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Abstract

This paper introduces the Variational Determinant Estimator (VDE), a variational exten-
sion of the recently proposed determinant estimator discovered by Sohl-Dickstein (2020).
Our estimator significantly reduces the variance even for low sample sizes by combining
(importance-weighted) variational inference and a family of normalizing flows which allow
density estimation on hyperspheres. In the ideal case of a tight variational bound, the
VDE becomes a zero variance estimator, and a single sample is sufficient for an exact (log)
determinant estimate.

1. Introduction

The computation of the (log) absolute determinant of matrices is a problem that is encoun-
tered in machine learning in areas such as normalizing flows (Rezende and Mohamed, 2015;
Dinh et al., 2016). Sohl-Dickstein (2020) connects the inverse absolute determinant of A
with an expectation over matrix-vector products:

|A|−1 = Es∼U(Sn−1)

[
‖As‖−n

]
, (1)

where samples are drawn from a uniform distribution on the n−1 dimensional hypersphere.
For better readibility we will write shorthand U(s) for the uniform spherical distribution in
the following. A common unbiased estimator for Equation 1 is then given via Monte Carlo
(MC) integration:

Es∼U(s)
[
‖As‖−n

]
≈ 1

N

N∑
i=1

‖Asi‖−n with si ∼ U(s). (2)

Figure 1: Overview of variational determinant estimation. A spherical proposal distribution
q(s) is trained to estimate the absolute determinant of a matrix A.
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Sohl-Dickstein (2020) has empirically shown that the näıve MC approach of Equation 2
can have problematic high variance, meaning that we need around 106 samples to correctly
estimate even a 10× 10 matrix.

This paper extends the MC determinant estimator using Spherical Normalizing Flows
to introduce the Variational Determinant Estimator. This new estimator achieves lower
variance and, as a result, requires fewer samples for accurate estimates. For an example see
Figure 1.

1.1. Spherical Normalizing Flows

Normalizing flows (Rezende and Mohamed, 2015; Dinh et al., 2016; Kingma and Dhariwal,
2018) are generative models which transform a base distribution π(z) on a space Z into a
more complex distribution q(s) on another space S via a diffeomorphism f : Z → S. The
relationship between those is given by the change of variables formula:

log q(s) = log π(z)− log|det Jf (z)|, (3)

where Jf is the Jacobian. Most work has been done when Z and S are Euclidean spaces
with flat geometry. Flows for hyperspherical geometries were introduced in Rezende et al.
(2020), that is f : Sn → Sn is a diffeomophism. For these flows we usually choose a uniform
base distribution π(z) = U(z) since the underlying spaces are compact. As a consequence,
q(s) is a distribution on the hypersphere parametrized by complicated invertible functions
that we can straightforwardly sample from and compute the likelihood.

2. The Variational Determinant Estimator

To estimate the determinant and log determinant more efficiently with less variance, we
introduce the Variational Determinant Estimator:

|A|−1 = Es∼U(s)
[
‖As‖−n

]
= Es∼q(s)

[
U(s)

q(s)
‖As‖−n

]
,

which by Owen (2013) has the least variance when q(s) ∝ U(s)‖As‖−n. An example to
achieve this proportionality is to minimize the divergence

KL(q(s) ; U(s)‖As‖−n/Z),

where U(s)‖As‖−n is treated as an (unnormalized) probability distribution and Z is an
unknown normalization constant which does not influence the gradient. To avoid clutter
with unnecessary constants, we drop Z in the following and note that the resulting KL
divergence is an abuse of notation because the well-known properties such as non-negativity
do not necessarily hold anymore for KL(q(s) ; U(s)‖As‖−n). Using this divergence has the
additionally desired effect that:

log|A|−1 = logEs∼q(s)

[
U(s)
q(s) ‖As‖

−n
]
≥ Es∼q(s)

[
log U(s)q(s) ‖As‖

−n
]

= −KL(q(s) ; U(s)‖As‖−n),

and thus the negative KL gives a lower bound on the log absolute determinant of A−1

due to Jensen’s inequality. Consequently, this gives a direct method to estimate the log
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absolute determinant of A using the upper bound KL(q(s) ; U(s)‖As‖−n) which is tight
when q(s) ∝ U(s)‖As‖−n. In this ideal case, the VDE becomes a zero variance estimator,
see Goliński et al. (2019) Section 2.1.

The proposal distribution q is modeled by a flow introduced in Section 1. If we substitute
q in KL using the change of variables formula in Equation 3 with a normalizing flow f , and
we choose a uniform base distribution π(s) = U(s), the objective simplifies:

KL(q(s) ; U(s)‖As‖−n) = Es∼q(s)
[
log q(s)− log‖As‖−n − logU(s)

]
= Es0∼U(s) [− log |det Jf (s0)|+ n log‖Af(s0)‖] .

(4)

Equation 4 is optimized via naive Monte Carlo integration. The result of such a learned q in
the case of a 3× 3 matrix A is illustrated in Figure 1 and the optimal proposal distribution
is visualized in Figure 3 of the Appendix A.1.

3. Related Work

Importance sampling has a long history as a study object. Hesterberg (1988) introduced
extensions for the importance weights such as regression or non-linear exponential estimates
to allow the method to be effectively applied in a wider range of settings such as multi-
variate outputs. Kingma and Welling (2014); Rezende et al. (2014) have introduced deep
learning-based variational inference and Burda et al. (2015) have shown tighter bounds with
importance-weighted variational inference. Although these works were originally aimed at
estimating log probabilities, they can be more generally be applied to marginalize a proba-
bilistic latent variable. Müller et al. (2019) utilize flows to learn a proposal distribution for
importance sampling in a Euclidean space. Goliński et al. (2019) introduce amortized Monte
Carlo integration, which combines different proposal distributions for better estimates.

Normalizing Flows (Tabak and Turner, 2013; Rezende and Mohamed, 2015) are an
attractive generative model to learn distributions because they admit exact likelihood eval-
uation, and they are fast to sample from as opposed to autoregressive models. There have
been many advances for flows on Euclidean manifolds (Dinh et al., 2016; Kingma et al.,
2016; Chen et al., 2019; Perugachi-Diaz et al., 2020). Recently, Gemici et al. (2016); Rezende
et al. (2020) have introduced normalizing flows for hyperspheres. As a result, it is now also
possible to learn expressive distributions on hyperspheres with exact likelihood estimates
and efficient sampling.

4. Results

In this section, we demonstrate the performance of our method in determinant estimation.
We consider two cases: estimating the determinant of randomly sampled 10 × 10 dense
matrices and estimating the determinant of a convolutional layer.

4.1. Dense Matrix

The determinant is estimated for five 10× 10 matrices where the entries are sampled from
unit Gaussians, see the Appendix A.2 for the specific matrices. The spherical flow utilizes
a Moebius transformation for the circle part with NC = 12 number of centers and Neural
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Nr. of samples 102 103 104 105

VDE det. (ours) 3.4 ± 2.1 % 1.7 ± 0.6 % 1.6 ± 1.3 % 0.3 ± 0.3 %
MC det. 533 ± 660 % 348 ± 262 % 104 ± 30 % 59 ± 43 %

Table 1: Comparison of determinant estimates. Results are in mean absolute relative dif-
ference for 5 unit Gaussian sampled 10× 10 matrices. Deviations are given in one
standard deviation.

(a) Absolute determinant estimates. (b) Relative variation of determinant esti-
mates

Figure 2: Determinant estimates of a structured 16×16 matrix. Left: absolute determinant
estimated values. Right: the absolute relative difference to the true determinant
value. Both plots are on log-scale.

Spline flows (Durkan et al., 2019) with NB = 16 number of bins for the interval part, see
Rezende et al. (2020) for details of the architecture and the parameters. Furthermore, we
stacked NF = 8 flows on top, used coupling layers, and trained the models for 10k iterations
with a batch size of 1024. Flows based on autoregressive masking are also possible.

The results can be seen in Table 1, where we present the mean of the relative absolute
differences of the estimated determinant in comparison to the true absolute determinant.
The variational determinant estimator achieves even for a low sample size of 102 low relative
differences, whereas in contrast, the näıve Monte Carlo estimate still has high variance
throughout all sample sizes.

4.2. Convolutional Layer

In this experiment, the (log) determinant of a convolutional layer is estimated. The reason
for this experiment is that these types of sparse linear transformations often occur in deep
learning, and they typically have cheap matrix-vector products. We manually reconstructed
the 16 × 16 equivalent matrix W of a convolution of a 3 × 3 filter with an 4 × 4 image,
see Appendix A.3 for the filter. The determinant of W equals the determinant of the
convolution operation. We chose the same architecture as in our previous experiment but
ran the experiment this time for 40k iterations with the same batch size. Note that the
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Nr. of samples 102 103 104 105 true (log) determinant

VDE det. (ours) 7.62 7.71 7.64 7.70
7.71

MC det. 481.09 74.37 39.08 13.21

VDE log det. (ours) 2.03 2.04 2.03 2.04
2.04

MC log det. 6.18 4.31 3.67 2.58

VDE Rel. diff of det. (ours) 1.1 % 0.05 % 0.9 % 0.1 %
0 %

MC Rel. diff of det. 6144 % 865 % 407 % 71 %

Table 2: Comparison of variational and Monte Carlo determinant estimates. First four rows
show results in absolute numbers and log-space. The last two rows illustrate the
relative difference of the estimates to the true determinant.

parametrization of our spherical flow is fully connected, and better optimization behavior
is expected when the parametrization would be convolutional.

Figure 2 and Table 2 show the results of the experiment in terms of absolute and log
abs. determinant estimates. We observe the same behavior as in the previous experiment:
The variational determinant estimator achieves low errors with already low sample sizes,
whereas the MC determinant estimator is not able to capture the determinant correctly
with even high sample sizes.

5. Conclusion

In this paper, we introduced the Variational Determinant Estimator, which achieves with
low sample sizes high accuracy in estimating a determinant of a linear operator. Interest-
ingly, the estimator in its original variant and the VDE allows estimation if only matrix-
vector products are available.

In our experiments, we considered an offline setting where a large number of samples are
required first to optimize the model. However, in future work, VDE could also be applied
in an online, moving target settings. In this case, small updates to the matrix A would only
require small updates to the density model q(s). A perpendicular direction for VDE would
be to estimate the Jacobian determinant of a function f . The Jacobian would depend on
the input x, and the density model q(s|x) can be amortized. Additionally, not the entire
Jacobian but only Jacobian-vector products would be required to estimate the determinant.

Code to reproduce the results and to enable further research concerning the Variational
Determinant Estimator and spherical normalizing flows will be made public in the git repos-
itory1 of one of the authors at a later time point.

1. https://github.com/P4ppenheimer
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Appendix A. Experimental Details

A.1. Cover Density

The cover image of this paper illustrates the learned proposal distribution q(s) corresponding
to the matrix

A =

 −0.7056 0.6741 −0.5454
0.9107 1.0682 0.1424
−1.2754 −0.1769 1.0084

 ,
which is created with torch.randn(3,3) and torch manual seed 15. The optimal proposal
distribution q∗ ∝ ‖As‖−n is illustrated in Figure 3. We trained the model for 10k iterations
and in contrast to the architecture in Section 4, we used NF = 6 flows with autoregressive
masking and Neural Spline flows for both the spherical part and the interval part of S1 ×
[−1, 1] with NB = 32 bins, see again Rezende et al. (2020) for details.

Figure 3: Optimal proposal distribution corresponding to A.

A.2. Dense 10× 10 Matrices

In this section we publish the absolute determinants in Table 3 and the 10× 10 matrices of
our experiment in Section 4.1. Numbers are rounded to two decimals.

A1 A2 A3 A4 A5

Absolute det. 520.36 748.68 945.02 3000.5 252.29

Table 3: Absolute determinants of matrices of the experiment in Section 4.1.
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A1 =



−1.08 −0.6 0.06 0.71 −0.81 0.57 0.69 0.51 −0.94 0.18
−0.55 1.5 1.39 −0.18 −0.56 −0.05 0.98 1.82 1.48 0.01
−0.26 −2.07 −1.12 −0.27 −1.03 0.97 −1.84 −0.5 −0.47 −1.17
1.01 −1.25 1.71 1.24 −0.79 −0.17 −1.05 0.44 0.02 0.04
1.24 −0.31 −0.18 −0.74 −0.43 0.29 −0.67 1.43 −1.01 −0.17

−0.49 −1.17 0.43 1.4 1.28 1.8 −0.45 1.67 −0.93 −1.72
0.78 1.19 0.02 −0.06 0.72 −1.24 −1.19 −0.71 1.73 0.81
0.53 1.56 −1.09 0.33 −0.29 −0.47 1.02 1.67 −0.17 0.26
1.16 −0.18 0.86 0.94 0.26 −1.64 −0.38 −0.31 −0.79 1.31
0.54 1.39 −0.21 −0.12 0.14 0.8 0.78 0.85 −1.3 −0.41



A2 =



−1.92 −0.19 0.34 0.41 −0.58 −2.08 0.29 −0.46 −1.37 −0.45
−0.56 0.71 0.06 0.17 1.44 −1.81 −1.19 1.02 −2.84 2.28
1.64 0.14 −1.86 0.23 0.85 1.33 −0.88 −0.73 −0.53 2.09

−0.11 −0.43 0.68 −1.45 0.08 0.81 0.53 0.41 0.41 −0.27
−0.05 0.05 0.7 −1.09 1.77 −0.79 −0.35 1.71 0.85 0.8
1.24 −0.22 0.41 −1.02 −0.64 −0.21 −1.25 0.71 0.6 −0.75
0.71 −0.91 −0.11 0.18 1.13 −0.48 1.85 −0.03 0.29 −1.25
0.52 −1.06 0.48 −2.26 1.52 −0.63 1.26 −1.42 −0.02 −1.66

−1.01 −1.23 0.42 −0.37 1. −0.04 −0.32 0.52 −1.91 −1.78
0.89 −0.1 −0.39 −0.52 0.21 −0.99 0.48 0.22 0.77 −0.19



A3 =



−0.15 −1.65 −0.95 0.26 1.35 −0.1 0.37 0.45 0.23 −1.12
0.61 −1.81 −0.68 0.58 0.94 2.36 −0.49 0.04 0.86 0.52
1.91 −1.44 −0.51 0.96 −2.56 −0.01 −1.13 0.19 −2.5 0.68
0.93 −1.3 −0.65 −1.9 −0.09 0.24 0.69 1.28 −0.57 −0.39
0.55 −1.34 −1.37 −1.29 −0.28 −0.67 0.77 −0.25 0.85 −2.89

−0.86 1.95 −1.33 0.68 0.27 0.25 0.29 −1.29 2.05 0.11
0.82 0.52 −0.71 −0.59 −1.57 −1.05 0.46 −0.61 0.63 2.02
0.76 0.01 −0.06 −0.43 1.12 1.05 −1.35 −0.04 −0.62 −0.35

−2.13 −0.8 1.12 1.77 −0.79 −0.1 1.17 −1.06 −0.37 0.01
−0.86 1.44 −0.55 1.19 2.52 0.81 −0.36 −0.61 1.24 −0.06



A4 =



−0.31 −0.68 −0.22 −0.28 1.64 −0.41 −0.66 −0.59 1.57 0.38
−0.15 0.6 1.08 1.29 −0.12 1.89 −1.85 −0.11 1.5 0.72
0.88 −1.71 0.69 −1.75 −0.06 0.9 0.08 −0.11 −0.21 1.75
0.31 −1.4 −1.79 0.17 0.57 −0.86 1.64 −1.55 0.91 −2.06
1.1 −1.19 0.47 −0.84 0.37 0.25 0.03 −0.23 1.32 0.36

0.43 −0.02 −0.04 1.19 0.2 −1.13 1.36 1.23 −0.01 2.08
−0.8 0.48 −1.57 0.6 −0.19 −0.18 −0.88 −1.53 −0.66 −0.83
1.32 −1.09 0.71 1.04 1.02 −0.09 1.51 −0.51 −0.73 −0.82
0.21 −2.07 0.61 0.29 1.41 −1.93 −2.06 0.23 −0.09 0.24

−1.36 0.3 0.15 1.33 −1.1 −0.72 0.37 0.09 −0.56 2.81



A5 =



0.36 −0.95 0.12 0.85 −0.4 −0.1 0.58 −0.48 0.79 0.12
0.11 −0.02 −0.66 −0.98 −0.28 −1.61 −0.82 1.13 1.18 0.33
−0.7 0.65 −1.5 −0.33 −0.18 −0.6 −0.84 −0.43 −0.42 1.12

−2.33 −0.49 0.61 0.88 −0.85 −0.68 0.38 0.53 0.34 1.59
0.43 1.61 −0.14 1.15 −1.25 2.28 −0.32 −0.36 −2.1 0.98

−0.68 −0.54 −0.88 1.55 0.7 −1.34 0.15 −0.27 −0.86 1.35
−0.83 −0.52 −0.83 −1.98 1.79 −0.86 0.05 1.29 0.1 1.17
−1.34 −0.66 0.12 −0.95 −0.46 2.15 −0.67 −0.77 1.87 1.4
0.54 −0.51 0.16 1.38 1.49 0.61 0.22 0.64 −0.27 −0.47
0.62 −0.24 −0.11 0.27 −0.48 0.75 0.59 0.41 −0.81 0.07
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A.3. Filter of Convolutional Layer

Here we present the 3 × 3 filter k which was used to create the 16 × 16 matrix W of our
experiment in section 4.2. The matrix W is the equivalent matrix of the convolution k ? x
where x is an arbitrary 4× 4 image.

k =

 −0.107 −0.689 −0.027
0.226 1.393 −0.544
−0.28 −0.467 0.024
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