(·|xh−L, ah−L)∥L2(µ),Σ

−1
ρk,h−L,p̂

]
·
√
k|A|L · E(x̃h,ãh)∼ρh−2L◦2LU(A) [g(x̃h, ãh)2] + 4λC + 4kL|A|L−1ζk

⩽
∑

h∈[H]

E(xh−L,ah−L)∼dπ∗
P̂k,h

[
cαk ∥p̂(·|xh−L, ah−L)∥L2(µ),Σ

−1
ρk,h−L,p̂

]
,

where we use Lemma 15 in the last step. Now we deal with the case with h ∈ [L]. Note that, ∀h ∈ [L]

E(xh,ah)∼π[gh(xh, ah)]

⩽|A|hEx1∼d1,a1:h∼◦hU(A)

∥∥∥PP̂k

h (·|xh, ah)− PP
h (·|xh, ah)

∥∥∥
1

⩽

√
Ex1∼d1,a1:h◦LU(A)

∥∥∥PP̂k

h (·|xh, ah)− PP
h (·|xh, ah)

∥∥∥2
1

⩽
√

|A|hζk,
where in the last step we use Lemma 15. We finish the proof by summing over h ∈ [L].

Lemma 12 (Regret). With probability at least 1− δ, we have that

• For β-finite spectrum, we have
K∑

k=1

V π∗,P,r − V πk,P,r ≲
K∑

k=1

V π∗,P,r − V πk,P,r ≲ H2β3/2|A|L logK
√
CLK log(K|M|/δ);

• For β-polynomial decay, we have
K∑

k=1

V π∗,P,r − V πk,P,r ≲ CpolyH
2|A|LK

1
2+

1
1+β

√
CL log(K|M|/δ);

• For β-exponential decay, we have
K∑

k=1

V π∗,P,r − V πk,P,r ≲ CexpH
2|A|L(logK)1+

3
2β

√
CLK log(K|M|/δ);

Proof. With Lemma 11 and Lemma 14, we have
V π∗,P,r − V πk,P,r

⩽V π∗,P̂k,r+b̂k +
√
|A|L+1ζk − V πk,P,r

⩽V πk,P̂k,r+b̂k +
√
|A|L+1ζk − V πk,P,r

=
∑

h∈[H]

E(xh,ah)∼d
πk
P,h

[
b̂kh(xh, ah) + E

o′∼PP̂k
h (·|xh,ah)

[
V

πk,P̂k,r+b̂kh
h+1 (x′h+1)

]
− Eo′∼PP

h (·|xh,ah)

[
V

πk,P̂k,r+b̂kh
h+1 (x′h+1)

]]
,

+
√
|A|L+1ζk.

Note that
∥∥∥b̂kh∥∥∥∞ ⩽ 2. Applying Lemma 9, we have that∑

h∈[H]

E(xh,ah)∼d
πk
P,h

[
b̂kh(xh, ah)

]
⩽

∑
h∈[H]

E(x̃h−L,ãh−L)∼d
πk
P,h

[
∥p∗(·|xh−L, ah−L)∥L2(µ),Σ

−1
ρk,h−L,p∗

]

·
√
k|A|L · E(x̃h,ãh)∼ρk,h−L◦LU(A)

[
b̂kh(x̃h, ãh)

2
]
+ 4λC

Following the proof of Lemma 8 in Ren et al. (2023b), we have that:
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• for β-finite spectrum,

kE(x̃h,ãh)∼ρk,h−L◦LU(A)

[
b̂kh(x̃h, ãh)

2
]
= O(β logK);

• for β-polynomial decay,

kE(x̃h,ãh)∼ρk,h−L◦LU(A)

[
b̂kh(x̃h, ãh)

2
]
= O

(
CpolyK

1
2(1+β) logK

)
;

• for β-exponential decay,

kE(x̃h,ãh)∼ρk,h−L◦LU(A)

[
b̂kh(x̃h, ãh)

2
]
= O

(
Cexp(logK)1+1/β

)
.

We then consider∑
h∈[H]

E(xh,ah)∼d
πk
P,h

[
E
o′∼PP̂k

h (·|xh,ah)

[
V

πk,P̂k,r+b̂kh
h+1 (x′h+1)

]
− Eo′∼PP

h (·|xh,ah)

[
V

πk,P̂k,r+b̂kh
h+1 (x′h+1)

]]
.

Define

g(xh, ah) =
1

2H + 1

[
E
o′∼PP̂k

h (·|xh,ah)

[
V

πk,P̂k,r+b̂kh
h+1 (x′h+1)

]
− Eo′∼PP

h (·|xh,ah)

[
V

πk,P̂k,r+b̂kh
h+1 (x′h+1)

]]
.

With Hölder’s inequality and note that
∥∥∥b̂kh∥∥∥ ⩽ 2, we have that ∥g∥∞ ⩽ 2. With Lemma 9, we have that∑

h∈[H]

E(xh,ah)∼d
πk
P,h

[g(xh, ah)]

⩽
∑

h∈[H]

EP
(xh−L,ah−L)∼d

πk
P,h

[
∥p∗(·|xh−L, ah−L)∥L2(µ),Σ

−1
ρk,h−L,p∗

]
·
√
k|A|LE(x̃h,ãh)∼ρk,h−L◦LU(A) [g(x̃h, ãh)2] + 4λC

⩽
∑

h∈[H]

EP
(xh−L,ah−L)∼d

πk
P,h

[
∥p∗(·|xh−L, ah−L)∥L2(µ),Σ

−1
ρk,h−L,p∗

]
·
√
k|A|Lζk + 4λC

⩽cαk

∑
h∈[H]

EP
(xh−L,ah−L)∼dπ

P,h

[
∥p∗(·|xh−L, ah−L)∥L2(µ),Σ

−1
ρk,h−L,p∗

]
With Cauchy-Schwartz inequality, we know that∑

k∈[K]

EP
(xh−L,ah−L)∼d

πk
P,h

[
∥p∗(·|xh−L, ah−L)∥L2(µ),Σ

−1
ρk,h−L,p∗

]

⩽

√√√√K
∑

k∈[K]

EP
(xh−L,ah−L)∼d

πk
P,h

[
∥p∗(·|xh−L, ah−L)∥2L2(µ),Σ

−1
ρk,h−L,p∗

]
.

Following the proof of Lemma 8 in Ren et al. (2023b), we have that

• for β-finite spectrum,∑
k∈[K]

EP
(xh−L,ah−L)∼d

πk
P,h

[
∥p∗(·|xh−L, ah−L)∥2L2(µ),Σ

−1
ρk,h−L,p∗

]
= O(β logK);

• for β-polynomial decay,∑
k∈[K]

EP
(xh−L,ah−L)∼d

πk
P,h

[
∥p∗(·|xh−L, ah−L)∥2L2(µ),Σ

−1
ρk,h−L,p∗

]
= O

(
CpolyK

1
2(1+β) logK

)
;

• for β-exponential decay,∑
k∈[K]

EP
(xh−L,ah−L)∼d

πk
P,h

[
∥p∗(·|xh−L, ah−L)∥2L2(µ),Σ

−1
ρk,h−L,p∗

]
= O

(
Cexp(logK)1+1/β

)
.

Combine the previous steps and take the dominating term out, we have that

• for β-finite spectrum,
K∑

k=1

V π∗,P,r − V πk,P,r ≲ H2β3/2|A|L logK
√
CLK log(K|M|/δ);
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• for β-polynomial decay,
K∑

k=1

V π∗,P,r − V πk,P,r ≲ CpolyH
2|A|LK

1
2+

1
1+β

√
CL log(K|M|/δ);

• for β-exponential decay,
K∑

k=1

V π∗,P,r − V πk,P,r ≲ CexpH
2|A|L(logK)1+

3
2β

√
CLK log(K|M|/δ);

which finishes the proof.

Theorem 13 (PAC Guarantee). After interacting with the environments for KH episodes

• K = Θ
(

CH4Lβ3|A|2L log(|P|/δ)
ε2 log3

(
CH4Lβ3|A|2L log(|P|/δ)

ε2

))
for β-finite spectrum;

• K = Θ

Cpoly

(
H2L|A|L

√
C log(|P|/δ)
ε log3/2

(√
CH2L|A|L log(|P|/δ)

ε

)) 2(1+β)
β−1

 for β-polynomial decay;

• K = Θ
(

CexpCH4L|A|2L log(|P|/δ)
ε2 log

3+2β
β

(
CH4L|A|2L log(|P|/δ)

ε2

))
for β-exponential decay;

we can obtain an ε-optimal policy with high probability.

Proof. This is a direct extension of the proof of Theorem 9 in Ren et al. (2023b).

G. Technical Lemma
Lemma 14 (Simulation Lemma). For two MDPs M = (P, r) and M′ = (P ′, r + b), we have

V π
P ′,r+b − V π

P,r

=
∑

h∈[H]

E(sh,ah)∼dh
P,π

[
bh(sh, ah) + Esh+1∼P ′(sh,ah)

[
V π
P ′,r+b,h+1(sh+1)

]
− Esh+1∼P (sh,ah)

[
V π
P ′,r+b,h+1(sh+1)

]]
,

and
V π
P ′,r+b − V π

P,r

=
∑

h∈[H]

E(sh,ah)∼dh
P ′,π

[
bh(sh, ah) + Esh+1∼P ′(sh,ah)

[
V π
P,r,h+1(sh+1)

]
− Esh+1∼P (sh,ah)

[
V π
P,r,h+1(sh+1)

]]
,

For the proof, see Uehara et al. (2021) for an example.

Lemma 15 (MLE Guarantee). For any episoode k ∈ [K], step h ∈ [H], define ρh as the joint distribution of (xh, ah) in the
dataset Dh,k at episode k. Then with probability at least 1− δ, we have that

E(xh,ah)∼Dh,k

∥∥∥PP
h (·|xh, ah)− PP̂k

h (·|xh, ah)
∥∥∥2
1
⩽ ζk,

where ζk = O(log(Hk|M|/δ)/k)

For the proof, see Agarwal et al. (2020).

H. Implementation Details on Image-based Continuous Control
We evaluate our method on Meta-world (Yu et al., 2019) 1 and DeepMind Control Suites (Tassa et al., 2018) 2 to demonstrate
its capability for complex visual control tasks. Meta-world is an open-source simulated benchmark consisting of 50 distinct
robotic manipulation tasks. The DeepMind Control Suite is a set of continuous control tasks with a standardized structure
and interpretable rewards, intended to serve as performance benchmarks for reinforcement learning agents. The visualization

1https://github.com/Farama-Foundation/Metaworld
2https://github.com/google-deepmind/dm_control
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of some tasks from the two domains are shown in Figures 3 and 4. With only one frame of the visual observation, we will
miss some information related to the task, for example the speed, thus these tasks are partially observable. The performance
for Meta-world tasks are shown in Figure 5.

(a) Coffee Pull (b) Hand Insert (c) Push (d) Plate Slide

Figure 3. Visualization of the visual robotic manipulation tasks in Meta-world.

(a) Acrobot Swingup (b) Reacher hard (c) Reach Duplo (d) Quadruped Run

Figure 4. Visualization of the visual control tasks in DeepMind Control Suites.

In particular, we employ visual observations with dimensions of 64 × 64 × 3 and apply a variational autoencoder (VAE) to
learn representations for these visual observations. The VAE is first pre-trained with random trajectories at the beginning and
then fine-tuned during the online learning procedure. It produces compact vector representations for the images, which are
then forwarded as input to our representation learning method. We apply actor-critic Learning based on the representation
learned by VAE. The configuration of used tasks are given in Table 1. The hyperparameters used in the RL agent are shown
in Table 2.

H.1. Ablation Studies

The importance of the exploration has been demonstrated in (Zhang et al., 2022). We perform ablation studies to demonstrate
the effects of the major components, including representation dimension and window size, as illustrated below. Figure 6
presents an ablation study on representation dimension, where we compare µLV-Rep with latent representation dimensions
2048, 512, and 128. We also ablate the effect of window size L. In Figure 7, we compare µLV-Rep with window size
L = 1, 3, 5. We also compare DrQ-v2 (Yarats et al., 2022) with L = 1, 3, 5 to show the effect of L on other algorithms. The
results show that for L = 1, both µLV-Rep and DrQ-v2 struggle with learning, which confirms the Non-Markovian property
of the DMC control problems. We can also find that L = 3 is sufficient for learning in both test domains.

H.2. Experiment of Partially Observable Continuous Control

We also evaluate the proposed approach on RL tasks with partial observations, constructed based on the OpenAI gym
MuJoCo (Todorov et al., 2012). Standard MuJoCo tasks from the OpenAI gym and DeepMind Control Suites are not
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Figure 5. Overall performance on MetaWorld tasks.
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Table 1. Configuration of environments.

Hyperparameter Value
Image observation 64×64×3

Image normalization Mean: (0.485, 0.456, 0.406), Std: (0.229, 0.224, 0.225)
Action repeat 2
Episode length 500 (Meta-world), 1000 (DMC)
Normalize action [-1,1]
Camera corner2 (Meta-world), camera2 (DMC)
Total steps in environment 1M (Meta-world), 0.5M (DMC)

Table 2. Hyperparameters in µLV-Rep. The numbers in Conv and MLP denote the output channels and units.

Hyperparameter Value
Buffer size 1,000,000
Batch size 256
Random steps 4000
Pretrain step 10000
Features dim. 100
Hidden dim. 1024
Encoder (Conv(32), Conv(32), Conv(32), Conv(32), MLP(100))
Image Decoder (MLP(100), MLP(1024), ConvT(32), ConvT(32), ConvT(32), ConvT(32), Conv(3))
Actor Network (MLP(1024),MLP(1024),MLP(Action Space))
Critic Network (MLP(1024),MLP(1024),MLP(1))
Optimizer Adam
Learning rate 0.0001
Discount 0.99
Critic soft-update rate 0.01
Evaluate interval 10,000
Evaluate episodes 10 (Meta-world), 5 (DMC)
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Figure 6. Ablation of feature dimension on visual control tasks from DeepMind Control Suites. Increasing the dimension of the feature
gets better performance.
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Figure 7. Ablation of window size L on visual control tasks from DeepMind Control Suites. L = 3 is sufficient for learning in both test
domains.

Table 3. Performance on various continuous control problems with partial observation. All results are averaged across 4 random seeds
and a window size of 10K. µLV-Rep achieves the best performance compared to the baselines. Here, Best-FO denotes the performance of
LV-Rep using full observations as inputs, providing a reference on how well an algorithm can achieve most in our tests.

HalfCheetah Humanoid Walker Ant Hopper

µLV-Rep 3596.2 ± 874.5 806.7 ± 120.7 1298.1± 276.3 1621.4 ± 472.3 1096.4 ± 130.4
Dreamer-v2 2863.8 ± 386 672.5 ± 36.6 1305.8 ± 234.2 1252.1 ± 284.2 758.3 ± 115.8
SAC-MLP 1612.0 ± 223 242.1 ± 43.6 736.5 ± 65.6 1612.0 ± 223 614.15 ± 67.6
SLAC 3012.4 ± 724.6 387.4 ± 69.2 536.5 ± 123.2 1134.8 ± 326.2 739.3 ± 98.2
PSR 2679.75±386 534.4 ± 36.6 862.4 ± 355.3 1128.3 ± 166.6 818.8 ± 87.2

Best-FO 5557.6±439.5 1086±278.2 2523.5±333.9 2511.8±460.0 2204.8±496.0

Cheetah-run Walker-run Hopper-run Humanoid-run Pendulum

µLV-Rep 525.3 ± 89.2 702.3 ± 124.3 69.3± 12.8 9.8 ± 6.4 168.2 ± 5.3
Dreamer-v2 602.3 ± 48.5 438.2 ± 78.2 59.2 ± 15.9 2.3 ± 0.4 172.3 ± 8.0
SAC-MLP 483.3 ± 77.2 279.8 ± 190.6 19.2 ± 2.3 1.2 ± 0.1 163.6 ± 9.3
SLAC 105.1 ± 30.1 139.2 ± 3.4 36.1 ± 15.3 0.9 ± 0.1 167.3 ± 11.2
PSR 173.7 ± 25.7 57.4 ± 7.4 23.2 ± 9.5 0.8 ± 0.1 159.4 ± 9.2

Best-FO 639.3±24.5 724.2±37.8 72.9±40.6 11.8±6.8 167.1±3.1

partially observable. To generate partially observable problems based on these tasks, we adopt a widely employed approach
of masking velocities within the observations (Ni et al., 2021; Weigand et al., 2021; Gangwani et al., 2020). In this way,
it becomes impossible to extract complete decision-making information from a single environment observation, yet the
ability to reconstruct the missing observation remains achievable by aggregating past observations. We provide the best
performance when using the original fully observable states (without velocity masking) as input, denoted by Best-FO (Best
result with Full Observations). This gives a reference for the best result an algorithm is expected to achieve in our tests.

We consider four baselines in the experiments, including two model-based methods Dreamer (Hafner et al., 2020; 2021) and
Stochastic Latent Actor-Critic (SLAC) (Lee et al., 2020), and a model-free baseline, SAC-MLP, that concatenates history
sequences (past four observations) as input to an MLP layer for both the critic and policy. This simple baseline can be
viewed as an analogue to how DQN processes observations in Atari games (Mnih et al., 2013) as a sanity check. We also
compare to the neural PSR (Guo et al., 2018). We compare all algorithms after running 200K environment steps. This
setup exactly follows the benchmark (Wang et al., 2019), which has been widely adopted in (Zhang et al., 2022; Ren et al.,
2023c;b) for fairness. All results are averaged across four random seeds. Table 3 presents all the experimental results,
averaged over four random seeds. The results clearly demonstrate that the proposed method consistently delivers either
competitive or superior outcomes across all domains compared to both the model-based and model-free baselines. We note
that in most domains, µLV-Rep nearly matches the performance of Best-FO, further confirming that the proposed method is
able to extract useful representations for decision-making in partially observable environments.
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