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ABSTRACT

We study Bayesian neural networks (BNNs) in the theoretical limits of infinitely
increasing number of training examples, network width and input space dimen-
sion. Our findings establish new bridges between kernel-theoretic approaches
and techniques derived from statistical mechanics through the correspondence be-
tween Mercer’s eigenvalues and limiting spectral distributions of covariance ma-
trices studied in random matrix theory. Our theoretical contributions first consist
in novel integral formulas that accurately describe the predictors of BNNs in the
asymptotic linear-width and sublinear-width regimes. Moreover, we extend the re-
cently developed renormalisation theory of deep linear neural networks, enabling
a rigorous explanation of the mounting empirical evidence that hints at the theory’s
applicability to nonlinear BNNs with ReLU activations in the linear-width regime.
From a practical standpoint, our results introduce a novel technique for estimating
the predictor statistics of a trained BNN that is applicable to the sublinear-width
regime where the predictions of the renormalisation theory are inaccurate.

1 INTRODUCTION

Bayesian Neural Networks (BNNs) are a variant of neural networks that incorporate Bayesian infer-
ence techniques to mitigate overfitting, enable learning from small datasets, and capture uncertainty
in predictions (Neal, 2012; Gal, 2016). In a BNN, prior probability distributions are specified for
weights and biases. During training, the posterior distribution, which represents the updated knowl-
edge about the parameters after observing the data, is updated using Bayes’ rule. A trained BNN can
be interpreted as an infinite ensemble of neural networks where each individual contribution in the
ensemble is weighted by the posterior probability of its parameters given the training data. Although
computing the posterior distribution is intractable and difficult to approximate, BNNs have gained
significant traction with the development of effective estimation techniques (Gal, 2016; Blei et al.,
2017).BNNs demonstrate generalisation performance on par with deep neural networks trained us-
ing gradient descent (Lee et al., 2020; Magris & Iosifidis, 2023). BNNs also showcase improved
sensitivity to out-of-distribution examples (Gal, 2016) and the ability to estimate uncertainty.

In an effort to analyse the generalisation properties of BNNs, researchers study idealised views of
fully-connected neural architectures defined by the input dimension, the layer widths, and the ac-
tivation function. As the width approaches infinity in each layer (the NNGP limit), the functions
generated by random weight selection converge in distribution to a Gaussian process (GP) (Ras-
mussen & Williams, 2006). The covariance function of such GP, called the NNGP kernel, can be
recursively defined by proceeding on a layer by layer basis (Lee et al., 2018). This perspective
based on kernel and GP theory has inspired formalisms that mimic different aspects of the behavior
of BNNs in the infinite-width limit Aitchison et al. (2021), including representation learning Yang
et al. (2023). Simultaneously, it has led to the development of analytical formulas to estimate the
generalisation error of related kernel and random features models (Canatar et al., 2021; Simon et al.,
2023). These formulas often rely on the spectral universality assumption (SUA), which simplifies
the derivations by approximating the eigenfunctions of the kernel with independent Gaussian entries
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(Karoui, 2010; Cheng & Singer, 2013; Fan & Montanari, 2015). Extensive research is being devoted
to study the accuracy of the SUA (Liu et al., 2021; Lu & Yau, 2023; Bosch et al., 2023).

In addition to the NNGP limit, BNNs have also been studied under the linear-width limit (also
referred to as thermodynamic limit or proportional limit) where the network’s width, the number of
training examples and the dimension of the input space are taken simulataneously to infinity while
keeping constant and bounded ratios between them (Engel et al., 2012). By employing techniques
from statistical mechanics, such as saddle point approximations (Seung & Sompolinsky, 1992; Li
& Sompolinsky, 2021), the replica method (Barbier et al., 2018; Canatar et al., 2021), and random
matrix theory (Wigner, 1955; Livan et al., 2018; Fan & Wang, 2020), researchers have studied the
mean and variance of the output generated by trained BNNs in this setting. A recent theoretical
work (Cui et al., 2023) has derived the predictor learned by non-linear BNNs in the case of Gaussian
data. More recently, sublinear-width regimes, where the width (or the input dimension) is small
compared to the number of data points (Maillard et al., 2024), and related scalings (van Meegen
& Sompolinsky, 2024) have been studied, and the emergence of strong feature learning has been
demonstrated in these scenarios.

One of the most prominent results in this literature is the renormalisation theory (Li & Sompolin-
sky, 2021) of linear BNNs (i.e., those without non-linear activations) in the linear-width regime,
which establishes that the mean predictor and the predictor variance of the BNN coincide with that
of Bayesian linear regression, but surprisingly the variance must be renormalised by a factor de-
pendent on the training data and problem dimensions. Subsequent developments have provided
more detailed analysis on the linear setting including non-asymptotic results (Hanin & Zlokapa,
2023), and comparison with deep random feature models (Zavatone-Veth et al., 2022). It remains
an open question, however, whether the insights from the renormalisation theory for linear BNNs
can be extended to non-linear networks, as suggested by empirical evidence (Li & Sompolinsky,
2021; Ariosto et al., 2023), and how the theory should be adapted to sublinear-width regimes, where
discrepancies with empirical results have been observed (Li & Sompolinsky, 2021).

Our Contributions In this paper, we establish new connections between the kernel-theoretic per-
spective associated with the NNGP limit and the statistical mechanics viewpoint associated with the
linear-width and sublinear-width limits, and contribute new insights to the generalisation properties
of BNNs. First, we demonstrate that training a (non-linear) BNN in the linear-width and sublinear-
width limits result in a predictor with identical mean and variance to that of GP regression with a
modified NNGP kernel, and we observe that the Mercer spectrum (Mercer, 1909; Minh et al., 2006)
of this kernel is known in the linear-width regime. Second, using this observation, we prove neces-
sary and sufficient conditions (on the data and the architecture) for the application of renormalisation
theory to non-linear BNNs in the linear-width limit. These conditions also provide a criterion for
determining the applicability of the spectral universality assumption (SUA) from kernel theory in
the context of BNNs. Third, we present initial findings on a sublinear-width regime where the rele-
vant quantities are simultaneously taken to infinity while the number of training examples remains
proportional to the product of the network width and the dimension of the input space. In particular,
we provide a novel mechanism for estimating the mean and variance of the predictions of non-linear
BNNs in this setting, for which renormalisation theory is not applicable.

2 PRELIMINARIES

We use standard notation for real-valued vectors v ∈ Rn, matrices A ∈ Rm×n, and their transposes
vT and AT . We use ai to denote the vector in the i-th row of A. The Moore-Penrose pseudo-inverse
of a matrix A is denoted as A† (Moore, 1920).

Neural networks. A fully-connected neural (FCN) architecture with L layers is a tuple f =
⟨{Wℓ}1≤ℓ≤L, {bℓ}1≤ℓ≤L, {σℓ}1≤ℓ≤L}⟩. Each layer ℓ ∈ {1, ..., L} of width Nℓ is given by a
weight matrix Wℓ ∈ RNℓ×Nℓ−1 , a bias bℓ ∈ RNℓ and an activation function σℓ : R 7→ R. On
input x ∈ RN0 , network f sets x0 = x and then computes recursively on the depth the sequence of
pre-activations hℓ and activations xℓ as follows, where the network’s output f(x) is given by xL:

hℓ = Wℓ · xℓ−1 + bℓ xℓ = σℓ(hℓ) (1)
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We assume that all but the last layer have the same width N . For the last layer, we assume width
NL = 1 (ensuring a real-valued output), bL = 0 and σL = IdR (ensuring linearity). In this setting,
the weights WL are referred to as the readout weights (Li & Sompolinsky, 2021).

Kernels. A kernel on RN0 is a positive semi-definite symmetric function K : RN0 × RN0 7→ R.
By Mercer’s theorem (Minh et al., 2006), given a distribution x ∼ p(x) with compact support on
RN0 , there exist unique countable collections of Mercer’s eigenvalues (λi)i∈N and eigenfunctions
(φi)i∈N such that K(x,x′) =

∑∞
i λiφi(x)φi(x

′) and (φi) are orthonormal w.r.t. the data distribu-
tion: Ex∼p(x) (φi(x)φj(x)) = δi,j for all i, j. By Riesz’s theorem, there exists a Hilbert space H
and a feature map ϕ : RN0 7→ H such that K(x,x′) = ⟨ϕ(x), ϕ(x′)⟩H. Kernel regression amounts
to linear regression in the corresponding Hilbert space: when trained on data X,y, the prediction on
a new point x∗ is given by kT

x∗,XK−1
X,Xy where the vector kx∗,X is given by (kx∗,X)i = K(x∗,xi)

and the kernel matrix KX,X is given by (KX,X)i,j = K(xi,xj). Although the kernel’s eigen-
functions exhibit the described structure, the spectral universality assumption (SUA) is commonly
adopted. The SUA posits that, as P increases, the eigenfunctions can be approximated by inde-
pendent Gaussian entries: φi(xj) ∼ N (µK , σ2

K), where µK and σ2
K depend on the kernel K and

the data distribution p(x), but not on specific instances i and j. The SUA works well in practice
(Karoui, 2010; Cheng & Singer, 2013; Fan & Montanari, 2015; Liu et al., 2021; Simon et al., 2023;
Lu & Yau, 2023; Schröder et al., 2023), and research focuses on identifying conditions under which
it holds.

Random feature maps. Let Θ represent all parameters of f up to layer L − 1. The random
feature map ϕ(Θ, ·) : RN0 7→ RN is a nonlinear transformation (random in Θ) mapping the input
and the activation xL−1. By definition, f(x) = (WL)Tϕ(Θ,x), and to highlight the parameter
dependency we denote it as fΘ,WL . The random feature map is associated to a random kernel
KN,N0

Θ : (x,x′) 7→ 1
N ⟨ϕ(Θ,x), ϕ(Θ,x′)⟩ expressed as the inner product between the corresponding

random feature map evaluations. For this kernel, the Hilbert space H = RN is thus known.

Training set. The training set (X,y) consists of P examples sampled i.i.d. from an unknown
distribution PN0 with compact support on RN0 × R. We assume that in the limit N0 → ∞, PN0

converges (in distribution) to a well-defined distribution with compact support over RN × R noted
limN0→∞ PN0 . We denote each example by (xi, yi), so that X = (x1, ...,xP )

T ∈ RP×N0 and
y = (y1, ..., yP )

T ∈ RP . We denote the evaluation of the random feature map on the training
set by ϕ(Θ,X) = (ϕ(Θ,x1), ..., ϕ(Θ,xP ))

T ∈ RN×P ; this induces an empirical kernel matrix
KP,N,N0

Θ (X,X) given by 1
N [ϕ(X,Θ)]Tϕ(X,Θ) ∈ RP×P . The training data X also induces an

empirical distribution pX(x) = 1
P

(∑P
i=1 δxi

(x)
)

with δxi
the Dirac measure.

BNNs. We assume a prior distribution over parameters (Θ,WL) with weights sampled i.i.d. from
N (0, 1

N ) and biases sampled i.i.d. from N (0, 1); this yields a density p(Θ,WL) that is a product of
Gaussian densities. The posterior distribution given the training data is given by Bayes’ rule:

p(Θ,WL|X,y) = p(Θ,WL)
p(y|X,Θ,WL)

p(y|X)

where p(y|X,Θ,WL) is the likelihood of the data given a set of parameters, and p(y|X) =∫
p(y|X,Θ,WL)p(Θ,WL)dΘdWL. is the marginal likelihood (or evidence). We assume Gaus-

sian likelihoods, i.e. p(y|X,Θ,WL) ∼ N (y, ϕ(Θ,X)
T
WLWLT

ϕ(Θ,X)). Calculating the pos-
terior distribution, which is the essence of BNN training, is analytically intractable and remains a
core challenge (Gal, 2016). In practice, the posterior distribution is estimated via variational infer-
ence (Blei et al., 2017) or Monte-Carlo simulation methods (Rasmussen, 1995).

Given the posterior distribution, the predictor defines a distribution over functions fΘ,WL with
(Θ,WL) ∼ p(Θ,WL|X,y). The mean-squared generalisation error is defined for any new point
(x∗, y∗) as the expectation over the predictor error: E(Θ,WL)∼p(Θ,WL|X,y)

(
(y∗ − fΘ,WL(x∗))

2
)

.
Only the mean and variance of the predictor are needed to calculate it.
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Gaussian processes and NNGPs. A GP g over a space RN0 is a random scalar field such that its
evaluation at any collection of finitely many points (g(x1), ..., g(xP )) follows a multivariate Gaus-
sian distribution. A GP is determined by a mean function µ : RN0 7→ R, and a covariance function
K : RN0 × RN0 7→ R, which describe respectively the mean of the Gaussian distribution at each
point and the covariance between the Gaussians at any two points. The covariance function of a GP
is a kernel (Rasmussen & Williams, 2006). We note g ∼ GP(µ,K). Gaussian process regression
consists in performing Bayesian inference using a Gaussian process as the prior distribution over
functions. The prediction distribution of GP regression with prior GP(0,K) trained on the data
X,y is given, on a new point x∗, by N (kT

x∗,XK−1
X,Xy,K(x∗,x∗)−kT

x∗,XK−1
X,Xkx∗,X). The mean

prediction of GP regression coincides with the prediction of kernel regression with the same kernel.

Applying successively the central limit theorem to each layer, the infinite-width limit of equa-
tion 1 yields a GP, called the Neural Network Gaussian Process (NNGP). If we let the width
N → ∞, the hL

i ∼ GP(µL,KL) are independent and defined inductively by layers as fol-
lows for all x,x′ ∈ RN0 and each ℓ ∈ 1, ..., L. First, ∀ℓ µℓ(x) = 0 and K0(x,x′) =

xTx′. Then, hℓ−1
i ∼ GP(µℓ−1,Kℓ−1) and the covariance functions Kℓ(x,x′) are given by

Ehℓ−1
i ∼GP(µℓ−1,Kℓ−1)

(
σℓ(hℓ−1

i (x))σℓ(hℓ−1
i (x′))

)
. The covariance function KL is the NNGP ker-

nel (Daniely et al., 2016), denoted as KL = KNNGP. Infinite-width limits involve various subtleties
(Matthews et al., 2018), and we follow the approach in Lee et al. (2018) where infinite limits are
taken sequentially. In this limit, the number of examples P and the input dimension N0 remain
fixed. Furthermore, we will investigate more comprehensive limits where P , N , and N0 all tend to
infinity simultaneously, first while maintaining constant and bounded ratios α = P

N and α0 = P
N0

(linear-width regime), then while P ∝ N ·N0, thus α → ∞ and α0 → ∞ (sublinear-width regime).

Random matrix theory. Random matrix theory (Wigner, 1955; Livan et al., 2018) is the study
of the spectral distributions of large matrices of random variables. The spectral measure FP for
a given matrix, with eigenvalues λi, is given, for x ∈ R, by FP (x) := 1

P

∑P
i=1 δλi

(x), where
δλi

(x) represents the Dirac measure centered at the eigenvalue λi. When the matrix is random, the
spectral measure becomes a random measure, called the empirical spectral distribution. Our focus
lies in studying weak convergences (convergences in distribution) of the spectral measures towards
nonrandom measures (Geronimo & Hill, 2002). A sufficient condition for weak convergence of
measures is to have pointwise convergence in their Stieltjes transforms (Geronimo & Hill, 2002).
We rely on a famous result in random matrix theory. Consider W ∈ RN×P , a random matrix with
i.i.d. entries drawn from N (0, 1

N ) and Ψ a nonrandom positive semi-definite matrix. Suppose that
Ψ has a limiting spectral measure ρ, and let P,N → ∞ with fixed ratio α := P

N , then the random
matrix Ψ1/2WTWΨ1/2 has a limiting nonrandom spectral measure ραMP ⊠ ρ. The Marchenko-
Pastur map of ρ, denoted ρMP

α ⊠ρ, is defined by the Stieltjes transform solving the Marchenko-Pastur
equation (Marchenko & Pastur, 1967; Fan & Wang, 2020). It also appears in the free probability
literature as the free multiplicative convolution between the probability measures ραMP and ρ (Mingo
& Speicher, 2017). When considering the specific case where Ψ = IP (identity matrix of size
P ), then ρ represents the Dirac measure at 1 and we recover the well-known Marchenko-Pastur
distribution, denoted as ραMP . Furthermore, we denote as ρMP ⊠ℓ ρ := ρMP ⊠ (...(ρMP ⊠ ρ)) the
composition of ℓ successive Marchenko-Pastur maps.

3 BNNS AS MODIFIED GP REGRESSION

First we state our definitions of linear-width and sublinear-width regimes.

Assumption 3.1 (Linear-width regime). Assume that P
N → α and P

N0
→ α0 as P,N,N0 → ∞

with the ratios α, α0 ∈ (0,+∞).

Assumption 3.2 (Sublinear-width regime). Assume that P
N ·N0

→ γ as P,N,N0 → ∞ with the
ratio γ ∈ (0,+∞).

Our first aim in this section is to showcase the emergence of a modified NNGP kernel during the
training of BNNs in the linear-width and sublinear-width limits. We then study the Mercer’s spec-
trum of the modified NNGP kernel and exploit it to extend the renormalisation theory to encompass
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nonlinear networks in the linear-width regime. Finally, we outline the fundamental arguments sup-
porting the expansion of this theory to the sublinear-width regime.

3.1 THE MODIFIED NNGP KERNEL

Mercer’s theorem applied to the random kernel KN,N0

Θ and the data distribution pX decom-
poses the kernel into terms of eigenvalues and eigenfunctions as follows: KN,N0

Θ (x,x′) =∑
k λ

P,N,N0

k φP,N,N0

k (x)φP,N,N0

k (x′). This defines a random spectral measure ρP,N,N0

Θ with spec-
trum given by the eigenvalues and random eigenfunctions φP,N,N0

k (·) Here, the dependency in P
stems from the empirical training data distribution. We use the correspondence between Mercer’s
eigenvalues and the limiting spectral measure of the corresponding empirical kernel matrix to show
that, to estimate the infinite random matrix KP,N,N0

Θ (X,X), there is no need to examine the joint
distribution of its eigenvalues, as Mercer’s eigenvalues can be sampled independently. This is a cru-
cial observation because the correlations between kernel matrix eigenvalues in the classical eigen-
decomposition is an obstacle in the computation of the posterior distributions.

Theorem 3.3. Assume that Assumption 3.1 (respectively, Assumption 3.2) holds. Assume that for
each k ∈ N there is a random function φα,α0

k : RN 7→ R (respectively, φγ
k) such that φP,N,N0

k (xi)
converges in distribution to φα,α0

k (x) (respectively, φγ
k(x)), where x ∼ limN0→∞ PN0

. Assume that
the spectrum of KP,N,N0

Θ (X,X) (respectively, the strictly positive support of the spectrum) admits
a limiting nonrandom measure ρα,α0 (respectively, ργ). Consider the random matrix ΦΛΦT , with
Φ ∈ RP×M , Φi,k := φα,α0

k (x̃i) (respectively, φγ
k) and Λ ∈ RM×M , Λk,l := δk,lλk with each λk

follows independently ρα,α0 (respectively, ργ) and each x̃i follows independently limN0→∞ PN0
1.

Then, the random matrices KP,N,N0

Θ (X,X) and ΦΛΦT converge (in distribution) to the same
distribution over RN×N in the limit M

P → ∞.

Proof. In the linear-width (respectively, the sub-linear width limit), the positive semi-definiteness
of any matrix extracted from KN,N0

Θ and pX is maintained (the limit of a positive sequence remains
positive), and this suffices to characterise the kernel property over a compact subset of an infinite-
dimensional space (Saitoh & Sawano, 2016). Thus, there is a random kernel Kα,α0

Θ (respectively,
Kγ

Θ) defined over RN which characterises the convergence in distribution of KP,N,N0

Θ (X,X). As
per Mercer’s theorem, Kα,α0

Θ (respectively, Kγ
Θ) also defines a random spectral measure ρα,α0

Θ (re-
spectively, ργΘ) associated with its Mercer’s eigenvalues. By Baker’s result (Baker, 1977) stating the
convergence of eigenvalues in a kernel matrix to the Mercer eigenvalues of the respective kernel,
it follows that ρα,α0

Θ (respectively, ργΘ) is the limiting spectral distribution of the random matrices
KP,N,N0

Θ (X,X) in the linear-width limit (respectively, the sublinear-width regime). By assump-
tion, this spectral measure (respectively, the strictly positive support of this spectral measure) is
nonrandom ρα,α0

Θ = ρα,α0 (respectively, ργΘ = ργ). Thus, we can reformulate the empirical ker-
nel matrix corresponding to the random kernel Kα,α0

Θ (respectively, Kγ
Θ) as ΦΛΦT , where λk are

drawn independently according to ρα,α0 (respectively, ργ). Since the spectral measure no longer
depends on Θ, the eigenvalues can be sampled independently from the eigenfunctions. It follows
that KP,N,N0

Θ (X,X) and ΦΛΦT converge to the same distribution over RN×N.

This result is non-trivial and only holds if the spectrum admits a nonrandom limit: this is the key
argument that allows us to disregard, in the limit, the correlations between eigenvalues when using
the Mercer decomposition. Note that the distribution of eigenfunctions φα,α0

k and φγ
k are not known

in general. We will justify in the next section the SUA as a means for alleviating this limitation.
Similarly, we will denote with Φ∗ evaluations of the eigenfunctions on an unseen data point x∗.

The modified NNGP kernel is the random kernel Kα,α0

Θ (respectively, Kγ
Θ) defined over RN in the

linear-width regime (respectively, the sublinear-width regime). In the limit, the feature map is not
known explicitly, but it must exist by Riesz’s representation theorem.

1Expression ΦΛΦT is not the usual eigendecomposition of a square matrix: the evaluations of eigenfunc-
tions yield rectangular (infinite) matrices. This decomposition is enabled by Mercer’s theorem and applies to
kernels.
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The nonrandom spectral measure is known in the linear-width regime. Observe that, in the
linear-width regime, for many cases of interest (including ReLU activations), the limiting spectral
measure ρα,α0

Θ indeed no longer depends on Θ and hence becomes a nonrandom measure. To this
end, let us first consider the kernel random matrix KNNGP(X,X) associated with the NNGP kernel
KNNGP. El Harzli et al. (2024) have shown that, under mild assumptions on the activation functions
σℓ (namely measurability and Lipschitz continuity), KNNGP(X,X) admits a limiting nonrandom
spectral measure ρα0

NNGP as P,N0 → ∞ with constant ratio α0; and furthermore, in the linear-
width limit, the limiting spectral distribution of the same random matrix as KP,N,N0

Θ (X,X) but
where the interior widths have already been taken to infinity (i.e. when the linear-width limit only
pertains to the last-layer width) is ραMP ⊠ ρα0

NNGP. By immediate induction, successively applying
the linear-width limit to the hidden-layer widths and keeping the remaining interior widths infinite
until reaching the input layer, it follows as a direct corollary of Theorem 2 in El Harzli et al. (2024)
that, in the linear-width limit, KP,N,N0

Θ (X,X) also admits a limiting nonrandom spectral measure
given by the composed Marchenko-Pastur maps ραMP ⊠L ρα0

NNGP.2

3.2 TRAINING BNNS WITH THE MODIFIED NNGP KERNEL

We can now study the predictor statistics of trained BNNs in the linear-width limit and the sublinear-
width limit. In particular, the following theorem provides integral formulae to estimate, under the
SUA, the first and second moments of the trained BNN using only the limiting spectral measure.
In this section, the results hold indistinctively of the linear-width or the sublinear-width limit, so to
simplify notations, we will note ρ for both ρα,α0 and ργ and KΘ for both Kα,α0

Θ and Kγ
Θ.

Theorem 3.4. Assume that Assumption 3.1 or Assumption 3.2 holds. Let ρ be the nonrandom
spectral measure characterising the modified NNGP kernel KΘ, and assume that the SUA holds.

The mean ⟨f⟩(x∗,X,y) and variance ⟨(δf)2⟩(x∗,X,y) of the predictor associated to a BNN with
training data (X, y) is given by expressions equation 2 and equation 3 respectively:3

⟨f⟩ =
∫ (

Φ∗TΛΦTΦT †
Λ−1Φ†y

)
· p(y,Φ|Λ,X)

p(y|X)
dρ (Λ)DΦDΦ∗ (2)

⟨(δf)2⟩ =
∫
(Φ∗TΛΦ∗ −Φ∗TΛΦTΦT †

Λ−1Φ†ΦΛΦ∗) · p(y,Φ|Λ,X)

p(y|X)
dρ (Λ)DΦDΦ∗ (3)

where DΦ is a standard Gaussian matrix measure, Φi,j ∼iid N (µKΘ
, σ2

KΘ
) obtained from the

SUA; the likelihood is given by p(y,Φ|Λ,X) ∼ N (ΦTy,Λ); the marginal likelihood is given by
p(y|X) =

∫
p(y,Φ|Λ,X)dρ (Λ)DΦ.

The integral forms equation 2 and equation 3 provide a new estimation of the predictor statistics of
a trained BNN. While these expressions are exact only in the limit, we will present empirical evi-
dence suggesting that they constitute a reasonable approximation. A practical challenge arises from
the need to estimate the spectral distribution ρ(Λ), which often involves diagonalising a kernel ma-
trix. This process can be computationally intensive, especially for large training datasets; however,
it is worth mentioning that in many applications of BNNs, where the training datasets are rela-
tively small, this computational difficulty becomes less significant. In particular, in the linear-width
regime, ρ(Λ) is the Marchenko-Pastur map of the empirical spectral distribution of the NNGP kernel
ραMP ⊠L ρα0

NNGP which can be computed by diagonalising the NNGP kernel Cho & Saul (2009) to
estimate ρα0

NNGP and solving numerically the Marchenko-Pastur fixed-point equation in the Stieltjes
transform space (Marchenko & Pastur, 1967; Fan & Wang, 2020).

Theorem 3.4 and its proof also offer valuable new perspectives on the applicability of the SUA. In
particular, in the last steps of the proof, the probability density of Φ,Φ∗ no longer appears directly
in the integral. For given Λ,X,x∗, if each orthogonal matrix Φ,Φ∗ has a non-zero probability of

2This result first appeared in the context of neural networks in Fan & Wang (2020). The result by El Harzli
et al. (2024) extends it to a more general setting.

3Here, X is the infinite matrix representing the linear-width or sublinear-width limits of the training data.
To be completely rigorous, we should write f(x∗,X,y) = limP,N,N0→∞ fP,N,N0(x

∗
N0 ,XP,N0 ,yP ), but by

slight abuse of notation the same notation is used for both. In practice, one would use finite (but large) objects
in calculations.
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occurring, the integral spans uniformly over the entire space of orthogonal matrices of size P ×
M . This is useful because in the limit of infinite dimensions, this space coincides with that of
Gaussian matrices with independent entries (independent infinite Gaussian vectors are orthogonal).
Remarkably, this property precisely corresponds to the SUA in kernel theory (Karoui, 2010; Jacot
et al., 2020; Simon et al., 2023), which posits that, in terms of the generalisation error statistics in
kernel regression, the eigenfunctions can be approximated by Gaussian matrices with independent
entries, denoted Φi,k ∼ N (µK , σ2

K). Note that this approximation is not the same as the Gaussian
equivalence assumption (Schröder et al., 2023; Cui et al., 2023), which assumes Gaussianity of the
predictor (here, the eigenfunctions are Gaussian but the predictor is non-Gaussian). To the best of
our knowledge, this marks a first connection between BNNs and the SUA from kernel theory (i.e.
applied to Mercer’s eigenfunctions).

We can now reframe the question concerning the correctness of the SUA approximation as follows:
given Λ and X, is it the case that all orthogonal matrices Φ have non-zero probabilities (according
to Θ) to satisfy KΘ(X,X) = ΦΛΦT ? If this condition holds, the SUA is applicable and Gaussian
eigenfunctions can be used for estimating equation 2 and equation 3. Since the prior is a Gaus-
sian matrix, any matrix has a non-zero probability of occurrence, thus it suffices to show that for
any orthogonal Φ, there exists a Θ such that KΘ(X,X) = ΦΛΦT . In particular, it is easy to
show that the SUA always holds in the linear case: for any orthogonal Φ, there exists Θ such that
XTΘTΘX = ΦΛΦT . With a non-linearity, the problem is less obvious: is there a Θ such that
ϕ(Θ,X)

T
ϕ(Θ,X) = ΦΛΦT for any orthogonal Φ ? In the next section, we show that, in the

linear-width limit, this criterion about ϕ(Θ, .) and X is a necessary and sufficient assumption for the
renormalisation theory to hold.

3.3 AN EXTENDED RENORMALISATION THEORY

This section only concerns the linear-width regime. In this limit, we can explicitly derive the results
of our integral estimators because the corresponding limiting nonrandom spectral measure is known
El Harzli et al. (2024) (see Paragraph 3.1).

The renormalisation theory for linear BNNs establishes that, in the linear-width limit, the marginal
likelihood p(y|X) follows a multivariate Gaussian with mean vector y and covariance matrix uL

0K0,
with K0 = 1

N0
XXT and u0 the renormalisation factor fulfilling the fixed-point equation 1 − u0 =

α(1 − r0
uL
0
) with r0 = 1

P yTK0
−1y. This result was obtained in Li & Sompolinsky (2021) by

successively applying the saddle point method when integrating out the weights Θ,WL.

The following theorem shows that this result generalises to BNNs with nonlinear activations if and
only if the SUA is correct (i.e., it gives the correct estimate for the marginal likelihood). Here, we
exploit the characterisation of the correctness of the SUA developed as a corollary of Theorem 3.4.

Theorem 3.5. Assume that Assumption 3.1 holds. Let uNNGP fulfil the fixed-point equation

1− uNNGP = α(1− rNNGP

uL
NNGP

) (4)

with rNNGP = 1
P yTKNNGP

−1y. The marginal likelihood for a nonlinear BNN verifies p(y|X) ∼
N (y, uL

NNGPKNNGP) if and only if, for given Λ,X and orthogonal Φ, there exists Θ such that
ϕ(Θ,X)

T
ϕ(Θ,X) = ΦΛΦT .

Proof. In the linear case, the true NNGP kernel is simply KNNGP(x,x
′) = 1

N0
xTx′; hence, ρα0

NNGP

is the limiting spectral distribution of the kernel random matrix K0, which we denote ρ0. The
renormalisation theory of linear networks thus implies that:∫

p(y,Φ|Λ,X)d
(
ραMP ⊠L ρ0

)
(Λ)DΦ ∼ N (y, uL

0K0) (5)

This identity is exact in the linear-width limit and holds in general without assumption on X,y, as
long as the integral DΦ is uniform on the space of orthogonal matrices.

Assume the SUA holds in the nonlinear case. Thus, we can express the marginal likelihood as
p(y|X) =

∫
p(y,Φ|Λ,X)d

(
ραMP ⊠L ρα0

NNGP

)
(Λ)DΦ. Furthermore, we can freely interchange

7
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the role of K0 and KNNGP(X,X) in equation 5. Indeed, it suffices to consider the linear case
and a new training dataset X̃ which exhibits the same covariance structure 1

N0
X̃X̃T as that of

KNNGP(X,X). As a result, a similar equation to equation 5 applies to nonlinear networks by
replacing the linear kernel (x,x′) 7→ 1

N0
xTx′ with the true NNGP kernel in the equations, provided

that the SUA holds:∫
p(y,Φ|Λ,X)d

(
ραMP ⊠L ρα0

NNGP

)
(Λ)DΦ ∼ N (y, uL

NNGPKNNGP) (6)

Conversely, if the SUA does not hold, the integral with respect to Φ does not span the space of
orthogonal matrices, the identity equation 6 is no longer exact (all integrands are stricly positive),
nor is the renormalisation. Thus, the SUA is necessary and sufficient for the renormalisation to
hold.

This result characterises the renormalisation theory in the nonlinear case and describes a continu-
ous transition between an accurate and a poor approximation. Specifically, if the SUA significantly
deviates (the feature map spans a small fraction of the space of orthogonal matrices) then the equiv-
alence equation 6 also deviates substantially from the correct value. For example, in the spiked
kernel case, which occurs for one step of feature learning Dandi et al. (2024), the orthogonal matri-
ces permissible for constructing the prior kernel is significantly constrained, thus we anticipate that
the spectral universality assumption would fail in this scenario. Conversely, if the SUA is nearly
accurate (meaning that the feature map encompasses a large portion of the space of orthogonal ma-
trices) then equation 6 closely approximates the true marginal likelihood. Thanks to these insights,
future research on BNNs can benefit from research advances on the accuracy of the SUA (Liu et al.,
2021).

3.4 APPLICATION TO THE SUBLINEAR-WIDTH REGIME

In this section, we consider the application of our integral estimators to the sublinear-width regime.

Assume that Assumption 3.2 holds. In this regime, the ratios α = P
N and α0 = P

N0
from the linear-

width regime tend to infinity and hence are no longer bounded. Here, the renormalisation theory
breaks even in the linear case, because the random matrix KP,N,N0

Θ (X,X) becomes degenerate and
its limiting spectral distribution is the Dirac distribution at 0 and equation 5 no longer holds. A
mismatch with the predictions of the renormalisation theory has indeed been observed empirically
for high values of α and α0 (Li & Sompolinsky, 2021), hence the need for a new theory.

Remarkably, our kernel-theoretic description of BNNs (Theorem 3.4) still holds as its validity relies
only on the dot product of random feature maps ϕ(Θ, ·) defining a random kernel (see proof of
Theorem 3.3). This remains true for the sublinear-width regime (as well as for other regimes of
interest). Additionally, zero eigenvalues in Mercer’s decomposition can be disregarded since they
do not contribute to the kernel evaluation. An alternative perspective is that, when calculating the

first two moments, one takes into account the Moore-Penrose pseudo-inverse KP,N,N0

Θ (X,X)
†

of
the kernel random matrix. Consequently, only the contributions from the strictly positive support
of the limiting spectral distribution are considered (see Theorem 3.3). As a result, our integral
estimators for the mean and variance of the predictor remain applicable under the SUA. The only
missing element in the argument is whether p(Λ|X,x∗), which is now the strictly positive support
of the limiting spectral distribution of KP,N,N0

Θ (X,X) (rescaled to integrate to 1), also converges
to a nonrandom spectral measure (in order to apply Theorem 3.3). Thus, precisely characterising
the asymptotic behavior of this Mercer’s random spectral measure and assessing the SUA in this
regime is an interesting avenue for further research. Note however that this approach only concerns
the predictor statistics and is not derived in weight space, thus one limitation of the approach that we
anticipate is that it might be difficult to characterize (strong) feature learning from this standpoint.

Although we don’t have an analytical formula for the limiting spectral measure, it is still possible to
numerically compute the strictly positive support of the random matrix KP,N,N0

Θ (X,X) and use our
integral forms equation 7 and equation 8 to estimate the predictor of a trained BNNs in this regime.

8
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Figure 1: Comparison with Li & Sompolinsky (2021) in the linear-width regime. On the left, the
linear setting on our synthetic dataset with N0 = 500 and P = 200. On the right, the nonlinear
setting on the subset of MNIST. In both cases, the blue line is computed using the fixed-point equa-
tion 4, and the orange dots are the ratio between the result of our integral estimator equation 3 and
the variance of Bayesian linear regression (respectively, NNGP regression) on the left (respectively,
on the right). In the nonlinear case, we use a large width N̂ = 10000 to estimate the NNGP kernel
matrix for ReLU.

4 EXPERIMENTS

We consider a synthetic dataset generated by a multivariate Gaussian x ∼ N (0, 1
N0

IN0) to which
we apply a linear teacher and noise y = βTx + ϵ with ϵ ∼ N (0, σ2

ϵ ) and β = (1, ..., 1)T . We also
consider a subset of MNIST restricted to classes ”0” and ”1” of size P = 105 and with N0 = 784
pixels per image.

Our first experiment verifies that our estimators coincide with the predictions of the renormalisation
theory in the linear-width limit both for a single hidden-layer network with ReLU activations and
a linear network with a hidden layer. We computed the renormalisation factors using the fixed-
point equation 4 and used equation 2 and equation 3 to estimate the mean and the variance of the
predictor in our approach. To compute equation 2 and equation 3 we first computed the Marchenko-
Pastur maps of the empirical spectral distributions (of the NNGP kernel) by solving numerically
the Marchenko-Pastur fixed-point equation in the Stieltjes transform space (Marchenko & Pastur,
1967; Fan & Wang, 2020); then, we relied on the SUA to estimate the integral forms. In a second
experiment, we simulated the sublinear-width regime P ∝ N · N0 (for which the renormalisation
theory breaks, see Figure 14 in Li & Sompolinsky (2021)) using a small value of N0 (thus making
α0 high). We compared our estimators for the regime as described in the previous section with
the predictions of BNNs trained with variational inference using the library Pyro (Bingham et al.,
2019). For the spectral distribution, we computed the strictly positive support of the empirical
spectral distributions by sampling and diagonalising the empirical kernel matrices several times and
shuffling the eigenvalues; we continued to use the SUA for eigenfunctions.

As shown in Figure 1, our estimates align with the renormalisation theory in the linear-width limit.
As shown in Figure 2, for a regime where the renormalisation theory is inaccurate, our estimators
provide reasonable matches to the actual predictions. These results suggest that our estimates are
better suited to regimes where key assumptions of the renormalisation theory do not hold. Sources
of discrepancies include: the fact that we used finite values of P,N,N0 (whereas the theory is only
exact in the limit); the SUA may not be fully accurate in this configuration; the limiting spectral
measure may not be nonrandom.

5 CONCLUSION

In this paper, we have explored bridges between BNNs trained under interesting idealised limits
and kernel theory, which enable an extension of the renormalisation theory to non-linear networks.
From a practical standpoint, our theory offers a new way to estimate the prediction of BNNs with
better accuracy in the sublinear-width regime. Finally, we hope that the theory developed here will
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Figure 2: Sublinear-width regime. Mean and variance of the predictor against the width N of the
single ReLU hidden-layer on our synthetic dataset with P = 200 and N0 = 40. In both cases, the
blue line is computed using the probabilistic predictions of a BNN trained with variational inference
on the synthetic data, and the orange dots correspond to our integral estimates.

motivate further research on the application of existing kernel-theoretic results in the context of
BNNs.
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A PROOF OF THEOREM 3.4

We calculate the conditional expectation ⟨f⟩(x∗,X,y,Θ) and variance ⟨(δf)2⟩(x∗,X,y,Θ) of the
predictor by marginalising over the readout weights WL:

⟨f⟩(x∗,X,y,Θ) =

∫
WLT

ϕ(Θ,X)p(WL|X,y,Θ)dWL

⟨(δf)2⟩(x∗,X,y,Θ) =

∫ [
WLT

ϕ(Θ,X)
]2

p(WL|X,y,Θ)dWL − [f(x∗,X,y,Θ)]2

where p(WL|X,y,Θ) can be expressed by Bayes rule using Gaussian likelihoods. The result can
be expressed analytically and yields the same prediction as GP regression with prior GP(0,KN,N0

Θ ):

⟨f⟩(x∗,X,y,Θ) = [kP,N,N0

Θ (x∗,X)]
T
[KP,N,N0

Θ (X,X)]
−1

y

⟨(δf)2⟩(x∗,X,y,Θ) = KP,N,N0

Θ (x∗,x∗)− [kP,N,N0

Θ (x∗,X)]
T
[KP,N,N0

Θ (X,X)]
−1

kP,N,N0

Θ (x∗,X).

To marginalise over Θ ∼ p(Θ|X,y), we perform the change of variables Θ 7→ (Φ∗,Φ,Λ), re-
lying on the fact that all quantities of interest involving Θ can be expressed in the limit solely
using eigenvalues and eigenfunctions, namely KΘ(X,X) = ΦΛΦT , kΘ(x

∗,X) = ΦΛΦ∗, and
KΘ(x

∗,x∗) = Φ∗TΛΦ∗. Since Φ ∈ RP×M has orthogonal rows, Φ† = ΦT
(
ΦΦT

)−1
, and

ΦT †
=

(
ΦΦT

)−1
Φ. This allows us to express the mean and variance of the predictor as follows:

⟨f⟩ =
∫ (

Φ∗TΛΦTΦT †
Λ−1Φ†y

)
· p(Λ,Φ,Φ∗|X,x∗) · p(y|Λ,Φ,Φ∗,X,x∗)

p(y|X)
dΛdΦdΦ∗

(7)

⟨(δf)2⟩ =
∫ (

Φ∗TΛΦ∗ −Φ∗TΛΦTΦT †
Λ−1Φ†ΦΛΦ∗

)
·

p(Λ,Φ,Φ∗|X,x∗)
p(y|Λ,Φ,Φ∗,X,x∗)

p(y|X)
dΛdΦdΦ∗ (8)

Furthermore, it holds that p(Λ,Φ,Φ∗|X,x∗) = p(Λ|X,x∗)p(Φ,Φ∗|Λ,X,x∗) if p(Λ|X,x∗) ̸= 0

and also p(y|Λ,Φ,Φ∗,X,x∗) = p(y,Φ,Φ∗|Λ,X,x∗)
p(Φ,Φ∗|Λ,X,x∗) if p(Φ,Φ∗|Λ,X,x∗) ̸= 0, which yields:

⟨f⟩ =
∫ (

Φ∗TΛΦTΦT †
Λ−1Φ†y

)
· p(Λ|X,x∗)

p(y,Φ,Φ∗|Λ,X,x∗)

p(y|X)
dΛdΦdΦ∗

⟨(δf)2⟩ =
∫ (

Φ∗TΛΦ∗ −Φ∗TΛΦTΦT †
Λ−1Φ†ΦΛΦ∗

)
·

p(Λ|X,x∗)
p(y,Φ,Φ∗|Λ,X,x∗)

p(y|X)
dΛdΦdΦ∗

where the integral over Λ is restricted to segments where p(Λ|X,x∗) ̸= 0 and the integrals over
Φ and Φ∗ are restricted to where p(Φ,Φ∗|Λ, X, x∗) ̸= 0. We obtain equations equation 2 and
equation 3 by replacing dΦ and dΦ∗ by standard Gaussian matrix measures and the density of Λ
by the spectral measure.
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