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Abstract—Lung imaging lacks a standardized reference space,
hindering the large-scale, voxel-wise analyses that are routine
in neuroimaging. To address this gap, we developed a high-
resolution, open-source 3-D lung template and probabilistic lobar
atlas from a cohort of 30 subjects from the National Lung
Screening Trial (NLST). Created using a fully automatic pipeline
based on the Advanced Normalization Tools (ANTs) ecosystem,
this template reached convergence (dice similarity coefficient
of 0.992 between consecutive iterations) after 11 iterations. We
demonstrated its utility by registering 60 subjects with varying
emphysema severity, finding that voxel-wise Jacobian analysis
could distinguish disease-specific deformation patterns. This
work provides a foundational, open resource for standardizing
anatomical localization, enabling robust group-level studies in
lung cancer screening research.

Index Terms—computed tomography, lung imaging, quantita-
tive imaging, template.

I. INTRODUCTION

Spatial normalization to a common reference frame, or
template, is a cornerstone of modern neuroimaging, enabling
voxel-wise group analyses and the creation of standardized
coordinate systems for localizing anatomical and functional
findings [1], [2]. This paradigm, however, is less established in
lung imaging, where high inter-subject anatomical variability
and respiratory motion pose significant challenges. The devel-
opment of a standardized 3-D lung template, particularly from
a large-scale lung cancer screening cohort, holds immense
potential for advancing quantitative lung analysis [3]–[5]. A
common reference space would also enable a standardized
coordinate system for precise localization of lesions, e.g., nod-
ules, facilitating consistent tracking and reporting across dif-
ferent time points and patients [6]. Furthermore, co-registering
images to a standard template provides a harmonized in-
put space for machine learning algorithms, improving model
robustness and generalizability [7], [8] and disentangling
anatomical variations from disease-induced ones [9], [10].
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Finally, such a framework is crucial for enabling population-
level statistical analyses [6] and inter-subject comparisons of
parenchymal characteristics associated with disease conditions
such as pulmonary fibrosis [7], COPD, obesity, and cardiovas-
cular calcifications [5].

II. RELATED WORK

Previous efforts to create lung atlases have laid important
groundwork, though many existing resources have limitations
hindering widespread adoption. For instance, the work by Li
et al. produced a valuable atlas but relied on manually selected
anatomical landmarks, a process that limits scalability and re-
producibility [3], [4]. Recently, Ryan et al. developed an open-
source template-building pipeline based on the Symmetric
Normalization (SyN) registration algorithm, but their reliance
on binarized lung masks is a critical drawback [7]. Image
intensity gradients drive the SyN algorithm to find an optimal
transformation [11], [12], therefore using binary masks elimi-
nates all internal anatomical texture, leaving only information
at the lung boundary. This lack of a rich gradient field can lead
to inaccurate alignments or non-physical internal deformations
[13]. Other notable templates, such as those developed by Xu
et al. and the one used in the ALIAS framework by Chen et
al., are based on closed-source software or proprietary data,
restricting transparency, external validation, and community-
driven improvement [5], [6].

A common methodological choice in some of these works
is the selection of an arbitrary “healthy” subject as the initial
reference for template construction, which may introduce an
uncharacterized bias into the final average-space template [6],
[7]. Our work addresses these gaps by developing a 3-D lung
template and lobar atlas using a fully automatic, open-source
pipeline based on the widely-used Advanced Normalization
Tools (ANTs) ecosystem [14]. The template is built from
a representative, publicly available cohort from the National
Lung Screening Trial (NLST), and we demonstrate its utility
through a quantitative and voxel-wise analysis of deformations
associated with pulmonary emphysema.



III. MATERIALS AND METHODS

A. Dataset description

We accessed de-identified data from NLST database under
an approved data use agreement (CDAS Project Number:
NLST-1175). All analyses complied with HIPAA regulations.

The NLST enrolled 53,454 current and former smokers
(if they quit smoking within 15 years), aged 55-74 with
at least a 30 pack-year smoking history. 26,722 participants
were randomized to the low-dose chest CT (LDCT) arm and
26,732 to the control arm, which received posteroanterior chest
radiography. Participants in the LDCT arm were invited to
undergo three annual LDCT screening rounds, labelled T0
(baseline), T1, and T2. Active enrollment and screening were
conducted between 2002 and 2007 across 33 participating
centers in the United States [15].

To build the template, we initially selected 38 representative
baseline LDCTs from unique NLST participants. This cohort
had a mean age of 64.71 years (standard deviation, SD:
5.4 years), included 18 (47.37%) male participants, had a
mean BMI of 28.26 kg/m² (SD: 6.52 kg/m²) and a mean
smoking history of 64.64 (SD: 29.4) pack-years. Twenty-two
participants (57.89%) had reported respiratory comorbidities.
The scans were acquired from four different manufacturers
(GE, Siemens, Philips, Toshiba) and reconstructed using four
kernel types, with a mean slice thickness of 1.54 mm (SD:
0.37 mm). To mitigate bias from extreme anatomical varia-
tions and prevent cropping artifacts, an issue we identified in
initial tests using ANTs default center of mass alignment, we
refined our cohort based on the lung field-of-view (FOV). We
calculated the FOV for all 38 LDCTs and included only the
30 ones between the 10th and 90th percentiles in the final
template construction. The lungs and lobes sizes in the final
cohort are presented as average (SD). Total lung volume is
5373.42 (905.27) cm³. The average left lung volume is 2491.87
(491.29) cm³, with average length 26.39 (1.85) cm, depth
19.56 (1.86) cm and width 14.10 (1.14) cm; the average right
lung volume is on average 2881.55 (458.49) cm³, with average
length 26.52 (1.79) cm, depth 19.98 (1.94) cm and width 15.21
(1.28) cm. The average lobes volumes are 1214.36 (265.94)
cm³ for the left lower lobe (LL), 1277.51 (280.78) cm³ for
the left upper (LU), 1289.33 (223.48) cm³ for the right lower
(RL), 444.62 cm³ (128.31) for the right middle (RM) and
1147.59 (225) cm³ for the right upper (RU). To demonstrate
the template’s utility, we selected 60 LDCTs from unique
participants for our emphysema application, divided into a
severe emphysema group, a typical emphysema group, and a
control group, each comprising 20 subjects. The demographic
and clinical characteristics of these groups are summarized in
Table I.

B. Lung CT image processing

In a process analogous to neuroimaging skull-stripping [1],
we first extracted the lungs from the chest LDCTs. Lungs
were segmented using lungmask (v0.2.13), an open-source,
pre-trained U-Net model for lungs and lobes segmentation

Fig. 1. Convergence of label overlap metrics during template construction.
The plot shows the dice similarity coefficient (DSC), Jaccard coefficient (JC),
volume similarity (VS), false negative error (FNE), and false positive error
(FPE) calculated between binarized templates at consecutive iterations. DSC
and JC range from 0 (no overlap) to 1 (perfect overlap); using this VS
implementation, FNE and FPE indicate better alignment the closer they are
to 0. Convergence was formally defined as a stable DSC > 0.90 with change
< 0.001 for three consecutive iterations, a strict criterion that was met at
iteration#11.

chosen for its state-of-the-art performance and robustness
to pathological variations [16], [17]. Starting from these
binary masks (with a value of 1 inside the lungs and 0
outside), we used the ImageMath tool from the ANTs
toolkit to create a masked image where voxels within the
lung retained their original Hounsfield Unit (HU) values,
while all voxels outside the lungs were set to -2000 HU – a
value well outside the physiological range to ensure only lung
anatomy drives the registration process and facilitate template
binarization, necessary to compute the similarity metrics
during template building. We will refer to these images as
masked LDCTs. The 3-D lung template was created using
the diffeomorphic averaging framework implemented in the
antsMultivariateTemplateConstruction2.sh
script from the ANTs toolkit (v2.5.4) [12]. We designated

TABLE I
DEMOGRAPHIC AND CLINICAL CHARACTERISTICS OF THE

EMPHYSEMA COHORT

Characteristic Control
(N=20)

Typical
(N=20)

Severe
(N=20)

Age (years) 58.95 (3.46) 64.10 (4.88) 64.25 (5.44)
Sex (Male) 3 (15.0) 12 (60.0) 17 (85.0)
Race (White)a 17 (85.0) 20 (100.0) 20 (100.0)
BMI (kg/m2) 26.97 (3.93) 27.69 (7.62) 25.24 (4.51)
Current Smoker 16 (80.0) 10 (50.0) 0 (0.0)
Pack-years 48.48 (21.53) 57.28 (19.91) 61.86 (24.42)
Comorbiditiesb 7 (35.0) 20 (100.0) 20 (100.0)
%LAA (%)c 0.0 (0.0) 9.0 (0.0) 44.0 (6.0)
* Data are presented as mean (standard deviation) for continuous

variables and N (%) for categorical variables.
a The cohort was predominantly White; other racial categories

represented < 10% in any group.
b We considered respiratory related comorbidities.
c %LAA: Percentage of Low Attenuation Area (< -950 HU).



the masked LDCT of the participant with the largest lung
FOV as the initial reference space, T0, to prevent anatomical
cropping during registration. The template construction
process operates through iterative refinement, with each
co-registration step employing the SyN algorithm [14],which
has a long track record of success in the neuroimaging domain
[18], [19], but especially for its top-ranking performance in
the EMPIRE10 thoracic CT registration challenge, proving
its suitability for this specific anatomy [7], [20]. While
contemporary deep learning methods offer computational
efficiency, their generalizability across unseen datasets can be
a concern [21]. Given our primary goal of creating a robust
and widely applicable template, the proven reproducibility and
performance of SyN, within the ANTs C++ ecosystem, made
it the most suitable choice. At each iteration, all the images
undergo multi-stage registration to the current template: first,
rigid transformation corrects for positional and orientational
differences; next, affine transformation accounts for global
size and shearing variations; finally, deformable SyN
transformation performs local, non-linear warping to match
the template’s anatomy with high fidelity. This multi-stage
process operates across a four-level multi-resolution pyramid
(from coarse to fine) to capture transformations at different
granularities. The resulting transformations and warped
images are then averaged to obtain an average transformation
and average shape, respectively. The updated template is then
created by applying the inverse of the average transformation
to the average shape. The parameters for the multi-resolution
pairwise registration were set as follows. The maximum
number of iterations at each resolution level (flag -q) was set
to 100x70x50x10, with fewer iterations at finer resolutions
to account for the higher computational cost per iteration.
The shrink factors (flag -f), which are the integer factors for
downsampling the template image during registration, were
set to 8x4x2x1. Finally, the smoothing kernels (flag -s),
specifying the standard deviation of a Gaussian smoothing
kernel applied to the images before downsampling at each
level, were set to 3x2x1x0 voxels. Rather than relying on a
fixed number of build iterations, which defaults to four in the
antsMultivariateTemplateConstruction2.sh,
we implemented a quantitative convergence criterion to ensure
the template reached maximum stability. To accommodate
this, the script’s maximum iteration parameter, Nmax, was set
to a conservatively high value of 15 that would not interfere
with our stability-based termination. Building on Ryan et
al.’s proposal, we assessed convergence at each iteration by
computing the dice similarity coefficient (DSC) between the
binarized templates of consecutive iterations (Ti and Ti−1)
using LabelOverlapMeasuresImageFilter from the
Simple Insight Toolkit (SITK) [22]. Convergence was defined
as DSC > 0.90 with the value remaining stable (< 0.001
change) for three consecutive iterations. The full iterative
process is detailed in Algorithm 1.

Algorithm 1 Iterative Template Creation
1: Initialize: Template T0 from subject with max FOV;

subject images {Sk}29k=1.
2: for iteration i = 1 to Nmax do
3: // Register each subject to current template
4: for each subject Sk do
5: for each resolution level do
6: Compute transformation ϕk,i mapping Sk → Ti−1

using a multi-stage registration (Rigid → Affine
→ SyN).

7: end for
8: end for
9: // Create new template from averaged transformations

10: Compute the average transformation ϕ̄i from the set
{ϕk,i}.

11: Compute the average shape Ai by warping and av-
eraging all subjects into the common space: Ai =
1
N

∑N
k=1 ϕk,i(Sk).

12: Update the template by applying the inverse of the aver-
age transformation to the average shape: Ti = ϕ̄−1

i (Ai).
13: // Check convergence
14: Binarize Ti.
15: Compute similarity metrics: DSC, Jaccard, FNE, FPE,

VS.
16: if DSC > 0.90 and ∆DSC < 0.001 for 3 consecutive

iterations then
17: CONVERGED
18: end if
19: end for

C. Consensus lobar atlas

For the 30 subjects in the template cohort, the five lobes
were segmented in their native space using lungmask [16].
The final individual transformations generated during the lung
template construction were applied to these native-space lobar
masks to warp them into the final template space using nearest-
neighbor interpolation, with the antsApplyTransform
script. These 30 warped masks for each lobe were then aver-
aged on a voxel-wise basis to create a probabilistic map, where
each voxel’s value represents the probability of it belonging to
that lobe. A deterministic atlas was also created by assigning
each voxel to the lobe with the highest probability, using
the ImageMath MostLikely function, part of the ANTs
package, with a minimum probability threshold of 0.4.

D. Emphysema application

To demonstrate the template’s utility, we performed a voxel-
wise analysis of emphysema-related structural changes. This
involved identifying distinct groups from the NLST cohort,
co-registering them to our template, and analyzing the result-
ing spatial patterns of lung tissue deformation. Building on
previous work on emphysema evaluation in NLST [24], we
quantified emphysema as the percentage of low attenuation
area (%LAA), defined as the percentage of lung volume
with voxel value below –950 HU. From a subset of 4,952



Fig. 2. Axial view of average (AVG) and standard deviation (SD) across warped LDCTs for iterations # 1, #6 and #11 (from left to right), in slices #71,
#124, and #164 (from top to bottom). All figures of the lung are in “radiological” convention, where the left side of the image is the right lung.

Fig. 3. LDCT lung template (top panel) and corresponding deterministic lobe maps in the template space (bottom panel) in the axial, coronal, and sagittal
planes (left to right). Lobe color coding: right lower lobe (red), right middle lobe (blue), right upper lobe (brown), left upper lobe (green), left lower lobe
(yellow). All figures of the lungs are in radiological convention, where the left side of the image is the right lung.

participants in the NLST CT arm (Ann Arbor cohort), we
first extracted a high-quality sample of baseline examinations
suitable for emphysema quantification. This “quantification
sample” included LDCTs that met two quality criteria: a
slice thickness ≤ 2.5 mm and the use of a soft or mid-soft
reconstruction kernel [25]. When multiple scans were available
for a participant, we prioritized those meeting both criteria.
For each scan in this sample, we created a binary %LAA
mask (1 where HU < −950, 0 otherwise) by first isolating the
lungs using lungmask [16], and then thresholding the voxels
at –950 HU and determined %LAA. Using these masks and

available clinical data, we formed three distinct study groups
(n=20 each):

• Severe emphysema group: LDCTs associated to par-
ticipants with a clinical diagnosis of emphysema (as
reported in NLST database) and the highest %LAA in
the quantification sample.

• Typical emphysema group: LDCTs associated to partic-
ipants with a clinical diagnosis of emphysema whose
%LAA values were closest to the median %LAA in the
quantification sample. This group is intended to repre-
sents typical, smoking-related centrilobular emphysema.



Fig. 4. Axial views of one sample from the template cohort before and after
warping in the template space, in base (35%), middle (50%) and apex (80%)
height (from top to bottom). All figures of the lung are in “radiological”
convention, where the left side of the image is the right lung.

• Control group: LDCTs associated to participants with no
clinical diagnosis of emphysema and the lowest %LAA
values in the quantification sample. This “extreme-
healthy” selection was a deliberate choice to establish
a clear, low-noise baseline against which disease patterns
could be robustly compared for this preliminary utility
study.

Each of the 60 selected LDCTs was registered to our final lung
template using the same registration parameters employed dur-
ing template construction with antsRegistration script.
The resulting deformation fields were then applied to each cor-
responding binary %LAA mask using nearest-neighbor inter-
polation with antsApplyTransform script, mapping the
spatial distribution of emphysemateous regions into the com-
mon template space. To quantify local anatomical changes, we
calculated the Jacobian determinant of each deformation field
using ANTs CreateJacobianDeterminantImage.sh
script. The Jacobian determinant measures local volume
change at each voxel resulting from the registration; values
greater than 1 indicate expansion, values less than 1 indicate
tissue contraction relative to the template [26]. We then
performed a group-wise comparison by calculating the mean
and standard deviation of the Jacobian determinant maps for
each group to identify regions of structural divergence.

IV. RESULTS

A. 3-D lung template

The lung template generation process converged after 11
iterations, meeting our pre-defined stability criterion with a
final average DSC of 0.992 (Fig. 1). The entire process took
117 hours on a 228-core Linux server. The final template
has dimensions of 512×512×205 voxels. Figure 2 qualitatively
illustrates the refinement of the template, showing a progres-
sive sharpening of anatomical features and a reduction in the
standard deviation across the population. The final template
has a total lung volume of 5435.14 cm³. The left lung volume
is 2525.33 cm³ (length 25.5 cm, depth 19.26 cm, width 13.72)
and right lung volume is 2909.82 cm³ (length 26.18 cm, depth
19.51 cm, width 14.3 cm). The resulting probabilistic lobar
atlas provides detailed spatial distributions for each lobe (Fig.
3) with mean volumes of LL: 1220.81, LU: 1304.52, RL:
1295.97, RM: 445.29, and RU: 1168.55 cm³. These three-
dimensional measures of the final lung template are both
consistent with the average ones from the 30 subject cohort
in the native space and the healthy lung template that Ryan
et al obtained from 62 COPDGene participants [7]. Figure
4 shows the result of anatomical normalization achieved by
warping an image in the template space. The 3D lung template
and probabilistic lobar atlas are publicly available in the
Zenodo repository (https://doi.org/10.5281/zenodo.17159622)
under a CC-BY 4.0 license. Resources are provided in NIfTI
format with a companion Jupyter notebook for interactive
visualization.

B. Emphysema-related deformation

Warping the selected LDCTs from the quantification sam-
ple to the template space enabled a group-level analysis of
emphysema-related deformation changes. On our server, this
process required approximately 20 minutes per image for
the registration step and a few seconds for applying the
transformation. The mean Jacobian determinant maps (Fig. 5,
top row) revealed spatially consistent patterns of deformation
when comparing the emphysema groups to the control group.
Specifically, the difference between the mean Jacobian maps
highlights regions of relative expansion (Jacobian > 1, purple
and pink areas) in the emphysema groups, while contraction
(Jacobian < 1, black areas) can be observed in the healthy
group. In the severe group, expansion occurs especially at
the lung bases, presumably reflecting compensatory hyper-
inflation of diaphragm in presence of severe emphysema,
while in the typical group it is spread all over the lung,
and is generally less pronounced. Furthermore, the analysis
of the standard deviation (Fig. 5, bottom row) reveals higher
deformation heterogeneity in the emphysema groups compared
to the control. The higher variability in the emphysema groups
demonstrates that the structural changes induced by the disease
are highly variable in their spatial pattern and severity, adding a
significant layer of complexity on top of the normal anatomical
differences found within the control population.



Fig. 5. Coronal views of the Jacobian determinant analysis across the three emphysema groups. Top row): Average (AVG) Jacobian determinant maps for
the severe emphysema (left), typical emphysema (center), and control (right) groups. Values > 1 indicate local expansion was required to map the subject to
the template space. Bottom row: Corresponding standard deviation (SD) maps for each group. All lung images follow the radiological convention, with the
left side of the image corresponding to the right lung.

V. DISCUSSION

We have developed and applied a high-resolution, open-
source LDCT 3-D lung template and a probabilistic lobar
atlas from the NLST cohort. Our work provides a founda-
tional resource for the lung imaging community by combin-
ing several methodological choices to ensure robustness and
reproducibility. By employing a fully automated pipeline built
on the open-source ANTs ecosystem, we ensure transparency
and avoid the challenges of proprietary software or laborious
manual landmark selection. Furthermore, our use of masked
images where the lungs maintain original Hounsfield Unit
intensity, allows registration to leverage rich parenchymal
texture, a key principle for achieving physically plausible
alignments. Finally, we mitigate a potential source of bias
by selecting the initial reference for template construction
based on an objective criterion (largest FOV) rather than
an arbitrary subject. These combined choices distinguish our
approach and are critical for creating a robust reference space
for standardized analyses.

The successful construction of a sharp, low-variance tem-
plate from a diverse set of multi-vendor, multi-kernel scans
demonstrates the robustness of the ANTs-based registration
framework. The final template’s dimensions and volumetric
asymmetry between the right and left lungs are consistent
with known human anatomy, providing face validity for the
averaging process. Our emphysema application study under-
scores the template’s practical utility. By warping subjects
into this common space, we were able to link a densitometric
biomarker (%LAA) to a morphometric one (Jacobian determi-
nant). The mean Jacobian maps successfully identified group-
level structural alterations linked to emphysema and even

revealed distinct patterns between typical and severe disease,
demonstrating a capacity for patient stratification. Simultane-
ously, the standard deviation analysis provided a quantitative
measure of variability, allowing us to distinguish the consistent
signature of normal anatomical variation in controls from the
highly heterogeneous expression of the disease in patients.
This ability to spatially resolve and quantify known disease
patterns validates our framework’s anatomical correctness.

Our study has several limitations. The first set of limitations
relates to the template’s construction. The cohort of 30 sub-
jects, while intentionally diverse—including scans from four
manufacturers and with four reconstruction kernels—is small
and may not capture the full variability of the larger NLST
population. The specific impact of radiological factors like
reconstruction kernel choice on the final template morphology
has not yet been quantified and remains a key area for future
work. Additionally, our initialization strategy, while pragmat-
ically chosen to prevent the anatomical cropping observed in
initial tests, could introduce a potential bias that requires future
systematic investigation. The second set of limitations pertains
to our study’s validation. Critically, template convergence
was evaluated using DSC. We acknowledge that this global
overlap metric does not guarantee the precise alignment of fine
anatomical landmarks. Validation on expert-annotated images
will not only provide a truer measure of anatomical fidelity but
also enable the development of more sophisticated, context-
aware stopping criteria, potentially reducing the number of
iterations needed for convergence. Regarding the analysis
on emphysema-related deformation, our validation cohorts
were selected based on representative (median) and extreme
(lowest) %LAA values to maximize contrast, rather than



being explicitly matched for all potential confounders, which
could influence the Jacobian analysis. Voxel-wise statistical
analysis with threshold free cluster enhancement to formally
test for group differences and correct for multiple comparisons
will be performed on the subsequent template derived from
a larger cohort. Perhaps the most important consideration
is the template’s inherent scope. The template is derived
exclusively from the NLST cohort, which consists of 55-74
years old current and former heavy smokers. Consequently,
it represents the anatomy of this specific population, not a
general-purpose “healthy human lung”. Given that long-term
smoking can induce subtle parenchymal and airway changes,
caution is warranted when applying this template to other
populations. Therefore, while this “NLST-space” template is
an ideal reference for studies within NLST or similar lung
cancer screening cohorts, our long-term vision is to develop
a library of population-specific atlases to address the distinct
anatomical characteristics of different groups (e.g., stratified
by sex, age, BMI, or disease status).

This publicly available template and atlas can serve as a
standard reference space for lung imaging, analogous to the
MNI152 template in neuroimaging. This will support more
reproducible nodule localization (e.g., defining a standardized
(x,y,z) coordinate system and reporting nodule’s location in
this common “NLST-space”), facilitate multi-site data aggre-
gation, and provide a harmonized input for developing and
validating AI models. Future work will focus on expanding
the template cohort to create population-specific atlases (e.g.,
stratified by sex, BMI, or smoking status). A critical next
step is to use the generated transformations to warp the full,
non-masked CT images into the template space to create a
population-level atlas of lung density and pathology, including
the spatial distribution of lung nodules.

REFERENCES

[1] V. Fonov et al., “Unbiased average age-appropriate atlases for pediatric
studies,” NeuroImage, vol. 54, no. 1, pp. 313–327, Jan. 2011.

[2] A. C. Evans et al., “3D statistical neuroanatomical models from 305 MRI
volumes,” in 1993 IEEE Conference Record Nuclear Science Sympo-
sium and Medical Imaging Conference, Oct. 1993, pp. 1813–1817 vol.3.
DOI: 10.1109/NSSMIC.1993.373602.

[3] B. Li et al., “Establishing a normative atlas of the human lung:
Intersubject warping and registration of volumetric CT images,” Acad.
Radiol., vol. 10, no. 3, pp. 255–265, Mar. 2003, DOI: 10.1016/S1076-
6332(03)80099-5.

[4] B. Li et al., “Establishing a normative atlas of the human
lung: Computing the average transformation and atlas construction,”
Acad. Radiol., vol. 19, no. 11, pp. 1368–1381, Nov. 2012, DOI:
10.1016/j.acra.2012.04.025.

[5] K. Xu et al., “Development and characterization of a chest CT atlas,”
in Proc. SPIE Int. Soc. Opt. Eng., vol. 2021, p. 15961G, 2021, DOI:
10.1117/12.2580800.

[6] L. Chen et al., “An artificial-intelligence lung imaging analysis sys-
tem (ALIAS) for population-based nodule computing in CT scans,”
Comput. Med. Imaging Graph., vol. 89, p. 101899, Apr. 2021, DOI:
10.1016/j.compmedimag.2021.101899.

[7] S. M. Ryan et al., “Template creation for high-resolution computed
tomography scans of the lung in R software,” Acad. Radiol., vol. 27,
no. 8, pp. e204–e215, Aug. 2020, DOI: 10.1016/j.acra.2019.10.030.

[8] S. M. Ryan et al., “Cluster activation mapping with application to
computed tomography scans of the lung,” J Med Imaging (Bellingham),
vol. 9, no. 2, p. 026001, Mar. 2022, DOI: 10.1117/1.JMI.9.2.026001.

[9] K. Yu et al., “DrasCLR: A self-supervised framework of learning
disease-related and anatomy-specific representation for 3D lung CT
images,” Medical Image Analysis, vol. 92, p. 103062, Feb. 2024, DOI:
10.1016/j.media.2023.103062.

[10] A. Hiremath et al., “Deep learning reveals lung shape differences on
baseline chest CT between mild and severe COVID-19: A multi-site
retrospective study,” Computers in Biology and Medicine, vol. 177, p.
108643, Jul. 2024, DOI: 10.1016/j.compbiomed.2024.108643.

[11] B. B. Avants et al., “Symmetric Diffeomorphic Image Registration
with Cross-Correlation: Evaluating Automated Labeling of Elderly and
Neurodegenerative Brain,” Med Image Anal, vol. 12, no. 1, pp. 26–41,
Feb. 2008, DOI: 10.1016/j.media.2007.06.004.

[12] B. B. Avants et al., “The optimal template effect in hippocampus studies
of diseased populations,” NeuroImage, vol. 49, no. 3, pp. 2457–2466,
Feb. 2010, DOI: 10.1016/j.neuroimage.2009.09.062.

[13] M. Chen et al., “Distance Transforms in Multi Channel MR Image
Registration,” Proc SPIE Int Soc Opt Eng, vol. 2011, no. 7962, p.
79621D, Mar. 2011, DOI: 10.1117/12.878367.

[14] N. J. Tustison et al., “The ANTsX ecosystem for quantitative biological
and medical imaging,” Sci Rep, vol. 11, no. 1, p. 9068, Apr. 2021, DOI:
10.1038/s41598-021-87564-6.

[15] National Lung Screening Trial Research Team et al., “Reduced lung-
cancer mortality with low-dose computed tomographic screening,” N
Engl J Med, vol. 365, no. 5, pp. 395–409, Aug. 2011, DOI: 10.1056/NE-
JMoa1102873.

[16] J. Hofmanninger et al., “Automatic lung segmentation in routine imaging
is primarily a data diversity problem, not a methodology problem,”
European Radiology Experimental, vol. 4, no. 1, p. 50, Aug. 2020, DOI:
10.1186/s41747-020-00173-2.

[17] D. Carmo, J. et al., “A Systematic Review of Automated Segmentation
Methods and Public Datasets for the Lung and its Lobes and Findings
on Computed Tomography Images,” Yearb Med Inform, vol. 31, no. 1,
pp. 277–295, Dec. 2022, DOI: 10.1055/s-0042-1742517.

[18] A. Klein et al., “Evaluation of 14 nonlinear deformation algorithms
applied to human brain MRI registration,” Neuroimage, vol. 46, no. 3,
pp. 786–802, Jul. 2009, DOI: 10.1016/j.neuroimage.2008.12.037.

[19] G. Balakrishnan et al. “VoxelMorph: A Learning Framework for De-
formable Medical Image Registration,” IEEE Transactions on Med-
ical Imaging, vol. 38, no. 8, pp. 1788–1800, Aug. 2019, DOI:
10.1109/TMI.2019.2897538.

[20] K. Murphy et al., “Evaluation of registration methods on thoracic CT:
the EMPIRE10 challenge,” IEEE Trans. Med. Imaging, vol. 30, no. 11,
pp. 1901–1920, Nov. 2011, DOI: 10.1109/TMI.2011.2158349.

[21] R. Jena et al. “Deep learning in medical image registration: magic or
mirage?,” in Proceedings of the 38th International Conference on Neural
Information Processing Systems, in NIPS ’24, vol. 37. Red Hook, NY,
USA: Curran Associates Inc., Jun. 2025, pp. 108331–108353.

[22] Z. Yaniv et al., “SimpleITK Image-Analysis Notebooks: a Collabora-
tive Environment for Education and Reproducible Research,” J Digit
Imaging, vol. 31, no. 3, pp. 290–303, Jun. 2018, DOI: 10.1007/s10278-
017-0037-8.

[23] A. A. Taha et al., “Metrics for evaluating 3D medical image segmenta-
tion: analysis, selection, and tool,” BMC Medical Imaging, vol. 15, no.
1, p. 29, Aug. 2015, DOI: 10.1186/s12880-015-0068-x.

[24] W. W. Labaki et al., “Quantitative emphysema on low-dose CT
imaging of the chest and risk of lung cancer and airflow obstruc-
tion,” Chest, vol. 159, no. 5, pp. 1812–1820, May 2021, DOI:
10.1016/j.chest.2020.12.004.

[25] D. S. Gierada et al., “Effects of CT section thickness and reconstruction
kernel on emphysema quantification relationship to the magnitude of the
CT emphysema index,” Acad Radiol, vol. 17, no. 2, pp. 146–156, Feb.
2010, DOI: 10.1016/j.acra.2009.08.007.

[26] J. Ashburner et al., “Voxel-Based Morphometry—The Methods,”
NeuroImage, vol. 11, no. 6, pp. 805–821, Jun. 2000, DOI:
10.1006/nimg.2000.0582.


