
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MAKE HASTE SLOWLY: A THEORY OF EMERGENT
STRUCTURED MIXED SELECTIVITY IN FEATURE
LEARNING RELU NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

In spite of finite dimension ReLU neural networks being a consistent factor behind
recent deep learning successes, a theory of feature learning in these models re-
mains elusive. Currently, insightful theories still rely on assumptions including the
linearity of the network computations, unstructured input data and architectural con-
straints such as infinite width or a single hidden layer. To begin to address this gap
we establish an equivalence between ReLU networks and Gated Deep Linear Net-
works, and use their greater tractability to derive dynamics of learning. We then con-
sider multiple variants of a core task reminiscent of multi-task learning or contextual
control which requires both feature learning and nonlinearity. We make explicit
that, for these tasks, the ReLU networks possess an inductive bias towards latent
representations which are not strictly modular or disentangled but are still highly
structured and reusable between contexts. This effect is amplified with the addition
of more contexts and hidden layers. Thus, we take a step towards a theory of feature
learning in finite ReLU networks and shed light on how structured mixed-selective
latent representations can emerge due to a bias for node-reuse and learning speed.

1 INTRODUCTION

When contrast with the rapid empirical progress of neural networks (Mnih et al., 2015; Amodei
et al., 2016; Andreas et al., 2016; He et al., 2016; Silver et al., 2017; Vaswani et al., 2017; Baevski
et al., 2020; Reid et al., 2024) it can appear that theoretical understanding of these models is not
keeping pace. However, great theoretical progress has been made with a number of new paradigms
being proposed and investigated (Jacot et al., 2018; Goldt et al., 2020; Saxe et al., 2022). While
these paradigms illuminate many aspects of deep network behavior, they typically simplify feature
learning–a key ingredient thought to underlie the success of deep networks (Krizhevsky et al., 2017;
Jing & Tian, 2020). For instance, while statistical physics provides a theoretical paradigm with
clear insight for unstructured data from Gaussian distributions (Saad & Solla, 1995; Riegler & Biehl,
1995; Goldt et al., 2019; Advani et al., 2020), treating more intricately structured domains remains
challenging. Consequently, these theories can certainly explain phenomena observed in practice
(Ramasesh et al., 2020; Lee et al., 2021; 2022) but do not explicitly capture dynamics with richer
data structure (Goldt et al., 2020). Similarly, the Neural Tangent Kernel (NTK) (Jacot et al., 2018;
Lee et al., 2019) offers exact learning dynamics for network architectures trained in the “lazy regime”
of infinite hidden layer width or large initial weights (Chizat et al., 2019; Alemohammad et al.,
2021). Yet, lazy networks tend to generalize worse than those in the “feature learning regime” (Bietti
& Mairal, 2019; Geiger et al., 2020) of small initial weights and finite width. Conversely, deep
linear networks (Saxe et al., 2014; 2019) offer a theory of feature learning and have successfully
characterised continual learning (Braun et al., 2022) and systematic generalisation (Jarvis et al.,
2023). Yet, these models do not incorporate nonlinear activation functions which are necessary for the
network to perform real world tasks ranging in complexity from the simple XOR (Minsky & Papert,
1969) to Context Generalization (Sodhani et al., 2021; Dahl et al., 2011; Beukman et al., 2024).
Other useful approaches consider a static analysis of stable points (Seung et al., 1992; Zdeborová &
Krzakala, 2016) or require infinite input dimension with infinite data (known as the thermodynamic
limit) (Mignacco et al., 2020; Goldt et al., 2020). Hence an explicit theory of feature learning in
ReLU networks (Fukushima, 1969; Nair & Hinton, 2010) with finite width has not yet been presented,
in spite of their consistent use in the empirical successes of deep learning (Nwankpa et al., 2018).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In this work we take a step towards a theory of feature learning in finite ReLU networks. We do
this by drawing an equivalence between ReLU networks and Gated Deep Linear Networks (GDLN)
(Saxe et al., 2022) in Section 3. GDLNs provide a class of network architectures which perform
nonlinear computations on their inputs using a composition of linear modules and are amenable to a
full characterisation of their training dynamics. We show that for a ReLU network it is possible to
create an equivalent GDLN which has the same output as the ReLU network at all points in time.
We term this the “Rectified Linear Network (ReLN)” and obtain the full training dynamics of both
networks trained on an adapted XoR task. Section 4 then applies this technique to a significantly
more realistic setting reminiscent of multi-task learning or contextual control (Zamir et al., 2018). We
provide full training dynamics for the ReLU network in this setting via the ReLN and prove that in
this case the equivalence is unique. In this task, we find that ReLU networks present an inductive bias
towards structured mixed-selective latent representations which are reused across contexts. Section 5
and Section 6 then consider the effect of adding contexts and multiple hidden layers respectively. We
find that the bias towards structured mixed selectivity and node reuse is amplified by these changes,
indicating that this may be a consistent emergent strategy for tasks of increasing difficulty. Thus, we
summarize our main contributions as follows:

• We introduce Rectified Linear Networks (ReLNs) as the subset of GDLNs which each
imitate a ReLU Network. Through this we obtain the full training dynamics for finite,
feature learning ReLU network.

• We demonstrate that, in a contextual task, ReLU networks have an implicit bias towards
structured mixed selectivity even during feature learning as this strategy minimizes the loss
the fastest.

• Finally, we demonstrate that the bias towards node reuse is exasperated with the addition of
more contexts and hidden layers on this task.

Thus, while performing “slow” feature learning mixed-selective functional modules emerge in ReLU
networks which exploit node-reuse for learning speed (or “haste”).

2 BACKGROUND

a) b)

Figure 1: GDLN Formalism and
notation. a) The GDLN applies
gating variables to nodes (gv) and
edges (gq) in an otherwise linear
network. b) The gradient for an
edge (using the red edge in a) for
example) can be written in terms
of paths through that edge (colored
lines). Each path is broken into the
component preceding (s̄(p, e)) and
following (t̄(p, e)) the edge.

We briefly review the GDLN paradigm here as our work builds
directly from it. However, the paradigm itself builds on the
linear neural network theory (Saxe et al., 2014; 2019). Thus, for
readers being introduced to linear neural network theory from
this work we provide a more thorough review in Appendix A.
The GDLN notation and formalism is also depicted in Figure 1.
GDLNs are a class of neural network which compute nonlinear
functions of their inputs through the composition of linear net-
work modules (Saxe et al., 2022). The nonlinearity is achieved
by gating on or off portions of the network computation for dif-
ferent inputs. Formally, let Γ denote a directed graph with nodes
V and edges E. Each node v ∈ V represents a layer of neurons
with activity hv ∈ R|v| where |v| ∈ N denotes the number of
neurons in the layer. Each edge e ∈ E connects two nodes with
a weight matrix We of size |t(e)| × |s(e)| where s, t : E→ V
return the source and target nodes of the edge, respectively. It is
also helpful to generalize this notion of edges to paths p, which
are a sequence of edges Wp. Thus, paths also connect their
source node s(p) to their target node t(p). We denote the por-
tion of a path p preceding a particular edge e as s̄(p, e) and the
portion of the path subsequent to the edge as t̄(p, e) such that
p = Wt̄(p,e)WeWs̄(p,e). We collect nodes with only outgoing
edges into the set In(Γ) ⊂ V and call them input nodes. Similarly, output nodes only have incoming
edges and are collected in the set Out(Γ) ⊂ V. Activity is propagated through the network for a
given datapoint which specifies values xv ∈ R|v| for all input nodes v ∈ In(Γ). When concatenated
the entire data point is denoted as x. The activity of each subsequent layer is then given by:

hv = gv
∑

q∈E:t(q)=v

gqWqhs(q) (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Here gv is a node gate and gq is an edge gate. Thus, the gating variables modulate the propagation
of activity through the network by switching off entire nodes (gv) and edges between nodes (gq).

We train the GDLN to minimize the L2 loss averaged over the full dataset using gradient descent.
Each datapoint then is a triple specified by the input x, output labels y and specified gating structure g:

L({W}) =

〈
1

2

∑
v∈Out(Γ)

||yv − hv||22

〉
(x,y,g)

where yv ∈ R|v| for v ∈ Out(Γ) (2)

Note that in Saxe et al. (2022) the gates are treated as part of the dataset (they are averaged over in
Equation 2). As the main results of this work do not depend on how we find the gates for our GDLN,
we follow this precedent. However, the ease of finding the gates is an important consideration for
the usability of the paradigm we introduce here. Thus, in Appendix B we discuss a very simple
clustering approach to finding the gates from a ReLU network.

If we denote P(e) as the set of paths which pass through edge e and T (v) as the set of paths
terminating at node v then the update step for a single weight matrix in the GDLN is:

τ
d

dt
We = −

∂L({W})
∂We

=
∑

p∈P(e)

WT
t̄(p,e)

Σyx(p)−
∑

j∈T (t(p))

WjΣ
x(j, p)

WT
s̄(p,e) ∀ e ∈ E (3)

Thus, the update to a weight matrix We is determined by the error at the end of a path which it
contributes to [Σyx(p) −

∑
j∈T (t(p)) WjΣ

x(j, p)] summed over all paths it is a part of p ∈ P(e).
Notably, all dataset statistics which direct learning are collected into the correlation matrices:

Σyx(p) = ⟨gpyt(p)xT
s(p)⟩(x,y,g); Σx(j, p) = ⟨gjxs(j)x

T
s(p)gp⟩(x,y,g) (4)

These dataset statistics depend on the gating variables g, indicating that each path sees its own
effective dataset determined by the network architecture. From this perspective, each path resembles
the gradient flow of a deep linear network (Saxe et al., 2014; 2019) which have been shown to
exhibit nonlinear learning dynamics observed in general deep neural networks (Baldi & Hornik, 1989;
Fukumizu, 1998; Arora et al., 2018; Lampinen & Ganguli, 2019). The final step then is to use the
change of variables employed by the linear network dynamics (Saxe et al., 2014; 2019). Assuming
the effective dataset correlation matrices are mutually diagonalizable (such that V is the same matrix
for Σyx and Σx), we write the correlation matrices and pathway weights in terms of their singular
value decompositions:

Σyx(p) = Ut(p)S(p)V
T
s(p); Σx(j, p) = Vs(j)D(j, p)V T

s(p); We(t) = Rt(e)Be(t)R
T
s(e) (5)

where S(p) and D(p) are diagonal singular value matrices, Be(t) are the new dynamic variables, Rv

satisfies RT
v Rv = I for all v ∈ V, and for input and output nodes Rs(p) = Vs(p) and Rt(p) = Ut(p),

respectively. For Rs(p) = Vs(p) and Rt(p) = Ut(p) we assume that the pathway mappings align to
the same singular vectors which diagonalise their effective datasets and apply the same change of
variables to the pathway weights. This assumption has been used successfully for feature learning
linear networks previously (Saxe et al., 2014; 2019; Jarvis et al., 2023) and the trend for networks to
align in this manner has be termed the “silent alignment effect” (Atanasov et al., 2021). This change
of variables removes competitive interactions between singular value modes along a path such that
the dynamics of the overall network is described by summing several “1D networks” (one for each
singular value) resulting in the “neural race reduction” (Saxe et al., 2022):

τ
d

dt
Be =

∑
p∈P(e)

Bp\e

S(p)− ∑
j∈T (t(p))

BjD(j, p)

 ∀ e ∈ E (6)

From this reduction we note that the update to a layer of weights is proportional to the input-output
singular values of the effective dataset along a pathway it contributes to, and the number of these
pathways (shown by the summation). Thus, we can summarize the assumptions of the GDLN
paradigm from Saxe et al. (2022) and note that we do not introduce any new assumptions:
Assumption 2.1. The assumptions of the GDLN paradigm are:

1. The dataset correlation matrices are mutually diagonalizable.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2. The neural network weights align to the singular vectors of the dataset correlation matrices.

Importantly, Assumption 2.1.1 is necessary for the full tractability and interpretability offered by
the GDLN framework. However, if it is violated we can still continue the derivation to a dynamics
reduction which is the same as the neural race reduction (Saxe et al., 2022) but includes an additional
matrix multiplication, which is insightful and likely to be enough for many cases. Assumption 2.1.2 is
stricter, however the singular vectors of the network aligning is the framework’s definition of feature
learning. Thus, in the present context this is the same as assuming the network is successfully feature
learning. We elaborate more on both assumptions in Section A and note that Section 6 depicts the
utility of our framework in a case where the alignment of the singular vectors is not guaranteed.

3 THE RECTIFIED LINEAR NETWORK (RELN)

We denote the output of a GDLN for the i-th data point xi in a dataset of N data points as
GDLN(W (t), G(xi, t), xi) where W (t) are the set of weights and G(xi, t) is the set of gates
that are dependent on the data point. Both the gates and weights can be time dependent, how-
ever in this section and Sections 4 and 5 the gating structure is constant from the beginning.
Thus, G(xi, t) = G(xi, 0) ∀ t ∈ R+ in these sections. We denote the ReLU network’s output
as ReLU(W (t), xi) with W (t) as the set of weights. We formally define a ReLN as:

Definition 3.1. Rectified Linear Network (ReLN): The GDLN with G(xi) = G∗(xi) such that
GDLN(W (t), G∗(xi), xi) = ReLU(W (t), xi) ∀ t ∈ R+ and ∀ i ∈ N .

This definition is not specific to the tasks considered in this work and it is always possible to obtain
a ReLN for a given ReLU network and task. Letting hj =

∑K
k=0 Wjkxk be the pre-activation of

the j-th hidden neuron in our ReLU network for any given data point x (K is the number of input
features), then the post-activation can be written as: σ(hj) = step(hj)hj . Thus, in a GDLN with
exactly the same architecture we could gate the corresponding neuron with G(xi)j = step(hj). In
other words we could gate the GDLN hidden neurons based on the activity of the ReLU networks.
This extends to multiple hidden layers as well. However, this is not desirable and demonstrates the
extremity of the ReLN framework. Instead, we aim to find as few unique gating patterns G(xi) across
the dataset as possible - exposing the functional “modules” of the network. We now illustrate this
approach with an example.

Transition to nonlinear separability. ReLU networks have the ability to perform nonlinear tasks.
Yet when faced with a linearly separable problem, they can also possibly learn a linear decision
boundary. Here we examine a task which permits both of these possibilities, to examine the implicit
bias in gradient descent. As depicted in Fig. 2a, the task has XoR structure in its first two dimensions;
and is linearly separable with margin 2∆ in the third. Hence for ∆ = 0, the task is not linearly
separable, but for ∆ > 0 it is. To identify a ReLN on this task, we consider two intuitive gating
structures. The first attempts to exploit the linearly separable structure and contains two pathways,
one active for positive examples and one active for negative examples, as depicted in Fig. 2b. The
second ReLN (Fig. 2c) contains four pathways, each active on exactly one example. This ReLN can
solve the task even when ∆ = 0, because it uses a different linear model for each datapoint.

Given the problem, these gating structures are intuitive. It remains to show that they behave like
a ReLU network trained on the same task. Fig. 2e shows the loss dynamics of each ReLN and
for a 128 hidden unit ReLU network trained on the same task, for a range of values of ∆. We see
that across the spectrum of ∆’s, one of these ReLNs always closely matches the ReLU network
dynamics–specifically, the faster one. Fig. 2d shows the learning time of these networks as a function
of ∆, showing that ReLU networks behave like the faster ReLN.

Because of the simple structure in these ReLNs, it is possible to solve their dynamics analytically
(see Appendix C). These dynamics yield a prediction for the behavior of the ReLU network. Using
these solutions, we can calculate the value of ∆ when the speed of the linear GDLN crosses over
that of the XoR ReLN. This crossover point is ∆ =

√
2/3 (Fig. 2d grey dashed line), which marks

the approximate point at which a ReLU network switches from a linear decision boundary to a
nonlinear boundary (see Appendix C). Perhaps surprisingly, this analysis shows that the ReLU
network transitions to a nonlinear boundary well before the problem becomes nonlinearly separable.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

x3

x1 x3

M
S
E

0.0

0.2

0.4

0.0

0.2

0.4

∆=0 ∆=2

Linear XoR

10−1 100

∆

101

102

Le
a
rn

in
g

 T
im

e
 (

E
p

o
ch

s)

Separation

Linear

XoR

ReLU Sim

Linear

XoR

ReLU Sim

0 50 100 150
Epochs

0 50 100 150
Epochs

0 50 100 150
Epochs

0 50 100 150
Epochs

0 50 100 150
Epochs

0.0

0.2

0.4

0.0

0.2

0.4

0.0

0.2

0.4

a)

e)

b) c) d)
Linear

XoR

ReLU Sim

Linear

XoR

ReLU Sim

Figure 2: Dynamics of ReLU networks during transition to nonlinear separability. (a) A simple
dataset which has XoR structure in the first two dimensions, and is linearly separable with margin
2∆ in the third. (b) GDLN exploiting linear structure. The network contains two pathways, one
gated on only for positive examples and one gated on only for negative examples. Blue arrows in
panel (a) depict ReLU weight directions that achieve this gating. (c) GDLN exploiting XoR structure.
The network contains four pathways, each active on exactly one example. Orange arrows in panel
(a) depict ReLU weight directions that achieve this gating. (d) Time to learn to a fixed criterion
(loss=.2) calculated analytically for GDLNs with linear and XoR gating structure (blue and orange,
respectively), and in simulation of ReLU networks (green). The ReLU network behaves like the faster
of the two gated networks. Which gating structure is fastest changes at ∆ =

√
2/3 (grey dashed). (e)

Analytical loss trajectories for the gated networks, and simulated ReLU networks for several values
of ∆. The full trajectories of the simulation match the faster of the gated networks. Parameters:
learning rate 1/τ = .4, Nh = 128 hidden units, initialization variance 4 · 10−8/Nh.

Hence this example demonstrates how ReLNs with appropriate gating can describe the behavior of
ReLU networks. When the ReLN has a simple structure, its greater tractability permits analytical so-
lutions that closely describe ReLU dynamics on the same task. Finally, this example shows that while
gradient-trained ReLU networks do have a bias toward linear decision boundaries when the margin
is large, they can adopt nonlinear decision boundaries even when a problem is linearly separable.

4 EMERGENT STRUCTURED MIXED SELECTIVITY IN RELU NETWORKS

Having introduced ReLNs in Section 3 we now apply this theory to understand the inductive biases
of ReLU network in a more challenging setting, summarized in Figure 3. Similar to prior work
we create a task where the network is provided a object index as input and required to produce a
set of corresponding properties for the object (Saxe et al., 2019; Braun et al., 2022), however we
now include a context feature to the input similar to previous connectionist models of controlled
semantic cognition (Rogers et al., 2004) and more recently in multi-task learning (Sodhani et al.,
2021). Each item is queried with a one-hot representation and one-hot context feature, such that all
items are present in each context, forming the input matrix X (Xc denotes the contextual portion of
the dataset). The outputs, corresponding to predicted features of the items, then impart structure into
the dataset based on the similarity of items. For example, the first set of output labels (rows) form
a hierarchy structure. This block of features should be activated regardless of the queried context.
In contrast the three other blocks of output labels need to be activated only in one of the contexts.
This requires contextual control and a nonlinear network mapping to learn. We train the networks
with full-batch gradient descent and L2 loss (Equation 2) to perform this task. We use a linear output
layer, assume the model is over-parametrized (a pathway needs to have at least h hidden nodes to
learn a rank h effective dataset) and do not regularize or bias the networks towards context specificity
in its hidden neurons. The only difference between the two networks is that the gating of the ReLN’s
hidden neurons is explicit, while the ReLU network learns the gating pattern using the nonlinearity.
Remarkably, in this setting the gating of the ReLN is constant from the start.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

ReLU
Network GDLN

Animal Plant

Flo
we

rs

Bir
ds

Tr
eesFis
h

Animal Plant

Flo
we

rs

Bir
ds

Tr
eesFis
h

Animal Plant

Flo
we

rs

Bir
ds

Tr
eesFis
h

All Context
Hierarchical

Output

Context independent hierarchy
with context dependent variance

for each item in each context.

ReLU Activation

Visual
Functional

Auditory

+

Common
Pathway

Hierarchy and
Cross-Cutting

Context Pathway

Cross-Cutting
and Cycle

Context Pathway

Hierarchy and
Cycle Context

Pathway

Hierarchical
Context
Output

Cross-
Cutting
Context
Output

Ring
Context
Output

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 3: Dataset used to train the ReLU network (left) and ReLN architecture used to imitate it
(right). Inputs (middle matrix) are created by appending a one hot vector encoding object identity
to a one hot vector encoding context such that each item appears in all contexts. Target outputs
(left and right matrices) contain some context-independent (top block) and some context specific
properties (bottom three blocks). These datasets broadly follow a hierarchical structure across items
(hierarchical tree depicted in middle over input datapoint along the columns), but with some variation
in each context-specific block. All structures are taken from Saxe et al. (2019). The analysis in this
work shows that the ReLU network dynamics arise from four implicit modules, made explicit by
the ReLN pathways towards the right, which receive different subsets of inputs and generate different
subsets of outputs. Together these graded mixed-selective pathways couple together to produce the
correct output labels for each object. While each context-specific pathway is only on in two contexts
(blocks of columns) they still produce labels for all three context-specific parts of the output space
(blocks of rows). This creates errors which other pathways learn to remove. If this fine balance of
activity between pathways is broken then errors will be incurred.

To obtain the closed-form dynamics of the ReLN, and by extension ReLU network, it is necessary
to determine the effective datasets of each pathway through the network. We identify four pathways
which imitate functional modules in the ReLU network. The first “common” pathway is composed of
hidden neurons which are always active, forming a linear subnetwork responsible for learning the aver-
age activation across the dataset. While this pathway does not use context for gating, it still uses this as
a feature similar to a bias variable. The three remaining pathways are all active for two out of the three
contexts and collectively learn the residual of the common pathway. All pathways map onto the full
output space. The ReLN and corresponding pathways are depicted on the right of Figure 3. Figure 4(a)
shows the loss dynamics of the ReLU network compared to the ReLN and the predicted dynamics with
samples of the ReLU and ReLN outputs at certain points during training1. We see excellent agreement
across all dynamics and outputs. Further, comparing Figure 4(c) which show the Multi-dimensional
Scaling (MDS) plots of the ReLU network and ReLN respectively, we see near exact correspondence
between the relative positions of the latent representations of the dataset across both architectures. The
derivation of the dynamics using the race reduction from Section 2 is presented in full in Appendix F.

By interpreting the corresponding ReLN, we find that there are no neurons in the ReLU network
which are context specific. Instead, the ReLU network employs a strategy of mixed selectivity
where neurons are active across multiple contexts. These pathways are still doing feature learning,
however, evidenced by the effective datasets which we uncover and the corresponding singular value
trajectories for each summarized in Figure 4(b). Finally, Figure 4 only shows that the loss of the
ReLN matches that of the ReLU network, which is a weaker condition than producing the same
output at all times, as in Definition 3.1. A natural question may also emerge on whether another
ReLN exists which provides the same dynamics. To answer this, we present Proposition 4.2 which
proves that the loss trajectory of this ReLN is unique (accounting for symmetric gating patterns
such as permuting hidden neurons (Simsek et al., 2021; Martinelli et al., 2023)). In addition, the
ReLN which emerges is the fastest learner of all GDLN architectures implementable by a ReLU
network, winning the “neural race” (Saxe et al., 2022). Thus, while the ReLU network is doing
“slow” feature learning, it does so by utilizing the most efficient network substructures. The structure

1All experiments were run on a Nvidia 1080 using the Jax Library (Bradbury et al., 2018)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 2000 4000 6000 8000
Epoch number

0

20

40

60

80

100

Q
u
a
d

ra
ti

c
Lo

ss

ReLU

GDLN Single

Race Dynamics

0 1000 2000 3000 4000 5000 6000 7000 8000
Epoch number

0.0

0.5

1.0

1.5

2.0

S
in

g
u
la

r
V
a
lu

eReLN (GDLN)

0 1000 2000 3000 4000 5000 6000 7000 8000
Epoch number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
in

g
u
la

r
V
a
lu

e

Context Pathways Mean DynamicsComparison of Loss Dynamics Common Pathway Dynamics

012 3

4 5

6

7

8

9

10
11

12 13
1415

1617

18
19

20
21

22

23

ReLU Network Hidden Layer MDS

1600

6400

E
p
o
ch

 n
u
m

b
e
r

3200

4800

0 1 2 3

4567

8

9

10
11

12

13
14

15

16

17

18
19

20

21

22
23

ReLN Hidden Layer MDS

1600

6400

E
p
o
ch

 n
u
m

b
e
r

3200

4800

a) b)

c)

Figure 4: Summary of results for the ReLN imitating a ReLU network on a contextual nonlinear task.
a) Comparison of loss trajectories between the ReLU, empirical and predicted ReLN, and alternate
GDLN which does not imitate the ReLU network loss trajectory. We find that a GDLN (here called
“GDLN Single”) which has contextual pathways active for individual contexts is unable to imitate the
loss trajectory of the ReLU network. This evidence, in combination with Proposition 4.2 provides
the uniqueness of the ReLN which we have identified. example outputs from the ReLU network and
ReLN are also shown and we see exact agreement between these output samples. b) Singular value
dynamics for the ReLN architecture using the neural race reduction dynamics. c) Multi-dimensional
Scaling which compares the relative latent representations of the ReLU network and ReLN over time.
Both architectures demonstrate an equivalent latent representation at all points in time.

emerges from feature learning, while mixed-selectivity and node reuse remains as a strategy for
learning speed, commonly found in the “fast” lazy learning regime (Jacot et al., 2018; Geiger et al.,
2020).Importantly, mixed-selectivity is an established concept within the neuroscience literature
(Anderson, 2010; Rigotti et al., 2013), however this balancing of learning speed and feature learning
reflects a potential mechanism for its emergence. Before we present Proposition 4.2 we first require
Lemma 4.1 which limits the possible gating strategies implementable by a ReLU network with a
single hidden layer on this dataset and drastically compresses the possible set of GDLN architectures
which could be potential ReLNs. The full proof can be found in Appendix D.

Informal Lemma 4.1 Any gating strategy employed by a trained ReLU network with a single hidden
layer on the input X (as defined in Section 4) can be implemented by a GDLN with linear modules
that gate based on the context features in isolation.

Lemma 4.1. Given the definition of GDLNs and ReLU Networks there exists G(xc) such that
G(xc)j = step(hj) ∀ j ∈ ZH where h is the pre-activations of the ReLU network’s hidden layer,
j is the index of a hidden neuron in either network and xc is the portion of the data point x with
contextual features.

Proof Sketch: We note that a ReLU network must use the same set of weights to perform the
gating and forward propagation of information. Without loss of generality we then consider the
simple case of two objects in two contexts forming a dataset of four datapoints. We show by
contradiction that a hidden neuron is unable to gate inconsistently for both object and context,
for example by being active for item 1 in context 1 and item 2 in context 2 while being off on
the remaining datapoints. This means all hidden neurons must gate consistently using either
context or object features. We then consider a strategy where a neuron gates based on an item
feature. In this case the readout from the neuron will produce outputs across the entire label
space agnostic to the requested context as it will be activated by all context features. Thus, it is
unable to perform the nonlinear mapping from context to output. Consequently the only viable
gating strategy for the network is to partition the dataset using the context features in isolation.
There is an edge case to this proof which we cannot rule out, that of allocating a single neuron
for each data point. It is one remaining viable strategy but we rule this out in Proposition 4.2.

With the search space of the ReLN within the space of GDLNs reduced we may now prove that the
loss trajectory of the ReLN in this section is unique. Consequently, the output of the ReLN must

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

match the ReLU network at all times to imitate this loss trajectory. Secondly, this is the only strategy
which the ReLU network could be using. The full proof can be found in Appendix E.

Informal Proposition 4.2 The ReLU network in this section: 1) has a unique corresponding ReLN
which imitates the loss dynamics and output at all times, 2) finds the neural race winning strategy of
mixed selectivity.
Proposition 4.2. There is a unique G∗(X) (up to symmetries such as permutations) such that
LGDLN (W (t), G∗(X)) = LReLU (W̄ (t)) ∀ t ∈ R+ and for alternative gating strategies G′(X)
then LGDLN (W (t), G∗(X)) < LGDLN (W (t), G′(X))

Proof Sketch: We first make use of a generalization of the Cauchy Interlacing Theorem to
non-square matrices, closely following the strategy from Thompson (1972). We show that if an
output label or input feature is removed from the dataset, the first singular value of the input-
output correlation matrix (Σyx) can only decrease. Since the singular values of the correlation
matrix alone determine the time-course of learning in linear networks and pathways (Saxe et al.,
2014; 2022) this means a network can only learn slower when removing these input or output
dimensions. Thus, pathways using all available features will win the neural race, consistent
with our ReLN architecture, and any other strategy would result in a clear deviation from the
ReLU loss trajectory. We then consider whether gating along datapoints and not features could
provide an alternative architecture. Here we note that the output of the common pathway is
element-wise positive. Thus, removing a datapoint with only positive terms can only decrease
the correlation calculation. Thus, the common pathway which uses all features and is active
for all datapoints is the fastest possible module the network could implement. We then rule out
the edge case from Lemma 4.1. Once the common pathway has finished learning there is no
correlation between the context features and labels. As a consequence in a case when a single
datapoint is allocated to a single module all activity would need to be learned by the item feature.
In our dataset, removing all other items in a context would then be the same as removing their
individual input features. From the Cauchy Interlacing Theorem, we know this can only slow
learning. Lastly, we consider if alternative gatings along the context specific pathways exists.
Using Lemma 4.1 (and now ignoring the edge case) we note that the network has two remaining
strategies since it can only implement gates which partition the input consistently based on
the contexts. Lemma 4.1 make a proof by exhaustion feasible in this case, and so we simply
simulate both and the trajectories in Figure 4. Clearly the architecture with pathways active in
two contexts learns faster and matches the loss trajectory of the ReLU network. Thus, only one
ReLN in the space of implementable GDLNs matches the ReLU network loss trajectory, and
this is the fastest possible ReLN which wins the neural race.

5 THE EFFECT OF ADDITIONAL CONTEXTS

Having identified the inductive bias towards mixed selectivity in ReLU networks we now consider
whether this trend continues as we increase the number of contexts. Once again we construct a ReLN
which imitates the ReLU networks and identify the effective datasets for each of its pathways. In this
case we consider datasets with three, four and five contexts. Similar to Section 3, the output labels
contain a block with hierarchical structure which is active for all contexts. This is appended with
context specific blocks which are active for a single context. Here we use a hierarchy structure for
all contexts to isolate the effect of scaling the number of contexts. Additionally, with this repeated
structure it is possible to continue the derivation of the dynamics beyond the neural race reduction
and obtain fully closed form equations for the singular value trajectories of the linear pathways. This
derivation for the four and five context case is presented in Appendix F and G. We plot the closed
form singular value trajectories and corresponding loss curves for each context in Figure 5 and once
again see excellent agreement. Moreover we find that the trend identified in Section 3 continues, as
the ReLN which imitates the ReLU network in each case uses a linear pathways that is active for all
contexts. The ReLN then has C context specific pathways which are active for C − 1 contexts. Thus,
as the number of contexts increases, so too does the bias towards node reuse and mixed selectivity.

6 THE EFFECT OF ADDITIONAL HIDDEN LAYERS

Finally, we consider the effect of adding a second hidden layer with ReLU activation to the network.
Once again we are able to identify the corresponding GDLN which imitates the network. This GDLN

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 2000 4000 6000 8000
Epoch number

0

20

40

60

80

100

Q
u
a
d

ra
ti

c
Lo

ss

ReLU 3 Context

Closed Dynamics 3 Context

0 2000 4000 6000 8000
Epoch number

0

20

40

60

80

100

120

Q
u
a
d

ra
ti

c
Lo

ss

ReLU 4 Context

Closed Dynamics 4 Context

0 2000 4000 6000 8000
Epoch number

0

20

40

60

80

100

120

140

160

Q
u
a
d

ra
ti

c
Lo

ss

ReLU 5 Context

Closed Dynamics 5 Context

3 Context

Loss

Trajectories

Common Pathway

SV Dynamics

Context Pathways

Mean SV Dynamics

4 Context 5 Context

ReLN 3 Context ReLN 4 Context ReLN 5 Context

0 1000 2000 3000 4000 5000 6000 7000 8000
Epoch number

0.0

0.5

1.0

1.5

2.0

S
in

g
u
la

r
V
a
lu

e

0 1000 2000 3000 4000 5000 6000 7000 8000
Epoch number

0.0

0.5

1.0

1.5

2.0
S

in
g

u
la

r
V
a
lu

e

0 1000 2000 3000 4000 5000 6000 7000 8000
Epoch number

0.0

0.5

1.0

1.5

2.0

S
in

g
u
la

r
V
a
lu

e

0 1000 2000 3000 4000 5000 6000 7000 8000
Epoch number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
in

g
u
la

r
V
a
lu

e

0 1000 2000 3000 4000 5000 6000 7000 8000
Epoch number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
in

g
u
la

r
V
a
lu

e

0 1000 2000 3000 4000 5000 6000 7000 8000
Epoch number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
in

g
u
la

r
V
a
lu

e

Figure 5: Effect of increasing the number of context on mixed selectivity: Summary of the loss
trajectory (first row) for the ReLU network and corresponding ReLN as the number of contexts
increases (columns). Due to the symmetry of the task we are also able to continue the derivation
of the ReLN dynamics beyond the neural race reduction and obtain closed form trajectories for the
networks’ singular values. The singular value trajectories for the common pathway (second row) and
mean trajectories for the contextual pathways (bottom row) match simulations exactly. Consequently
we can in closed form derive the loss trajectory for each architecture and see perfect agreement
to both the ReLN and ReLU networks. All together these results demonstrate that as the number
of contexts increase, so to do the number of contexts a pathways is active form Thus, structured
mixed-selectivity is exasperated by the addition of more contexts.

architecture is summarized in Figure 6. We see that in this case the ReLU network does not use the
first layer for gating and instead all neurons are active for all datapoints. However, this layer does still
benefit the network as it enables it to gate using a combination of item and context variables in the
second hidden layer. This removes the constraint from Lemma 4.1 and allows a wider range on gating
strategies. However, we see that the gating strategy of the network remains relatively similar as the con-
textual pathways are active in two out of the three contexts. Similarly the common pathway remains.
Thus, the trend towards mixed-selectivity and node reuse is exasperated by the addition of another hid-
den layer, which is then used as a linear layer to speed up learning across all contexts due to node reuse.

In Figure 6b) we plot the trajectories from 100 runs of the ReLU network and GDLN respectively.
We note that there is now variance in the trajectories of both networks, which was not the case for the
single-hidden-layer architectures. This is due to an inconsistency in the timing at which the network
singular vectors align with the singular vectors of the dataset correlation matrices. This alignment of
singular vectors corresponds to the network learning salient features in the data, and the phenomenon
of these vectors aligning very early in training in shallower linear or linearized networks has been
termed the “silent alignment effect” (Atanasov et al., 2021). We see that this silent alignment no longer
occurs with the addition of another hidden layer with this architecture and dataset, violating Assump-
tion 2. As a consequence there is variance in the loss trajectories as the contextual pathways do not
align perfectly to a consistent set of singular vectors. Thus, we do not call this GDLN a ReLN, however
we see that the GDLN still informative about the behaviour of the ReLU network. In Figure 6 we find
the loss trajectories closest to the mean trajectory for the ReLU network and GDLN separately. We
then plot these stereotypical loss trajectories for comparison and plot the faded remaining trajectories
around this. We see close agreement between the ReLU network and GDLN stereotypical trajectories,
but we also see the same variance profiles across the various runs. We note that pathways within the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Animal Plant

Flo
we

rs

Bir
ds

Tr
eesFis
h

Animal Plant

Flo
we

rs

Bir
ds

Tr
eesFis
h

Animal Plant

Flo
we

rs

Bir
ds

Tr
eesFis
h

Context independent hierarchy
with context dependent variance

for each item in each context.

+

Common
Pathway

Hierarchy and
Cross-Cutting

Context Pathway

Cross-Cutting
and Cycle

Context Pathway

Hierarchy and
Cycle Context

Pathway

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0 5000 10000 15000 20000 25000 30000
Epoch number

0

20

40

60

80

100

Q
u
a
d

ra
ti

c
Lo

ss

ReLU

ReLN (GDLN)

Figure 6: Summary of architecture and results for the addition of depth: With the addition of depth
the ReLU network is no longer limited to gating consistently using context variables. However, we
find that the network still uses a common pathway and contextual pathways active in two contexts.
The first layer now is completely shared across all contexts and does not use the nonlinearity. This
architecture is imitated by the ReLN depicted on the left. We note that there is now variance between
runs of the ReLU network and ReLN. Interestingly the ReLN shares the same characteristics in
variance as the reLU network. We plot 100 of each architecture and highlight one trajectory for the
ReLU network and ReLN which could be considered stereotypical (using the sum of L2 distances
across all timepoints). Overall the ReLN still provides clear insight into the ReLU network and its
inductive bias towards mixed selectivity and node reuse.

GDLN become active in stages. For example, the common pathways aligns around epoch 500, while
the contextual pathways only appear at epoch 12000. The relative timing of the drops in loss and
positions of the plateaus in loss are all consistent following the alignment. Moreover, when comparing
samples from both network at plateaus in the loss trajectories we see exact agreement between the
outputs. In summary, while the addition of a hidden layer allows the ReLU to have a more intricate
gating structure, this comes with an additional difficulty of perfectly aligning to the dataset singular
vectors. Thus, the ReLU networks and GDLNs fail to learn the exact optimal features on all runs.

7 DISCUSSION

Here we have introduced the Rectified Linear Network which is a GDLN designed to imitate the
gating structure of a specific ReLU network. We have used this to provide a theory of feature learning
in finite ReLU networks and identified an implicit bias towards structured mixed selectivity which
results due to node reuse. Our approach has several limitations. Most notably, while some GDLN can
imitate any ReLU, a reduction based on this idea will only be insightful if the resulting GDLN has
few pathways. Otherwise, the many pathways of the GDLN become as hard to interpret as the many
neurons in a ReLU network. A second limiting factor is how easily identifiable the gating structure
is. As a first step towards addressing this we propose a very simple clustering based algorithm in
Appendix B which we show is able to retrieve the correct modules from a ReLU network in the
setup of Section 4. In this appendix we also briefly touch on the connection to meta-learning and
polysemanticity (neurons being activated by multiple semantic unit or features) (Olah et al., 2017a;
Lecomte et al., 2024), and promote these as directions of future work.

In the reasonably complex yet structured cases we examine here, we have shown that subnetworks
emerge within a ReLU network due to the learning speed benefits offered by mixed-selectivity.
Moreover, we find that the bias towards node reuse increases with the addition of more contexts and
greater depth. Thus, our findings are in agreement with prior empirical and theoretical findings on
disentanglement which demonstrate that neural networks are not implicitly biased towards disentan-
gled representations that select for semantic factors of variation in the input (Locatello et al., 2019;
Michlo et al., 2023). However, we find that mixed selectivity of neural representations does not imply
that the network is not learning structured features. Instead the network exploits reusable structure
between contexts, forming functional modules which we make explicit with pathways in the ReLNs.
This demonstrates that node reuse and modularity are not as incongruent as previously thought in
both machine learning (Andreas et al., 2016; Andreas, 2018; Masoudnia & Ebrahimpour, 2014) and
neuroscience (Anderson, 2010; Rigotti et al., 2013) and we shed on the competing factors influencing
their emergence from learning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Madhu S Advani, Andrew M Saxe, and Haim Sompolinsky. High-dimensional dynamics of general-
ization error in neural networks. Neural Networks, 132:428–446, 2020.

Sina Alemohammad, Zichao Wang, Randall Balestriero, and Richard Baraniuk. The recurrent neural
tangent kernel. In The International Conference on Learning Representations, 2021.

Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Battenberg, Carl
Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al. Deep speech 2: End-to-
end speech recognition in english and mandarin. In International conference on machine learning,
pp. 173–182. PMLR, 2016.

Michael L Anderson. Neural reuse: A fundamental organizational principle of the brain. Behavioral
and brain sciences, 33(4):245–266, 2010.

Jacob Andreas. Measuring compositionality in representation learning. In International Conference
on Learning Representations, 2018.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 39–48, 2016.

S. Arora, N. Cohen, and E. Hazan. On the optimization of deep networks: Implicit acceleration
by overparameterization. 35th International Conference on Machine Learning, ICML 2018, 1:
372–389, 2018. arXiv: 1802.06509 ISBN: 9781510867963.

Alexander Atanasov, Blake Bordelon, and Cengiz Pehlevan. Neural networks as kernel learners: The
silent alignment effect. In International Conference on Learning Representations, 2021.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework
for self-supervised learning of speech representations. Advances in neural information processing
systems, 33:12449–12460, 2020.

P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning from examples
without local minima. Neural Networks, 2(1):53–58, January 1989. ISSN 08936080. doi: 10.1016/
0893-6080(89)90014-2. URL http://linkinghub.elsevier.com/retrieve/pii/
0893608089900142.

Michael Beukman, Devon Jarvis, Richard Klein, Steven James, and Benjamin Rosman. Dynamics
generalisation in reinforcement learning via adaptive context-aware policies. Advances in Neural
Information Processing Systems, 36, 2024.

Alberto Bietti and Julien Mairal. On the inductive bias of neural tangent kernels. Advances in Neural
Information Processing Systems, 32, 2019.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Lukas Braun, Clémentine Dominé, James Fitzgerald, and Andrew Saxe. Exact learning dynamics of
deep linear networks with prior knowledge. Advances in Neural Information Processing Systems,
35:6615–6629, 2022.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
Advances in neural information processing systems, 32, 2019.

George E Dahl, Dong Yu, Li Deng, and Alex Acero. Context-dependent pre-trained deep neural
networks for large-vocabulary speech recognition. IEEE Transactions on audio, speech, and
language processing, 20(1):30–42, 2011.

K. Fukumizu. Effect of Batch Learning In Multilayer Neural Networks. In Proceedings of the 5th
International Conference on Neural Information Processing, pp. 67–70, 1998.

11

http://linkinghub.elsevier.com/retrieve/pii/0893608089900142
http://linkinghub.elsevier.com/retrieve/pii/0893608089900142
http://github.com/google/jax

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kunihiko Fukushima. Visual feature extraction by a multilayered network of analog threshold
elements. IEEE Transactions on Systems Science and Cybernetics, 5(4):322–333, 1969.

Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature and lazy
training in deep neural networks. Journal of Statistical Mechanics: Theory and Experiment, 2020
(11):113301, 2020.

Sebastian Goldt, Madhu Advani, Andrew M Saxe, Florent Krzakala, and Lenka Zdeborová. Dynamics
of stochastic gradient descent for two-layer neural networks in the teacher-student setup. Advances
in neural information processing systems, 32, 2019.

Sebastian Goldt, Marc Mézard, Florent Krzakala, and Lenka Zdeborová. Modeling the influence of
data structure on learning in neural networks: The hidden manifold model. Physical Review X, 10
(4):041044, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate Saenko. Learning to
reason: End-to-end module networks for visual question answering. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 804–813, 2017.

Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal, and Phillip Isola.
The low-rank simplicity bias in deep networks. arXiv preprint arXiv:2103.10427, 2021.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018.

Devon Jarvis, Richard Klein, Benjamin Rosman, and Andrew Saxe. On the specialization of neural
modules. ICLR, 2023.

Longlong Jing and Yingli Tian. Self-supervised visual feature learning with deep neural networks: A
survey. IEEE transactions on pattern analysis and machine intelligence, 43(11):4037–4058, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Communications of the ACM, 60(6):84–90, 2017.

Brenden M Lake. Compositional generalization through meta sequence-to-sequence learning. Ad-
vances in neural information processing systems, 32, 2019.

Brenden M Lake and Marco Baroni. Human-like systematic generalization through a meta-learning
neural network. Nature, 623(7985):115–121, 2023.

A.K. Lampinen and S. Ganguli. An analytic theory of generalization dynamics and transfer learning
in deep linear networks. In T. Sainath (ed.), International Conference on Learning Representations,
2019. ISBN 0311-5518. doi: 10.1080/03115519808619195. URL http://arxiv.org/abs/
1809.10374. arXiv: 1809.10374.

Victor Lecomte, Kushal Thaman, Rylan Schaeffer, Naomi Bashkansky, Trevor Chow, and Sanmi
Koyejo. What causes polysemanticity? an alternative origin story of mixed selectivity from
incidental causes. In ICLR 2024 Workshop on Representational Alignment, 2024.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in neural information processing systems, 32, 2019.

Sebastian Lee, Sebastian Goldt, and Andrew Saxe. Continual learning in the teacher-student setup:
Impact of task similarity. In International Conference on Machine Learning, pp. 6109–6119.
PMLR, 2021.

Sebastian Lee, Stefano Sarao Mannelli, Claudia Clopath, Sebastian Goldt, and Andrew Saxe.
Maslow’s hammer for catastrophic forgetting: Node re-use vs node activation. arXiv preprint
arXiv:2205.09029, 2022.

12

http://arxiv.org/abs/1809.10374
http://arxiv.org/abs/1809.10374

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard Schölkopf,
and Olivier Bachem. Challenging common assumptions in the unsupervised learning of disentan-
gled representations. In international conference on machine learning, pp. 4114–4124. PMLR,
2019.

Flavio Martinelli, Berfin Simsek, Wulfram Gerstner, and Johanni Brea. Expand-and-cluster: Parame-
ter recovery of neural networks. arXiv preprint arXiv:2304.12794, 2023.

Saeed Masoudnia and Reza Ebrahimpour. Mixture of experts: a literature survey. Artificial Intelli-
gence Review, 42:275–293, 2014.

Nathan Michlo, Richard Klein, and Steven James. Overlooked implications of the reconstruction loss
for vae disentanglement. In Proceedings of the Thirty-Second International Joint Conference on
Artificial Intelligence, pp. 4073–4081, 2023.

Francesca Mignacco, Florent Krzakala, Pierfrancesco Urbani, and Lenka Zdeborová. Dynamical
mean-field theory for stochastic gradient descent in gaussian mixture classification. Advances in
Neural Information Processing Systems, 33:9540–9550, 2020.

Marvin Minsky and Seymour Papert. An introduction to computational geometry. Cambridge tiass.,
HIT, 479(480):104, 1969.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall. Activation
functions: Comparison of trends in practice and research for deep learning. arXiv preprint
arXiv:1811.03378, 2018.

Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill, 2(11):e7,
2017a.

Vinay V Ramasesh, Ethan Dyer, and Maithra Raghu. Anatomy of catastrophic forgetting: Hidden
representations and task semantics. arXiv preprint arXiv:2007.07400, 2020.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Peter Riegler and Michael Biehl. On-line backpropagation in two-layered neural networks. Journal
of Physics A: Mathematical and General, 28(20):L507, 1995.

Mattia Rigotti, Omri Barak, Melissa R Warden, Xiao-Jing Wang, Nathaniel D Daw, Earl K Miller,
and Stefano Fusi. The importance of mixed selectivity in complex cognitive tasks. Nature, 497
(7451):585–590, 2013.

Timothy T Rogers, James L McClelland, et al. Semantic cognition: A parallel distributed processing
approach. MIT press, 2004.

Laura Ruis and Brenden Lake. Improving systematic generalization through modularity and augmen-
tation. arXiv preprint arXiv:2202.10745, 2022.

David Saad and Sara A Solla. Exact solution for on-line learning in multilayer neural networks.
Physical Review Letters, 74(21):4337, 1995.

A.M. Saxe, J.L. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of learning
in deep linear neural networks. In Y. Bengio and Y. LeCun (eds.), International Conference on
Learning Representations, Banff, Canada, 2014. Oral presentation. arXiv: 1312.6120v3.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Andrew Saxe, Shagun Sodhani, and Sam Jay Lewallen. The neural race reduction: Dynamics of
abstraction in gated networks. In International Conference on Machine Learning, pp. 19287–19309.
PMLR, 2022.

Andrew M Saxe, James L McClelland, and Surya Ganguli. A mathematical theory of semantic
development in deep neural networks. Proceedings of the National Academy of Sciences, 116(23):
11537–11546, 2019.

Hyunjune Sebastian Seung, Haim Sompolinsky, and Naftali Tishby. Statistical mechanics of learning
from examples. Physical review A, 45(8):6056, 1992.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. nature, 550(7676):354–359, 2017.

Berfin Simsek, François Ged, Arthur Jacot, Francesco Spadaro, Clément Hongler, Wulfram Gerstner,
and Johanni Brea. Geometry of the loss landscape in overparameterized neural networks: Symme-
tries and invariances. In International Conference on Machine Learning, pp. 9722–9732. PMLR,
2021.

Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with context-
based representations. In International Conference on Machine Learning, pp. 9767–9779. PMLR,
2021.

Robert C Thompson. Principal submatrices ix: Interlacing inequalities for singular values of
submatrices. Linear Algebra and its Applications, 5(1):1–12, 1972.

Ankit Vani, Max Schwarzer, Yuchen Lu, Eeshan Dhekane, and Aaron Courville. Iterated learning for
emergent systematicity in vqa. arXiv preprint arXiv:2105.01119, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, 2022.

Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio Savarese.
Taskonomy: Disentangling task transfer learning. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3712–3722, 2018.

Lenka Zdeborová and Florent Krzakala. Statistical physics of inference: Thresholds and algorithms.
Advances in Physics, 65(5):453–552, 2016.

A LINEAR NEURAL NETWORKS BACKGROUND

In this section we review the deep linear neural network theory paradigm. Importantly, we do
not review other theories such as the Neural Tangent Kernel (Jacot et al., 2018) which linearize
neural networks and establish the regimes when this linearization is valid. These theories are highly
insightful in their own right and have shed light on the training of various neural networks in general
(Jacot et al., 2018; Bietti & Mairal, 2019; Wang et al., 2022). However, we do not build directly on
these works and so limit the scope of this review to the linear neural networks paradigm (Saxe et al.,
2014; 2019) in Appendix A.1 and GDLNs (Saxe et al., 2022) in Appendix A.2.

A.1 DEEP LINEAR NEURAL NETWORKS

The primary theoretical strategy in this work is to calculate the training dynamics of linear neural
networks or modules formed from these networks. A first important distinction is between deep and
shallow linear networks. While deep linear networks can only represent linear input-output mappings,
the dynamics of learning change dramatically with the introduction of one or more hidden layers
(Fukumizu, 1998; Saxe et al., 2014; 2019; Arora et al., 2018; Lampinen & Ganguli, 2019), and the

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

learning problem becomes non-convex (Baldi & Hornik, 1989). They therefore serve as a tractable
model of the influence of depth specifically on learning dynamics, which prior work has shown to
impart a low-rank inductive bias on the linear mapping (Huh et al., 2021). The exact solutions to the
dynamics of learning from small random weights in deep linear networks have been derived in Saxe
et al. (2014; 2019) and as a result it is possible to obtain the full learning trajectory analytically for a
number of representative tasks.

To review this paradigm consider a linear network with one hidden layer computing output Ŷ =
W 2W 1X in response to an input batch of data X , with P datapoints, and trained to minimize the
quadratic loss using gradient descent:

L(W 1,W 2) =

P∑
i=1

1

2
||Yi −W 2W 1Xi||22

This gives the learning rules for each layer with learning rate ϵ as:

∆W 1 = ϵPW 2T (Σyx −W 2W 1Σx); ∆W 2 = ϵP (Σyx −W 2W 1Σx)W 1T

These equations can be derived for a batch of data using the linearity of expectation, where Σx =
E[XXT] is the input correlation matrix and Σyx = E[Y XT] is the input-output correlation matrix,
as follows:

∆W 1 = ϵ
d

dW 1
L(W 1,W 2)

= ϵ
d

dW 1

P∑
i=1

1

2
(Yi −W 2W 1Xi)

T (Yi −W 2W 1Xi)

= ϵ

P∑
i=1

W 2T (Yi −W 2W 1Xi)X
T
i

= ϵP
1

P

P∑
i=1

W 2T (Yi −W 2W 1Xi)X
T
i

= ϵPE[W 2T (YiX
T
i −W 2W 1XiX

T
i)]

= ϵPW 2T (E[YiX
T
i]−W 2W 1E[XiX

T
i])]

= ϵPW 2T (Σyx −W 2W 1Σx)

∆W 2 = ϵ
d

dW 2
L(W 1,W 2)

= ϵ
d

dW 2

P∑
i=1

1

2
(Yi −W 2W 1Xi)

T (Yi −W 2W 1Xi)

= ϵ

P∑
i=1

(Yi −W 2W 1Xi)(W
1Xi)

T

= ϵP
1

P

P∑
i=1

(Yi −W 2W 1Xi)X
T
i W

1T

= ϵPE[(YiX
T
i −W 2W 1XiX

T
i)]W

1T

= ϵP (E[YiX
T
i]−W 2W 1E[XiX

T
i])]W

1T

= ϵP (Σyx −W 2W 1Σx)W 1T

By using a small learning rate ϵ and taking the continuous time limit, the mean change in weights is
given by:

τ
d

dt
W 1 = W 2T (Σyx −W 2W 1Σx); τ

d

dt
W 2 = (Σyx −W 2W 1Σx)W 1T

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

where τ = 1
Pϵ is the learning time constant. Here, t measures units of learning epochs. It is helpful

to note that since we are using a small learning rate the full batch gradient descent and stochastic
gradient descent dynamics will be the same. Saxe et al. (2019) has shown that the learning dynamics
depend on the singular value decomposition of:

Σyx = USV T =

min(|X|,|Y |)∑
α=1

δαu
αvα

T

; Σx = V DV T =

|X|∑
α=1

λαu
αvα

T

Here |X| denotes the rank of the matrix. To solve for the dynamics we require that Σyx and Σx are
mutually diagonalizable such that the right singular vectors V of Σyx are also the singular vectors of
Σx. We verify that this is true for the tasks considered in this work and assume it to be true for these
derivations. We also assume that the network has at least |Σyx| hidden neurons (the rank of Σyx

which determines the number of singular values in the input-output correlation matrix) so that it
can learn the desired mapping perfectly. If this is not the case then the model will learn the top nh

singular values of the input-output mapping where nh is the number of hidden neurons (Saxe et al.,
2014). To ease notation for the remainder of this section we will use nh to denote both the number of
hidden neurons and rank of Σyx.

We now perform a change of variables using the SVD of the dataset statistics. The purpose of this
step is to decouple the complex dynamics of the weights of the network, with interacting terms, into
multiple one-dimensional systems. Specifically we set:

W 2 = UW
2
RT ; W 1 = RW

1
V T

where R is an arbitrary orthogonal matrix such that RTR = I . Substituting this into the gradient
descent update rules for the parameters above yields:

τ
d

dt
W 1 =W 2T (Σyx −W 2W 1Σx)

τ
d

dt
(RW

1
V T) =RW

2
UT (USV T − UW

2
RTRW

1
V TV DV T)

τ
d

dt
(RW

1
V T) =RW

2
(SV T −W

2
W

1
DV T)

τ
d

dt
W

1
=W

2
(S −W

2
W

1
D)

and

τ
d

dt
W 2 =(Σyx −W 2W 1Σx)W 1T

τ
d

dt
(UW

2
RT) =(USV T − UW

2
RTRW

1
V TV DV T)VW

1
RT

τ
d

dt
(UW

2
RT) =(US − UW

2
W

1
D)W

1
RT

τ
d

dt
W

2
=W

1
(S −W

2
W

1
D)

Here we have used the orthogonality of the singular vectors such that V TV = I and UTU = I .
Importantly, if the assumptions that the weight matrices align and the correlation matrices are mutually
diagonalisable hold, then all matrices in the dynamics are now diagonal and represent the decoupling
of the network into the modes transmitted from input to the hidden neurons and from hidden to output
neurons. In practice we do not initialize the network weights to adhere to this diagonalisation and so
it is not guaranteed that the matrices will be diagonal at initialization. However, empirically it has
been found that the network singular values rapidly align to this required configuration (Saxe et al.,
2014; 2019) and this has been termed the “silent alignment effect” (Atanasov et al., 2021).However,
if this alignment does not occur fully then the weight matrices after the change of variables will not
be diagonal. The alignment assumption corresponds to the assumption that the network is feature
learning perfectly. While the need for perfect feature learning is strong, it is a valid start for the

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

questions around feature learning considered in this work. If the assumption of the correlation
matrices being mutually diagonalisable does not hold then the update equations simplify to:

τ
d

dt
W

1
=W

2
(SV̂ TV −W

2
W

1
D)

and

τ
d

dt
W

2
=W

1
(SV̂ TV −W

2
W

1
D)

where V̂ now denotes the right singular vectors of Σyx and are different from V from Σx. We
note that the remainder of the derivation requires both assumptions, however these two equations
provide a valid dynamics reduction which could be sufficient for many interesting cases. If the weight
alignment holds then this is especially true as V̂ TV would become an small interpretable matrix used
to align the singular vectors from the correlation matrices. Thus, if we let λα be the α-th mode of S,
δα for D, ω1

α for W
1

and ω2
α for W

2
then we can write the individual mode dynamics as:

τ
d

dt
ω1
α = ω2

α(λα − ω2
αω

1
αδα); τ

d

dt
ω2
α = ω1

α(λα − ω2
αω

1
αδα)

In general ω1 and ω2 can be different but if they are initialized with small values then they will be
roughly equal. We study this balanced setting and assume it to be true for all dynamics calculations
in this work. Thus we let ω1 = ω2 and track the dynamics of an entire mode as ωα = ω2

αω
1
α. Using

the product rules this gives the separable differential equation (we will drop the dependence on α
now for notational convenience):

τ
d

dt
ω =ω1(τ

d

dt
ω2) + (τ

d

dt
ω1)ω2

τ
d

dt
ω =ω1(ω1(λ− ω2ω1δ)) + (ω2(λ− ω2ω1δ))ω2

τ
d

dt
ω =(ω1)2(λ− ω2ω1δ) + (ω2)2(λ− ω2ω1δ)

τ
d

dt
ω =ω(λ− ωδ) + ω(λ− ωδ)

τ
d

dt
ω =2ω(λ− ωδ)

Integrating to solve for t then yields:

dt =
τ

2

dω

ω(λ− ωδ)

t =
τ

2

∫ ωf

ω0

dω

ω(λ− ωδ)

t =
τ

2λ
ln

ωf (λ− ω0δ)

ω0(λ− ωfδ)

where t is the time taken for the mode to reach a value ω(t) = ωf from the initial strength ω(0) = a0.
By re-arranging the terms we can obtain the dynamics of the mode for all points in time:

πα(t) =
λα/δα

1− (1− λα

δαπ0
) exp(−2λα

τ t)
(7)

All together this means that, given the SVDs of the two correlation matrices, the learning dynamics
can be described explicitly as:

W 2(t)W 1(t) = UA(t)V T =

2nx∑
α=1

πα(t)u
αvαT

where A(t) is the effective singular value matrix of the network’s mapping and the trajectory of each
singular value in A(t) is described as by πα(t) which begins at the initial value π0 when t = 0 and

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

increases to π∗
α = λα/δα as t→∞. From these dynamics it is helpful to note that the time-course

of the trajectory is only dependent on the Σyx singular values. Thus, Σx affects the stable point of
the network singular values but not the time-course of learning.

To make this setup more concrete, consider the example shown in Figure 7. For simplicity in this
case we pick the input to be the identity matrix where each datapoint is a 1-hot vector. This 1-hot
vector then depicts the index of an item in the dataset. The task then is for the network to produce a
set of features or properties for each item. For example, when asked about the “Canary” item the
network must predict that it can “Grow”, “Move” and “Fly” but must not indicate that it has “Roots”.
Importantly, this dataset has a hierarchical structure defined by the output labels. For example, all
items can grow, animals can move and plants have roots. Thus, the grow item depicts the top level of
the hierarchy. Move and roots discriminate between animals and plants. Then each item has its own
feature unique to it. This discriminates types of animals (canary vs salmon) and types of plants (oak
vs rose).

The SVD of this dataset produces the singular vector matrices U and V T depicting output and
input “concepts” respectively. Due to the hierarchical nature of the dataset the input singular vectors
discriminate between levels of the hierarchy. For example the second row of V T has positive
elements to detect animals and negative elements to detect plants. The last two rows identify types of
animals and types of plants. The output concepts then are the features corresponding to each level of
the hierarchy. For example, the second column of U which corresponds with the animal vs plant
discriminator of V T has positive elements for the move attribute and negative elements for roots.
Taken together U and V T depict that animals can move and do not have roots. The S matrix then
depicts the strength of association from input to output concepts. It is important to note that these
interpretable input and output singular vector matrices and the mode strengths arise purely from the
dataset statistics.

Based on the dataset statistics we can then determine the linear neural network training dynamics
in terms of the association it has between concepts - its mode strength when written in terms of the
dataset SVD. Thus, we again assume that the singular vectors align very early on in training and
it is sufficient to consider just the decoupled modes. If this is the case then the full neural network
training dynamics can be obtained in closed-from using Equation 7. In this example we see near
exact agreement between the closed-form predicted dynamics and the actual dynamics of training the
neural network.

A.2 GATED DEEP LINEAR NETWORKS

Saxe et al. (2022) extends the linear network dynamics framework above by incorporating a gating
mechanism. One primary benefit of the gating is to add non-linearity to the network without needing
to add activation functions. As a result the training dynamics for this model are also tractable. The
framework is known as the Gated Deep Linear Network (GDLN) and defines a dynamic neural
architecture by using an “architecture graph” where a particular walk through the architecture graph
provides a network instantiation which is only used for a subset of the training dataset. Every
edge in the graph is a layer of learnable network parameters and every vertex is a layer of neurons.
Consequentially, vertices with only out-going edges correspond to the input layers of the network (a
layer of neurons who’s values are specified by the dataset, typically denoted as xi ∈ X). Similarly,
vertices with only in-coming edges correspond to output layers of th network (typically denoted as ŷ
which provides an approximation of some ground truth label y).

When presented with an input datum a set of gating variables gv and ge control the flow of
information through the graph by switching off neurons within a layer (gv) and edges in the graph
(ge). Thus, the pathway - sequence of operations - the datum follows through the network is
determined by the gating operations. Importantly, once determined by the gating, the network
architecture is static and acts as a linear neural network. Thus, this static subnetwork is amenable to
the same analysis as the deep linear networks above by utilising a layer-wise (each weight matrix
connecting two vertices) singular value decomposition. The analysablity of the model is due to the

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Training Dynamics

Input "Concepts"
Hierarchy Levels

Output "Concepts"
Object Features

(Equation 2.1)

a)

b)

c)

Figure 7: Example dataset and linear dynamics from (Saxe et al., 2019). a) Dataset with hierarchical
structure defined by the output labels and the corresponding SVD. b) The linear neural network
decomposition in terms of the dataset SVD. A(t) will develop over time to learn the association
between modes from S. c) The dynamics of the linear network mode strengths over time. Initially
all modes begin at 0 but increase to their final values where they have learned the dataset statistics.
Dataset inspired by Rogers et al. (2004), and the exact setting and dynamics are from (Saxe et al.,
2019).

linear nature of these “pathways” through the network which have no activation functions. As a
result it is possible to explain their training dynamics as though they are linear neural networks
(Saxe et al., 2014). The benefit of the layer-wise SVD dynamics approach is that the subnetworks
being tracked do not compete or interfere as they are decoupled. As a result, all that is required
to extend the deep linear network dynamics is to account for the frequency with which an edge
(a set of weights) is used in the architecture graph. More frequently used edges will naturally
learn quicker as a result. Thus, GDLNs are a class of neural network architectures composed of
a number of linear neural networks which are selectively connected to different portions of the
input feature space, output feature space and only used for a subset of datapoints. The nonlin-
earity then comes in how these pathways are allocated which is controlled by a discrete gating variable.

Formally, let Γ denote a directed graph with nodes V and edges E. Each node v ∈ V represents
a layer of neurons with activity hv ∈ R|v| where |v| ∈ N denotes the number of neurons in the
layer. Each edge e ∈ E connects two nodes with a weight matrix We of size |t(e)| × |s(e)| where
s, t : E → V return the source and target nodes of the edge, respectively. It is also helpful to
generalize this notion of edges to paths p, which are a sequence of edges Wp. Thus, paths also
connect their source node s(p) to their target node t(p). We denote the portion of a path p preceding
a particular edge e as s̄(p, e) and the portion of the path subsequent to the edge as t̄(p, e) such that
p = Wt̄(p,e)WeWs̄(p,e). We collect nodes with only outgoing edges into the set In(Γ) ⊂ V and call
them input nodes. Similarly, output nodes only have incoming edges and are collected in the set
Out(Γ) ⊂ V. Activity is propagated through the network for a given datapoint which specifies
values xv ∈ R|v| for all input nodes v ∈ In(Γ). The activity of each subsequent layer is then given by

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

hv = gv
∑

q∈E:t(q)=v gqWqhs(q) where gv is a node gate and gq is an edge gate. Thus, the gating
variables modulate the propagation of activity through the network by switching off entire nodes (gv)
and edges between nodes (gq).

We train the GDLN to minimize the L2 loss averaged over the full dataset using gradient descent.
Each datapoint then is a triple specified by the input x, output labels y and specified gating structure g:

L({W}) =

〈
1

2

∑
v∈Out(Γ)

||yv − hv||22

〉
(x,y,g)

where yv ∈ R|v| for v ∈ Out(Γ) (8)

If we denote P(e) as the set of paths which pass through edge e and T (v) as the set of paths
terminating at node v then the update step for a single weight matrix in the GDLN is:

τ
d

dt
We = −

δL({W})
δWe

=
∑

p∈P(e)

WT
t̄(p,e)

Σyx(p)−
∑

j∈T (t(p))

WjΣ
x(j, p)

WT
s̄(p,e) ∀ e ∈ E (9)

Thus, the update to a weight matrix We is determined by the error at the end of a path which it
contributes to Σyx(p) −

∑
j∈T (t(p)) WjΣ

x(j, p) summed over all paths it is a part of p ∈ P(e).
Notably, all dataset statistics which direct learning are collected into the correlation matrices:

Σyx(p) = ⟨gpyt(p)xT
s(p)⟩(x,y,g); Σx(j, p) = ⟨gjxs(j)x

T
s(p)gp⟩(x,y,g) (10)

Crucially, these dataset statistics now depend on the gating variables g, indicating that each path
sees its own effective dataset determined by the network architecture. From this perspective, each
path resembles the gradient flow of a deep linear network (Saxe et al., 2014; 2019) which have been
shown to exhibit nonlinear learning dynamics observed in general deep neural networks (Baldi &
Hornik, 1989; Fukumizu, 1998; Arora et al., 2018; Lampinen & Ganguli, 2019). The final step then
is to use the change of variables employed by the linear network dynamics (Saxe et al., 2014; 2019).
Assuming the effective dataset correlation matrices are mutually diagonalizable, we write them in
terms of their singular value decomposition and the path weights in terms of the singular vectors:

Σyx(p) = Ut(p)S(p)V
T
s(p); Σx(j, p) = Vs(j)D(j, p)V T

s(p); We(t) = Rt(e)Be(t)R
T
s(e) (11)

where S(p) and D(p) are diagonal matrices, Be(t) are the new dynamic variables, Rv satisfies
RT

v Rv = I for all v ∈ V, and for input and output nodes Rs(p) = Vs(p) and Rt(p) = Ut(p),
respectively. This change of variables removes competitive interactions between singular value
modes along a path such that the dynamics of the overall network is described by summing several
“1D networks” (one for each singular value) resulting in the “neural race reduction” (Saxe et al., 2022):

τ
d

dt
Be =

∑
p∈P(e)

Bp\e

S(p)− ∑
j∈T (t(p))

BjD(j, p)

 ∀ e ∈ E (12)

This reduction demonstrates that the learning dynamics depend both on the input-output correlations
of the effective path datasets and the number of paths to which an edge contributes. Ultimately, the
paths which learn the fastest from both pressures will win the neural race.

B AN ALGORITHM FOR IDENTIFYING GATING PATTERNS

In this work, our findings on ReLU networks did not rely on the manner that the ReLN (specifically
the appropriate gating patterns) is obtained. This is also why it was necessary to prove the uniqueness
of the ReLN, for example Proposition 4.2 demonstrates that there is no other ReLN which matches
the ReLU loss trajectory perfectly in this case. Thus, we could be certain of our findings regardless
of where the gates came from. However, since a contribution is the general connection between the
ReLU and GDLN, it is helpful to provide a simple algorithm which can identify the ReLN in the
space of GDLN architectures. We note that it is always possible to find a GDLN which imitates the
ReLU network, as we discuss in Section 3.

Our algorithm for identifying ReLNs is shown in Algorithm 1 and is based on a simple k-Means
clustering. The primary idea is that we sample the hidden layer representations from the ReLU

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

network at various stages throughout training. This makes it easier to detect certain structures which
emerge in the gating patterns - such as the common pathway emerging early in training. We then
run the training of the network multiple times to mitigate the impact of symmetries emerging which
do not impacting the functional mapping of the network, such as permutations and neuron splitting
(Simsek et al., 2021; Martinelli et al., 2023). Each sampling from the hidden representation will have
shape (H,N) where H is the number of hidden neurons and N is the number of datapoints. We
stack these samples across trainings and timesteps (vertically). Thus, if C samples are taken then the
ultimate set of datapoints to be clustered will be of shape (C ∗H,N). Conceptually, this is C ∗H
hidden neurons all performing some gating over the dataset. We cluster these hidden neurons (the
C ∗H rows) with k-Means which results in k clusters with N -dimensional centroids. As is typical of
k-Means, k is a hyper-parameters which we choose. These centroids provide the gating pattern for
one type of hidden neuron and will become a gating pattern in the GDLN. Conceptually, if enough
neurons are of the same type, they form a modules and it is these implicit modules we aim to make
explicit in the ReLN.

Algorithm 1 A preliminary algorithm for finding a ReLN. This follows a simple K-means clustering
algorithm, but with samples taken throughout training such that it is easier to identify pathways
through the network as they emerge.
Require: num_trainings > 0, num_epochs > 0, σ > 0,(X ∈ Rd×N , Y ∈ Rp×N) (the dataset),
H ∈ Z,K ∈ Z

Ensure: σ < ϵ for sufficiently small ϵ ∈ R
for i in num_trainings do

W̄0 ∈ RH×d ∼ N (0, σ), W̄1 ∈ Rp×H ∼ N (0, σ)
for j in num_epochs do
{W̄0, W̄1} ← gradient_descent({W̄0, W̄1}, X) ▷ Apply gradient descent update step
if j mod 100 = 0 then ▷ Sample at different times to find different structure as it emerges

sample = maximum(W̄0X, 0) ▷ Sample latent representations with ReLU activation
sample_binary = step(sample) ▷ Threshold the sample to indicate if a neuron is active
samples = vstack(samples,sample_binary) ▷ Stack binary latent representations

end if ▷ Each sample appended vertically appears like a new neuron
end for

end for
centroids = K-means(samples,K)
return centroids

The results of using this algorithm to identify a ReLN for the 3-context dataset with different structure
between datasets (see Section 4) is shown in Figure 8. Each row in this figure corresponds to a
cluster and the columns correspond to the datapoints in the dataset. For example, the green row in
the 2-Clusters set reflects the dominant gating pattern of one cluster of hidden neurons across the
whole dataset. In this case, the hidden neurons allocated to this green cluster were typically active
in the context 2 and 3 but inactive in the first context (the first 8 columns have no activity which
corresponds to the datapoints in the first context). We show the clustering when k = 2, k = 3 and
k = 4. We note that all of the clusterings find a common pathway, likely due to its emergence early
on in training. From there they begin to identity mixed selective modules (which are active in two
contexts). However, it is worth noting the effect of averaging on these clusters. This is easiest to see
in the 3 Clusters case where the red cluster which is active for all contexts is also trying to capture
the cluster for the hidden neurons active in context 1 and 3. Thus, the middle portion of that cluster is
dulled compared to the others. In such cases it is difficult to interpret what exactly the gating pattern
should be and is a sign that more clusters are needed. However, this indicates a limitation of this
approach - it relies on the clusters to have a consistent gating pattern for each datapoint throughout
training. We do not limit the GDLN to such a condition. We note that when using 4-clusters the exact
gating pattern used in Section 4 emerges.

Since the algorithm is based on clustering, it is still necessary to pick the number of centroids
appropriately. This has a clear effect on the performance of the model as the number of clusters will
dictate the number of unique gating patterns our GDLN can use to imitate the ReLU network. We
can, however make this less qualitative by using the typical approach of finding an elbow in a plot of
number of clusters compared to a performance metric. In this case the performance metric is very
rich and can be the mean-squared error between the ReLU network and the GDLN with the identified

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0 5 10 15 20

C1

C2

C3

C4

C1

C2

C3

C1

C2

C
e
n

tr
o
id

 I
n

d
e
x

Neuron Index

0.0

0.2

0.4

0.6

0.8

1.0

2 Clusters

3 Clusters

4 Clusters

Figure 8: Clustering to find ReLNs: Clusters found with varying number of centroids for the
dataset in Section 4. Note the inconsistency in gating patterns arising from having too few clusters.
Consequently, centroids have neuron activity between 0.0 and 1.0 indicating that the gating is not
consistent across data points.

gating patterns. This can give a very precise measure of whether the number of clusters was correct.
We show this elbow in Figure 9 and see that the 4-Cluster model is the appropriate choice for the
elbow, as expected.

1 2 3 4 5 6 7
Number of Modules

0

50

100

150

200

250

300

M
ea

n
Sq

ua
re

d
Di

ffe
re

nc
e

Be
tw

ee
n

Re
LU

 L
os

s a
nd

 G
DL

N
Lo

ss

Figure 9: Clustering to find ReLNs: Finding the elbow to determine the minimal number of clusters
(linear modules in the ReLN).

The algorithm presented here can be seen as a very basic form of meta-learning for a GDLN, in the
sense that the GDLN is being trained for a meta-task of imitating the ReLU network, while learning to
minimize its own loss. However, the space of GDLNs is also larger than the space of ReLU networks.
For example, ReLU networks are only able to implement gating patterns as a function of their input,
while GDLNs are capable of gating based on rules, external patterns or previous datapoints. Here
we are concerned with GDLNs which are restricted to gating patterns implementable by ReLU
networks. However, many works have demonstrated a benefit from imposed architecturally modular
networks which specialize towards solving particular and interpretable sub-problems within a given
task (Andreas et al., 2016; Hu et al., 2017; Vani et al., 2021). Indeed, one proposed direction to obtain
modular networks is through meta-learning (Lake, 2019; Lake & Baroni, 2023). Mixed-selectivity,
and the closely related concept of polysemanticity (neurons being activated by multiple semantic unit
or features) (Olah et al., 2017a; Lecomte et al., 2024) have typically been thought to be unrelated
so such modularity and the systematic generalization (Ruis & Lake, 2022). However, as we have
shown in this work ReLU networks are able to form interpretable modules across contexts which

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

are mixed selective and form coupled modules. Thus, a more advanced meta-learning strategy for
GDLNs, than the approach of this section, which learns the gates based on an entirely different rule
or set of features may allow a GDLN to perform computations unavailable to the ReLU network and
by extension a ReLN. This appears to be a promising future direction.

C LEARNING DYNAMICS DURING TRANSITION TO NONLINEAR SEPARABILITY

Deep neural networks can learn representations suitable for solving nonlinear tasks. Here we
investigate their learning dynamics on a simple class of tasks. We will qualitatively understand the
dynamics of training a single hidden layer ReLU network by reducing it a gated deep linear network.

Dataset. The canonical example of a nonlinear problem is the XoR problem. We consider a slight
generalization: an XoR problem in the first two input dimensions, but a linearly separable problem in
the third. Our dataset X ∈ R3×4, y ∈ R1×4 consists of four data points in three dimensions,

X =

[−1 1 −1 1
−1 −1 1 1
−∆ ∆ ∆ −∆

]
(13)

y = [−1 1 1 −1] (14)

where ∆ ≥ 0 is a parameter that controls the linear separability of the points along the third
dimension.

Our goal will be to understand how a ReLU network transitions from a regime in which the data
points are clearly linearly separable (∆ >> 1) to the regime in which they are not (∆ = 0, the
classical XOR task).

GDLN with linear gating structure. We first solve the dynamics of the GDLN depicted in Fig. 2b
of the main text. This network contains two pathways, one gated on for the positive examples and
one gated on for the negative examples.

The effective dataset statistics for the positive examples, which we denote as Σyx(p), is therefore

Σyx(p) =
1

4
[1 1]

[
1 −1
−1 1
∆ ∆

]⊤

(15)

=
[
0 0 ∆

2

]
(16)

Σx(p, p) =
1

4

[
1 −1
−1 1
∆ ∆

][
1 −1
−1 1
∆ ∆

]⊤

(17)

=
1

2

 1 −1 0
−1 1 0
0 0 ∆2

 . (18)

By symmetry, the loss dynamics on the negative examples (driven by effective statistics Σyx(n))
will be identical to the positive examples. Because only one pathway is active on any example, they
develop independently.

To solve the dynamics, we leverage analytical solutions for deep linear networks describing each
pathway. The dynamics of a deep linear network depend on the singular value decomposition of the
effective input-output correlations Σyx(p) = USV ⊤ and input correlations Σx(p, p) = V DV ⊤.

The singular value decomposition is

Σyx(p) =
[
0 0 ∆

2

]
= [1]

[
∆
2

]
[0 0 1] (19)

so the singular value is s = ∆/2. The input variance in this singular vector direction is d = ∆2/2.
From the known time course of deep linear networks, the effective singular value in this pathway will
be

a(t) =
s/d

1− (1− s
da0

)e−2st/τ
(20)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

=
1/∆

1− (1− 1
∆a0

)e−∆t/τ
. (21)

The loss from this pathway Lp therefore is

Lp(t) = TrΣy(p)/2− sa(t) + 1/2da(t)2 (22)

= 1/4−∆a(t)/2 + ∆2a(t)2/4. (23)

By symmetry, the contribution of the other pathway for the negative examples is identical. Hence the
total loss is twice this single-pathway loss, yielding

L(t) = 1/2−∆a(t) + ∆2a(t)2/2, (24)

the expression plotted in Fig. 2e (blue) of the main text.

GDLN with XoR gating structure. If instead we have a GDLN with four pathways each gated on
for exactly one input sample, then the effective dataset only contains one input sample. Taking the
pathway gated on for the first example, for instance, the singular value of Σyx(1) = 1

4 [1 1 ∆] is

s =
√

1
8 + ∆2

16 . The associated input variance is d = 1
8 + ∆2

16 . Substituting these values into Eqn. 21
yields the effective singular value trajectory, and similar steps yield the total loss

L(t) = 1/2− 4sa(t) + 2da(t)2, (25)

the equation plotted in Fig. 2e (orange) of the main text.

By symmetry the remaining three datapoints have identical loss dynamics. Because all pathways
concern disjoint examples, they evolve independently.

We now ask for what range of ∆ will the linear separability GDLN learn faster than the XoR GDLN.
The critical ∆ separating these regimes is the one where both GDLNs learn equally quickly. The
learning speed of deep linear networks is of order O(1/s) where s is the singular value. The crossover
point is therefore

∆/2 =

√
1

8
+

∆2

16
(26)

4∆2 = 2 +∆2 (27)

∆ =
√
2/3. (28)

By testing points, we see that for 0 ≤ ∆ <
√
2/3 the XoR GDLN is faster while for ∆ >

√
2/3 the

linear separability GDLN is faster. Hence a ReLU network does not always exploit linear separability.
The linear margin is 2∆ but for small enough margins, the race will be won by the XoR GDLN,
implying a nonlinear decision boundary.

D PROOF OF LEMMA 4.1

Lemma 4.1: A trained ReLU network with a single hidden layer can only gate the input X using
the context features in isolation (X refers to the dataset described in Section 4) where a datapoint is
represented by the combination of a one-hot item and one-hot context variable.

Proof: We consider which functions are implementable by a ReLU network given that it is restricted
to using the same weights for both gating and association. Without loss of generality we will consider
the simplest instantiation of two objects with two contexts. Thus, there are four datapoints, specifically
x1 = [1, 0, 1, 0], x2 = [0, 1, 1, 0], x3 = [1, 0, 0, 1] and x4 = [0, 1, 0, 1].

First, we will first consider if combined gating strategies can be implemented. By a combined
gating strategy what we mean is that the gate is determined by both the object and context feature in
combination. Thus there must be at least one object which is gated differently for the same context
as another object (or else the gating could just be done based on context). Similarly there must be
a context where an objects gating changes (or else the gating could be done based on object). In
other words, there is no consistent gating for object or context in isolation across the whole dataset.
Assume a combined gating exists. This means there is at least one hidden neuron which is on for x2

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

and x3 but off for x1 and x4. Thus, the network must have sufficiently negative weights connecting
to this neuron such that its pre-activation is negative on x1. Let these weights be [a, b, c, d]. Then
a + c <= 0 and b + d <= 0. This means a <= −c and b <= −d. Conversely, b + c > 0 and
a + d > 0. Thus, b > −c and a > −d. Taken together a <= −c and b > −c means that a < b.
Additionally, b <= −d and a > −d means that b < a which is a contradiction. Thus, no such hidden
neuron with a combined gating can exist. This means that the network must gate consistently for
either context or object features. We can rule out object gating where at least two objects share a
hidden layer. There is an edge case to this proof which we cannot rule out, that of allocating a single
neuron for each data point. Here we cannot obtain a contradiction as there is no other data points to
contradict with. This is also the typical strategy employed by ReLU networks on XoR tasks such as
this one. We will cover this case in Proposition 4.2.

The gating strategy based only on items can be rules out as the mapping from context to output is
nonlinear by construction. Thus, regardless of the number of latent neurons there is no linear mapping
from contexts to output alone which will achieve no error, even if a module or pathway is dedicated
to a single item.

Thus, the only remaining gating strategies implementable by a one-layer ReLU network on the dataset
described in Section 4) is to gate consistently for the context variables. This leaves the common
pathway, a second of contextual pathways active for two contexts, and finally contextual pathways
active for a single context.

E PROOF OF PROPOSITION 4.2

Proposition 4.2: The ReLU network in this section: 1) has a unique corresponding ReLN which
imitates the loss dynamics, 2) finds the neural race winning strategy of mixed selectivity.

To begin we prove a generalization of the Cauchy Interlacing Theorem for non-square matrices which
closely follows the strategy of Thompson (1972). The aim of this is to show that if an input or output
feature is removed from a pathway’s effective dataset that the first singular value will decrease. Since
the singular values determine the loss trajectory of the network, this will then mean that the loss curve
will no longer fit the ReLU network. Thus:

For any matrix M lets denote the submatrix of rows i1, ..., ip and columns j1, ..., jq as
M [i1, ..., ip|j1, ..., jq]. To ease notation let µ = {i1, ..., ip} and ν = {j1, ..., jq}. Then B =
Σyx[µ|ν] since it is a submatrix of Σyx. If U = Im and V = In (the identity matrices of m and n
dimensions) then B can also be written as B = U [µ|1, ...,m]ΣyxV [1, .., n|ν]. Thus:

BBT = U [µ|1, ...,m]ΣyxV [1, .., n|ν]V T [ν|1, .., n]ΣT
yxU

T [1, ...,m|µ]
= U [µ|1, ...,m]AATUT [1, ...,m|µ]

where A = ΣyxV [1, .., n|ν] ∈ Rm×q with ordered, non-zero singular values of α1, α2, ..., αmin(m,q).
Thus BBT is a principal p-square submatrix of the m-square symmetric matrix UAATUT . Since
BBT is guaranteed to be symmetric we know it will be diagonalizable. Thus, there exists an
orthonormal basis of eigenvectors {b1, ..., bmin(p,q)} corresponding to eigenvalues {β2

1 , ..., β
2
min(p,q)}.

We define Gj = span[b1, ..., bj] (the span of the first j eigenvectors of BBT) for j ≤ min(p, q) and
Sj = span[aj , ..., amin(m,q)] (the span of the last min(m, q)− j + 1 eigenvectors of AAT). We also
define the subspace:

Hj =
{
UT [1, ...,m|µ]g, g ∈ Gj

}
There exits a unit length vector z̃ = UT [1, ...,m|µ]z for z ∈ Gj which lies in Hj ∩ Sj , as if there is
not then the dimension of Hj ∩Sj would be j+min(m, q)− j+1 which is impossible in Rmin(m,q).
Additionally:

z =

j∑
i=1

ribi and ⟨z, z⟩ = zT z =

j∑
i=1

r2i = 1

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

(since the eigenvectors of symmetric matrices are orthogonal). We begin by considering the
Rayleigh–Ritz quotient for BBT and a unit length vector v:

RBBT (v) =
⟨BBT v, v⟩
⟨v, v⟩

= vTBBT v =

min(p,q)∑
i=1

β2
i r

2
i

Here r2i acts as a weighting on each eigenvalue for how much it contributes to the sum. Thus to
minimize the quotient we place all of the weighting on the lowest eigenvalue β2

j by picking v such
that ri = 0 for i ∈ {1, ..., j − 1} and rj = 1. This result is known as the Min-Max Theorem. A
similar result can be shown where the j-th eigenvalue also results from maximizing the quotient over
the span of the bottom eigenvector beginning with the j-th eigenvector. Thus:

β2
j = min

v∈Gj ;||v||=1
RBBT (v) by the Min-Max Theorem

= min
v∈Gj ;||v||=1

⟨BBT v, v⟩

≤ ⟨BBT z, z⟩ since z ∈ Gj does not necessarily minimize the quotient

= ⟨U [µ|1, ...,m]AATUT [1, ...,m|µ]z, z⟩
= ⟨AAT

(
UT [1, ...,m|µ]z

)
, UT [1, ...,m|µ]z⟩ by the linearity of the inner product

= ⟨AAT z̃, z̃⟩
≤ max

ṽ∈Sj ;||v||=1
⟨AAT ṽ, ṽ⟩ since z̃ ∈ Sj does not necessarily maximize the quotient like ṽ

= max
ṽ∈Sj ;||v||=1

RAAT (ṽ)

= α2
j by the Min-Max Theorem

Thus βj ≤ αj . Similarly, ATA = V T [ν|1, .., n]ΣT
yxΣyxV [1, .., n|ν] with eigenvalues of

α2
1, α

2
2, ..., α

2
min(m,q). Thus, ATA is a principal q-square submatrix of the n-square symmetric

matrix V TΣT
yxΣyxV . Since ATA is guaranteed to be symmetric we know it will be diagonalizable.

Thus, there exists an orthonormal basis of eigenvectors {a1, ..., amin(m,q)} corresponding to eigen-
values {α2

1, ..., α
2
min(m,q)}. We overload the notation and define Gj = span[a1, ..., aj] (the span of

the first j eigenvectors of ATA) for j ≤ min(m, q) and Sj = span[σj , ..., σmin(m,n)] (the span of
the last min(m,n)− j + 1 eigenvectors of ΣT

yxΣyx). We also define the subspace:

Hj = {V [1, .., n|ν]g, g ∈ Gj}

There exits a unit length vector z̃ = V [1, .., n|ν]z for z ∈ Gj which lies in Hj ∩ Sj , as if there is not
then the dimension of Hj ∩ Sj would be j +min(m,n)− j + 1 which is impossible in Rmin(m,n).
Additionally:

z =

j∑
i=1

riai and ⟨z, z⟩ = zT z =

j∑
i=1

r2i = 1

(since the eigenvectors of symmetric matrices are orthogonal). We begin by considering the
Rayleigh–Ritz quotient for ATA and a unit length vector v:

RATA(v) =
⟨ATAv, v⟩
⟨v, v⟩

= vTATAv =

min(m,q)∑
i=1

α2
i r

2
i

Here r2i acts as a weighting on each eigenvalue for how much it contributes to the sum. Thus to
minimize the quotient we place all of the weighting on the lowest eigenvalue α2

j by picking v such
that ri = 0 for i ∈ {1, ..., j − 1} and rj = 1:

α2
j = min

v∈Gj ;||v||=1
RATA(v) by the Min-Max Theorem

= min
v∈Gj ;||v||=1

⟨ATAv, v⟩

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

≤ ⟨ATAz, z⟩ since z ∈ Gj does not necessarily minimize the quotient

= ⟨V T [ν|1, .., n]ΣT
yxΣyxV [1, .., n|ν]z, z⟩

= ⟨ΣT
yxΣyx (V [1, .., n|ν]z) , V [1, .., n|ν]z⟩ by the linearity of the inner product

= ⟨ΣT
yxΣyxz̃, z̃⟩

≤ max
ṽ∈Sj ;||v||=1

⟨ΣT
yxΣyxṽ, ṽ⟩ since z̃ ∈ Sj does not necessarily maximize the quotient like ṽ

= max
ṽ∈Sj ;||v||=1

RΣT
yxΣyx

(ṽ)

= σ2
j by the Min-Max Theorem

Thus αj ≤ σj . Putting both inequalities together we obtain the result: βj ≤ αj ≤ σj with the
particularly important case of β1 ≤ σ1. This means that a shared pathway will always be learned
faster than a pathway which considers only a subset of the input features or output labels (which
input features is determined by µ and which output labels is determined by ν).

Next we consider whether a different gating strategy exists which gates along datapoints instead of
features. We note that the output of the common pathway is element-wise positive for all datapoints
and all input features are positive. Consequently, let Σyx = Y XT be the correlation matrix of
this dataset. If we factor out Y as Y = Ŷ + Z where Ŷ is Y with a datapoint removed (its
column set to 0) and Z is the matrix of zeros everywhere except for the column removed from Y

where it is equal to Y . Then Σyx = Y XT = (Ŷ + Z)XT = Ŷ XT + ZXT . Now let v̂ be the
eigenvector corresponding to the largest eigenvalue of Ŷ XTXŶ and v be the top eigenvector for
the full dataset ΣyxΣyxT

. Then ΣyxΣyxT

v ≥ ΣyxΣyxT

v̂ = (Ŷ XT + ZXT)(Ŷ XT + ZXT)T v̂ =

Ŷ XTXŶ v̂ + Ŷ XTXZT v̂ + ZXTXŶ T v̂ + ZXTXZT v̂ ≥ Ŷ XTXŶ v̂ since v will be in the all
positive orthant where the entire dataset lies. Thus, the common pathway can only train faster with
the addition of more datapoints. Thus, the common pathway is the fastest possible subnetwork
for the given dataset, and any other module will train slower (there is an edge case here where the
added datapoint is orthogonal to all previous datapoints, in which case XZT = 0, however no such
datapoint exists in this dataset).

We can now rule out the edge case from Lemma 4.1. Once the common pathway has finished learning
there is no correlation between the context features and labels. As a consequence in a case when
a single datapoint is allocated to a single module all activity would need to be learned by the item
feature. In our dataset, removing all other items in a context would then be the same as removing
their individual input features. From the Cauchy Interlacing Theorem, we know this can only slow
learning.

Finally, we consider whether alternatives to the context sensitive pathways exists. We note that
from Lemma 4.1 with the addition of a common pathway, there are only two available options to
the remaining pathways, as these pathways can only gate consistently using context features. Thus,
either the modules must be active for one or for two contexts. In this case we can easily simulate
this to determine which is quickest and we see in Figure 4 that the architecture which uses modules
that are active for two contexts wins the race. indeed even if all six possible modules are trained
simultaneously, the pathways active for a single context remain inactive. Thus, the pathways active
for two contexts have a unique loss trajectory and when paired with the common pathway have a
unique and fastest loss trajectory. Thus, the reLU network uncovers the neural race winner.

F GDLN DYNAMICS WITH THREE CONTEXTS

We now derive the dynamics when there are three context specific portions of the output space.
Specifically, we have a dataset D = (I, C, Y) with object, context and output feature matrices
I ∈ RN×N , C ∈ R3×N and Y ∈ R2N−1×N respectively. Here N denotes the number of datapoints.
We concatenate the object and context features vertically to form the input matrix: X ∈ RN+3×N .
Every object (depicted by a one-hot input vector in I) can be encountered in every context (depicted
by another one-hot vector in C). It is convenient to partition the input matrix into three blocks with
the same one-hot context vector: X = [X1, X2, X3] where Xi ∈ RN+3×N/3. Similar partitions
follow for I and C separately. Both models are told which of the objects to produce the features for

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

as well as in which context the object is encountered in. The models must then produce the correct
output features, some of which are appropriate for all contexts and others only in one specific context.

Our ReLN trained to imitate the ReLU network loss trajectory and dynamics is composed of four
pathways. All pathways have a linear layer of 100 neurons resulting in the same number of total
hidden neurons as the ReLU network. The first pathway receives all objects and contexts and
maps to the full output matrix. We call this the common pathway and denote it by ∗, with weight
and output mapping: W∗ = {W 1

∗ ,W
2
∗ } and ŷ∗ = W 2

∗W
1
∗X . Thus, to model this pathway’s loss

trajectory we apply the linear dynamics equations of Saxe et al. (2014) to the input-output correlation:
Σ∗ = Y XT = U∗S∗V

T
∗ . The common pathway’s dynamics then follow W 2

∗W
1
∗ = U∗A∗(t)V

T
∗ and

will have the mapping Ŷ ∗(t) = U∗A(t)∗V
T
∗ X at all points in time. It is assumed that the network

aligns to the dataset singular vectors immediately with U∗ and V T
∗ . The dynamics of the network can

then be obtained through the decoupled singular value dynamics of:

πα(t) =
Sα/Dα

1− (1− Sα

Dαπ0
) exp(−2Sα

τ t)

where Sα is the α-th mode of the input-output correlation singular value matrix S, Dα is similarly
the α − th mode of the input correlation matrix (XXT) and π0 is the initial state of the network
singular values πα. Thus, πα begins with a value of π0 and increases until its convergence point at
Sα/Dα. We can then define the residual of this model as Y ∗ = Y − Ŷ ∗(∞).

The three remaining (context specific) pathways are then trained on this residual. The context specific
pathways are each gated on for two context settings and connect to all output features. In addition,
while these pathways are used in two contexts they are not shown the input context as a feature. The
result is that these pathways can only use the input features Ii in their mapping when they are gated
on. Since these pathways are trained at once and have dynamics which depend on the other pathways
we now use the GDLN framework (Saxe et al., 2022) to determine their dynamics (we review this
setup in Section 2 in the main text). The learning rule for a weight matrix in a GDLN follows the
update equation:

τ
d

dt
We = −

δL({W})
δWe

∀e ∈ E

=

〈 ∑
p∈P (e)

gpW
T
t̄(p,e)

[
yt(p)x

T
s(p) − ht(p)x

T
s(p)

]
WT

s̄(p,e)

〉
y,x,g

We note that for our architecture there is only one pathway that each edge is involved in. Thus we
may drop the summation over pathways and denote the one relevant pathway with p. We also apply
the usual linearity of the expectation:

= WT
t̄(p,e)

[〈
gpyt(p)x

T
s(p)

〉
y,x,g

−
〈
gpht(p)x

T
s(p)

〉
y,x,g

]
WT

s̄(p,e)

The next step is to determine the output of the network which impacts pathway p. Specifically we
substitute in for ht(p) the sum of all pathways mapping onto t(p) - the terminal point for pathway p:

ht(p) =
∑

j∈T (t(p))

gjWjxs(j)

Here T (t(p)) is the set of all pathways leading to the same terminal node as pathway p. Thus j
denotes each of these pathways with corresponding mapping Wj (note Wj here is the product of all
matrices along pathway j). Finally x(s(j)) is the input to pathway j since s(j) denotes the source of
j. Substituting this into the dynamics equation we obtain:

= WT
t̄(p,e)

〈gpyt(p)xT
s(p)

〉
y,x,g

−

〈
gp

∑
j∈T (t(p))

gjWjxs(j)x
T
s(p)

〉
y,x,g

WT
s̄(p,e)

= WT
t̄(p,e)

〈gpyt(p)xT
s(p)

〉
y,x,g

−
∑

j∈T (t(p))

Wj

〈
gjxs(j)x

T
s(p)gp

〉
y,x,g

WT
s̄(p,e)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

= WT
t̄(p,e)

Σyx(p)−
∑

j∈T (t(p))

WjΣ
x(j, p)

WT
s̄(p,e)

Thus, the dynamics for one layer of weights (We) in a single pathway (p) depends on the input-
output correlation for that pathway (Σyx(p)), the input correlation for the pathway itself (Σx(p, p))
and the input correlation for the pathway with the input to all other pathways sharing the terminal
point (Σx(j, p); j ̸= p). Thus we rewrite the dynamics in terms of these three kinds of correlations
separately:

= WT
t̄(p,e)

Σyx(p)−WpΣ
x(p, p)−

∑
j ̸=p∈T (t(p))

WjΣ
x(j, p)

WT
s̄(p,e)

We note then that for the particular setting we are working in Σx(j, p) = 1
2Σ

x(p, p). Thus, we denote
Σx = Σx(p, p) and substitute this relationship into the dynamics above. Now the input correlation
terms do not depend on the alternative pathways taken to the terminal points.

= WT
t̄(p,e)

Σyx(p)−WpΣ
x −

∑
j ̸=p∈T (t(p))

Wj
1

2
Σx

WT
s̄(p,e)

= WT
t̄(p,e)

Σyx(p)−WpΣ
x −

1

2

∑
j ̸=p∈T (t(p))

Wj

Σx

WT
s̄(p,e)

τ
d

dt
We = WT

t̄(p,e)

Σyx(p)−

Wp +
1

2

∑
j ̸=p∈T (t(p))

Wj

Σx

WT
s̄(p,e)

We now apply the change of variables to obtain the dynamics reduction:

τ
d

dt

(
Rt(e)BeRs(e)T

)
=

(
Ut(p)Bt̄(p,e)R

T
t(e)

)T [
Ut(p)S(p)V

T
s(p)−Ut(p)BpV

T
s(p) +

1

2

∑
j ̸=p∈T (t(p))

Ut(j)BjV
T
s(j)

Vs(j)D(j, p)V T
s(p)

(
Rs(e)Bs̄(p,e)V

T
s(p)

)T

We can then simplify the expression by multiplying matching eigenvectors and noting that Vs(p) =
Vs(j) since all pathways share the same input correlation:

τ
d

dt
Be = Bt̄(p,e)

S(p)−
Bp +

1

2

∑
j ̸=p∈T (t(p))

UT
t(p)Ut(j)Bj

D(p)

Bs̄(p,e)

This is usually where we would need to stop for the GDLN reduction and Section 4 where the output
matrix has different structure, the “race” dynamics are obtain using this reduction. However, in
Section 5 because the structure is symmetric we can exploit some more information in this task to
continue the derivation further to a closed form solution. Having determined the effective datasets for
each pathway we know that UT

t(p)Ut(j) = − 1
2I ∀ j ̸= p. Thus:

τ
d

dt
Be = Bt̄(p,e)

S(p)−
Bp +

1

2

∑
j ̸=p∈T (t(p))

−1

2
Bj

D(p)

Bs̄(p,e)

Finally, we note that due to the symmetry of the task between contexts, all pathways will learn
identical singular values. Thus Bp = Bj ∀ j ̸= p ∈ T (t(p)). Thus, we substitute this equality into

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

the dynamics reduction:

τ
d

dt
Be = Bt̄(p,e)

S(p)−
Bp −

1

4

∑
j ̸=p∈T (t(p))

Bp

D(p)

Bs̄(p,e)

= Bt̄(p,e)

[
S(p)− 1

2
BpD(p)

]
Bs̄(p,e)

We note that for each pathway our network has two layers: e ∈ {0, 1}. Thus:

τ
d

dt
B0 = Bt̄(p,0)

[
S(p)− 1

2
BpD(p)

]
Bs̄(p,0)

= B1

[
S(p)− 1

2
BpD(p)

]
I

and

τ
d

dt
B1 = Bt̄(p,1)

[
S(p)− 1

2
BpD(p)

]
Bs̄(p,1)

= I

[
S(p)− 1

2
BpD(p)

]
B0

Assuming balanced solutions, which is reasonable from small initial weights we know that B0 = B1.
We may also then switch to consider the dynamics of an entire pathway and not just one layer in the
pathway: Bp = B1B0. The dynamics of the pathway can be obtain by the product rule:

τ
d

dt
Bp = B0(τ

d

dt
B1) +B1(τ

d

dt
B0)

= B0B0

[
S(p)− 1

2
BpD(p)

]
+B1B1

[
S(p)− 1

2
BpD(p)

]
= Bp

[
S(p)− 1

2
BpD(p)

]
+Bp

[
S(p)− 1

2
BpD(p)

]
τ
d

dt
Bp = 2Bp

[
S(p)− 1

2
BpD(p)

]

This is a separable differential equation which can be solved as per the linear dynamics (Saxe et al.,
2014; 2019). Thus the full learning trajectory for the α-th mode of a a context dependent pathway is
(we have removed the dependence on p to lighten notation):

Bα(t) =
(2Sα/Dα)

1− (1− S
DB0) ∗ exp(2Sα

t
τ)

This is the equation used to obtain the “closed” dynamics in Section 5 for the three context case.

G GDLN DYNAMICS FOR FOUR AND FIVE CONTEXTS WITH HIERARCHICAL
STRUCTURE

G.1 GDLN DYNAMICS FOR FOUR CONTEXTS

We now derive the dynamics when there are four context specific portions of the output space. This
closely follows the derivation of the three context case from Appendix F, however we present it here
in full. Specifically, we have a dataset D = (I, C, Y) with object, context and output feature matrices
I ∈ RN×N , C ∈ R4×N and Y ∈ R2N−1×N respectively. Here N denotes the number of datapoints.
We concatenate the object and context features vertically to form the input matrix: X ∈ RN+4×N .
Every object (depicted by a one-hot input vector in I) can be encountered in every context (depicted
by another one-hot vector in C). It is convenient to partition the input matrix into three blocks with

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

the same one-hot context vector: X = [X1, X2, X3, X4] where Xi ∈ RN+4×N/4. Similar partitions
follow for I and C separately. Both models are told which of the objects to produce the features for
as well as in which context the object is encountered in. The models must then produce the correct
output features, some of which are appropriate for all contexts and others only in one specific context.

Our ReLN trained to imitate the ReLU network loss trajectory and dynamics is composed of four
pathways. All pathways have a linear layer of 100 neurons resulting in the same number of total
hidden neurons as the ReLU network. The first pathway receives all objects and contexts and
maps to the full output matrix. We call this the common pathway and denote it by ∗, with weight
and output mapping: W∗ = {W 1

∗ ,W
2
∗ } and ŷ∗ = W 2

∗W
1
∗X . Thus, to model this pathway’s loss

trajectory we apply the linear dynamics equations of Saxe et al. (2014) to the input-output correlation:
Σ∗ = Y XT = U∗S∗V

T
∗ . The common pathway’s dynamics then follow W 2

∗W
1
∗ = U∗A∗(t)V

T
∗ and

will have the mapping Ŷ ∗(t) = U∗A(t)∗V
T
∗ X at all points in time. It is assumed that the network

aligns to the dataset singular vectors immediately with U∗ and V T
∗ . The dynamics of the network can

then be obtained through the decoupled singular value dynamics of:

πα(t) =
Sα/Dα

1− (1− Sα

Dαπ0
) exp(−2Sα

τ t)

where Sα is the α-th mode of the input-output correlation singular value matrix S, Dα is similarly
the α − th mode of the input correlation matrix (XXT) and π0 is the initial state of the network
singular values πα. Thus, πα begins with a value of π0 and increases until its convergence point at
Sα/Dα. We can then define the residual of this model as Y ∗ = Y − Ŷ ∗(∞).

The three remaining (context specific) pathways are then trained on this residual. The context specific
pathways are each gated on for two context settings and connect to all output features. In addition,
while these pathways are used in two contexts they are not shown the input context as a feature. The
result is that these pathways can only use the input features Ii in their mapping when they are gated
on. Since these pathways are trained at once and have dynamics which depend on the other pathways
we now use the GDLN framework (Saxe et al., 2022) to determine their dynamics (we review this
setup in Section 2 in the main text). The learning rule for a weight matrix in a GDLN follows the
update equation:

τ
d

dt
We = −

δL({W})
δWe

∀e ∈ E

=

〈 ∑
p∈P (e)

gpW
T
t̄(p,e)

[
yt(p)x

T
s(p) − ht(p)x

T
s(p)

]
WT

s̄(p,e)

〉
y,x,g

We note that for our architecture there is only one pathway that each edge is involved in. Thus we
may drop the summation over pathways and denote the one relevant pathway with p. We also apply
the usual linearity of the expectation:

= WT
t̄(p,e)

[〈
gpyt(p)x

T
s(p)

〉
y,x,g

−
〈
gpht(p)x

T
s(p)

〉
y,x,g

]
WT

s̄(p,e)

The next step is to determine the output of the network which impacts pathway p. Specifically we
substitute in for ht(p) the sum of all pathways mapping onto t(p) - the terminal point for pathway p:

ht(p) =
∑

j∈T (t(p))

gjWjxs(j)

Here T (t(p)) is the set of all pathways leading to the same terminal node as pathway p. Thus j
denotes each of these pathways with corresponding mapping Wj (note Wj here is the product of all
matrices along pathway j). Finally x(s(j)) is the input to pathway j since s(j) denotes the source of
j. Substituting this into the dynamics equation we obtain:

= WT
t̄(p,e)

〈gpyt(p)xT
s(p)

〉
y,x,g

−

〈
gp

∑
j∈T (t(p))

gjWjxs(j)x
T
s(p)

〉
y,x,g

WT
s̄(p,e)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

= WT
t̄(p,e)

〈gpyt(p)xT
s(p)

〉
y,x,g

−
∑

j∈T (t(p))

Wj

〈
gjxs(j)x

T
s(p)gp

〉
y,x,g

WT
s̄(p,e)

= WT
t̄(p,e)

Σyx(p)−
∑

j∈T (t(p))

WjΣ
x(j, p)

WT
s̄(p,e)

Thus, the dynamics for one layer of weights (We) in a single pathway (p) depends on the input-
output correlation for that pathway (Σyx(p)), the input correlation for the pathway itself (Σx(p, p))
and the input correlation for the pathway with the input to all other pathways sharing the terminal
point (Σx(j, p); j ̸= p). Thus we rewrite the dynamics in terms of these three kinds of correlations
separately:

= WT
t̄(p,e)

Σyx(p)−WpΣ
x(p, p)−

∑
j ̸=p∈T (t(p))

WjΣ
x(j, p)

WT
s̄(p,e)

We note then that for the particular setting we are working in Σx(j, p) = 2
3Σ

x(p, p). Thus, we denote
Σx = Σx(p, p) and substitute this relationship into the dynamics above. Now the input correlation
terms do not depend on the alternative pathways taken to the terminal points.

= WT
t̄(p,e)

Σyx(p)−WpΣ
x −

∑
j ̸=p∈T (t(p))

Wj
2

3
Σx

WT
s̄(p,e)

= WT
t̄(p,e)

Σyx(p)−WpΣ
x −

2

3

∑
j ̸=p∈T (t(p))

Wj

Σx

WT
s̄(p,e)

τ
d

dt
We = WT

t̄(p,e)

Σyx(p)−

Wp +
2

3

∑
j ̸=p∈T (t(p))

Wj

Σx

WT
s̄(p,e)

We now apply the change of variables to obtain the dynamics reduction:

τ
d

dt

(
Rt(e)BeRs(e)T

)
=

(
Ut(p)Bt̄(p,e)R

T
t(e)

)T [
Ut(p)S(p)V

T
s(p)−Ut(p)BpV

T
s(p) +

2

3

∑
j ̸=p∈T (t(p))

Ut(j)BjV
T
s(j)

Vs(j)D(j, p)V T
s(p)

(
Rs(e)Bs̄(p,e)V

T
s(p)

)T

We can then simplify the expression by multiplying matching eigenvectors and noting that Vs(p) =
Vs(j) since all pathways share the same input correlation:

τ
d

dt
Be = Bt̄(p,e)

S(p)−
Bp +

2

3

∑
j ̸=p∈T (t(p))

UT
t(p)Ut(j)Bj

D(p)

Bs̄(p,e)

Once again because the dataset structure is symmetric we can exploit some more information in this
task to continue the derivation further to a closed form solution. Having determined the effective
datasets for each pathway we know that UT

t(p)Ut(j) = − 1
6I ∀ j ̸= p. Thus:

τ
d

dt
Be = Bt̄(p,e)

S(p)−
Bp +

2

3

∑
j ̸=p∈T (t(p))

−1

6
Bj

D(p)

Bs̄(p,e)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Finally, we note that due to the symmetry of the task between contexts, all pathways will learn
identical singular values. Thus Bp = Bj ∀ j ̸= p ∈ T (t(p)). Thus, we substitute this equality into
the dynamics reduction:

τ
d

dt
Be = Bt̄(p,e)

S(p)−
Bp −

1

9

∑
j ̸=p∈T (t(p))

Bp

D(p)

Bs̄(p,e)

= Bt̄(p,e)

[
S(p)− 1

3
BpD(p)

]
Bs̄(p,e)

We note that for each pathway our network has two layers: e ∈ {0, 1}. Thus:

τ
d

dt
B0 = Bt̄(p,0)

[
S(p)− 1

3
BpD(p)

]
Bs̄(p,0)

= B1

[
S(p)− 1

3
BpD(p)

]
I

and

τ
d

dt
B1 = Bt̄(p,1)

[
S(p)− 1

3
BpD(p)

]
Bs̄(p,1)

= I

[
S(p)− 1

3
BpD(p)

]
B0

Assuming balanced solutions, which is reasonable from small initial weights we know that B0 = B1.
We may also then switch to consider the dynamics of an entire pathway and not just one layer in the
pathway: Bp = B1B0. The dynamics of the pathway can be obtain by the product rule:

τ
d

dt
Bp = B0(τ

d

dt
B1) +B1(τ

d

dt
B0)

= B0B0

[
S(p)− 1

3
BpD(p)

]
+B1B1

[
S(p)− 1

3
BpD(p)

]
= Bp

[
S(p)− 1

3
BpD(p)

]
+Bp

[
S(p)− 1

3
BpD(p)

]
τ
d

dt
Bp = 2Bp

[
S(p)− 1

3
BpD(p)

]

This is a separable differential equation which can be solved as per the linear dynamics (Saxe et al.,
2014; 2019). Thus the full learning trajectory for the α-th mode of a a context dependent pathway is
(we have removed the dependence on p to lighten notation):

Bα(t) =
(3Sα/Dα)

1− (1− S
DB0) ∗ exp(2Sα

t
τ)

This is the equation used to obtain the “closed” dynamics in Section 5 for the four context case.

G.2 GDLN DYNAMICS FOR FIVE CONTEXTS

An almost identical derivation for the three and four context cases holds for the five context case. We
omit the initial portion for brevity as we once again train a linear pathway and the context specific
pathways on the residual. In the five context case there are now five residual pathways each active for
four contexts. We will pick up the derivation where the specifics of the dataset are used to obtain
closed form equations from the neural race reduction.

We rewrite the neural race reduction dynamics in terms of these three kinds of correlations separately:

= WT
t̄(p,e)

Σyx(p)−WpΣ
x(p, p)−

∑
j ̸=p∈T (t(p))

WjΣ
x(j, p)

WT
s̄(p,e)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

We note then that for the particular setting we are working in Σx(j, p) = 3
4Σ

x(p, p). Thus, we denote
Σx = Σx(p, p) and substitute this relationship into the dynamics above. Now the input correlation
terms do not depend on the alternative pathways taken to the terminal points.

= WT
t̄(p,e)

Σyx(p)−WpΣ
x −

∑
j ̸=p∈T (t(p))

Wj
3

4
Σx

WT
s̄(p,e)

= WT
t̄(p,e)

Σyx(p)−WpΣ
x −

3

4

∑
j ̸=p∈T (t(p))

Wj

Σx

WT
s̄(p,e)

τ
d

dt
We = WT

t̄(p,e)

Σyx(p)−

Wp +
3

4

∑
j ̸=p∈T (t(p))

Wj

Σx

WT
s̄(p,e)

We now apply the change of variables to obtain the dynamics reduction:

τ
d

dt

(
Rt(e)BeRs(e)T

)
=

(
Ut(p)Bt̄(p,e)R

T
t(e)

)T [
Ut(p)S(p)V

T
s(p)−Ut(p)BpV

T
s(p) +

3

4

∑
j ̸=p∈T (t(p))

Ut(j)BjV
T
s(j)

Vs(j)D(j, p)V T
s(p)

(
Rs(e)Bs̄(p,e)V

T
s(p)

)T

We can then simplify the expression by multiplying matching eigenvectors and noting that Vs(p) =
Vs(j) since all pathways share the same input correlation:

τ
d

dt
Be = Bt̄(p,e)

S(p)−
Bp +

3

4

∑
j ̸=p∈T (t(p))

UT
t(p)Ut(j)Bj

D(p)

Bs̄(p,e)

Once again because the dataset structure is symmetric we can exploit some more information in this
task to continue the derivation further to a closed form solution. Having determined the effective
datasets for each pathway we know that UT

t(p)Ut(j) = − 1
12I ∀ j ̸= p. Thus:

τ
d

dt
Be = Bt̄(p,e)

S(p)−
Bp +

3

4

∑
j ̸=p∈T (t(p))

− 1

12
Bj

D(p)

Bs̄(p,e)

Finally, due to the symmetry of the task between contexts, all pathways will learn identical singular
values. Thus Bp = Bj ∀ j ̸= p ∈ T (t(p)). Thus, we substitute this equality into the dynamics
reduction:

τ
d

dt
Be = Bt̄(p,e)

S(p)−
Bp −

1

16

∑
j ̸=p∈T (t(p))

Bp

D(p)

Bs̄(p,e)

= Bt̄(p,e)

[
S(p)− 1

4
BpD(p)

]
Bs̄(p,e)

We note that for each pathway our network has two layers: e ∈ {0, 1}. Thus:

τ
d

dt
B0 = Bt̄(p,0)

[
S(p)− 1

4
BpD(p)

]
Bs̄(p,0)

= B1

[
S(p)− 1

4
BpD(p)

]
I

and

τ
d

dt
B1 = Bt̄(p,1)

[
S(p)− 1

4
BpD(p)

]
Bs̄(p,1)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

= I

[
S(p)− 1

4
BpD(p)

]
B0

Assuming balanced solutions, which is reasonable from small initial weights we know that B0 = B1.
We may also then switch to consider the dynamics of an entire pathway and not just one layer in the
pathway: Bp = B1B0. The dynamics of the pathway can be obtain by the product rule:

τ
d

dt
Bp = B0(τ

d

dt
B1) +B1(τ

d

dt
B0)

= B0B0

[
S(p)− 1

4
BpD(p)

]
+B1B1

[
S(p)− 1

4
BpD(p)

]
= Bp

[
S(p)− 1

4
BpD(p)

]
+Bp

[
S(p)− 1

4
BpD(p)

]
τ
d

dt
Bp = 2Bp

[
S(p)− 1

4
BpD(p)

]

This is a separable differential equation which can be solved as per the linear dynamics (Saxe et al.,
2014; 2019). Thus the full learning trajectory for the α-th mode of a a context dependent pathway is
(we have removed the dependence on p to lighten notation):

Bα(t) =
(4Sα/Dα)

1− (1− S
DB0) ∗ exp(2Sα

t
τ)

This is the equation used to obtain the “closed” dynamics in Section 5 for the five context case.

H HYPER-PARAMETERS FOR CONTEXTUAL DATASETS

Here we provide the hyper-parameters used in Sections 4, 5 and 6. We provide the number of modules
needed for each type of GDLN referenced in the main text. Importantly, these modules would still
need to be connected to the appropriate portions of the input and output space, as described there. As
described in Appendix A, we only require as many hidden neurons as the rank of the input-output
correlation matrix the linear pathway is aiming to solve. Finally, as long as the ReLU network and
GDLN begin with the same hyper-parameters the mapping to a ReLN will be valid (assuming the
correct allocation of linear pathways).

Hyper-parameter Value
Num-Hidden (GDLN) 100
Num-Modules (GDLN Single Modules, 3 Contexts) 4
Num-Modules (GDLN Double Modules, 3 Contexts) 4
Num-Modules (GDLN Single and Double Modules, 3 Contexts) 7
Num-Modules (GDLN Triple Modules, 4 Contexts) 5
Num-Modules (GDLN Quad Modules, 5 Contexts) 6
Num-Hidden (ReLU) 700
Num-Modules (ReLU) NA
Init-Scale 1× 10−7

Num-Epochs 8000
Step-Size 0.001

Table 1: Hyper-parameters used for the contextual tasks in Sections 4, 5 and 6.

35

	Introduction
	Background
	The Rectified Linear Network (ReLN)
	Emergent Structured Mixed Selectivity in ReLU Networks
	The Effect of Additional Contexts
	The Effect of Additional Hidden Layers
	Discussion
	Linear Neural Networks Background
	Deep Linear Neural Networks
	Gated Deep Linear Networks

	An Algorithm for Identifying Gating Patterns
	Learning dynamics during transition to nonlinear separability
	Proof of Lemma 4.1
	Proof of Proposition 4.2
	GDLN Dynamics with Three Contexts
	GDLN Dynamics for Four and Five Contexts with Hierarchical Structure
	GDLN Dynamics for Four Contexts
	GDLN Dynamics for Five Contexts

	Hyper-Parameters for Contextual Datasets

