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Abstract001

Trustworthiness in healthcare question-002
answering (QA) systems is important for003
ensuring patient safety, clinical effectiveness,004
and user confidence. As large language models005
(LLMs) become increasingly integrated006
into medical settings, the reliability of their007
responses directly influences clinical decision-008
making and patient outcomes. However,009
achieving comprehensive trustworthiness in010
medical QA poses significant challenges due011
to the inherent complexity of healthcare data,012
the critical nature of clinical scenarios, and the013
multifaceted dimensions of trustworthy AI. In014
this survey, we systematically examine six key015
dimensions of trustworthiness in medical QA,016
i.e., Factuality, Robustness, Fairness, Safety,017
Explainability, and Calibration. We review018
how each dimension is evaluated in existing019
LLM-based medical QA systems. We compile020
and compare major benchmarks designed021
to assess these dimensions and analyze022
evaluation-guided techniques that drive model023
improvements, such as retrieval-augmented024
grounding, adversarial fine-tuning, and025
safety alignment. Finally, we identify open026
challenges—such as scalable expert evaluation,027
integrated multi-dimensional metrics, and028
real-world deployment studies—and propose029
future research directions to advance the030
safe, reliable, and transparent deployment of031
LLM-powered medical QA.032

1 Introduction033

Large language models (LLMs) have significantly034

advanced the field of question-answering (QA)035

(Wang et al., 2024; Salemi and Zamani, 2024),036

enabling remarkable capabilities in generating flu-037

ent and coherent responses across a wide range038

of domains. In healthcare, specialized variants039

such as Med-PaLM (Singhal et al., 2023) and Chat-040

Doctor (Li et al., 2023b) have even matched or041

exceeded human performance on professional ex-042

ams —Med-PaLM achieved a passing score of043

67.6% on USMLE-style MedQA questions and 044

Med-PaLM 2 reached 86.5% accuracy— and have 045

demonstrated superior consumer-health assistance 046

in user studies (Yang et al., 2024a; Nazi and Peng, 047

2024). Yet, when deployed in clinical settings, 048

these models continue to exhibit critical trust fail- 049

ures: hallucinated medical facts, unjustified over- 050

confidence, and occasional biased or unsafe recom- 051

mendations (Aljohani et al., 2025). Such errors can 052

directly endanger patient safety, lead to misdiag- 053

noses, or exacerbate healthcare disparities, under- 054

scoring that trustworthiness in medical QA is not 055

optional but essential. 056

Although recent surveys have mapped broad 057

trust dimensions—truthfulness, safety, robustness, 058

fairness, and explainability—for LLMs in health- 059

care, work focused specifically on open-domain 060

medical QA remains fragmented (Liu et al., 2024b; 061

Huang et al., 2024b; Bedi et al., 2024). Existing 062

reviews typically catalogue each dimension in iso- 063

lation, without clearly linking evaluation findings 064

to concrete model improvements. In practice, a sin- 065

gle evaluation signal often indicates multiple risks, 066

yet this interplay is seldom analyzed or leveraged 067

to guide system development holistically. 068

To bridge this gap, we adopt an evaluation-driven 069

framework tailored specifically for medical QA. 070

We first define six core dimensions—Factuality , 071

Robustness, Fairness, Safety, Explainability, and 072

Calibration—and consolidate the primary evalu- 073

ation methods for each into a unified taxonomy, 074

shown in Figure 1. We then demonstrate how eval- 075

uation insights have directly inspired targeted opti- 076

mizations. Building on this, we review the bench- 077

marks and tools, comparing their methodological 078

trade offs. Finally, we examine open challenges 079

and propose future research directions. By weaving 080

together evaluation, optimization, and benchmark- 081

ing, our survey provides a clear roadmap for lever- 082

aging trustworthiness assessments as catalysts for 083

building safer, more reliable, and equitable LLM- 084
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Figure 1: Taxonomy of Evaluation Dimensions of Trustworthiness. The taxonomy includes six core dimensions,
each with corresponding assessment methods. For each method, representative benchmarks are provided.

powered medical QA systems.085

2 Evaluation Dimensions of086

Trustworthiness087

Trustworthiness in medical QA is inherently multi-088

dimensional, encompassing various interconnected089

evaluation criteria. In this section, we define090

six core dimensions for assessing trustworthiness091

specifically within medical QA contexts.092

2.1 Factuality093

Factuality evaluates whether a medical QA094

system’s responses are both correct and veri-095

fiable against established clinical knowledge,096

inherently encompassing the detection of097

hallucinations—plausible-sounding but unsup-098

ported or incorrect statements (Wang et al., 2023;099

Huang et al., 2025). Even minor factual errors100

in healthcare can compromise patient safety, so101

rigorous evaluation is indispensable.102

Assessment often begins with reference-based103

measures. For structured tasks such as USMLE-104

style multiple-choice questions (Jin et al., 2021),105

simple accuracy suffices. For open-ended re-106

sponses, metrics like Exact Match or token-overlap107

F1 are calculated against curated reference an- 108

swers (Krithara et al., 2023). To accommodate 109

valid variability in medical phrasing, benchmarks 110

frequently allow lenient scoring or use multiple 111

expert-generated references, as in MedExQA’s 112

ensemble of clinician explanations (Kim et al., 113

2024). Evidence-grounded checks then verify that 114

each factual claim can be traced back to author- 115

itative sources—peer-reviewed articles, clinical 116

guidelines, or trusted medical databases—flagging 117

unsupported content as potential hallucinations. 118

Adversarial benchmarks like Med-HALT (Pal 119

et al., 2023) and targeted “false-confidence” probes 120

stress-test models with challenging prompts de- 121

signed to induce fabrications, thereby quantifying 122

a model’s propensity to hallucinate under duress. 123

Because factuality in medicine can sometimes be 124

a “grey area”, especially when clinical guidelines 125

evolve or expert consensus varies, automated met- 126

rics alone may not suffice (Landsheer, 2018). In 127

such cases, expert human review remains the gold 128

standard: clinicians apply structured rubrics (for ex- 129

ample, the Med-PaLM evaluation framework (Sing- 130

hal et al., 2023)) to rate answers on accuracy, com- 131

pleteness, and consistency with medical consen- 132
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sus. This catches subtle inaccuracies and context-133

specific errors that automated metrics may miss.134

These approaches form a comprehensive frame-135

work for measuring factual accuracy and hallu-136

cination in medical QA. The insights they pro-137

vide directly inform mitigation techniques such as138

retrieval-augmented grounding to anchor responses139

in live literature, post-hoc fact-correction mod-140

ules to revise unsupported claims, adversarial fine-141

tuning to harden models against deceptive inputs,142

and iterative self-reflection loops that internally143

check for consistency—collectively advancing the144

safety and reliability of medical QA systems.145

2.2 Robustness146

Robustness refers to the system’s ability to main-147

tain performance under varied inputs in medical148

QA. A robust model should handle paraphrased149

questions, out-of-distribution queries, or adversar-150

ial inputs without significant degradation in answer151

quality (Ye et al., 2024; Goyal et al., 2023).152

One way to measure robustness is by perturbing153

real queries—rephrasing symptom descriptions, in-154

troducing spelling mistakes, or inserting extraneous155

clauses—and then checking whether the model’s156

output remains correct. For example, Ness et al.157

(2024) introduced MedFuzz, a method designed158

to systematically perturbed medical questions in159

order to investigate whether models depend on su-160

perficial linguistic patterns. Their findings indi-161

cate that even subtle variations in phrasing can162

disrupt a model’s reasoning process, thus expos-163

ing inherent brittleness. Another critical aspect164

is adversarial robustness, which entails ensuring165

that models are resilient to intentionally deceptive166

or challenging inputs. In medical QA, adversarial167

scenarios may involve queries containing mislead-168

ing cues or integrating multiple complex concepts.169

Alberts et al. (2023) emphasized that adversarial170

testing in medical QA must account for the inher-171

ent complexity of the domain, noting that even172

slight modifications in phrasing can significantly173

alter clinical interpretations. Evaluations may in-174

corporate challenge sets comprising known diffi-175

cult cases, such as rare conditions or overlapping176

symptoms, to assess model performance compre-177

hensively. For instance, the Med-PaLM-2 study178

specifically included a set of adversarial questions179

designed to probe the limitations of LLMs, which180

can be used to conduct targeted evaluations to iden-181

tify cases that intentionally elicit confusion or high-182

light model vulnerabilities (Singhal et al., 2025).183

Robustness can also be characterized by resilience 184

to distributional shifts, referring to a model’s abil- 185

ity to maintain performance when encountering 186

inputs that differ substantially from its training 187

data. For example, a model trained primarily on 188

formal medical texts may struggle with questions 189

phrased in layperson language. Consequently, eval- 190

uators often test models using cross-style or cross- 191

population datasets, including questions derived 192

from different demographic groups or varied lin- 193

guistic styles. Sustained model performance un- 194

der these conditions indicates robustness against 195

such distributional shifts. Quantitatively, robust- 196

ness can be assessed by measuring the decline in 197

accuracy or other performance metrics when tran- 198

sitioning from clean to perturbed datasets; a min- 199

imal decline reflects higher robustness. Addition- 200

ally, variance-based measures are employed; for 201

instance, Thirunavukarasu et al. (2023) proposed 202

evaluating the variance in model outputs across 203

semantically equivalent inputs as an indicator of 204

robustness. 205

Comprehensive robustness evaluation guides im- 206

provements like adversarial fine-tuning, data aug- 207

mentation with diverse linguistic styles, and multi- 208

domain training, ultimately yielding more stable 209

and trustworthy medical QA systems. 210

2.3 Fairness 211

Fairness in medical QA assesses whether a sys- 212

tem’s performance is equitable across diverse user 213

groups and contexts, avoiding biased or stereotypi- 214

cal responses. In medicine, fairness concerns typi- 215

cally involve patient demographics, health condi- 216

tions, or socioeconomic factors (Gallegos et al., 217

2024). An unfair system may provide inconsistent 218

answers based on demographic attributes or reflect 219

biases from training data (Li et al., 2023a). 220

Evaluating fairness is challenging because biases 221

can be subtle or implicit. One effective technique 222

uses paired prompts that differ only in a demo- 223

graphic detail—such as “What is the best treatment 224

for a male patient with symptom X?” versus “a 225

female patient with symptom X?”—to detect dis- 226

crepancies in content, confidence, or thoroughness. 227

Empirical studies have shown medical LLMs often 228

vary their recommendations across demographic 229

groups, reflecting biases in their training data (Xia 230

et al., 2024). Additional methods include bias- 231

specific benchmarks (race-focused or condition- 232

focused query sets) and clinician-led reviews where 233

experts flag any stereotype or inequitable treat- 234
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ment (Liu et al., 2024a). Quantitative metrics like235

group-wise accuracy gaps and qualitative bias an-236

notations help reveal fairness issues (Pfohl et al.,237

2024). However, a major obstacle is the lack of238

large, bias-annotated medical QA corpora—most239

evaluations rely on small, hand-crafted case sets or240

retrospective analyses of model outputs.241

To address these gaps, future work should invest242

in building extensive, demographically diverse fair-243

ness benchmarks and incorporate fairness-aware244

techniques into model training—such as data-245

augmentation for under-represented groups, adver-246

sarial debiasing, and fairness constraints. These247

combined strategies will help ensure AI-driven248

medical QA delivers accurate, respectful, and equi-249

table guidance to every patient.250

2.4 Safety251

Safety evaluation assesses whether a medical QA252

system’s responses avoid causing harm. In a medi-253

cal context, unsafe answers could encourage harm-254

ful actions (e.g., discontinuing medication with-255

out consultation), give illegal or unethical advice,256

violate privacy, or otherwise contravene medical257

ethics (Han et al., 2024a). Safety evaluations often258

verify that models appropriately refuse or handle259

unsafe requests and ensure their responses contain260

no harmful content (Huang et al., 2024a; Han et al.,261

2024b; Sun et al., 2023).262

A practical method for evaluating model safety263

involves testing responses to harmful user queries,264

such as requests for prescription drugs without au-265

thorization or unsafe medical advice. MedSafety-266

Bench (Han et al., 2024a) provides harmful med-267

ical prompts paired with safe responses. It shows268

that LLMs often fail safety standards and demon-269

strate improvements through fine-tuning. Auto-270

mated evaluations using content filters or classifiers271

can detect overtly harmful responses, but nuanced272

medical contexts require human expert reviews.273

Experts ensure responses address medical issues274

safely and include essential warnings (Chowdhury275

et al., 2023). Additionally, model outputs should276

align with ethical guidelines, such as AMA’s medi-277

cal ethics principles—autonomy, non-maleficence,278

beneficence, and justice. Evaluations typically use279

checklists to assess harmfulness, encouragement280

of unprofessional actions, and privacy concerns.281

2.5 Explainability282

Explainability evaluates how well the system283

can provide reasoning or justification for its an-284

swers (Zhao et al., 2024). In medical QA, expla- 285

nations are vital: clinicians and patients are more 286

likely to trust an answer if they understand why the 287

model gave it. Moreover, a correct answer with- 288

out rationale may be less useful in practice than a 289

slightly incomplete answer with a solid explanation 290

that a clinician can follow up on. 291

Explainability assessments involve two aspects: 292

the presence of explanations and their qual- 293

ity—accuracy and clarity. Benchmarks such as 294

MedExQA (Kim et al., 2024) explicitly require 295

models to provide explanations, comparing them 296

against multiple ground-truth explanations using 297

lexical metrics (e.g., BLEU/ROUGE). However, 298

lexical overlap alone isn’t sufficient, as fluent expla- 299

nations might still be incorrect or irrelevant. Thus, 300

human evaluations are essential, with experts rat- 301

ing explanations for correctness, completeness, and 302

coherence. Alonso et al. (2024) included human 303

annotation in MedExQA and demonstrated that 304

models offering better explanation correlated with 305

deeper understanding. 306

Explainability also extends to complex tasks re- 307

quiring detailed reasoning, such as multi-hop ques- 308

tions or diagnostic case studies (Feng et al., 2020). 309

Transparent and consistent explanations indicat- 310

ing clear logic receive higher ratings. Evaluating 311

explanation quality ensures that models truly under- 312

stand medical content rather than simply guessing 313

correctly, thus enhancing trust and practical util- 314

ity (Huang and Chang, 2023). 315

2.6 Calibration 316

Calibration in medical QA refers to how well a 317

model’s confidence aligns with the accuracy of 318

its answers (Desai and Durrett, 2020; Mastakouri 319

et al., 2025). A well-calibrated model recognizes 320

the limits of its knowledge, expressing high con- 321

fidence when correct and appropriate uncertainty 322

when potentially incorrect. Effective calibration 323

is critical in medicine, as overly confident yet in- 324

correct answers pose serious risks, while excessive 325

uncertainty limits usability. 326

Calibration evaluation involves comparing the 327

model’s expressed confidence to its actual accu- 328

racy. Metrics include comparing stated confidence 329

levels to accuracy rates and Expected Calibration 330

Error (ECE), which quantifies discrepancies be- 331

tween predicted confidence and observed accuracy; 332

lower ECE indicates better calibration. Practically, 333

evaluators test calibration using questions of vary- 334

ing difficulty. A model should confidently answer 335
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straightforward questions but express uncertainty336

for complex, ambiguous cases. Liang et al. (2023)337

introduced calibrated refusal tests, expecting mod-338

els to appropriately indicate uncertainty or refuse339

to answer challenging questions. Another method340

involves self-evaluation prompts, where models341

reflect on their confidence post-response. Good342

calibration means models recognize and express343

uncertainty when their answers might be incorrect.344

Recent research explored integrating uncertainty345

quantification into LLMs to improve calibration,346

enhancing the correlation between confidence and347

correctness (Aljohani et al., 2025).348

Ultimately, strong calibration helps minimize349

dangerous, confidently incorrect responses, en-350

abling safer clinical use by clearly indicating when351

human intervention or review is necessary.352

2.7 Interplay Among Trustworthiness353

Dimensions354

Although we define the six dimensions as distinct355

evaluation axes, real-world medical QA systems356

exhibit important cross-dimension interactions that357

can be exploited for more holistic improvements.358

Factuality and Calibration Hallucinations al-359

most always coincide with misplaced confidence.360

Kalai and Vempala (2024) show that “hallucina-361

tion” set a statistical lower bound on calibration362

error in LLMs, and that techniques which reduce363

overconfidence also diminish hallucination rates.364

By training models to express uncertainty when365

evidence is lacking, we see both better calibration366

curves and fewer factual errors.367

Robustness and Factuality Models fine-tuned368

to resist adversarial or paraphrased inputs (e.g., via369

MedFuzz-style perturbations) demonstrate lower370

hallucination rates, since they rely less on spurious371

patterns (Asgari et al., 2025). Robustness training372

thus directly curtails factual errors by enforcing373

consistency under input variations.374

Fairness and Safety Biased medical advice375

(e.g., underestimating pain in certain demograph-376

ics) not only undermines equity but can lead to377

unsafe under-treatment. Studies of demographic378

bias in medical LLMs show that fairness interven-379

tions (such as adversarial debiasing) reduce both380

performance gaps and harmful, biased recommen-381

dations (Walsh et al., 2024). Ensuring equitable382

answers therefore bolsters overall patient safety.383

Explainability and Calibration Transparent384

justifications help users and downstream evalu-385

ators assess a model’s certainty. Umapathi et386

al. demonstrate that sample-consistency meth- 387

ods—prompting the model to generate and com- 388

pare multiple reasoning chains—both improve 389

calibration and produce more faithful explana- 390

tions (Savage et al., 2024b). When a model clearly 391

cites its reasoning, confidence estimates align more 392

closely with actual correctness. 393

Calibration and Safety Overconfident re- 394

sponses to high-risk medical queries can directly 395

endanger patients. The MedSafetyBench bench- 396

mark finds that models with tighter confidence 397

thresholds refuse unsafe advice more reliably (Han 398

et al., 2024a). Thus, calibration improvements (e.g., 399

via atypicality-aware recalibration reducing ECE 400

by 60%) yield safer behaviour. 401

Understanding these synergies allows us to de- 402

sign multi-axis evaluation suites—for example, 403

safety tests stratified by confidence levels or ro- 404

bustness checks across demographic groups—that 405

reveal a model’s trust profile more fully. More- 406

over, optimization strategies (such as retrieval- 407

augmentation or adversarial fine-tuning) can be 408

prioritized for their compound benefits across sev- 409

eral dimensions, leading to more reliable, equitable, 410

and safe medical QA systems. 411

3 Evaluation-Guided System 412

Improvement for Medical QA 413

A core theme in recent research is using evaluation 414

findings to guide the development of more trust- 415

worthy medical QA systems. Rather than treating 416

evaluation as an afterthought, the idea is to create a 417

feedback loop: identify weaknesses via evaluation 418

and then apply targeted improvements to the model 419

or system design. We discuss several examples 420

where evaluation results directly informed system 421

changes to address each dimension. 422

Reducing Hallucinations via Retrieval If eval- 423

uation reveals frequent factual errors or halluci- 424

nations, one solution is to supply the model with 425

reliable external knowledge. This strategy, known 426

as retrieval-augmented generation (RAG), has be- 427

come prominent for mitigating hallucinations (Chu 428

et al., 2025). Almanac (Zakka et al., 2024) uses 429

RAG frameworks to convert clinical QA tasks into 430

search and retrieval processes, which use LLMs for 431

knowledge distillation from authoritative medical 432

sources to minimize hallucination risks. Similarly, 433

an approach integrating RAG with the Negative 434

Missing Information Scoring System (NMISS) has 435

been effectively employed in healthcare chatbots, 436
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providing integrated solutions for hallucination de-437

tection and reduction (Priola, 2024). Additionally,438

CardioCanon, a cardiology-focused chatbot, lever-439

ages RAG to ensure the accuracy and reliability of440

cardiological responses (Tran et al., 2024). Evalua-441

tion can inform retrieve strategies, for instance, if442

analysis shows hallucinations mostly occur on ques-443

tions about rare diseases, a database for rare dis-444

eases can be linked specifically for those queries.445

Robustness through Adversarial Training446

Evaluation may show a model is brittle on certain447

phrasings or adversarial questions. To address this,448

adversarial training is used. Moradi and Samwald449

(2022) proposed an adversarial training framework450

targeting both character-level and word-level per-451

turbations. By systematically integrating adversar-452

ial samples into training, this approach improves453

robustness and generalization in biomedical NLP454

tasks, including medical QA. Xian et al. (2024)455

develops a query-efficient adversarial sampling456

method, which leverages power-scaled distance-457

weighted sampling (PDWS) to generate realistic458

adversarial distractions (e.g., disease and pharma-459

ceutical entities) in clinical queries, effectively test-460

ing robustness under adversarial conditions. Med-461

Fuzz (Ness et al., 2024) introduced an “attacker”462

LLM to intentionally alter benchmark questions, vi-463

olating underlying assumptions to assess real-world464

model robustness. Similarly, Yang et al. (2024b)465

employs adversarial methods via prompt engineer-466

ing and fine-tuning, which highlights model vul-467

nerabilities and noting significant impacts of fine-468

tuning adversarial attacks on model weights, an469

observation meriting further exploration.470

Fairness via Data and Prompt Design Fair-471

ness evaluation in medical QA must capture472

both dataset-induced biases and user-centered473

harms. EquityMedQA introduces seven adversar-474

ial datasets and human evaluation rubrics to mea-475

sure disparities across race, gender, and geogra-476

phy, revealing subtle inequities in LLM responses477

(Pfohl et al., 2024). Complementary studies ex-478

pose model tendencies to perpetuate debunked race-479

based practices (Omiye et al., 2023) and demon-480

strate how cognitive biases embedded in user in-481

puts can distort model outputs—an effect quanti-482

fied by BiasMedQA through bias-laden prompts483

and error analysis (Schmidgall et al., 2024a). To-484

gether, these benchmarks highlight uneven perfor-485

mance across demographic groups and underscore486

the need for comprehensive, multi-dimensional487

fairness assessments. Building on these insights,488

developers apply evaluation-guided interventions 489

to mitigate unfair behaviour. Data diversification 490

techniques—such as augmenting underrepresented 491

groups, counter-bias pairing, and re-balancing 492

skewed corpora—have proven effective at reduc- 493

ing differential performance (Parray et al., 2023). 494

Fairness regularization and constraint-based train- 495

ing further enforce balanced treatment across iden- 496

tity attributes. At inference time, prompt engineer- 497

ing (e.g., “Provide gender-neutral explanations for 498

all patients”) and user-centric guidance can nudge 499

models toward equitable outputs, with follow-up 500

studies showing prompt designs that specifically 501

address cognitive biases (Schmidgall et al., 2024b). 502

Crucially, each mitigation step is validated through 503

repeated unbiased evaluation, forming a feedback 504

loop: evaluate on an expanding suite of bias tests, 505

apply targeted fixes, then re-evaluate to ensure that 506

gains in one area do not introduce new disparities. 507

Because real-world patients may unknowingly in- 508

put misleading or biased information, future work 509

must integrate robustness evaluations alongside 510

fairness to build trustworthy medical QA systems. 511

Alignment and Fine-Tuning for Safety Effec- 512

tive safety evaluation in medical QA combines 513

benchmark datasets and human-aligned tests to 514

quantify harmful-response rates and categorize un- 515

safe behaviours. For example, MedSafetyBench 516

supplies standardized unsafe scenarios that high- 517

light failure modes and serve as a gold standard for 518

measuring and guiding improvements (Han et al., 519

2024a). Evaluation metrics from synthetic ques- 520

tion studies on TREC LiveQA and MedRedQA 521

further reveal gaps between automated scores and 522

human judgments, underscoring the need for nu- 523

anced, human-informed assessments (Diekmann 524

et al., 2025). These evaluation insights directly 525

inform alignment interventions. Supervised fine- 526

tuning (SFT) uses flagged unsafe examples to re- 527

duce harmful outputs without compromising clini- 528

cal accuracy, while Reinforcement Learning from 529

Human Feedback (RLHF) treats harmful-response 530

rates as reward signals, aiming to minimize danger- 531

ous outputs without sacrificing helpfulness. Real- 532

time safety filters, trained on categories identified 533

by benchmarks, add an additional safeguard by 534

blocking risky content before delivery. Compara- 535

tive research demonstrates that evaluation-driven 536

alignment yields state-of-the-art safety in com- 537

plex tasks. Direct Preference Optimization (DPO), 538

guided by evaluation feedback, outperforms SFT 539

in clinical reasoning, summarization, and triage 540
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(Savage et al., 2024a). Advanced multi-stage541

pipelines—combining models such as LLaMA-2 or542

Mistral with preference-based fine-tuning methods543

—achieve superior safety and reliability in medi-544

cal QA (Anaissi et al., 2024). Future work should545

continue leveraging evaluation-driven alignment to546

refine communication styles that support psycho-547

logical stability in mental health contexts (Amodei548

et al., 2016; De Freitas and Cohen, 2024).549

Enhancing Explainability If evaluations show550

that a model’s answers are correct but users find551

them unsatisfactory due to lack of rationale, de-552

velopers can incorporate techniques to force or553

improve explanations. One popular method is554

Chain-of-Thought prompting, where the model is555

prompted to produce step-by-step reasoning before556

giving the final answer. This often yields more ex-557

plainable answers and can even improve accuracy.558

Zhang et al. (2023) introduces “Let’s think step by559

step” approach specifically to improve medical rea-560

soning, which evaluation shows reduced incorrect561

answers and makes reasoning transparent. Another562

strategy is building hybrid models: e.g., first have563

a smaller model generate an explanation outline or564

causal graph, then have the main model fill in the565

details (as explored by Luo et al. (2025) with causal566

graphs for reasoning). Ji et al. (2023) took a dif-567

ferent approach with interactive self-reflection: the568

model generates an answer, then evaluates its own569

answer and tries to correct any flaws, effectively570

explaining and refining iteratively. This showed571

promise in reducing reasoning errors. All these572

techniques are driven by recognition (through eval-573

uation) that explainability correlates with better574

model understanding (Alonso et al., 2024). Once575

deployed, improved explainability provides feed576

back: users (doctors, patients) can better identify577

mistakes if reasoning is visible, providing more578

targeted feedback for future model training.579

Improving Calibration Effective calibration of580

medical QA models begins with rigorous evalua-581

tion to identify overconfidence. Studies such as582

Omar et al. (2024) have shown that across multiple583

specialties, current LLMs frequently assign high584

confidence to incorrect answers, revealing poor cal-585

ibration in clinical settings. Benchmarks, such as586

MetaMedQA, further quantify these shortcomings587

by measuring metrics such as Confidence Accu-588

racy and Unknown Recall, which gauge a model’s589

ability to recognize when it does not know the an-590

swer (Griot et al., 2025). Similarly, QA-level cali-591

bration frameworks extend conventional reliability592

diagrams to entire question–answer groupings, of- 593

fering theoretical guarantees that underlie more ro- 594

bust confidence estimates (Mastakouri et al., 2025). 595

Domain-specific analyses in gastroenterology un- 596

derscore these gaps: prompt-engineering and sta- 597

tistical methods applied to board-style questions 598

find that even state-of-the-art LLMs struggle to rep- 599

resent uncertainty in a clinically meaningful way 600

(Wu et al., 2024). Inspired by these evaluation in- 601

sights, developers employ a range of calibration 602

techniques. Post-hoc temperature scaling or ded- 603

icated calibration training on held-out validation 604

sets can directly reduce ECE, realigning confidence 605

outputs with true accuracy. In generative settings, 606

adjusting decoding parameters—such as lowering 607

the sampling temperature—discourages the model 608

from making overly assertive statements. Explicit 609

prompting strategies further nudge models toward 610

more cautious language. Beyond these, ensemble 611

approaches and auxiliary confidence predictors of- 612

fer dynamic uncertainty estimates: by aggregating 613

outputs from multiple model instances or training 614

a secondary classifier on question-answer pairs, 615

the system can decide at inference time whether 616

to hedge or assert. Future research is poised to 617

integrate calibration more tightly with hallucina- 618

tion detection—for example, by embedding two- 619

phase verification pipelines that combine prompt 620

engineering, statistical scoring, and consistency 621

checks—to deliver reliable, trust-worthy medical 622

advice under uncertainty (Naderi et al., 2025). 623

4 Benchmarks and Tools for Trustworthy 624

Medical QA 625

Multiple benchmarks and evaluation tools have 626

been developed to assess medical QA systems on 627

the above dimensions of trustworthiness. Table 1 628

provide a comparison of notable benchmarks, out- 629

lining their domain focus, format, and trustworthi- 630

ness aspects they emphasize. We then highlight a 631

few frameworks and tools that aid evaluation. 632

Common Evaluation Metrics Across these 633

benchmarks, traditional metrics such as accuracy 634

and precision/recall are standard for factual cor- 635

rectness. ROUGE/BLEU are used for comparing 636

generated text with reference comparison, but their 637

limitations are acknowledged (Kim et al., 2024). 638

To capture trust facets, some benchmarks incor- 639

porate custom metrics: e.g., Med-HALT’s false 640

confidence rate (Pal et al., 2023), or MedSafety- 641

Bench’s safety score (Han et al., 2024a). Human 642
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evaluation remains crucial in many benchmarks –643

MultiMedQA’s 12-axis rubric is administered by644

clinicians to rate each answer qualitatively (Singhal645

et al., 2025), and MedExQA involves human scor-646

ing of explanation correctness (Kim et al., 2024).647

Tools and Frameworks Beyond datasets, there648

are emerging tools to facilitate trustworthiness eval-649

uation. For example, the TrustLLM Benchmark is650

an integrated toolkit that aggregates over 18 evalu-651

ation categories for LLMs, including medical QA652

scenarios (Huang et al., 2024b). It provides a653

unified pipeline to test a model on many trust di-654

mensions and compare results. Another is Holistic655

Evaluation of Language Models (HELM) (Liang656

et al., 2023) – not specific to medicine but often657

used as a template – which emphasizes transparent658

reporting of a model’s strengths and failures across659

scenarios. For explainability, some tools allow au-660

tomated reasoning verification, such as checking661

chain-of-thought logic or using another LLM to662

critique the answer’s reasoning.663

5 Challenges and Future Directions664

Despite advances in evaluation methods and bench-665

marks, several critical challenges remain for scal-666

able, comprehensive assessment of medical QA667

systems. First, many dimensions of trustworthi-668

ness—such as clinical appropriateness, fairness,669

and the usefulness of explanations—still rely heav-670

ily on human expert judgment (Lekadir et al., 2025).671

Expert review ensures high-quality critique, but672

it cannot scale to the volume of queries real sys-673

tems face, and inter-rater consistency varies. Future674

work should explore automated or semi-automated675

proxies, for example, calibrated LLMs critiques or676

lightweight classifiers identifying safety and bias677

issues. These proxies must be rigorously validated678

against expert evaluations to ensure reliability.679

Second, existing benchmarks cover only a nar-680

row set of clinical scenarios, specialties, or lan-681

guages, leaving large blind spots. A model fine-682

tuned to excel on a fixed benchmark may still683

fail when faced with rare diseases, non-English684

patient queries, or emerging medical knowledge.685

To broaden coverage, we need dynamic, evolving686

datasets that incorporate real user questions , span687

underrepresented specialties, and update as med-688

ical guidelines change. Projects like MedExQA,689

which added speech pathology, demonstrate the690

value of domain expansion—but many fields re-691

main untested. Building flexible pipelines for con-692

tinuous data collection and curation will be key. 693

Third, most evaluations treat each trustworthi- 694

ness dimension in isolation—safety in one test, 695

factual accuracy in another—even though these 696

properties interact in practice. A system that maxi- 697

mizes safety by refusing all borderline queries may 698

sacrifice robustness, while one that prioritizes de- 699

tail could harm explainability or safety. We lack 700

frameworks to jointly evaluate these trade-offs or 701

to report composite trustworthiness metrics. De- 702

signing multi-objective evaluation suites—perhaps 703

weighted “trustworthiness scores” co-designed 704

with clinicians and patients—could help balance 705

competing goals. Determining appropriate weights, 706

however, will require careful stakeholder engage- 707

ment and context-specific tailoring. 708

Finally, a substantial gap remains between static 709

benchmark evaluations and real-world deployment. 710

In practice, medical QA involves multi-turn con- 711

versations, clarifications, follow-up questions, and 712

changing clinical context, dynamics rarely cap- 713

tured by current evaluations. Moreover, the real 714

impact of errors varies widely, from harmless in- 715

accuracies to severe consequences. Future re- 716

search should simulate end-to-end clinical work- 717

flows—evaluating outcomes such as diagnostic ac- 718

curacy, clinician efficiency, and patient satisfac- 719

tion. Incorporating continuous user feedback loops 720

would further align system evaluation and training 721

with real-world needs. 722

6 Conclusion 723

Evaluating trustworthiness in medical QA systems 724

involves multiple dimensions, including factuality, 725

robustness, fairness, safety, explainability, and cal- 726

ibration. This survey reviews methods to assess 727

each dimension and highlights current benchmarks. 728

A key insight is that evaluation is not only measures 729

performance but also provides critical feedback to 730

drive improvements. We discuss examples where 731

evaluation directly led to system enhancement. In- 732

corporating evaluation in the development loop ac- 733

celerates progress toward trustworthy QA systems 734

suitable for critical medical use. However, current 735

evaluations remain limited; many essential qual- 736

ities are difficult to quantify, and existing bench- 737

marks inadequately capture real-world complexity. 738

There is substantial ongoing work needed to create 739

more holistic and realistic evaluation frameworks, 740

to keep pace with evolving models. 741
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Limitations742

This study specifically focuses on medical QA sys-743

tems. During the literature review phase, we ex-744

cluded publications related to general-domain large745

language models (LLMs) as well as healthcare-746

related literature not directly applicable to medical747

QA tasks.748
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Benchmark Description Key trustworthiness focus Format

Med-HALT
Medical Hallucination Test dataset.
Derived from medical exams across
countries to probe factual recall and

reasoning.

Hallucination: includes reasoning-based tests
(“False Confidence”, ”None of the above“trick
questions) and memory-based recall tests to
quantify hallucination rates. Evaluates how

often models produce unsupported info under
stress-test conditions.

Multiple-Choice
Questions, Yes/No,

Open-ended question

MedHallBench

A comprehensive medical
hallucination evaluation framework

integrating automated clinical
medical image caption hallucination

scoring (ACHMI) and clinical
expert review.

Hallucination: Design questions centered
around object hallucinations, attribute

hallucinations, multimodal conflict
hallucinations, and logical reasoning

hallucinations, and conduct adversarial tests to
uncover the causes of hallucinations in

models.

Open-ended Q&A,
Visual Question

Answering,
Summarization

MedHallu

The first binary classification
benchmark for medical

hallucination detection. The
questions are divided into three

levels - Easy, Medium, and Hard -
according to the difficulty of
identifying hallucinations.

Hallucination: Detect whether the model can
correctly classify the labels of question-answer

pairs as "real" or "hallucination".
Binary Hallucination

Detection

MedFuzz

By applying adversarial
perturbations to medical

question-answering queries,
evaluate the robustness and

performance of large language
models (LLMs) in medical
question-answering tasks.

Robustness: In the evaluation, first input the
correct questions and answers into the model.
Then, use the Attacker LLM to modify the
original questions for multiple rounds and

input them into the model. Each modification
attempts to guide the target model to select the
wrong answer without changing the correct

answer of the original question.

Multiple-Choice
Questions

BiasMedQA

A benchmark dataset for evaluating
whether there is bias (towards

different patient groups such as those
of different genders, races, etc.) in

LLMs in medical question answering.

Fairness: Introduce common clinically
relevant cognitive biases into USMLE

questions to test the performance of the model
when facing these biases.

Multiple-Choice
Questions

MedSafetyBench

The first medical-domain Safety
evaluation benchmark dataset
focused on assessing model
responses to unsafe medical

instructions.

Safety: Evaluate whether models can ensure
response integrity when handling inputs

containing unsafe medical instructions, as
benchmarked by MedSafetyBench’s

adversarial testing framework.

Open-ended Q&A

MedExQA

Medical explainability QA
benchmark. Covers 5

underrepresented specialties (e.g.
speech pathology, clinical psych)

with multiple ground-truth
explanations per Q&A.

Explainability: evaluates if models can
provide nuanced medical explanations beyond
just correct answers. Uses lexical metrics and

human ratings to score explanation quality.
Also tests knowledge in less-studied

specialties (robustness to specialty domains).

Open-ended question,
required free-text

explanation for answer.

PubMedQA

A Medical Reasoning Evaluation
Benchmark for LLMs that Combine
Expert-Annotated and Automated

Knowledge Expansion, designed to
assess contextual reasoning

capabilities across medical texts and
domain knowledge.

Reasoning: Given a question and a medical
text context with the conclusion section

removed, evaluate whether the model can infer
if the question originally appeared in the

conclusion section of the source text.

Three-way
classification

DR.BENCH

A benchmark for evaluating clinical
diagnostic reasoning capabilities of

large language models (LLMs),
comprising six reasoning tasks:
MedNLI, Assessment and Plan

Relation Labeling, EmrQA, SOAP
Section Classification, Problem
Summarization, and Diagnosis

Generation.

Reasoning: The six diagnostic reasoning task
categories in DR.BENCH comprehensively span

the clinical workflow-continuum, designed to
evaluate the model’s capabilities including:

medical concept logic; context-aware information
retrieval; structured clinical knowledge

classification; knowledge-graph-driven causal
reasoning; multi-step evidence integration;

knowledge-intensive clinical inference.

Multiple-Choice
Questions, Extractive

QA, Open-ended
Questions, Text

Generation

MedExpQA

MedExpQA encompasses multiple
languages. For each question, a

standard answer is provided along
with multiple Gold-Explanation
explanations written by medical

experts.

Reasoning: Three types of tasks are set during
evaluation: basic input only, basic input plus

gold-standard explanation, and basic input plus
RAG text. By comparing the outputs of the three
types of tasks, the amount of missing reasoning
ability of the model and the degree of help of

automatically retrieved knowledge for the model’s
reasoning can be evaluated.

Multiple-Choice
Questions

MediQ

A benchmark evaluating LLMs’
capabilities in reliable interactive

clinical reasoning, designed to
assess their reasoning abilities by

observing performance on
informationally incomplete clinical

queries.

Reasoning: Evaluating the simulation of a
dynamic clinical interaction environment

where the model under assessment acts as an
Expert System, with performance under

informationally incomplete initial conditions
recorded to measure interactive clinical

reasoning capabilities.

Multiple-Choice
Questions, Interactive

Q&A

MedXpertQA

A comprehensive benchmark for
assessing expert-level medical

knowledge and advanced reasoning
capabilities, comprising Text

(text-based) and MM (multimodal)
subsets, with an independently

designed reasoning subset.

Reasoning: The reasoning subset comprises
highest-difficulty questions requiring

multi-step logical reasoning, selected from
both Text (text-based) and MM (multimodal)

configurations, specifically designed to
evaluate model reasoning capabilities

Multiple-Choice
Questions, Multimodal

QA

Table 1: Summary of representative benchmarks for each dimension, including their descriptions, key trustworthi-
ness focus, and data format.
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