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ABSTRACT

Can large language models (LLMs), when acting as agents, match human cogni-
tive capabilities in sequential reasoning? To answer this question, we designed a
novel active probabilistic reasoning task that can be played by humans and LLMs.
Our minimal task design allows us to disentangle two essential components of
decision-making, sampling (gathering evidence) and inference (evaluating evi-
dence). We evaluated a large set of LLMs and find a wide spectrum of perfor-
mance. Several frontier models reach human-level performance, but do not exceed
skilled human players. Strong model performance consistently relies on extensive
reasoning. While some LLMs outperform humans in inference, all models con-
sistently lag in sampling capabilities. To probe the source of these differences,
we develop a novel Bayesian modeling framework that tracks sampling-policy
updates and maps humans and LLMs to different classical observer models. We
show that humans tend toward maximum-a-posteriori (MAP) sampling, whereas
the best LLMs tend to minimize posterior entropy across options. We further
tested whether LLMs can improve via in-context learning, and found that only a
subset of top-performing models could learn to solve the task based only on the
outcome of their choices.

1 INTRODUCTION

Neuroscience and cognitive science have long intersected in the effort to explain cognition by
linking neural mechanisms to mental processes (Sloman et al., 2021; van Bree, 2024). A key step
in establishing this link is the development of quantitative models of cognitive processes, which
provide insights into the computations underlying cognition and reveal latent variables that are
more directly related to neural processes than overt behavior (Ji-An et al., 2025; Miller et al., 2023;
Yang and Wang, 2020; Richards et al., 2019). Recent advances in Artificial Intelligence (AI) have
lead to entirely new avenues to develop such models (Lake et al., 2017; Peterson et al., 2021).
Large Language Models (LLMs), in particular, have been trained at unprecedented scales of data
and compute. These models show human-level performance across a variety of tasks (Bommasani,
2021; Bubeck et al., 2023), exhibit emergent properties such as in-context learning (ICL) (Brown
et al., 2020; Olsson et al., 2022), can be prompted to generate explicit reasoning traces (Wei et al.,
2022; Kojima et al., 2022), and are subject to alignment techniques designed to steer the model
toward human-like behavior (Bai et al., 2022; Griffith et al., 2013; Wei et al., 2021; Ouyang et al.,
2022). Fine-tuning of LLMs on experimental human datasets Binz et al. (2025) can produce models
that not only replicate human behavioral statistics but also approximate classical neuro-scientific
models of decision-making. As a result, researchers have begun to propose LLMs as candidate
models of cognition (Binz and Schulz, 2023). While these advances highlight the potential of
LLMs to serve as mechanistic models of cognition, in most settings it remains unclear how LLMs
solve a particular task, and how their strategies compare to those employed by humans. Most
current evaluations of LLMs focus on complex reasoning benchmarks, such as mathematics (Glazer
et al., 2024), logic and problem solving (Rein et al., 2024; Wang et al., 2024; Phan et al., 2025;
Yue et al., 2024; White et al., 2025), or code generation (Jimenez et al., 2024; Yang et al., 2025a),
where performance is typically assessed by final-answer accuracy, while leaving the underlying
mechanisms and dynamics largely unexplored.

To address this gap, here we study the behavior of humans and LLMs in a novel task prob-
ing their abilities in sequential probabilistic reasoning. Our task disentangles two core processes
underlying many complex, goal-oriented behaviors in humans and animals: the active gathering
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of evidence from the environment (sampling) and the integration of potentially unreliable evi-
dence towards an understanding of the unknown rules governing the environment (inference).
A large body of research suggests that cognition broadly arises from generalizations of these
two processes, and that neural computations may be understood as adaptations optimized to
support them (Friston, 2012; Kepecs and Mainen, 2012; Gershman, 2018; Knill and Pouget,
2004). The minimal environment of our task enables Bayesian modeling of optimal policies,
allowing precise quantification of sampling and inference capabilities across human and LLM
agents. This framework reveals both commonalities and divergences in their strategies, moving
beyond end-point accuracy to provide a deeper evaluation of LLMs as potential models of cognition.

Related work: Human-LLM comparisons. Using LLMs as cognitive models (Binz and Schulz,
2023). Comparative work links LLM behaviour and learning to human psychophysics tasks
(Russin et al., 2025; Binz et al., 2025) and the ability of models fine-tuned to human behavior to
reach Bayesian like behavior on k-armed bandit tasks (Su et al., 2025). In-context mechanisms.
Transformers can implement algorithmic updates during the forward pass, matching gradient
descent or ridge regression on linear tasks (Akyürek et al., 2022; von Oswald et al., 2022),
and can be trained to in-context learn broad function classes (Garg et al., 2022), including
preconditioned behavior (Ahn et al., 2023; Fu et al., 2024). Martingale tests report deviations
from Bayesian scaling (Falck et al., 2024), while other probes and prompting regimes can induce
approximately Bayesian choices (Gupta et al., 2025) and ICL as a Bayesian process Xie et al. (2022).

Contributions (i) We introduce an active probabilistic reasoning task that disentangles sam-
pling (evidence acquisition) from inference (evidence integration), enabling direct human–LLM
comparison and interpretable, model-based analysis. (ii) We evaluate a broad set of contemporary
LLMs, spanning different architectures, sizes and training paradigms, against human participants
under identical instructions, revealing a graded performance spectrum: several LLMs reach human-
level performance but do not surpass the best human participants. (iii) We quantify sampling and
inference quality, showing that LLMs can exceed humans in inference capabilities, yet consistently
under-perform in sampling. (iv) We characterize how agents integrate evidence by tracking the
posterior probability of final agent choice across rounds, showing that human-like integration in
LLMs exists and relies on extended chain-of-thought reasoning. (v) We test LLMs’ in-context
learning capabilities with different prompt variations and find heterogeneous outcomes: while some
models show brittleness over long horizons, others exhibit clear gains, with improvements largely
attributable to extended reasoning effort. (vi) We develop and fit a unifying observer class with an
interpolating geometric policy update that recovers natural and Euclidean policy gradients. Fitted
policies map humans near MAP-like sampling, whereas top LLMs trend toward entropy-modulated
strategies.

2 ACTIVE PROBABILISTIC REASONING TASK

We introduce an active probabilistic reasoning task (Fig. 1) drawing inspiration from classical psy-
chophysics and k-armed bandit paradigms (Lai and Robbins, 1985; Daw et al., 2006; Najemnik and
Geisler, 2005), that explicitly separates sampling from inference. Each trial (i.e., independent game)
consists of a random number of sampling rounds (N ∈ 2, . . . , 15) followed by a single integration
round. In each sampling round, the agent selects one of 4 buttons, with a randomly sampled number
of occlusions between 0 and 3. A chosen button reveals a cue from one of two classes: RED and
GREEN. At the start of each trial, one of the 4 buttons is designated as the biased one, yielding a
RED cue with probability 0.9 and GREEN cue with probability 0.1, while the remaining buttons
produce cues uniformly (0.5/0.5). We further extend this pipeline to different tasks, enabling the
evaluation of language models across a variety of stochastic environments (see Appendix F). To
implement this task, we developed an online platform1 through which human participants can play,
while LLMs interact with an equivalent text-based version under identical instructions (see Fig. 1).
Notably, the platform provides a leaderboard, allowing human players to compare their performance
both with other participants and with LLMs.

1https://ai.trt-bench.org
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You will play a game with N rounds. 
One button has 90% RED bias, others are 50/50. Buttons: A, B, C, D. At each round some buttons might be occluded.  

Pick one per round by responding with a letter only. At the end, identify the biased button.

LLM Agent Instructions

?

? ?

Round 1 Round 2 Round N Integration round

A

D

A
…Human 

Task

Round 2:  
Available buttons: A, C, D.  
Which do you choose?

Round 1 Feedback:  
You chose “A" and saw RED.

Round N-1 feedback:  
You chose “D" and saw GREEN.

Final Round: Which button has 
the RED bias? 

…
Final round feedback: You 
chose “A”, which is correct.

You received +100 
points

LLM  
Task

Bayes  
Agent

…

B

C D

A

C

B

C D

?

You will play a game with N rounds where buttons appear. 
One button has 90% RED bias, others are 50/50. 

At each round some buttons might be occluded. At the end, identify the biased button.

Human Agent Instructions

Sampling rounds

Optimal Agent

Round 1:   
Available buttons: A, B, C, D. 
Which do you choose?

Bayesian posterior

Evidence score

A

B

C

D

E

Figure 1: Structure of active probabilistic reasoning task. A: Instructions provided to human
and LLM agents. Humans and LLM receive an analogous explanatory prompt before starting the
game. B: Schematic of the online platform template for humans. The participants sample from a
set of 4 buttons: A, B, C or D (with occlusions in dark grey). Upon click, a RED- or GREEN-
colored cue is revealed. After N rounds, the participant is asked which button has the highest bias
towards the RED cue. C: Analogous schematic for the text-based version of the task for LLMs. D
and E: We compare agents choices during both the sampling and inference rounds to various ideal
observers with a Bayesian belief updated at each round. Each observer is defined by a different
scoring function ϕ which integrates a Bayesian belief bt over the sampled evidence.

3 COMPARING HUMAN AND SYNTHETIC COGNITION

We evaluate a broad set of Large Language Models (LLMs) on the proposed task (Figure 2).
The models span most of the current LLM landscape, ranging from dense to Mixture-of-Experts
(MoE) architectures across a range of model sizes and training paradigms, from base models to
instruct-fine-tuned, reasoning, and hybrid-reasoning LLMs (Vaswani et al., 2017; Schulman et al.,
2017; Shoeybi et al., 2019; Wei et al., 2021; Ouyang et al., 2022; Wei et al., 2022; Shu et al.,
2023; Shao et al., 2024; Cai et al., 2025). Our assessment covers both state-of-the-art closed-source
systems and competitive open-weight models. We evaluate a wide range of well-known model
families. This includes OpenAI’s gpt 4o mini (Hurst et al., 2024), gpt 4.1 mini (OpenAI, 2025a),
gpt 5 mini (OpenAI, 2025b), and the gpt oss open architectures in both the 20B and 120B parameter
variants (OpenAI, 2025c). We further considered several llama models (Touvron et al., 2023;
Dubey et al., 2024), including variants fine-tuned on human behavioral data (Binz et al., 2025), as
well as a distilled version of deepseek (Guo et al., 2025). Our assessment also covered Anthropic’s
claude sonnet 4 and claude haiku 3.5 (Anthropic, 2025), Google’s gemini 2.5 pro/flash and the
smaller gemma models (Comanici et al., 2025; Gemma Team, Google DeepMind, 2025), and the
qwen family, including the 235B Mixture-of-Experts (MoE) model as well as earlier dense variants
(Qwen Team, 2025; Yang et al., 2025b). Finally, we included the fully open-source apertus model
(Hernández-Cano et al., 2025), grok 3 mini (xAI, 2025), and glm 4.5 (Zeng et al., 2025). A subset
of the reasoning models considered allows for control over reasoning effort (resulting in longer or
shorter chain-of-thoughts token streams), hence we evaluate their performance both in low and high
parameter condition, we report this as additional Extended Thinking bars in Fig. 2. For every LLM
and reasoning effort level, we evaluate a minimum of 1, 400 individuals games spanning uniformly
the 2 to 15 rounds range, amounting to more than 55, 000 games. For what concerns humans,
we performed data collection on 50 human subjects during a 1-hour live-competition setting
amounting to 5000 individual games played spanning uniformly the same 2 to 15 rounds range.
Beyond assessing task performance, this evaluation helps chart new directions in understanding
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which architectures and training paradigms may give rise to viable substrates for cognitive modeling.

The average success rate among human participants is 61%, matching the performance of
the best LLM, gpt 5 mini. However, the top 25% of human players outperform this model by
a margin of 7%. Examining how success rates evolve across rounds (Fig. 2B) reveals a clear
separation between models around the 45% mark. These two groups exhibit strikingly different
behaviors: one shows positively sloped curves, indicating that the models leverage longer games
(# of rounds) to improve their performance, while the other remains flat across rounds. Within
the ranking, claude haiku 3.5 is the first model to display this lift-off. From DeepSeek R1 Qwen3
8B onward, all models closely follow the success profiles of the lower 75% of human players.
Interestingly, this subgroup aligns with the reasoning models. To account for the probabilistic
nature of the task, we consider a complementary metric assessing the agreement of the agents’
choices at integration rounds with that of an optimal Bayesian observer (Figure 2C). We build a
Bayesian posterior over the evidence sampled by agents (see Appendix B for details), estimate
the optimal choice according to a maximum-a-posteriori (MAP) agent, and compute the average
agreement between the agents and MAP observer. Concretely, given a Bayesian posterior over a
latent variable z ∈ RK

+ , and a set of actions a ∈ 1, ...,K with K = 4, the MAP agent is defined at
round t by a belief bt, defined in this case as the Bayesian posterior over the evidence and a policy
πMAP
t . We can then calculate the Bayesian agreement score at round T , ST (shown in Fig. 2C and

3A) is defined, for a trial with length T as

πMAP
t = arg max

i∈{1,...,K}
bt(z = i) , ST =

1

N

N∑
i=1

I
[
aT = πMAP

T

]
(1)

with the indicator function is comparing the match of human/LLM agent and MAP choices.
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Figure 2: Agents performance on activate probabilistic reasoning task. A: Task performance
based on success rate. Human performance (green) is split into the lower 75% and the top 25% of
participants. LLM performance is shown as colored bars, grouped by model type (base, instruct,
and reasoning) with low, absent, or non-controllable reasoning effort. Models with high reasoning
effort (extended thinking) are shown as grey bars. Error bars represent standard deviations, computed
across trial-cluster means with a uniform distribution over the number of rounds. Overall, reasoning
models outperform base and instruct variants. Human participants achieved an average success rate
of about 61%, comparable to the best LLM (gpt 5 mini), while the top 25% of humans exceeded
it by 7%. B: Evolution of success rate across rounds. Models are color-coded by their average
success rate from panel A. Human participants are shown in light green (top 25%) and dark green
(lower 75%). For reasoning models allowing extended thinking we report only high reasoning effort
performance. C: Evolution of Bayesian agreement reports the matching of agents’ choices to the
MAP decision based on the evidence they sampled across rounds.
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Inference Quality
Bayesian Agreement
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MAP final choice
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Figure 3: Agents Inference and Sampling Quality. A: Inference quality of human and LLM agents
based on Bayesian agreement. Human performance (green) is split into the lower 75% and the top
25% of participants. LLM performance is shown as colored bars, grouped by model type (base,
instruct, and reasoning) with low, absent, or non-controllable reasoning effort. Models with high
reasoning effort (extended thinking) are shown as grey bars. Error bars represent standard deviations,
computed across trial-cluster means with a uniform distribution over the number of rounds. Bars
report the average matching of agents’ choices to the MAP decision based on the evidence they
sampled across rounds. Top LLMs (gpt 5 mini, grok 3 mini, gemini 2.5 flash) match or surpass the
best human players. B: Sampling quality of human and LLM agents based on success rate with MAP
optimal final choice. We observe modest differences across LLMs and only limited benefits from
increased reasoning effort. In contrast, the top 25% of human participants consistently outperform
all models.

The analysis of Bayesian agreement assesses agents’ inference quality by measuring their ability
to integrate evidence gathered during sampling rounds relative to an optimal Bayesian observer.
In particular, the evolution of Bayesian agreement, shown in Figure 2C, confirms the existence
of distinct performance profiles among LLMs, with top-performing models aligning with the top
25% of human participants. When results are averaged across the number of rounds (Figure 3A),
gpt 5 mini, grok 3 mini, and gemini 2.5 Flash match or even surpass the best human players in
their agreement with the MAP agent, particularly in longer games. This evaluation underscores
the central role of reasoning effort, operationalized as the generation of additional chain-of-thought
tokens, in supporting successful evidence integration.

However, one question remains unanswered: if Bayesian agreement highlights the superior-
ity of reasoning models over base and instruct variants, and even over humans, in integrating
evidence, where do humans retain an advantage over these models? To address this, we examine
the quality of agents’ sampling strategies. Concretely, we estimate the Bayesian posterior over the
evidence sampled by each agent, derive the MAP-optimal choice, and compute the corresponding
average success rate. This rate measures the maximum performance that a given agent could have
achieved given the samples it actually collected. As shown in Figure 3B, this analysis reveals a
more uniform distribution of success rates, indicating only modest differences in the quality of
sampling strategies across LLMs. It further suggests that reasoning effort plays only a limited
role in this regard, providing slim performance gains, whereas the top 25% of human participants
consistently outperform all LLMs.

4 LANGUAGE MODELS SHOW HUMAN-LIKE POSTERIOR INTEGRATION

The analyses in Figures 2–3 revealed that top-performing LLMs match or outperform humans in
inference quality. To better characterize how agents integrate evidence, we examine the evolution
of their Bayesian posteriors over the course of sampling. Figure 4 reports the average posterior
dynamics for games of fixed length, with trajectories showing how evidence accumulates toward
the model choice in the final integration round. Each curve reflects the probability mass assigned to
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the ultimately chosen option as additional samples are observed.

Remarkably, we observe that LLMs can display evidence integration patterns that closely
mirror those of humans. A first observation is that model size alone does not predict posterior
quality. Large models such as Qwen3 235B Instruct fail to form well-structured evidence pro-
files, trailing behind both humans and smaller models (panel C). By contrast, compact models
equipped with sufficient reasoning capacity can closely approximate the posterior dynamics of
top-performing LLMs and human participants. In successful agents, posterior trajectories separate
quasi-monotonically across trial lengths: more rounds lead to more sharply defined posteriors,
reflecting systematic integration of accumulating evidence. Poorer models, in contrast, exhibit a
form of mode collapse (panel D): their posteriors remain flat in short trials and only show weak
differentiation when the maximum number of rounds is reached.
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A B C

D E F

High Reasoning

Qwen3 235B Instruct Gpt 5 mini (high) Humans

Gpt oss 120b (no reasoning) Gpt oss 120b (low) Gpt oss 120b (high)

Figure 4: Posterior evolution across rounds and reasoning levels. Each curve shows the posterior
probability of the final choice as evidence accumulates over rounds. A: Large Qwen3 235B Instruct
model exhibits weak integration. B: High-reasoning gpt 5 mini shows rapid early growth and high
final confidence. C: Humans display comparable accelerated integration with late plateau on longer
games. D-F: Variants of gpt oss 120b highlight the effect of reasoning effort: with no reasoning
(D) posteriors tend to remain flat; low reasoning (E) yields moderate gains; high reasoning (F)
produces sharp separation and human-like trajectories. Overall, stronger reasoning effort shifts pos-
terior gains earlier and raises final confidence, distinguishing reasoning models and humans from
baseline LLMs. Figures reporting all model and reasoning levels combinations are included in Ap-
pendix Fig. 9, 8.

Reasoning effort emerges as a key determinant of posterior quality. For instance, gpt oss 120b dis-
plays near-random profiles under low reasoning, but transitions to human-like evidence integration
as reasoning depth increases (medium and high). A similar effect is seen in the best-performing
model, gpt 5 mini, where posterior trajectories become sharply separated only when extended rea-
soning is enabled. This pattern confirms that the task requires non-trivial computation: without
sufficient reasoning, models remain on par with non-reasoning baselines, but with increased reason-
ing effort they converge toward the posterior profiles observed in skilled humans.

5 REASONING IMPROVES PERFORMANCE DURING IN-CONTEXT-LEARNING

Thus far, our analyses used a single-trial (comprising N rounds) setup with a prompt (termed here
original prompt, previously described in Fig. 1) that explicitly states the latent priors of the task (one
cue 90/10, others 50/50) and a clear goal (i.e., which button had the highest ratio of RED?). This
effectively provides models with an optimal prior. To study learning dynamics under minimal task
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information, we also designed a minimal prompt that only specifies allowed choices (A–D), omit-
ting priors, bias structure, and rewards (see Appendix E for prompt details). This minimal version
removes optimal priors and goal framing, requiring models to infer task regularities directly from
experience. We therefore evaluate in-context learning (ICL) across both prompting regimes, asking
whether models can refine their performance under the original prompt and discover latent structure
under the minimal prompt, as measured over repeated trials (Fig. 5). We run sequences of 1–15
trials, each consisting of 15 rounds, with the transcript of completed trials carried over as context for
subsequent ones (Fig. 5A). For the purpose of this analysis, we restrict the model space to include
the top-performing closed- and open-source models: gpt 5 mini, grok 3 mini, gemini 2.5 flash, gpt
oss 20b and 120b. For each model, reasoning effort level and prompt variation we evaluated at least
100 simulations amounting to more than 30, 000 individual games. We then evaluate performance
using the metrics defined in Sections 3, 4: success rate (Fig. 5 B-E), inference quality (Bayesian
agreement) (Fig. 5 C-F), sampling quality (Appendix Fig. 10 C-F), and the evolution of posterior
trajectories to capture changes in evidence accumulation toward the final choice across in-context
trials (Fig. 5 D,G, and Appendix Fig. 11 for all models).

? ?

? ?

? ?

? ?

? ?

? ?

Trial 1

Trial 2

Trial N

You will play a game with N rounds. 
Buttons: A, B, C, D. Pick one per round by 

responding with a letter only. After N 
rounds, make a final decision.

Minimal Prompt

Figure 5: In-context learning across repeated trials A: Schematic of multi-trial in-context setup.
Each trial transcript is carried over as context to the next. B, E: Success under the original prompt
remains near baseline or degrades at both reasoning levels, while the minimal prompt shows het-
erogeneous outcomes with models capable of ICL and others below chance level, with improved
ICL performance for gpt 5 mini under high reasoning effort. D: Posterior dynamics for gpt 5 mini
under low reasoning and minimal prompt: probability assigned to the final choice declines across
trials, indicating impaired evidence integration. C, F: The Bayesian agreement analysis (panels C,
F) corroborates the patterns of success rate. G: Posterior dynamics for gpt 5 mini under high rea-
soning and minimal prompt: posterior mass on the final choice strengthens across trials, reflecting
improved evidence accumulation.

Under the original prompt, success rates exhibit little systematic improvement across in-context tri-
als, remaining close to the baseline single trial averages (Fig. 5 B–E). Notably, the open-source gpt
oss 20b and 120b variants show a progressive decline after approximately six trials (panel B), this
degradation is delayed in the 20B model and attenuated in the 120B model under increased reasoning
effort (panel E). The Bayesian agreement analysis (panels C, F) corroborates this pattern, demon-
strating that extended reasoning stabilizes belief updating and yields consistently high-alignment
with the Bayesian observer. Under the minimal prompt, both grok 3 mini and gpt 5 mini initially fail
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to perform the task, falling below chance level in terms of both success rate and Bayesian agreement
(panels B, C). By contrast, other models display clear signs of ICL, gradually improving their per-
formance across trials. For gemini 2.5 flash and the gpt oss variants, performance remains largely
stable across reasoning levels (panels E, F), while grok 3 mini shows only weak gains and remains
below chance-level. However, increasing reasoning effort markedly enhances gpt 5 mini, which rises
to top-tier performance on both success rate and Bayesian agreement, with strong evidence of ICL.
The posterior dynamics (panels D, G) highlight this contrast: whereas low reasoning led to impaired
integration, extended reasoning enables evidence accumulation that improves across trials under the
minimal prompt.

6 HUMANS AND LANGUAGE MODELS SHOW DIFFERENT SAMPLING
STRATEGIES

Our earlier analyses showed that, while LLMs can integrate evidence as well as or better than hu-
mans, their sampling strategies are weaker. To better understand this difference, we compare human
and model behavior by fitting a set of observer models with distinct sampling policies both to hu-
man and LLM data. We anchor each observer with the same belief bt defined in Sec. 3, a policy
on the simplex ∆ ∈ R, πt ∈ ∆K−1, and score function ϕt ∈ RK

+ , where K = 4 is the number
of buttons of the task. The policy in this observer model is implemented through logits θt ∈ RK

A
B C

D E F

Figure 6: Human participants and LLMs show different sampling policies A: Schematic of
the gradient interpolating model that was fitted to both humans and language models, different γ
lead to different curvatures of the gradient trajectories over the simplex. B: R2 of the fit across the
different observer classes (MAP, EM, SC, IG) for each of the top performing models. Humans show
a larger preference for MAP-like sampling policies and language models for Entropy modulated
policies. C: Model recovery matrix for the fitted dataset showing the recovery of the initial fit from
generated data of the observers with the highest R2. D: Parameter span for α (learning rate) and γ
(gradient interpolating factor) for the top performing models. Top 25% humans show as outliers in
the parameter space. Models show higher variability in the interpolating factor than in the learning
rate parameter. E-F: Evaluation of the trained PPO agent and the best performing Optimal Observer
(MAP) on the same task. Both models show human-like performance. The PPO model fit to the task
validates the performance range of our theoretical observer model for the success rate on the task.

by πt = softmax(θt) and through the bayesian posterior beliefs bt. In order to simulate different
decision making strategies, the model is able to differentially reweigh the evidence and change its
sampling policy directly on the logits as they go through this gradient descent. This gradient is de-
fined by an advantage Aϕ

t ∈ RK
+ which at each timestep computes the distance of the observer score

ϕ, which evaluates current and future evidence to the goal J(π) =
∑K

i=1⟨π, ϕi⟩. Concretely this
advantage is given by Aϕ

t := ϕt − ⟨πt, ϕt⟩1 with ⟨π, ϕ⟩ =
∑K

i=1 πi ϕi. Additionally, in order
to explore the types of gradient updates being performed by the agents we unify the Euclidean and
Fisher geometries by endowing the logit space with an interpolating metric Gγ(θt) = diag

(
π 1−γ
t

)
,
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which leads to the following gradient update equation for the logits θ (proof in Appendix B.7)

θt+1 = θt + α
(
πγ
t ⊙Aϕ

t

)
. (2)

This allows us to fit different gradient profiles within the statistical manifold of the underlying sim-
plex of this task. It can be directly seen that this general expression reduces to the natural-gradient
update for γ = 0, ∆θ = αAϕ

t (Amari, 2016; Kakade, 2001; Kerimkulov et al., 2025), and to the
Euclidean policy-gradient update for γ = 1, ∆θ = α(πt ⊙ Aϕ

t ) (Sutton et al., 2000). Classical
observers can be integrated into this model by particular choices of the score ϕt. Different canonical
observers can then be defined by their corresponding score function ϕ. We define a MAP agent,
(Lai and Robbins, 1985), an Entropy-Minimizing agent EM by ϕEM , a Self-Certainty agent SC by
ϕSC(Zhao et al., 2025) and a Information Gain agent with score function defined by ϕIG

t,a (Gersh-
man, 2019). As these different scoring functions execute different computations over the evidence
built by the posterior, the gradient will also evolve differently through the perturbations of the ad-
vantage Aϕ

t . In order to get an idea of the potential explanatory power of this model, we did an initial
fit to the active probabilistic reasoning task of all the observer model types and compared it also to
an on-policy MLP network with PPO(Schulman et al., 2017), showing in panels E, F2. We then fit
this model to the games played by the human players and a subset of the top performing LLMs in
order to disentangle their sampling strategies. We show the R2 score over random seeds of the trials
dataset for each agent. Notably, we see a sharp distinction between human players and LLMs, with
humans having the best fit for MAP-like sampling policies (see model fitting details in Appendix
C). LLMs match more closely sampling strategies that are sensitive to the evolution of the posterior
entropy, preferring overall EM and SC-like strategies. Furthermore, their gradient parameterization
shows an interesting pattern; the top human players seem to adapt with smaller learning rates than
the remaining bottom 75% of humans and language models. Overall the gradients executed lie in
the middle between a fully natural gradient and a policy gradient as can be seen in Figure 6D.

7 CONCLUSION

In Section 2, we introduced an active probabilistic reasoning task enabling direct comparison
between humans and LLMs. In Section 3, we showed that while some models reach or exceed
human-level in inference capabilities, their sampling strategies remain consistently weaker. We
observe striking similarities between LLM and human agents in their posterior integration trajecto-
ries where reasoning through chain-of-thought plays a critical role (Section 4). Further, Section 6
shows that human and model behaviors map to distinct observer classes, with humans preferentially
adopting MAP-like strategies, whereas LLMs rely more on entropy-driven sampling policies. These
findings raise interesting questions as to how these differences emerge: whether they are related
to model architectural choices and what training paradigms can be used to steer model behaviors
toward human-like sampling strategies. The minimal environment of our task, and the possibility to
derive optimal Bayesian policies, make of it a suitable framework to answer these questions.

Our in-context-learning experiments in Section 5 demonstrate the ability of these models to
create a basic representation of the environment, exemplified by their performance improvements,
even under settings with minimal information. Notably, the in-context learning experiments reveal a
further dichotomy between the abilities for sampling and inference across different models: whereas
inference quality improves in-context for some models, the sampling quality remains largely fixed
throughout the in-context learning window. While these findings point to only a limited ability for
in-context learning, even the partial improvements we observed support the idea that LLMs could
become suitable candidates for simulators of cognition on decision-making tasks, as proposed in
(Binz et al., 2024).

Beyond leading to precise insights into the abstract computational algorithms implemented
by LLMs during active probabilistic reasoning, we believe that our task holds great promise as a
tool towards mechanistic interpretability of LLMs (Elhage et al., 2021; 2022; Olsson et al., 2022).
Our analysis reveals key latent variables accounting for a large fraction of the models’ sampling
choices and inference, which are both based on properties of the Bayesian posterior probabilities.
In analogy to neuroscience studies, the identification of correlates of these latent variables in model
activity can provide a starting point for understanding the underlying mechanisms.

2Bayesian agreement not shown for the optimal observer model as it shares the same mechanism as the
underlying Bayesian scoring metric.
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8 REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, all code used in our experiments, along with detailed in-
structions for setup and execution, is available at: https://drive.google.com/drive/
folders/17tQxO02lLN1VpwbOF_IIiM9oSm8DmRik. Additionally, the active probabilistic
reasoning task used for data collection is accessible at https://ai.trt-bench.org.

9 ETHICS STATEMENT

We obtained institutional ethics approval for the collection, analysis, and publication of data col-
lected as part of this study. All participants provided informed consent after receiving study infor-
mation. Data were anonymized prior to analysis and access was restricted to the research team. The
no-risk cognitive task posed no safety concerns to participants.

10 LANGUAGE MODEL USE STATEMENT

We used large language models to polish prose and to surface related scientific work; all study de-
sign, analysis, and conclusions were generated by the authors, and models were not used to generate
data, or results; queries contained only non-sensitive text, outputs were edited for accuracy and style,
and all citations were independently verified.
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A ADDITIONAL FIGURES
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Figure 7: Extended benchmark analysis of inference, sampling, and invalid choices. A-B: in-
ference quality (Bayesian agreement with the MAP observer) and sampling quality (success condi-
tional on MAP-optimal choice). Human performance (green) is split into the lower 75% and the top
25% of participants; LLM performance is shown as colored bars, grouped by model type. Models
with high reasoning effort (extended thinking) are shown as gray bars. C: the proportion of invalid
choices, measured both during sampling rounds and at the final integration step. Invalid responses
do not correlate strongly with overall success, indicating they are not the primary driver of model
performance differences. High performing models like gpt oss 20b/120b have a high invalid choice
sampling rate yet retain a high overall success rate.
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GPT 5 Mini (low)

Gemini 2.5 Flash (high) Gemini 2.5 Pro (low) Gemini 2.5 Pro (high) GPT OSS 120B (no reasoning) GPT OSS 120B (low)

GPT 5 Mini (high) Grock 3 Mini (low) Grock 3 Mini (high) Gemini 2.5 Flash (low)

GPT OSS 120B (high) GPT 5 (low) GPT 5 (high) GPT OSS 20B (no reasoning) GPT OSS 20B (low)

GPT OSS 20B (high) Claude Sonnet 4 (low) Claude Sonnet 4 (high) GLM 4.5 (no reasoning) GLM 4.5 (high)

Human Lower 75% Humans Top 25% Humans All Trials DeepSeek R1
Qwen3 8B

Figure 8: Posterior evolution by rounds across humans and reasoning models. Each curve shows
the posterior probability assigned to the final choice as additional evidence is sampled, averaged
across trials of the same length. Humans exhibit steady evidence accumulation, with the top 25%
of participants showing clearer separation and stronger late-round convergence than the lower 75%.
Overall, increasing reasoning effort shifts gains earlier in the trajectory and raises final confidence,
indicating faster and more stable integration.
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GPT 4.1 Mini

Llama 4 Scout Instruct Qwen 7B Instruct Llama 3.1 405b Instruct Llama 4 Maverick Instruct Llama 3 3 70B Instruct

Claude Haiku 3.5 Qwen3 235B Instruct GPT4o Mini Qwen 14B Instruct

Qwen3 32B Gemma 2B Apertus 8B Instruct Qwen 3B Instruct Llama 3.2 3B Instruct

Gemma 2B Instruct Centaur 70B Centaur 8B Apertus 70B Instruct Llama 3.1 8B Instruct

Figure 9: Posterior evolution by rounds for base and instruct models. Results are provided in
task success rate rank order (left → right, row-wise ↓). Models are ordered by overall task success
(left→right, row-wise). Relative to reasoning models (Figure 4; Figure 8), base/instruct variants
show shallow growth and delayed or weak separation across trial lengths, indicating poor integration
of sampled evidence even when longer rounds are available. As success rate decreases, posteriors
increasingly resemble random baselines, with little growth in confidence even after many rounds.
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Figure 10: In-context learning success rate, inference quality, and sampling quality by reason-
ing levels. Each panel reports performance across repeated trials under the original and minimal
prompt conditions. A-B: in the low reasoning condition, top models show limited or no improve-
ment over trials, with substantial prompt dependent variability. D-E: by contrast, high reasoning
stabilizes both inference and sampling dynamics, yielding steady gains across trials and reduced
spread between prompts. C, F shows that in-context improvements and prompt variability arise pri-
marily from enhanced inference quality rather than fundamental changes in sampling strategy.
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GPT 5 Mini (high) Gemini 2.5 Flash (high) Grok 3 Mini (high) GPT OSS 20b (high) GPT OSS 120b (high)

Gemini 2.5 Flash (low) Grok 3 Mini (low) GPT OSS 20b (low) GPT OSS 120 (low)

GPT 5 Mini (high) Gemini 2.5 Flash (high) Grok 3 Mini (high) GPT OSS 20b (high) GPT OSS 120b (high)

GPT 5 Mini (low) Gemini 2.5 Flash (low) Grok 3 Mini (low) GPT OSS 20b (low) GPT OSS 120b (low)

Figure 11: In-context learning across repeated trials and posterior evolution by reasoning level
and prompt. Models show consistently better evidence integration under the original than the
minimal prompt. With high reasoning, the posterior probability of the final choice increases across
models and prompts. Additionally, high reasoning reduces across-trial variance in the posterior
under the original prompt setting.
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B OBSERVER MODEL AND GEOMETRIC POLICY UPDATES

This section contains a self-contained derivation of the observer model presented in Section 6 based
on a categorical and coupled belief over a set of latent indexes, together with the derivations of
the interpolating family of gradients. We consider a single latent discrete variable z ∈ {1, . . . ,K}
indicating which arm is currently biased. At the start of round t, the agent holds a categorical belief
pt(z) over the K possibilities. Since z is discrete, pt lies on the (K−1)-simplex:

K∑
k=1

pt(z = k) = 1, pt(z = k) ≥ 0. (3)

When the agent probes arm i ∈ {1, . . . ,K}, it observes a Bernoulli outcome x ∈ {0, 1} whose
success probability depends on whether the probed arm matches the latent index z. We fix the
outcome coding so that x = 1 denotes RED and x = 0 denotes GREEN. Let 0 < θL < θH < 1
be the two likelihood parameters (emission probabilities): θH is the probability of observing RED
when the probed arm is the true latent (z = i), and θL is the probability of observing RED when it
is not (z ̸= i). The likelihood is

Pr(x = 1 | a = i, z = k) =

{
θH if k = i,

θL if k ̸= i,
(4)

Here θH and θL are not accumulated evidence; they are fixed (or slowly learned) per-trial emission
biases. Accumulated evidence appears in the posterior over the latent index, pt(z), which is updated
by Bayes’ rule using the likelihood above.

Pr(x = 0 | a = i, z = k) = 1− Pr(x = 1 | a = i, z = k). (5)
This coupling through z induces dependence across arms: evidence that increases belief in z = i
simultaneously decreases belief in z ̸= i. Alternative belief streams could be used as well to integrate
evidence, where the latents would be updated in an independent manner, with the likelihood in this
case being given by

p
(
x | a = i, z1, . . . , zK

)
= z x

i

(
1− zi

) 1−x
, (6)

i.e., only the probed arm’s latent zi enters the Bernoulli likelihood while the coordinates {zj}j ̸=i

remain unchanged for that observation. For the Optimal Observer fitting to the task in Figure 6, panel
E and on the behavioral data of the human and LLM games we use the shared rates in Equation 4.

B.1 PREDICTIVE DISTRIBUTIONS IN THE ACTIVE PROBABILISTIC REASONING TASK

Before acting, the agent can compute, for each candidate arm i, the distribution of possible outcomes
by marginalizing the likelihood against the current belief. The predictive distribution for arm i is

qt,i(x) =

∫
Pr(x | a = i, z) pt(z) dz, =

K∑
k=1

Pr(x | a = i, z = k) pt(z = k) (7)

where the integral equals the sum because z has finite support. Specializing to the Bernoulli case,
the success probability has the closed form

qt,i(1) = θR + (θR − θG) pt(z = i), (8)

and the failure probability is its complement qt,i(0) = 1− qt,i(1). Suppose the agent hypothetically
probed arm i and observed outcome x ∈ {0, 1}. The resulting hypothetical posterior is obtained by
Bayes’ rule:

pt|i,x(z = k) =
Pr(x | a = i, z = k) pt(z = k)∑K

k′=1 Pr(x | a = i, z = k′) pt(z = k′)
(9)

After the actual action at and observation xt, the real posterior at the start of round t+1 is given by
the belief bt(z)

bt|i(z = k) = pt+1(z = k) =
Pr(xt | at, z = k) pt(z = k)∑K

k′=1 Pr(xt | at, z = k′) pt(z = k′)
(10)

A greedy MAP chooser that converts the belief into a deterministic sample uses the posterior mode:

πMAP
t = arg max

i∈{1,...,K}
pt(z = i). (11)
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For the Bayesian agreement, present in Section 3 and Figures 2, 3 we define the agreement score as
depending on what an agent which would build this posterior from the evidence would chose in its
last round T , concretely the score is given by

ST =
1

N

N∑
i=1

I
[
aT = πMAP

T

]
. (12)

where aT is the final action taken by the Human or LLM agent.

B.2 DEFINING A FAMILY OF SCORE-BASED OBSERVERS

At each round, the belief pt is mapped to a per-arm score vector ϕt ∈ RK . We write the Euclidean
inner product as ⟨x, y⟩ =

∑
i xiyi and denote the all-ones vector by 1. The generic evidence score

defined in panel E of Figure 1 for arm i takes the predictive expectation of a utility function u defined
on the hypothetical posterior:

ϕt,i = Ex∼qt,i

[
u
(
pt|i,x; i, x

)]
. (13)

Explicitly, this predictive expectation can be defined as a function of the predictive distribution qt,i
as

ϕt,i =

∫
u
(
pt|i,x; i, x

)
qt,i(x) dx. =

∑
x∈{0,1}

qt,i(x)u
(
pt|i,x; i, x

)
(14)

For the modeling done in Section 6 we chose the following score functions that represent different
sampling policies with temperature β > 0. These scores are inspired from multiple classical be-
havioural modelling paradigms (Gershman, 2018; Binz et al., 2024) and have been used extensively
in computational neuroscience and cognitive psychology to model the behaviour of human subjects
under psychophysical tasks. For the MAP agent we define the score function as

ϕMAP
t,i = β log pt(z = i) (15)

which favors the arm with the largest posterior mass and thus exploits current belief, ignoring how
informative the next observation might be. Additionally, we define an Entropy-Minimizing agent by

ϕEM
t,i = −β H(qt,i). (16)

which prefers arms whose predictive is most peaked (lowest entropy), i.e., choices expected to yield
a decisive RED/GREEN outcome regardless of which way it goes.
We define a Self-Certainty agent, inspired by (Zhao et al., 2025),

ϕSC
t,i = β DKL

(
U∥qt,i

)
. (17)

which seeks arms whose predictive deviates most from uniform (1/2), emphasizing certainty in the
immediate observation rather than expected entropy reduction after updating.
Finally, an Information-Gain agent is defined by

ϕIG
t,i = β

K∑
k=1

pt(z = k)DKL

(
Pr(· | a = i, z = k) ∥ qt,i

)
. (18)

which prefers arms whose outcomes are expected to most reduce uncertainty about z, balancing
current belief pt(z) with the diagnostic gap between θH and θL.

B.3 POLICY PARAMETERIZATION

Actions are sampled from a softmax policy over logits θt ∈ RK :

πt = softmax(θt), (πt)i =
eθt,i∑K
j=1 e

θt,j
. (19)

At a given round, with belief (and thus score) held fixed, we consider the linear objective

J(π) = ⟨π, ϕt⟩, (20)
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which will allocate more probability to higher-scored arms, given the information previously sam-
pled. Softmax policies are invariant to adding a constant to all logits, and valid probability updates
must preserve normalization. Both constraints are enforced by centering the score through an ”Ad-
vantage”

Aϕ
t = ϕt − ⟨πt, ϕt⟩1. (21)

The intuition for this definition goes as follows: positive entries imply that the corresponding arm
looks better than the one with the current highest probability, whilst negative entries mean “worse
than our average,” and zeros mean “no change.” If the policy already puts weight on the right arms,
the average is high and the advantages are small, so updates are mild. If the policy is missing a
good arm, that arm gets a large positive advantage and its probability is pushed up quickly. As more
evidence arrives and uncertainty drops, score gaps narrow and the whole advantage vector tends
toward zero, stabilizing the policy. When predictions are sharper (peaked qt,i or larger temperature
β in the corresponding score function of an agent), the score gaps widen and advantages grow,
producing stronger reallocation; when predictions are ambiguous, scores are flat and the advantages
are near zero, so the policy barely moves.
One crucial distinguishing factor of this task, besides the binary sampling outcomes at each arm (or
button) is that the cues at each round can become occluded. We represent environmental occlusions
with a binary availability mask mt ∈ {0, 1}K , where mt,i = 1 if arm i is visible at round t and
mt,i = 0 otherwise. The policy over available arms is the masked softmax

πav
t,i =

mt,i e
θt,i∑K

j=1 mt,j eθt,j
= softmax

(
θ̃t
)
i
, θ̃t,i =

{
θt,i mt,i = 1,

−∞ mt,i = 0.
(22)

Unavailable arms receive zero probability and no gradient and the advantage is calculated only using
the available set. We thus normalize only over visible arms, compare each visible arm’s score to the
masked average, and update only those logits; hidden arms neither draw probability mass nor receive
updates until they reappear.

B.4 SOFTMAX JACOBIAN AND THE EUCLIDEAN POLICY GRADIENT IN LOGIT SPACE

The Jacobian of the softmax map θ 7→ π has entries

∂πi

∂θj
= πi (δij − πj), (23)

so in matrix form
Dπ(θ) = diag(π)− ππ⊤. (24)

Using the chain rule, the Euclidean gradient of J with respect to logits is

∇θJ(θt) = (Dπ)⊤ϕt =
(
diag(πt)− πtπ

⊤
t

)
ϕt. (25)

Separating the diagonal and rank-one terms yields

∇θJ(θt) = diag(πt)ϕt − πt ⟨πt, ϕt⟩ = πt ⊙
(
ϕt − ⟨πt, ϕt⟩1

)
= πt ⊙Aϕ

t . (26)

Thus, the Euclidean policy-gradient (PG) step with step size α > 0 is

θt+1 = θt + α
(
πt ⊙Aϕ

t

)
. (27)

B.5 FISHER INFORMATION FOR SOFTMAX AND ITS TANGENT ACTION

The Fisher information matrix (FIM) Amari and Nagaoka (2000); Mertikopoulos and Sandholm
(2016) of a categorical softmax policy equals the softmax Jacobian in this parametrization

F (θ) = Ea∼πθ

[
∇θ log πθ(a)∇θ log πθ(a)

⊤] = diag(π)− ππ⊤. (28)
We note that the null direction, given by

F 1 = 0, (29)

implies that shifting all logits together leaves the policy unchanged. Additionally, the tangent action
for any vector v with ⟨π, v⟩ = 0 (i.e., v lies in the simplex tangent), i.e.

F v = diag(π) v. (30)
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Since Aϕ
t is tangent by construction, we obtain the identity

F Aϕ
t = diag(π)Aϕ

t = π ⊙Aϕ
t = ∇θJ(θt). (31)

This work connects with previous work linking replicator flows in statistical game theory which
links the underlying evolution of distributions in stochastic environments, such as k-armed bandits,
under Riemann metric (Harper, 2009; Shahshahani, 1979).

B.6 NATURAL POLICY GRADIENT AS A RIEMANNIAN GRADIENT

We now connect the Euclidean gradient from the previous subsection to the natural (Riemannian)
one and make explicit why the centered score Aϕ

t is the natural ascent direction.
For nearby logits θ and θ + ∆θ, the KL divergence between the corresponding policies has the
second–order expansion

DKL

(
πθ+∆θ ∥πθ

)
= 1

2 ∆θ⊤F (θ)∆θ + o(∥∆θ∥2), (32)

so F (θ) acts as the local metric (inner product) on logit space.
The natural gradient ∇̃J at θ is the unique tangent vector that reproduces the directional derivative
under this metric, i.e.

F ∇̃J = ∇θJ. (33)
From the softmax Jacobian, we already obtained

∇θJ(θt) = πt ⊙Aϕ
t = diag(πt)A

ϕ
t , (34)

where Aϕ
t = ϕt − ⟨πt, ϕt⟩1 satisfies ⟨πt, A

ϕ
t ⟩ = 0 (so Aϕ

t is tangent).
From the Fisher’s tangent action (shown earlier), any tangent v obeys Fv = diag(π) v. Applying
this to Aϕ

t gives
F Aϕ

t = diag(πt)A
ϕ
t = ∇θJ(θt), (35)

where the last equality used (34).
Comparing (33) and (35) shows that Aϕ

t solves the defining equation of the natural gradient. Because
Aϕ

t is tangent (orthogonal to the null direction of F ), it is the canonical solution:

∇̃J = Aϕ
t . (36)

A natural-gradient (NG) step of size α > 0 updates the logits by

θt+1 = θt + αAϕ
t = θt + α

(
ϕt − ⟨πt, ϕt⟩1

)
. (37)

This step is (i) baseline-invariant (it ignores the shift direction), (ii) normalization-preserving in
policy space (because it is tangent), and (iii) curvature-aware: it “undoes” the diag(πt) scaling
present in the Euclidean gradient, yielding motion matched to the local KL geometry.

B.7 AN INTERPOLATING FAMILY OF LOGIT GEOMETRIES

To compare traversal geometries, endow the logit space with the diagonal metric

Gγ(θ) = diag
(
π 1−γ

)
, γ ∈ [0, 1]. (38)

At γ = 1 this is the Euclidean metric on logits (G1 = I). At γ = 0 it is G0 = diag(π), which
coincides with the Fisher action on the simplex tangent.
The steepest-ascent direction under Gγ solves the trust-region problem

max
u

∇θJ
⊤u subject to u⊤Gγ u ≤ ε. (39)

By Cauchy–Schwarz in the Gγ inner product, the optimizer aligns with G−1
γ ∇θJ . Using ∇θJ =

π ⊙Aϕ
t and the diagonal form of G−1

γ ,

G−1
γ ∇θJ = diag

(
π γ−1

)
(π ⊙Aϕ

t ) = πγ ⊙Aϕ
t . (40)

Thus the interpolated logit update with step size α is

θt+1 = θt + α
(
πγ
t ⊙Aϕ

t

)
, γ ∈ [0, 1]. (41)
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The factor πγ
i acts as a state-dependent throttle: larger γ damps motion on low-probability coordi-

nates; smaller γ removes that damping.
Under this definition we can then fully recover the classical gradients. When γ = 1, we have G1 = I

and G−1
1 ∇θJ = ∇θJ = π ⊙Aϕ

t , so the update is exactly the Euclidean policy-gradient step:

θt+1 = θt + α (πt ⊙Aϕ
t ). (42)

When γ = 0, we have G0 = diag(π) and G−1
0 ∇θJ = diag(π)−1(π ⊙ Aϕ

t ) = Aϕ
t , so we recover

the natural policy-gradient step:
θt+1 = θt + αAϕ

t . (43)

Hence the interpolation continuously connects Euclidean PG and NPG in logit space.

C MODEL FITTING DETAILS

Hyperparameters are explored on grids. We fit observer models to 15-round choice sequences
from LLMs and humans. Each game yields (mt,i, at, rt) for t = 1..15 with mt,i the available cue
mask defined in Equation 22, at ∈ mt,i the chosen cue, and rt ∈ {0, 1} (RED = 1). Each cue is
processed with the posterior defined in Equation 4. After each round we update the corresponding
ϕt for a given observer of the set {MAP,EM,SC, IG}, set At = ϕt − (π⊤

t ϕt)1, and update
θt+1 = θt+α (πγ

t ⊙At). For likelihood seeding, we set a cue-wise µ̃ with the biased cue at 0.9 and
others at 0.5, which is the environment shared in the human version of the task.
Hyperparameters are explored on grids. We use γ ∈ {−3, 3}, α ∈ {0.01, 0.5}, and β ∈
{−15, 15}. For each observer and each parameter triple (γ, α, β), we iterate over 100 games sam-
pled over a set of 10 random seeds for an agent group (LLM model or human cohort), run the
15-round update, compute per-game log-likelihood, and average across games. The winning param-
eters are chosen over this set by the average log-likelihood over the grid per agent, and observer, and
seed are reported for their respective observer models in Figure 6 D.
Fitting results.The pseudo-R2 was used to quantify the explanatory power of each fitted and refit-
ted model (Figures 6 B,C) relative to a random baseline. For a given synthetic dataset and candi-
date observer, the refitting procedure yields the best log-likelihood LLmodel after grid search over
(γ, α, β). As a baseline, we compute LLrandom, the log-likelihood of a uniform policy that assigns
equal probability to each currently available arm at every round. We report the pseudo-R2 given
by R2 = 1 − LLmodel

LLrandom
. To account for stochasticity from both environment sampling and parameter

initialization, the R2 calculation was repeated across multiple seeds. Specifically, for each (agent,
generating model), we ran 10 simulations of ngames = 200 games each, refitted candidate observers.
We show in Figure 6 C the correspoding winning seed R2 matrix.

D REINFORCEMENT LEARNING AGENT DETAILS

We train a reinforcement learning (RL) to perform the task. We use Proximal Policy Optimization
(PPO)Schulman et al. (2017) to train the agent. Observations are a 13-dimensional vector com-
prising cue–color counts (8 total, 4 choices for two possible colors per button), a phase indicator
(sampling vs. decision), and a binary availability mask over cues (4). Environment parameters (cue
bias, hidden cues, trial length, etc.) follow that of the task with trial length selected uniformly at
random from possible game lengths. We assign rewards of +100 for a correct final choice, 0 for
valid sampling moves, and −1 for selecting an unavailable cue. Invalid selections advance the round
without informative evidence, incentivizing correct cue selection along with final selection.
We performed a grid search for optimization and architecture parameters that maximizes correct cue
selection. The policy is an MLP with ten hidden layers of 64 units and tanh activations. Training
uses PPO for 5 × 106 environment steps with learning rate 2 × 10−5, minibatch size 128, each
iteration collects T = 2048 on-policy steps, and 10 optimization epochs per iteration. We set
γ = 0.99, λGAE = 0.95, and clipping ε = 0.2, with entropy and value losses weighted by 0.01 and
0.5 respectively.

E PROMPTING STRUCTURE USED FOR THE LLMS IN THE TASK

Here we outline the two main prompts used to evaluate the language models. The original
prompt includes task, mechanics, and scoring. States bias structure (one cue 90/10, others 50/50).
Mentions cue availability dynamics (cues may disappear; at least one always active). Enforces
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strict response format per round (single letter, no punctuation). Final query targets the cue with
the highest RED ratio. Provides feedback taxonomy (correct/incorrect/invalid) with reveal of the
biased cue. Specifies payoff: +100 for correct, 100 for wrong. This is the richest instruction set
for the task, with explicit probabilistic environment and payoff structure. Stronger priming toward
bias identification rather than generic correctness. Final feedback frames success as detecting the
“biased cue,” not just a “correct cue.”. The models are evaluated in an interactive environment and
fed round and trial related information based on their choices across whole trials or, in the case of
the ICL experiments in Section 5, multiple trials.

Original prompt

Task
- You will play a game with {n_rounds} rounds.
- In each round, some cues are available: A, B, C, D.
- One cue is biased: 90% one color / 10% the other. The others are

50/50.
- Available cues may disappear at random, but at least one is always

active.
- Each round, respond with exactly one letter (A, B, C, or D). No

markup or punctuation.
- After {n_rounds} rounds, identify the biased cue.
- Scoring: Correct +100 points, Wrong 100 points.

Round prompt
- Trial {current_trial}, Round {current_round}: Available cues {

available_cues}. Which do you choose? Respond with exactly one
letter: A, B, C, or D.

Round feedback
- Trial {current_trial}, Round {current_round}: Available cues {

available_cues}. You chose {current_answer} and saw {result_text}.

Final decision prompt
- Trial {current_trial}: Based on all observed colors, which cue {

letters} had the highest ratio of RED? Respond with exactly one
letter: A, B, C, or D.

Final feedback
- Trial {current_trial}: Based on all observed colors, which cue {

letters} had the highest ratio of RED?
You chose {current_answer} which was {feedback}.
You received {score} points.

Feedback labels
- Correct: the biased cue
- Incorrect: not the biased cue. The biased cue was {biased_quadrant}
- Invalid: an invalid choice

The following prompt is the minimal prompt used for the ICL Section 5. Covers task and per-
round response rule only. Lists cues (A–D). Omits bias mechanics, cue disappearance dynamics,
and scoring. Final query asks for a choice without RED-ratio framing. Includes feedback taxonomy
(correct/incorrect/invalid) with reveal of the “correct cue.” No payoff details. No probabilistic struc-
ture or availability dynamics are provided. Neutral objective framing (“choose”) rather than bias
detection. Simplified feedback semantics (“correct cue” vs “biased cue”).

Minimal prompt

Task
- You will play a game with {n_rounds} rounds.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

- In each round youll see cues: A, B, C, D.
- Each round, respond with exactly one letter (A, B, C, or D). No

markup or punctuation.
- After {n_rounds} rounds, make a final decision.

Round prompt
- Trial {current_trial}, Round {current_round}: Available cues {

available_cues}. Which do you choose? Respond with exactly one
letter: A, B, C, or D.

Round feedback
- Trial {current_trial}, Round {current_round}: Available cues {

available_cues}. You chose {current_answer} and saw {result_text}.

Final decision prompt
- Trial {current_trial}: Based on all observed colors, which cue {

letters} do you choose?
Respond with exactly one letter: A, B, C, or D. I choose:

Final feedback
- Trial {current_trial}: Based on all observed colors, which cue {

letters} do you choose?
You chose {current_answer} which was {feedback}.
You received {score} points.

Feedback labels
- Correct: the correct cue
- Incorrect: not the correct cue. The correct cue was {biased_quadrant

}
- Invalid: an invalid choice
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F TESTING A SUBSET OF MODELS ON AN INSTRUCTED BANDIT TASK

In order to further validate our methodology we tested a subset of models on a simpler task. One
of the defining features of the the active probabilistic reasoning task presented in Section 3 is that it
requires two explicit levels of information and decision making: sampling and inference. In order
to confirm that the structure of this novel task is able to accurately grade performance outside of the
distribution the available datasets, such as Psych101Binz et al. (2024) which contain over 100k trials
on a multitude of psychophysics like tasks, we decided to test our pipeline on an Instructed Bandit
Task Su et al. (2025) with rewards given at each arm sampled from a gaussian N (x; µ, 10) and
means vector µ = [10, 20, 40, 60, 80]. We chose Centaur70B-Instruct model Binz et al. (2025), a
model that was explicitly fine-tuned on Psych-101 and for which the performance on our benchmark
was slightly above random chance, and compare its performance with a smaller Qwen-14B model
and the more recent reasoning architecture of the GPT-OSS-20B, on LOW and MEDIUM level of
reasoning. We ran this experiment with 100 trials per model and each trial consisting of 20 rounds.

Figure 12: Performance of Centaur70B vs other models on the instructed bandit task: Models
struggle to chose the highest reward option E when there’s no hint for exploration.

Surprisingly, with the original prompt used in Su et al. (2025), which also tested Centaur against a
Bayesian agent, the model collapses at arm ”C”, not being able to chose the correct arm most of the
time, while GPT-OSS-20B shows a more active exploration profile.

Instructed bandit prompt

- Task
You will play a game with {n_rounds} rounds.
Five arms are available each round: A, B, C, D, E.
Each arm has a fixed but unknown expected reward in [0,100].
Each pull returns a stochastic reward around that arms expected value.
All arms are always available. Values reset each new game.
Goal: maximize total reward points across {n_rounds}.

- Round prompt

Round {current_round}/{n_rounds}: Choose an arm to sample.
Available arms: A, B, C, D, E
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Which arm do you choose? Respond with exactly one letter: A, B, C, D,
E.

- Round feedback

Round {current_round}/{n_rounds}: You chose arm {current_answer} and
received {reward:.2f} points.

Running total: {total_reward:.2f} points.

- Final decision prompt

You have completed all {n_rounds} rounds and earned {total_reward:.2f}
total points.

Based on your experience, which arm has the highest expected reward?
Available arms: A, B, C, D, E
Your answer (one letter only):

- Final feedback

Your total reward: {total_reward:.2f} points

- Feedback labels
Correct: Correct! You successfully identified the optimal arm.
Incorrect: Incorrect. The arm with the highest expected reward was {

optimal_arm}.
Invalid: not specified

Figure 13: Performance of Centaur70B vs other models on the instructed bandit task: Now
with the hint to explore all arms as much as possible, both Centaur-70B and GPT-OSS-20B with
LOW reasoning are able to find the right arm. Qwen-14B and GPT-OSS-20B without reasoning are
not able to pick this option with the same frequency.

We further tested by adding a more explicit hint regarding exploration, which showed a visible in-
crease of performance. By adding the following hint: Explore all arms as much as possible in
order to find the highest reward, both Centaur and GPT-OSS-20B were now able to reach more
frequently to the right arm E, which implies some prompting related modulation of the underlying
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active sampling policy of these models. Another distinguishing factor is the fact that this task con-
tains a running score of the points gathered across a single trial of 20 rounds, which might allow
models to more easily steer their choices. However, even in variants of our task where we had kept
a running score we didn’t observe an improvement in performance and as such did not use this task
variant in the main version of the task present in the paper.
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