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Abstract

Recent advancements in large language models have demonstrated how chain-of-
thought (CoT) and reinforcement learning (RL) can improve performance. How-
ever, applying such reasoning strategies to the visual generation domain remains
largely unexplored. In this paper, we present T2I-R1, a novel reasoning-enhanced
text-to-image generation model, powered by RL with a bi-level CoT reasoning
process. Specifically, we identify two levels of CoT that can be utilized to enhance
different stages of generation: (1) the semantic-level CoT for high-level planning
of the prompt and (2) the token-level CoT for low-level pixel processing during
patch-by-patch generation. To better coordinate these two levels of CoT, we intro-
duce BiCoT-GRPO with an ensemble of generation rewards, which seamlessly
optimizes both generated CoTs within the same training step. By applying our
reasoning strategies to the baseline model, Janus-Pro, we achieve superior perfor-
mance with 13% improvement on T2I-CompBench and 19% improvement on the
WISE benchmark, even surpassing the state-of-the-art model FLUX.1. All the
training code and data are available at https://github.com/CaraJ7/T2I-R1.

1 Introduction

The emergence of advanced Large Language Models (LLMs) [60, 62, 79, 93], such as OpenAI
o1 [63] and DeepSeek-R1 [20], has demonstrated considerable reasoning capabilities across domains
including mathematics [1, 26, 53, 52] and coding [8, 29, 51]. Through reinforcement learning
(RL) [70, 71, 50], these models analyze problems progressively with a comprehensive Chain-of-
Thought (CoT) [82, 34, 23, 31, 102, 22] before providing answers, significantly enhancing output
accuracy.

The CoT reasoning strategies have also been extended to the visual domain. Recent Large Multi-
modal Models (LMMs) [7, 57, 100, 90] have adapted the paradigm to accommodate the visual
understanding task [49, 102, 31]. These advanced LMMs can jointly process images and their
associated textual queries, performing step-by-step analyses of visual details and integrating them
with reasoning steps to derive final answers. Concurrently, CoT-like reasoning has been initially
investigated in the visual generation task [68, 97, 72, 35, 33, 10], particularly in autoregressive
text-to-image generation. The pioneering work, ‘Image Generation with CoT’ [23], regards the
progressive generation of the image tokens as a kind of CoT analogous to that of the text tokens, and
proposes to optimize this intermediate process to enhance the image quality.
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A black cat with shiny 
fur and bright green 

eyes is sitting in front 
of  a brown mouse with 

tiny paws and a 
twitching nose.

Image Prompt

“A black cat and 
a brown mouse.”

How does the whole 
image look like?

ü Global	Semantic
ü High-level	Planning

The mouse is perched 
on a small branch with 
leaves sprouting from it, 

and the background 
appears to be a lush 
garden with vibrant 
flowers and foliage.

The cat gently gazes at 
the mouse, while the 

mouse playfully 
scurries around the 

branch.

How does the next 
patch look like?

ü Local	Details
ü Low-level Processing

Reasoning Process

Reasoning Process

Semantic-level CoT

Token-level CoT

Question
As shown in the figure, AC is 
the diameter of  circle O, if  
angle OBC = 40 degrees, then 
the degree of  angle AOB is
A: 40° B: 50° C: 80° D: 100°

How to obtain the 
final answer?

Reasoning Process

Step 1: In the circle, AC 
is a diameter and 

∠OBC = 40°. Point O 
is the center.

Step 2: Triangle OBC is 
isosceles (OB and OC 
are radii), so ∠BOC = 

180° - 40° - 40° = 100°.

Step 3: Since AC is a 
diameter, ∠AOB = 360° 

- 180° - 100° = 80°. 
The answer is C.

CoT in Image Generation

CoT in Image Understanding

Image Prompt

“A black cat and 
a brown mouse.”

Answer: C

Figure 1: The Illustration of CoT in Image Understand and Generation Tasks. In the image
understanding task, the CoT is the textual reasoning process. In the autoregressive visual generation
task, we identify two levels of CoT: the semantic-level and token-level CoT. The semantic-level CoT
is the high-level planning prior to the image generation, in the form of text. The token-level CoT is
the intermediate patch-by-patch generation process, focusing on the local pixel details within a patch,
in the form of image tokens.

Despite these advances, the exploration of CoT for image generation remains preliminary. Unlike
image understanding, image generation requires the complex interpretation of cross-modal alignment
and the synthesis of fine-grained visual details. To address these challenges, we identify two distinct
levels of CoT reasoning that can be leveraged to enhance image generation, as illustrated in Fig. 1:

• Semantic-level CoT is the textual reasoning about the image to generate, which is introduced
prior to the image generation. The semantic-level CoT designs the global structure of the
image, e.g., the appearance and location of objects. In case the prompt requires reasoning
shown in Fig. 2, the semantic-level CoT also helps to deduce the objects to generate.
Optimizing the semantic-level CoT could explicitly decouple the planning and reasoning of
the prompt from the subsequent image tokens generation, making the generation easier.

• Token-level CoT is the intermediate patch-by-patch generation process of the image, as
originally introduced in [23]. This process could be viewed as a form of CoT as it outputs
each subsequent token conditioned on all previous tokens within a discrete space, similar to
the textual CoT. Unlike semantic-level CoT, token-level CoT focuses on low-level details like
pixel generation and maintaining visual coherence between adjacent patches. Optimizing
the token-level CoT can enhance both the generation quality and the alignment between the
prompt and the resulting images.

Despite recognizing these two levels of CoT, a critical question remains unaddressed: How can
we enhance and coordinate them for text-to-image generation? Current mainstream generative
models [74, 77, 68, 35] are trained exclusively on generation targets, lacking the explicit textual
understanding required for semantic-level CoT reasoning. Although introducing a separate model
(e.g., an LLM) specifically for prompt interpretation [13] is technically feasible, this approach would
significantly increase computational costs, complexity, and deployment challenges. Recently, a trend
has arisen to merge visual understanding and generation within a single model. Building upon LMMs,
these unified LMMs (ULMs) [84, 91, 104, 9] could not only understand the visual inputs but also
generate images from text prompts. However, their two capabilities are still decoupled, typically
pre-trained in two independent stages, with no clear evidence that the understanding capabilities can
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The	image	depicts	a	beautiful	and	intricate	igloo ...	
The	igloo	has	an	aerodynamic	dome	shape,	showcasing....	
Its	surface	appears	smooth	and	translucent...
The	entrance	to	the	igloo	consists	of	a	gently	sloping	tunnel...

Janus-ProT2I-R1

A structure made of  
ice, traditionally built 

by the Inuit people

Underneath	the	train,	on	the	bottommost	part	of	the	platform,	lies	a	
tiny	pig	with	a	brown-yellowish	coat.	The	pig	is	curled	up,	resting	
peacefully,	surrounded	by	the	iron	structure	of	the	train	tracks	and	the	
dimly	lit	platform...

A	circular	emblem	depicting	the	balance	and	harmony	of	Taoist	
philosophy	features	the	Yin	and	Yang	symbol	prominently	in	its	
center.	
The	emblem	showcases	a	harmonious	arrangement...

An image of  a circular 
emblem representing 

balance and harmony in 
Taoist philosophy

a pig on the bottom of  
a train

Prompt Token-level CoTSemantic-level CoT

The	image	portrays	tulips,	the	famous	flower	that	is	grown	in	the	
country	where	Amsterdam	is	located.	
The	vibrant	colors	of	these	flowers,	ranging	from	yellow	and	red	to	
purple...

A specific type of  
flower cultivated in 
the country where 

Amsterdam is located

Figure 2: Visualization of the Image Generation Process of T2I-R1. All the prompts need
reasoning or contain an uncommon scenario. We observe that T2I-R1 successfully deduces the true
intention behind the prompt or provides a sensible imagination (highlighted in the text) to produce a
satisfying result compared with the baseline model, Janus-Pro.

benefit generation. Given these potentials and issues, we start from a ULM and enhance it to unite
both the semantic-level and token-level CoT into one framework for text-to-image generation.

To fulfill our target, we introduce BiCoT-GRPO, an RL method to jointly optimize the two levels
of CoT for ULM. We opt for RL instead of supervised fine-tuning (SFT) for two reasons: First, the
ULM has possessed the fundamental ability needed for the semantic-level and token-level CoT; our
goal is only to elicit the fusion of these two abilities by guiding the model’s self-exploration. Second,
RL methods have proven highly effective for enhancing reasoning capabilities, which are essential
for both levels of CoT. Specifically, we first instruct the ULM to imagine and plan the image based
on the prompt to obtain the semantic-level CoT. Then, we feed it into the ULM as the condition for
the subsequent image generation for token-level CoT. We simultaneously generate multiple images
from each prompt and then compute group-relative reward to optimize both levels of CoT within
the same iteration. Unlike understanding tasks, where clearly defined rules for rewards exist, image
generation lacks such standardized rules. Therefore, we propose to utilize an ensemble of diverse
vision experts [88, 80, 47, 23] as reward models. This reward design serves two critical purposes: it
evaluates generated images from multiple dimensions to ensure reliable quality assessment, while
also functioning as a regularization method to prevent the ULM from hacking a single reward model.

Through the proposed reasoning strategies, we obtain T2I-R1, the first reasoning-enhanced text-to-
image model combining the semantic-level and token-level CoT. Empirical results show that our
approach outperforms baseline models by 13% and 19% improvements on the T2I-CompBench
and WISE benchmark, and even surpasses the previous state-of-the-art model FLUX.1. Qualitative
analysis reveals that our method empowers the model to generate more human-aligned results by
reasoning about the true intentions behind the prompt and demonstrates enhanced robustness when
dealing with uncommon scenarios.

Our contributions are summarized as follows:

1. We identify a dual-level reasoning process in the autoregressive image generation task
by introducing the semantic-level and token-level CoT, which decouple high-level image
planning from low-level pixel generation for more reliable generation.

2. We develop BiCoT-GRPO, a new reinforcement learning framework that jointly optimizes
both levels of CoT reasoning, seamlessly integrating the understanding capabilities of ULMs
for image generation. For reward modeling, we investigate a robust reward system utilizing
an ensemble of vision experts.

3. Our resulting model, T2I-R1, incorporates both levels of CoT using BiCoT-GRPO and
demonstrates significant quantitative and qualitative improvements, surpassing FLUX.1
across multiple established benchmarks.

3



2 Method

2.1 Preliminary

Recently, the employment of reinforcement learning has been the dominant approach to elicit the
reasoning capability of the large models. [71] introduces GRPO, enhancing PPO by eliminating the
value function and estimating the advantage in a group-relative manner. For a specific prompt-answer
pair (p, a), a group of G individual responses {oi}Gi=1 is sampled from the old policy πθold . Each
response is then input to a reward function to obtain the individual reward Ri. Then, the advantage
of the i-th response is calculated by normalizing the rewards {Ri}Gi=1 of the group:

Ai =
Ri − mean({Ri}Gi=1)

std({Ri}Gi=1)
. (1)

GRPO adopts a clipped objective similar to PPO. Besides, a KL penalty term between the current
policy πθ and the reference model πθref is directly added in the loss function:

JGRPO(θ) = E(q,a)∼D,{oi}G
i=1∼πθold (·|q)[

1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

(
min

(
ri,t(θ)Âi, clip

(
ri,t(θ), 1− ε, 1 + ε

)
Âi

)
− βDKL(πθ||πref)

)]
,

where ri,j(θ) is the ratio between the probabilities of πθ and πθold for outputting the current token:

ri,j(θ) =
πθ(oi,j | q, oi,<j)

πθold(oi,t | q, oi,<j)
. (2)

In text reasoning tasks like mathematical problem solving, the model is instructed to follow the
pre-defined template to output the reasoning process and final answer. The reward functions are
rule-based rewards that only check the correctness of the final answer and the output format.

2.2 Semantic-level and Token-level CoT

In the autoregressive text generation tasks of LLMs and LMMs, CoT occurs in the textual reasoning
format. However, in autoregressive image generation tasks, we identify two distinct types of CoT
that could enhance the image generation at different abstraction levels:

Semantic-level CoT. Semantic-level CoT is defined as the textual reasoning that precedes image
generation, serving as an overall semantic planning stage for the intended image. This process
mirrors human artistic creation: when given a brief prompt, an artist first thinks about the scene
construction, considering object attributes, spatial relationships, and interactions. In addition to the
planning for common prompts, we also observe the semantic-level CoT benefits two other scenarios.
If the prompt does not directly depict the object to generate, the semantic-level CoT can reason about
the true intention from the user’s prompt, providing more aligned images. As illustrated in Fig. 2,
the semantic-level CoT reasons that the flower cultivated in the country where Amsterdam is located
is tulip. Without this semantic-level CoT, Janus-Pro fails to provide valid results. Additionally, the
semantic-level CoT demonstrates importance when handling unusual or potentially ambiguous scenes.
In the bottom example of Fig. 2, when given the prompt ‘A pig on the bottom of a train’, semantic-
level CoT introduces the action ‘lying’ for the pig, creating a more sensible scenario. In contrast,
direct generation without this interpretive imagination creates significant confusion for Janus-Pro.
Formally, each semantic-level CoT si is composed of |si| text tokens {si,1, si,2, ..., si,|si|}.

Token-level CoT. Unique to the image generation task, a token-level step-by-step thinking exists in
the image generation process. The generation of image tokens much resembles a chain of thought: the
image tokens are generated patch by patch, where the current patch is generated based on the previous
ones. We define the sequential generation of image tokens as token-level CoT. This process parallels
how an artist progressively fills a canvas, with the generated patches forming a visual reasoning chain.
The reasoning content is the choice of the specific visual token for each patch, which corresponds
to the patch coherence, object appearance, lighting conditions, and other visual details. Note that,
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Unified LMM

Step 1

“a pink rabbit right of  a 
green bowl with two 

paintings at background.”

Step 2

Unified LMM

“Provide a brief, precise 
visualization of  all 

elements in the prompt…”

DecodeToken-level
CoT

Image Prompt Reasoning Instruction

Human 
Preference 

Model
Object

Detector
VQA 

Model
Output 
Reward 
Model

Semantic-level CoT

“A pink rabbit stands to the right of  a green bowl, their colors 
creating a vivid contrast. ... Two background paintings add 

artistic flair with varied styles. ... The rabbit keeps slight 
distance from the bowl, balancing the composition. ...”

Rewards

Group Computation

Advantages

…

r1 r2 rG…r3 r4

a1 a2 aG…a3 a4

Group Relative Policy Optimization

G
for	GRPO

G
for	GRPO

G
for	GRPO

G

“a pink rabbit right ...”

Image Prompt

<img_start>

Figure 3: Framework of BiCoT-GRPO. In step 1, we instruct the model to generate the semantic-
level CoT based on the image prompt. In step 2, images are generated conditioned on both the image
prompt and semantic-level CoT, with the intermediate generation process serving as token-level CoT.
The resulting images are evaluated by an ensemble of vision experts to obtain rewards. We generate
N images from each prompt to compute the group-relative reward and perform GRPO training.

the reasoning occurs simultaneously with final output generation, rather than as separate steps. The
model reasons and generates in parallel, integrating its thinking directly into the creation process. The
generated chain of patches is later reshaped to a 2D grid G ∈ Rh×w×c and input to an image decoder
D to obtain the image. Unlike semantic-level CoT, which addresses global planning, token-level CoT
focuses on local details and visual coherence across the image space. Formally, each token-level
CoT ti consists of M image tokens {ti,1, ti,2, ..., ti,M}, where M represents the resolution of the
generated image, i.e., M = h× w.

2.3 BiCoT-GRPO

GRPO has been proven to be highly effective for exploring the reasoning capability of the LLMs
and LMMs. To accommodate both semantic-level and token-level CoT in image generation, we
propose BiCoT-GRPO, where the model reasons twice in a single generation process. We instruct the
model to first perform semantic-level CoT for global planning, and then dive into the local details by
performing token-level CoT.

However, compared with the task of text generation, a great pipeline challenge is posed for incorpo-
rating two levels of CoT for image generation. Limited by the training paradigm, most current ULMs
cannot generate interleaved images and text themselves. A manual signifier is often needed to instruct
the model on which task to perform, either text generation or image generation. For Janus-Pro to
generate an image, which is the ULM we use in this work, we need to manually concatenate an image
start token (<img_start>) to explicitly instruct the model to start generating image tokens.

To tackle this problem, we propose a novel pipeline to facilitate ULM in generating images with two
levels of CoT, as shown in Fig. 3. Specifically, our pipeline is composed of a two-step generation
process. The first step is to generate the semantic-level CoT. We input the image prompt and
instruct the model to imagine and reason about the details of the image to generate semantic-level
CoT {si}Gi=1. The second stage focuses on the token-level CoT generation. We input the image
prompt, the generated semantic-level CoT in the first stage, and the image start token to the ULM for
generating image tokens {ti}Gi=1. Then, the image tokens are input to the image decoder to obtain the
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Figure 4: Illustration of the Ensemble of Generation Rewards. We use GPT-4o mini to extract
the objects and their attributes before training. Each specialized reward model receives customized
information inputs for the reward calculation. We take the average of all the rewards as final reward.

image I . Since there exist two types of CoT in our method, first the semantic-level CoT and then the
token-level CoT. Each response oi is composed of two parts, namely oi = (si, ti). In this sense, the
ri,j(θ) is converted to:

ri,j(θ) =
πθ(oi,j | q, oi,<j)

πθold(oi,j | q, oi,<j)
=


πθ(si,j |q,si,<j)
πθold (si,j |q,si,<j)

, 0 ≤ j ≤ |si|

πθ(ti,j |q,si,ti,<j)
πθold (ti,j |q,si,ti,<j)

, |si| < j ≤ |si|+M
(3)

Then, we update the ULM by maximizing Equation 2.1. In practice, we incorporate the token-level
policy gradient loss in [98], where the loss term is normalized over all the generated tokens to balance
the reward on overly long semantic-level CoT.

2.4 Ensemble of Generation Rewards

Unlike DeepSeek-R1 with the rule-based reward, assessing the images based on pre-defined rules
is infeasible. The assessment of the image includes various aspects, including the aesthetic appeal
and objects’ existence, attributes, and relationships. Considering the complexity, we introduce an
ensemble of vision experts to judge the generated image from multiple aspects. Meanwhile, the use
of multiple reward functions also serves as a regularization method to prevent the ULM from hacking
into a specific reward model. As shown in Fig. 4, the ensemble contains the following experts:

Human Preference Model. Human preference models (HPMs), such as HPS [88] and ImageRe-
ward [92], are trained to simulate human aesthetic preferences. These models are developed using
datasets of human rankings on synthetic images, where annotators evaluate and compare generated
outputs. During inference, these models assess both the aesthetic quality and prompt alignment of
a generated image, producing a composite human preference score RHPM. This expert provides a
holistic reward signal from a general perspective.

Object Detector. Another option of the reward model is an object detector, e.g., Ground-
ingDINO [47] and YOLO-world [12]. These open-vocabulary detection models accept an image
along with object queries as input and output both the spatial positions and confidence scores for
detected objects. This kind of vision expert serves as an ideal tool to evaluate the object’s existence

6



Show a plant that is a 
symbol of  good fortune in 
Irish culture, and is known 

for its three-lobed leaves

A specific type of  camera 
used in the 19th century for 

early photography

A bird grooming its feathers

Janus-Pro
Only

Semantic-level
Only

Token-level

T2I-R1
(Semantic-level
+Token-level) Janus-Pro

Only
Semantic-level

Only
Token-level

Generate an image of  a 
bird and a dog, with the 

smaller animal on top and 
the larger below

A typical dish from the 
country where Naples is 

located

The animal that emerges 
from a cocoon, symbolizing 

transformation

National Emblem of  the 
country where New York is 

located

A symbol of  imperial 
China, a sprawling complex 

of  palaces and temples in 
Beijing

T2I-R1
(Semantic-level
+Token-level)

Figure 5: Visualization Results. We provide the image generation results of the same prompt from
four models: base model, the model with only semantic-level CoT optimized, the model with only
token-level CoT optimized, and the model with both levels of CoT optimized.

and relationship concerning space and numbers. For implementation, we extract all objects {obji}Ki=1
from the training image prompts, where K represents the total number of objects. We then query
the object detector to identify these objects within the generated image. For each object, we assign
a binary existence score (1 if detected, 0 otherwise) and average these scores across all objects in
the prompt. If the prompt contains a spatial relationship, we further leverage the detected location to
validate its correctness. We calculate the relative distance and intersection over union (IoU) between
the objects for the spatial score Rspatial. If the number of the object nobji is specifically pointed out in
the prompt, we compare the number with the detected number of the object n̂obji . The reward from
the object detector RDet is determined as:

RDet =


αRspatial + (1− α) 1

K

∑K
i=1 I(obji detected), if spatial relationship in the prompt,

1
n

∑K
i=1 I(nobji = n̂obji), if number in the prompt,

1
n

∑K
i=1 I(obji detected), else,

where Rspatial is 1 if the relative distance between the objects is larger than a threshold and the
direction is right. If the direction is wrong, the reward is 0. Otherwise, we use the IoU as the spatial
reward. We set α as 0.6 to encourage the correctness of the spatial relationship.

Visual Question Answering Model. The visual question answering (VQA) models are trained to
answer questions based on the image input. The VQA models include earlier models prior to LLM,
e.g., BLIP [40] and GIT [80], and LMMs like LLaVA [45]. We leverage these models to judge the
existence and attributes of the objects. For example, if the image prompt is a red dog and a yellow
cat, we first reformat each individual object with its attribute as a question to the VQA model, i.e., a
red dog? and a yellow cat?. Then, we record the probability for the model to answer Yes as P i

Yes and

No as P i
No. The reward for a prompt is calculated as: RVQA = 1

K

∑
i

P i
Yes

P i
Yes+P i

No
.

Output Reward Model. Lastly, we also employ the output reward model (ORM) proposed in [23]
as a reward model. The ORM is fine-tuned from an LMM (e.g., LLaVA-OneVision [37]) specifically
for evaluating the alignment between the prompt and the image. The fine-tuning is to instruct the
model to output Yes if the image perfectly aligns with the image and No otherwise. We calculate
RORM using the methodology similar to RVQA, except that we input the whole image prompt to the
ORM instead of reformatting the prompt. The major difference between the ORM and HPMs is that
the ORM model incorporates extensive world knowledge inside the LMM while HPMs mainly focus
on the human preferences including prompt-image alignment and aesthetic appeal.

We can choose one or multiple reward functions illustrated above, and take the average as the final
reward for a specific sample. The detailed experiments of reward model are shown in Table 3.
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Table 1: T2I-CompBench Result. The best score is in blue , with the second-best score in green .

Model Attribute Binding Object Relationship Complex↑
Color ↑ Shape↑ Texture↑ Spatial↑ Non-Spatial↑

Diffusion Models

SD-v1.5 [68] 0.3758 0.3713 0.4186 0.1165 0.3112 0.3047
PixArt-α [6] 0.6690 0.4927 0.6477 0.2064 0.3197 0.3433
CoMat [30] 0.7827 0.5329 0.6468 0.2428 0.3187 0.3680
SD-XL-base-1.0 [64] 0.5879 0.4687 0.5299 0.2131 0.3119 0.3237
FLUX.1 [35] 0.7407 0.5718 0.6922 0.2863 0.3127 0.3703

AutoRegressive Models

Show-o [91] 0.5623 0.4178 0.4641 0.2015 0.3067 0.2992
Show-o + PARM [23] 0.7549 0.5632 0.6684 0.2971 0.3126 0.3701
EMU3 [81] 0.7544 0.5706 0.7164 - - -
Janus-Pro-7B [9] (Baseline) 0.6359 0.3528 0.4936 0.2061 0.3085 0.3559
T2I-R1 (Ours) 0.8130 0.5852 0.7243 0.3378 0.3090 0.3993

3 Experiment

In this section, we first provide the main results of T2I-R1 in T2I-CompBench [27], WISE [59]
and GenAI-Bench [43] in Section 3.1. Then we present the results of different reward function
combinations in Section 3.2 and the ablation study of the effectiveness of two levels of CoT in
Section 3.3. Please refer to the Appendix B for TIIF-Bench [83] results, detailed experiment setup,
and more visualizations.

3.1 Main Results

We compare T2I-R1 with leading text-to-image diffusion and autoregressive models on the T2I-
CompBench and WISE benchmarks (in Table 1, 2 and 4). We also provide the qualitative results in
Fig. 5. Our method demonstrates substantial improvements over the baseline model, with average
enhancements of 13% and 19% on T2I-CompBench and WISE, respectively. On T2I-CompBench,
the most significant gains appear in attribute binding, with an average improvement of 19%. For the
WISE benchmark, improvements are more evenly distributed across categories. When compared to
the more powerful state-of-the-art diffusion models, T2I-R1 achieves superior or comparable results
across both benchmarks. Notably, on T2I-CompBench, our method leads in five of six subtasks,
with an exceptional performance in the spatial subtask (0.3378), surpassing previous SOTA results
by over 5%. Similarly, for WISE, T2I-R1 excels in four of seven subtasks and achieves the highest
overall score of 0.54, outperforming the robust FLUX.1-dev by 4%. Remarkably, our approach
consistently achieves the leading results across all subtasks in both benchmarks when compared to
other autoregressive models. Remarkably, the improvement on T2I-Compbench benefits from the
planning ability brought by the semantic-level CoT, which designs the complex scenarios before
generation. While the enhancement of WISE is due to the reasoning capability from the semantic-
level CoT, which deduces the true object or place depicted behind the prompt. For GenAI-Bench,
T2I-R1 largely improves the baseline model, and in the meantime, achieves the highest overall score
on both the basic and advanced prompts. Again, T2I-R1 surpasses FLUX.1 [35] in both types of
prompts and showcases a remarkable margin in the advanced prompt, probably attributed to the
high-level reasoning capability granted by semantic-level CoT.

3.2 Reward Analysis

In this section, we experiment with the choice of reward functions and their combinations. We
hope to provide some insights into how to choose the reward functions and combine them. Our
results are shown in Table 3. We first experiment with the individual reward model. HPM (H)
demonstrates superior performance in attribute binding but shows limited effectiveness in object
relationships, likely due to its weak relation comprehension capabilities. The object detector (D) yields
the least improvement in attribute binding, which aligns with expectations since our detector-based
reward functions do not explicitly evaluate attributes. The improvements observed stem solely from
enhanced object existence ratios in the prompts. We observe that VQA model (V) and ORM (O) are
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Table 2: WISE Result. The best score is in blue , with the second-best score in green .

Model Cultural↑ Spatio-Temporal Natural Science Overall
Time↑ Space↑ Biology ↑ Physics↑ Chemistry↑

Diffusion Models

PixArt-Alpha [6] 0.45 0.50 0.48 0.49 0.56 0.34 0.47
Playground-v2.5 [38] 0.49 0.58 0.55 0.43 0.48 0.33 0.49
SD-v1-5 [68] 0.34 0.35 0.32 0.28 0.29 0.21 0.32
SD-XL-base-0.9 [64] 0.43 0.48 0.47 0.44 0.45 0.27 0.43
FLUX.1-dev [35] 0.48 0.58 0.62 0.42 0.51 0.35 0.50

AutoRegressive Models
Emu3 [81] 0.34 0.45 0.48 0.41 0.45 0.27 0.39
Show-o [91] 0.28 0.40 0.48 0.30 0.46 0.30 0.35
VILA-U [89] 0.26 0.33 0.37 0.35 0.39 0.23 0.31
Janus-Pro-7B [9] (Baseline) 0.30 0.37 0.49 0.36 0.42 0.26 0.35
T2I-R1 (Ours) 0.56 0.55 0.63 0.54 0.55 0.30 0.54

Table 3: T2I-CompBench Results with Different Reward Models. ‘Det’ stands for object detector.

Model Reward Model Attribute Binding Object Relationship Complex↑ Visual Quality↑
HPM Det VQA ORM Color ↑ Shape↑ Texture↑ Spatial↑ Non-Spatial↑

Janus-Pro-7B - - - - 0.6359 0.3528 0.4936 0.2061 0.3085 0.3559 -
- ✓ - - - 0.8134 0.6048 0.7311 0.2383 0.3012 0.3899 -
- - ✓ - - 0.7422 0.5140 0.6494 0.3044 0.3100 0.3872 -
- - - ✓ - 0.8171 0.6019 0.7307 0.2969 0.3088 0.4052 0.218
- - - - ✓ 0.7819 0.5638 0.7010 0.3301 0.3103 0.3959 1.775
- ✓ ✓ - - 0.8210 0.6074 0.7440 0.3189 0.3076 0.4005 1.942
T2I-R1 ✓ ✓ ✓ - 0.8130 0.5852 0.7243 0.3378 0.3090 0.3993 2.063
- ✓ ✓ ✓ ✓ 0.7599 0.5742 0.6902 0.2796 0.3070 0.3921 -

both effective reward models with distinct strengths: the VQA model excels at improving attribute
binding, while ORM demonstrates superior performance in relationships. Then we experiment with
multiple reward models. We start from the composition of HPM and object detector (H+ D), and
progressively incorporate other reward models. Our findings indicate that both the HPM-object
detector combination (H+ D) and the three-model integration of HPM, object detector, and VQA
(H+ D+ V) deliver balanced and satisfactory results in both attribute and relationship tasks. To
obtain the optimal choice of reward models, we conduct a human study to evaluate the visual quality,
detailed in Appendix C.2. We adopt the combination of the highest visual quality, the ensemble of
three reward models (H+ D+ V) for our final model.

a black squirrel and a brown nut

Token-level CoT Only Semantic-level + Token-level CoT

a fabric bag and a glass vase

a key on the right of  a dog

Figure 6: Visualization Result of the Image Diversity of a Single Prompt. We showcase the result
of only token-level CoT optimized and both semantic-level and token-level CoT optimized.

3.3 Ablation Study

To validate the effectiveness of the semantic-level CoT, we compare T2I-R1 with a baseline method
that generates images using only the token-level CoT optimized with the GRPO method. This is the
default text-to-image generation setting in Janus, whose result is shown in the third row in Table 5.
Comparing the third and fourth row in the table, we find that semantic-level CoT generally brings
performance improvements across both benchmarks tested. We witness a particularly significant
gain on the WISE benchmark. This enhanced performance can be attributed to the textual reasoning
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Table 4: GenAI-Bench Evaluation Results. The best score is in blue , with the second-best score
in green .

Basic Prompt Advanced Prompt

Method Attribute↑ Scene↑ Relation Overall↑ Count↑ Differ↑ Compare↑ Logical Overall↑
Spatial↑ Action↑ Part↑ Negate↑ Universal↑

Diffusion Models

SD v2.1 [68] 0.80 0.79 0.76 0.77 0.80 0.78 0.68 0.70 0.68 0.54 0.64 0.62
SD-XL [64] 0.84 0.84 0.82 0.83 0.89 0.83 0.71 0.73 0.69 0.50 0.66 0.63
Midjourney v6 [58] 0.88 0.87 0.87 0.87 0.91 0.87 0.78 0.78 0.79 0.50 0.76 0.69
FLUX.1-dev [35] 0.87 0.88 0.87 0.85 0.87 0.87 0.75 0.78 0.74 0.45 0.70 0.64

Auto-Regressive Models

LWM [44] 0.63 0.62 0.65 0.63 0.70 0.63 0.59 0.58 0.54 0.49 0.52 0.53
Show-o [91] 0.72 0.72 0.70 0.70 0.75 0.70 0.70 0.62 0.71 0.51 0.65 0.60
VILA-U [89] 0.78 0.78 0.77 0.78 0.79 0.76 0.70 0.71 0.74 0.53 0.66 0.64
Liquid [85] – – – – – – 0.76 0.73 0.74 0.46 0.74 0.65
UniTok [54] – – – – – – 0.76 0.76 0.79 0.46 0.73 0.67
Mogao-7B [42] – – – – – – 0.77 0.74 0.77 0.53 0.71 0.68
Janus-Pro-7B [9] (Baseline) 0.85 0.87 0.85 0.84 0.85 0.84 0.73 0.73 0.71 0.48 0.65 0.65
T2I-R1 (Ours) 0.87 0.89 0.89 0.87 0.87 0.88 0.81 0.82 0.78 0.60 0.73 0.73

Table 5: Ablation Experiments on the Effectiveness of the Two Levels of CoT.

Model Optimized CoT T2I-CompBench WISE Diversity↑
Semantic-level Token-level Color↑ Shape↑ Texture↑ Culture↑ Spatio-Temporal↑ Science↑

Janus-Pro-7B 0.6359 0.3528 0.4936 0.3000 0.4232 0.3467 6.976
- ✓ 0.8082 0.5684 0.7219 0.4900 0.5599 0.4367 8.177
- ✓ 0.7752 0.5849 0.7451 0.3500 0.4732 0.3900 6.255
T2I-R1 ✓ ✓ 0.8130 0.5852 0.7243 0.5600 0.5855 0.4633 8.203

capabilities inherent in semantic-level CoT. As illustrated in Fig. 5, our method could first clearly
reason about the objects or phenomena described in the prompt through semantic-level CoT. This
effectively decouples the reasoning and generation processes and thereby facilitates superior results.
We also observe that training solely with token-level CoT substantially reduces the diversity of
generated images, as demonstrated in Fig. 6, 7, 13, and 14. To quantify this effect, we evaluate image
diversity by reusing the generated images from T2I-CompBench, where each prompt generates ten
images. We compute the Vendi Score [18] across the ten images for each prompt. Results indicate
that GRPO training without semantic-level CoT decreases the diversity score, whereas incorporating
semantic-level CoT significantly improves diversity through varied textual planning.

We also consider another situation to validate the effectiveness of token-level CoT: the semantic-level
CoT is incorporated in the image generation process, as T2I-R1, but GRPO only optimizes the
semantic-level CoT without the token-level CoT. This can be viewed as only enhancing the model’s
high-level planning capabilities. The second row of Table 5 presents the result. The results show
that optimizing semantic-level CoT exclusively yields smaller improvements compared to the joint
optimization approach. Additionally, we find that optimizing both CoT types produces images with
much better aesthetic quality compared with optimizing semantic-level CoT only, as shown in Fig. 5.
This indicates the necessity to jointly optimize both levels of CoT.

4 Conclusion

In this paper, we introduce T2I-R1, the first reasoning-enhanced text-to-image model powered by
a bi-level CoT reasoning process. We identify the semantic-level CoT for high-level planning and
the token-level CoT for patch-by-patch generation. We further integrate them through our proposed
BiCoT-GRPO, an RL framework incorporating two levels of CoT within the same training step. By
leveraging a ULM capable of both visual understanding and generation, our approach eliminates the
need for separate specialized models while achieving significant performance improvements, +13%
on T2I-CompBench and +19% on the WISE benchmark. Our qualitative analysis demonstrates that
T2I-R1 better understands complex prompts, reasons about user intentions, and handles uncommon
scenarios with greater robustness, establishing a new paradigm for text-to-image generation tasks.
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A Related Work

Unified Generation and Understanding LMM. Recently, the effort to unify image generation
and understanding in a single LMM has attracted much attention. Building upon large language
models (LLMs), it is natural for the LMMs to understand the image and output the text [61, 37,
106, 19, 101, 32]. However, the method of how to generate an image from a LMM is still under
exploration. The image generation method diverges into different branches. One line of the method
relies on an exterior image generation model to complete generation [15, 76, 75, 41, 78, 17, 105, 36].
The generator often utilizes text-to-image diffusion models [68, 64] due to its powerful generation
capability. To deliver the generation information, the LMM passes either the implicit conditional
feature or the explicit image prompt to the generator. For example, EMU [76] first trains the LMM to
output CLIP [66] image features identical to that input to the LMM. Then, a pretrained UNet [69]
of Stable Diffusion [68] receives the output feature as the condition to generate an image. Another
line of the method seeks to train the LMM to generate discrete tokens produced by VQGAN [16]
to eliminate the need for an additional generator. [81, 39] directly adopts the VQGAN encoder
as the image tokenizer for LMM. However, the VQGAN encoder is only pretrained on the image
reconstruction task and thereby generates visual tokens less helpful for image understanding. To
improve the understanding capability, [84, 9, 55, 46] proposes to tackle the understanding and
generation tasks with different vision encoders separately. The CLIP encoder deals with image
input for understanding, while the VQGAN encoder is responsible for generation. Moreover, some
works [89, 65, 73] attempt to empower the vision encoder with both the understanding and the
generation capability. VILA-U [89] trains a vision encoder with both the contrastive loss [66] for
text-image understanding and reconstruction loss [16] for image detail preserving. Thanks to the joint
pretraining, the vision encoder could generate text-aligned discrete visual tokens. The LMM is then
trained to receive the discrete tokens for image understanding and predict them for image generation.

Reinforcement Learning for Large Reasoning Models. The emergence of OpenAI o1 [63]
has gained tremendous attention in developing the reasoning capability of large language models.
Later, DeepSeek-R1 [20] proposes a rule-based reward and GRPO training method. The introduced
method instructs the model to perform an extensive reasoning process before generating the final
answer. The reward only focuses on the correctness of the final answer and the following of
the pre-defined format. Recently, a number of works have applied this method to multi-modal
large language models [7, 57, 95, 100, 14, 28, 11] with task-specific rewards like correctness and
IoU [48]. This training paradigm largely helps various reasoning-intensive tasks [67, 31, 22] like
mathematical problem-solving [26, 56, 49, 102, 103], code generation [8, 2, 29], and complex scene
understanding [96].

B More Experiment Details

B.1 Experiment Setup

Training Settings. Our training dataset comprises text prompts sourced from the training set of
T2I-CompBench [27] and [23], totaling 6,786 prompts with no images. Prior to training, we use GPT-
4o mini to extract the objects and their attributes from the prompts to facilitate computing the rewards.
We use Janus-Pro-7B as the base model. We use a learning rate of 1e-6 and a beta of 0.01. For the
reward model, we choose HPS [88] as the human preference model, GroundingDINO [47] as the
object detector, and GIT [80] as the VQA model. For the ORM, we finetune LLaVA-OneVision-7B
in the same manner as [23].

Benchmark. We test on T2I-CompBench [27], WISE [59], GenAI-Bench [43], and TIIF-
Bench [83] to validate the effectiveness of our method. T2I-CompBench comprises 6,000 com-
positional text prompts evaluating three categories (attribute binding, object relationships, and
complex compositions) and six sub-categories (color binding, shape binding, texture binding, spatial
relationships, non-spatial relationships, and complex compositions). WISE consists of 1,000 text
prompts spanning three categories (cultural common sense, spatial-temporal reasoning, and natural
science) for evaluating world knowledge of the text-to-image models. To correctly generate an image,
the model needs to reason about what the exact object or scenario is depicted in the prompt. We
slightly modify the reasoning instruction on the WISE benchmark for more aligned results. GenAI-
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Token-level CoT Only Semantic-level + Token-level CoT

a fabric bag and a glass vase

a key on the right of  a dog

Figure 7: More Visualization Result of the Image Diversity of a Single Prompt. We showcase the
result of only token-level CoT optimized and both semantic-level and token-level CoT optimized.

Table 6: TIIF-Bench Testmini Subset Evaluation Results. The best score is in blue , with the
second-best score in green .

Model
Overall

Basic Following Advanced Following Designer

Avg Attribute Relation Reasoning Avg Attribute
+Relation

Attribute
+Reasoning

Relation
+Reasoning Style Text Real

World

short long short long short long short long short long short long short long short long short long short long short long short long

Llamagen [74] 41.67 38.22 53.00 50.00 48.33 42.33 59.57 60.32 51.07 47.32 35.89 32.61 38.82 31.57 40.84 47.22 49.59 46.22 46.67 33.33 0.00 0.00 39.73 35.62

LightGen [87] 53.22 43.41 66.58 47.91 55.83 47.33 74.82 45.82 69.07 50.57 46.74 41.53 62.44 40.82 61.71 50.47 50.34 45.34 53.33 53.33 0.00 6.83 50.92 50.55

Show-o [91] 59.72 58.86 73.08 75.83 74.83 79.83 78.82 78.32 65.57 69.32 53.67 50.38 60.95 56.82 68.59 68.96 66.46 56.22 63.33 66.67 3.83 2.83 55.02 50.92

Infinity [24] 62.07 62.32 73.08 75.41 74.33 76.83 72.82 77.57 72.07 71.82 56.64 54.98 60.44 55.57 74.22 64.71 60.22 59.71 80.00 73.33 10.83 23.83 54.28 56.89

Janus-Pro [9] 66.50 65.02 79.33 78.25 79.33 82.33 78.32 73.32 80.32 79.07 59.71 58.82 66.07 56.20 70.46 70.84 67.22 59.97 60.00 70.00 28.83 33.83 65.84 60.25

T2I-R1 (Ours) 68.59 67.19 82.90 81.63 86.50 83.00 83.47 79.43 78.73 82.46 69.05 68.00 71.64 69.47 72.43 69.95 69.40 70.40 60.00 63.33 27.60 26.24 67.54 60.45

Bench is a benchmark containing 1,600 complex, real-world text prompts collected from professional
designers, which covers a broad spectrum of compositional text-to-visual generation elements, from
basic aspects like scenes, attributes, and relationships to more professional ones, including counting,
comparison, differentiation, and logical reasoning. TIIF-Bench is a comprehensive benchmark for
fine-grained text-to-image model evaluation, featuring 36 novel prompt combinations across six
compositional dimensions and 100 real-world designer-level prompts with rich aesthetic judgment.
We follow the official evaluation setting of all the benchmarks.

C More Experiment Results

C.1 More Results

We provide the experiment results on TIIF-Bench in Table 6 and more qualitative examples in Fig. 8.

Finally, we discuss the zero-shot potential of the baseline model to perform both semantic-level
and token-level reasoning. Specifically, we apply the same image generation process of T2I-R1
directly to the baseline model, where the baseline model is first instructed to output the semantic-level
CoT and then the token-level CoT. We term this method of generation as ‘Janus-Pro w/ zero-shot
semantic-level CoT’ in Figure 9-12. As shown in the figure, zero-shot semantic-level CoT brings very
marginal improvement, while T2I-R1 demonstrates a satisfying result. The reasons are twofold: (1)
Zero-shot semantic-level CoT misses critical objects in the original prompt. As shown in Figure 12,
the zero-shot semantic-level CoT misses the bird in the original prompt. (2) Zero-shot semantic-level
CoT does not fit the model’s generation ability or provide useful information for generation. Although
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Janus-Pro
Only

Semantic-level
Only

Token-level

A chameleon perfectly camouflaged against a green leafA chameleon perfectly camouflaged against a brown leaf

Janus-Pro
Only

Semantic-level
Only

Token-level

A specific type of  aircraft used in World War II

Copper wire exposed to air for a long time

A famous flower that symbolizes wealth in China

An animal with a long nose

A traditional mode of  transportation in Egypt

A flower with deep cultural and religious significance in India, 
representing purity and beauty

A massive stone statue of  a mythical creature that is a prominent 
historical landmark in Egypt

A form of  personal communication before the advent of  telephones

T2I-R1
(Semantic-level
+Token-level)

T2I-R1
(Semantic-level
+Token-level)

Figure 8: More Visualization Results. We provide the image generation results of the same prompt
from four models: base model, the model with only semantic-level CoT optimized, the model with
only token-level CoT optimized, and the model with both levels of CoT optimized.

the semantic-level CoT in Figure 9-11 includes all the objects and relationships, the baseline model
still fails to generate a satisfying result. This highlights the necessity of our proposed BiCoT-GRPO
training method to build the synergy between the two levels of CoT and make them work together.

C.2 More Details about Reward Analysis

We conduct a human study to evaluate the visual quality of the generated images. Specifically, we
select four options of reward models (V, O, H+ D, and H+ D+ V) to generate an image from the same
prompt. Then we ask humans to rank the four images and score them according to the rank (rank 1
for 3 points, rank 2 for 2 points, and so on). We ask the annotators to judge only according to the
visual appeal. We provide examples of an unsatisfactory generation, including different aspects: 1)
Corrupted floating words, 2) Distortion like melting effect of faces, hands, or other objects, 3) Extra
or missing hands, legs, tails, etc., 4) Object merging, frequently observed for compositional prompts,
5) Low-level aspects including over exposure or over saturation, 6) Blurred areas, especially in fine
details like keyboard. The instruction to the annotator highlights that the highly ranked images should
show no or fewer problems compared with others. Eight graduate students are employed to conduct
the study to eliminate individual bias. We randomly choose 30 prompts from each of the subtasks
from the T2I-CompBench. The result is shown in the visual quality column in Table 3. We observe
that ensemble rewards achieve better visual quality, with H+ D+ V obtaining slightly superior results.
This improvement could be attributed to the implicit regularization provided by multiple rewards,
preventing overfitting to a single reward model. Conversely, individual reward models fail to provide
satisfactory quality despite high benchmark scores.
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C.3 Comparison with Prompt Rewriting Methods

The prompt rewriting [94, 99, 25, 86] is a method to leverage an external LLM to generate an
enriched version of the prompt and use this version for the text-to-image model to produce the
images. Our semantic-level CoT design resembles the high-level idea of this method, but there
exist several key differences. First, the semantic-level CoT is generated from the image generation
model itself, while the prompt enrichment leverages an extra LLM. Second, our design facilitates
a joint-optimization of the prompt design and the image generation. On the contrary, the prompt
enrichment is generation-model-agnostic, which means that although the prompt is enriched with
more details, it is not necessary that the generation model can generate a better image based on this
enriched prompt. We validate this claim in Figure 9-11. Although the zero-shot semantic-level CoT
(enriched prompt) all correctly includes all the key objects mentioned in the prompt and adds more
details, the model still cannot generate satisfying result. Simply enriching the prompt is not sufficient
to bring notable improvements.

C.4 Comparison with Training with RL and Supervised Finetuning

In our experiments, we directly employ reinforcement learning. An alternative is to first conduct
supervised finetuning (SFT) and then continue with RL training. Our findings show that a cold
start stage with SFT seems to be detrimental for the final performance. Specifically, we use the
open-source high-quality text-to-image dataset BLIP3o-60K [5] as our SFT dataset. We employ
Qwen2.5-VL-72B-Instruct [3] to generate the semantic-level CoT with the image and the original
short prompt input. We finetune the model for one epoch and then conduct RL finetuning following
the same training setting of T2I-R1. The results are shown in Table 7 below:

Table 7: Model Performance Comparison Between RL and SFT.

Training Method Color Shape Texture Spatial Non-Spatial Complex
Janus-Pro 0.6359 0.3528 0.4926 0.2061 0.3085 0.3559
SFT Only 0.7035 0.5217 0.6423 0.2775 0.3068 0.3626
Hybrid optimization 0.7765 0.5832 0.6981 0.3327 0.3092 0.3949
T2I-R1 (RL Only) 0.8130 0.5852 0.7243 0.3378 0.3090 0.3993

The key findings are two-fold. First, high-quality SFT is beneficial. The curated BLIP3-60k dataset
yields significant performance gains. However, SFT performance substantially lags behind RL
training. We hypothesize this occurs because SFT constrains the model to replicate the training
distribution rather than leveraging its inherent capabilities. Specifically, when presented with a valid
semantic-level CoT, SFT forces the model to generate the exact corresponding training image, even
when the model could produce alternative valid outputs. This constraint introduces unnecessary
training complexity. Second, RL after high-quality SFT is still inferior to direct RL training. While
high-quality SFT pre-training improves subsequent RL performance, the combined approach remains
mostly inferior to or merely comparable with direct RL training.

C.5 Choice of Reward Weights

In Table 1, the weight of all the rewards are set to 1. We find that the weight of the reward model
has little influence on the final training result. Here we provide the detailed study to illustrate the
our method is stable to the weight of the reward model. We follow the training setting of T2I-R1,
where three reward models, HPS, GroundingDINO, and GIT are employed. In our experiments, we
multiply the weight of each reward model by 5 respectively, while maintaining the weight of the other
two reward models. Apart from these three experiments, we also conduct an experiment where we
compute the relative reward of each reward model inside the group, and then sum up the normalized
reward as the final reward for the sample. This eliminates the mean and variance difference among
the reward models (termed as Normalized Reward). The results are shown in Table 8 below.

C.6 Hyperparameters

All of our experiments are conducted on 8 H800. Our training procedure lasts about 16 hours. We
provide the detailed training hyperparameters in Table 9.
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Table 8: Comparison of Different Reward Weights.

Reward Design Color Shape Texture Spatial Non-Spatial Complex
5∗HPS, 1∗others 0.8215 0.5915 0.7337 0.3051 0.3074 0.4051
5∗GDINO, 1∗others 0.7951 0.5520 0.7100 0.3313 0.3104 0.3916
5∗GIT, 1∗others 0.7972 0.5620 0.7149 0.3357 0.3111 0.3934
Normalized Reward 0.8106 0.5820 0.7142 0.2940 0.3072 0.3993
T2I-R1 (Equal Weights) 0.8130 0.5852 0.7243 0.3378 0.3090 0.3993

Table 9: T2I-R1 training hyperparameters.

Name
Learning rate 1e-6
Beta β 0.01
Group Size G 8
Classifier-Free Guidance Scale 5
Max Gradient Norm 1.0
Batchsize 8
Training Steps 1,600
Gradient Accumulation Steps 2
Image Resolution h× w 384× 384

D Limitations and Future Work

While this work explores the text-to-image generation task, it requires more exploration on how to
apply this paradigm to other modalities like video generation [4] or 3D [21] tasks. Specifically, video
generation tasks are more complex regarding the reward design and the base model. For the reward
design, how to apply dense rewards on each generated frame is still an open question. Besides, there
exists no understanding and generation unified model for videos, so BiCoT-GRPO cannot be used
directly. Meanwhile, the current inference time of video generation is too long for the current GRPO
paradigm. How to balance the training time and effect needs further study.
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In the image, the red train occupies the left side of the image, with a 
sleek and polished metallic finish. Beside it, a blue bowl is sitting 

gently on a wooden table, its surface reflecting light, and there lies a 
delicate green flower on the table, its petals spreading like a 

butterfly's wings. In the background, an appetizing yellow cake with 
an intricate icing decoration stands next to a table on the right side of 
the scene. The train appears slightly ahead of the bowl, while the 
cake sits further behind the table and flower, creating an interesting 
spatial arrangement of objects and colors against a bright backdrop.

Janus-Pro

a red train, a blue bowl, a green flower, and a yellow cake

Janus-Pro
w/ zero-shot

semantic-level CoT
T2I-R1

Prompt

Underneath a blue sky, a red train is moving along the railway track. 
Next to it, a green flower stands tall, while a yellow cake sits on a 

nearby table.

T2I-R1
Semantic-level CoT

Zero-shot
Semantic-level CoT

Figure 9: Visualization Results of Semantic-level CoT. We provide the image generation results of
the same prompt from three settings: base model, base model with zero-shot semantic-level CoT, and
T2I-R1. For the setting of base model with zero-shot semantic-level CoT, we use the same generation
pipeline of T2I-R1 directly on the base model. We employ the same prompt of T2I-R1 to instruct the
base model to generate a zero-shot semantic-level CoT, which we visualize in the figure and provide
a comparison of the semantic-level CoT generated by T2I-R1.
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The image displays three paintings hung on a wall, each characterized 
by vibrant colors such as pink, blue, and yellow, reflecting various 

artistic styles. In front of the paintings, there is a single, slender knife 
with a metallic polish, positioned horizontally and lying on a polished 

wooden surface. The knife's reflective glare contrasts with the 
richness of the paintings, creating an intricate visual interplay. The 

paintings provide a backdrop to the knife, and their colors accentuate 
the sharpness of the blade.

Janus-Pro

three paintings and one knife

Janus-Pro
w/ zero-shot

semantic-level CoT
T2I-R1

Prompt

Three paintings hung on the wall, and in the middle stood a sharp-
looking knife. The three paintings were of varying nature: one depicted 

sunflowers in a vibrant yellow, the second portrayed a serene 
countryside with soft blues and greens, while the third had an abstract, 

multicolored design.

T2I-R1
Semantic-level CoT

Zero-shot
Semantic-level CoT

Figure 10: Visualization Results of Semantic-level CoT. We provide the image generation results of
the same prompt from three settings: base model, base model with zero-shot semantic-level CoT, and
T2I-R1. For the setting of base model with zero-shot semantic-level CoT, we use the same generation
pipeline of T2I-R1 directly on the base model. We employ the same prompt of T2I-R1 to instruct the
base model to generate a zero-shot semantic-level CoT, which we visualize in the figure and provide
a comparison of the semantic-level CoT generated by T2I-R1.
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The image shows a brown and white dog peeking its head through 

a small gap in the door, with a gentle and curious expression etched 
onto its face. The door is slightly ajar, and the dog's body is barely 
visible beyond the edge of the frame, hinting at a playful waiting 
game. The room behind the door is dimly lit, creating an eerie yet 
intimate atmosphere as if the dog is on a mission or has been 

guarding the entrance for some time. The door itself is wooden with a 
simple metal handle. The overall tone of the visual emphasizes 

curiosity and anticipation.

Janus-Pro

a dog behind the door

Janus-Pro
w/ zero-shot

semantic-level CoT
T2I-R1

Prompt

A dog is standing behind a door, with brown fur, dark eyes, a black 
collar, and a white patch on its face. The door is wooden, with a metal 
handle and hinges. The dog's ears are perked up, and it looks curious 

or alert through the door.

T2I-R1
Semantic-level CoT

Zero-shot
Semantic-level CoT

Figure 11: Visualization Results of Semantic-level CoT. We provide the image generation results of
the same prompt from three settings: base model, base model with zero-shot semantic-level CoT, and
T2I-R1. For the setting of base model with zero-shot semantic-level CoT, we use the same generation
pipeline of T2I-R1 directly on the base model. We employ the same prompt of T2I-R1 to instruct the
base model to generate a zero-shot semantic-level CoT, which we visualize in the figure and provide
a comparison of the semantic-level CoT generated by T2I-R1.
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A fluffy white dog with bright amber eyes sits by the edge of a serene lake, 
observing a vibrant black and white bird soaring above. Nearby, a classic 

building in shades of brown and cream stands tall with numerous 
windows, giving it an old-world charm. Together, they create a picturesque 

scene that evokes peace and charm.

Janus-Pro

a dog, a bird, a lake, and a building

Janus-Pro
w/ zero-shot

semantic-level CoT
T2I-R1

Prompt

A dog wags its tail, plays fetch at the lake, and sits in front of the building.

T2I-R1
Semantic-level CoT

Zero-shot
Semantic-level CoT

Figure 12: Visualization Results of Semantic-level CoT. We provide the image generation results of
the same prompt from three settings: base model, base model with zero-shot semantic-level CoT, and
T2I-R1. For the setting of base model with zero-shot semantic-level CoT, we use the same generation
pipeline of T2I-R1 directly on the base model. We employ the same prompt of T2I-R1 to instruct the
base model to generate a zero-shot semantic-level CoT, which we visualize in the figure and provide
a comparison of the semantic-level CoT generated by T2I-R1.
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Janus-Pro T2I-R1

origami cranes unfolding into real birds during cherry blossom season

Figure 13: More Visualization Result of the Image Diversity of a Single Prompt. We showcase
the result of the baseline model, Janus-Pro, and T2I-R1.
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Janus-Pro T2I-R1

paint drops falling from brushes creating flowers on a canvas below

Figure 14: More Visualization Result of the Image Diversity of a Single Prompt. We showcase
the result of the baseline model, Janus-Pro, and T2I-R1.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction accurately reflect this paper’s
contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss the limitations of the work in Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please see Section Experiments, Appendix, and the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please see Section Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We conduct experiments only once and report the accuracy of the best model,
and it would be too computationally expensive to conduct the pre-training multiple times.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please see Section Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This work focuses on academic, publicly-available datasets including T2I-
CompBench, WISE, and GenAI-Bench . This work is not related to any private or personal
data, and there’s no explicit negative social impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Please see Section Appendix.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Please see supplementary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [Yes]
Justification: Please see Section Appendix.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is used only for writing, editing, or formatting purposes and does not
impact the core methodology, scientific rigorousness, or originality of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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