

ACTIVE PROBABILISTIC REASONING IN HUMANS AND LANGUAGE MODELS

004 **Anonymous authors**

005 Paper under double-blind review

ABSTRACT

010 Can large language models (LLMs), when acting as agents, match human cognitive
 011 capabilities in sequential reasoning? To answer this question, we designed a
 012 novel active probabilistic reasoning task that can be played by humans and LLMs.
 013 Our minimal task design allows us to disentangle two essential components of
 014 decision-making, sampling (gathering evidence) and inference (evaluating evi-
 015 dence). We evaluated a large set of LLMs and find a wide spectrum of perfor-
 016 mance. Several frontier models reach human-level performance, but do not exceed
 017 skilled human players. Strong model performance consistently relies on extensive
 018 reasoning. While some LLMs outperform humans in inference, all models con-
 019 sistentlly lag in sampling capabilities. To probe the source of these differences,
 020 we develop a novel Bayesian modeling framework that tracks sampling-policy
 021 updates and maps humans and LLMs to different classical observer models. We
 022 show that humans tend toward maximum-a-posteriori (MAP) sampling, whereas
 023 the best LLMs tend to minimize posterior entropy across options. We further
 024 tested whether LLMs can improve via in-context learning, and found that only a
 025 subset of top-performing models could learn to solve the task based only on the
 026 outcome of their choices.

1 INTRODUCTION

027 Neuroscience and cognitive science have long intersected in the effort to explain cognition by
 028 linking neural mechanisms to mental processes (Sloman et al., 2021; van Bree, 2024). A key step
 029 in establishing this link is the development of quantitative models of cognitive processes, which
 030 provide insights into the computations underlying cognition and reveal latent variables that are
 031 more directly related to neural processes than overt behavior (Ji-An et al., 2025; Miller et al., 2023;
 032 Yang and Wang, 2020; Richards et al., 2019). Recent advances in Artificial Intelligence (AI) have
 033 lead to entirely new avenues to develop such models (Lake et al., 2017; Peterson et al., 2021).
 034 Large Language Models (LLMs), in particular, have been trained at unprecedented scales of data
 035 and compute. These models show human-level performance across a variety of tasks (Bommasani,
 036 2021; Bubeck et al., 2023), exhibit emergent properties such as in-context learning (ICL) (Brown
 037 et al., 2020; Olsson et al., 2022), can be prompted to generate explicit reasoning traces (Wei et al.,
 038 2022; Kojima et al., 2022), and are subject to alignment techniques designed to steer the model
 039 toward human-like behavior (Bai et al., 2022; Griffith et al., 2013; Wei et al., 2021; Ouyang et al.,
 040 2022). Fine-tuning of LLMs on experimental human datasets Binz et al. (2025) can produce models
 041 that not only replicate human behavioral statistics but also approximate classical neuro-scientific
 042 models of decision-making. As a result, researchers have begun to propose LLMs as candidate
 043 models of cognition (Binz and Schulz, 2023). While these advances highlight the potential of
 044 LLMs to serve as mechanistic models of cognition, in most settings it remains unclear how LLMs
 045 solve a particular task, and how their strategies compare to those employed by humans. Most
 046 current evaluations of LLMs focus on complex reasoning benchmarks, such as mathematics (Glazer
 047 et al., 2024), logic and problem solving (Rein et al., 2024; Wang et al., 2024; Phan et al., 2025;
 048 Yue et al., 2024; White et al., 2025), or code generation (Jimenez et al., 2024; Yang et al., 2025a),
 049 where performance is typically assessed by final-answer accuracy, while leaving the underlying
 050 mechanisms and dynamics largely unexplored.

051 To address this gap, here we study the behavior of humans and LLMs in a novel task prob-
 052 ing their abilities in sequential probabilistic reasoning. Our task disentangles two core processes
 053 underlying many complex, goal-oriented behaviors in humans and animals: the active gathering

of evidence from the environment (sampling) and the integration of potentially unreliable evidence towards an understanding of the unknown rules governing the environment (inference). A large body of research suggests that cognition broadly arises from generalizations of these two processes, and that neural computations may be understood as adaptations optimized to support them (Friston, 2012; Kepcs and Mainen, 2012; Gershman, 2018; Knill and Pouget, 2004). The minimal environment of our task enables Bayesian modeling of optimal policies, allowing precise quantification of sampling and inference capabilities across human and LLM agents. This framework reveals both commonalities and divergences in their strategies, moving beyond end-point accuracy to provide a deeper evaluation of LLMs as potential models of cognition.

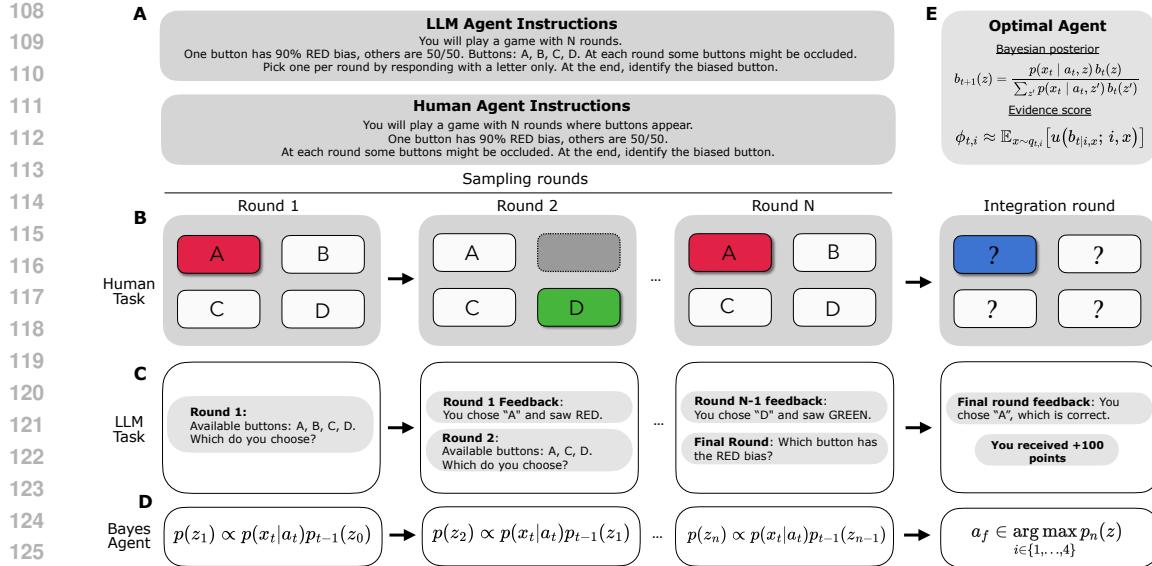
Related work: *Human-LLM comparisons.* Using LLMs as cognitive models (Binz and Schulz, 2023). Comparative work links LLM behaviour and learning to human psychophysics tasks (Russin et al., 2025; Binz et al., 2025) and the ability of models fine-tuned to human behavior to reach Bayesian like behavior on k -armed bandit tasks (Su et al., 2025). *In-context mechanisms.* Transformers can implement algorithmic updates during the forward pass, matching gradient descent or ridge regression on linear tasks (Akyürek et al., 2022; von Oswald et al., 2022), and can be trained to in-context learn broad function classes (Garg et al., 2022), including preconditioned behavior (Ahn et al., 2023; Fu et al., 2024). Martingale tests report deviations from Bayesian scaling (Falck et al., 2024), while other probes and prompting regimes can induce approximately Bayesian choices (Gupta et al., 2025) and ICL as a Bayesian process Xie et al. (2022).

Contributions **(i)** We introduce an *active probabilistic reasoning task* that disentangles *sampling* (evidence acquisition) from *inference* (evidence integration), enabling direct human–LLM comparison and interpretable, model-based analysis. **(ii)** We evaluate a broad set of contemporary LLMs, spanning different architectures, sizes and training paradigms, against human participants under identical instructions, revealing a graded performance spectrum: several LLMs reach human-level performance but do not surpass the best human participants. **(iii)** We quantify *sampling* and *inference quality*, showing that LLMs can exceed humans in inference capabilities, yet consistently under-perform in *sampling*. **(iv)** We characterize how agents integrate evidence by tracking the posterior probability of final agent choice across rounds, showing that human-like integration in LLMs exists and relies on extended chain-of-thought reasoning. **(v)** We test LLMs’ in-context learning capabilities with different prompt variations and find heterogeneous outcomes: while some models show brittleness over long horizons, others exhibit clear gains, with improvements largely attributable to extended reasoning effort. **(vi)** We develop and fit a unifying observer class with an interpolating geometric policy update that recovers natural and Euclidean policy gradients. Fitted policies map humans near MAP-like sampling, whereas top LLMs trend toward entropy-modulated strategies.

2 ACTIVE PROBABILISTIC REASONING TASK

We introduce an active probabilistic reasoning task (Fig. 1) drawing inspiration from classical psychophysics and k -armed bandit paradigms (Lai and Robbins, 1985; Daw et al., 2006; Najemnik and Geisler, 2005), that explicitly separates sampling from inference. Each trial (i.e., independent game) consists of a random number of sampling rounds ($N \in 2, \dots, 15$) followed by a single integration round. In each sampling round, the agent selects one of 4 buttons, with a randomly sampled number of occlusions between 0 and 3. A chosen button reveals a cue from one of two classes: RED and GREEN. At the start of each trial, one of the 4 buttons is designated as the *biased* one, yielding a RED cue with probability 0.9 and GREEN cue with probability 0.1, while the remaining buttons produce cues uniformly (0.5/0.5). We further extend this pipeline to different tasks, enabling the evaluation of language models across a variety of stochastic environments (see Appendix F). To implement this task, we developed an *online platform*¹ through which human participants can play, while LLMs interact with an equivalent *text-based* version under identical instructions (see Fig. 1). Notably, the platform provides a *leaderboard*, allowing human players to compare their performance both with other participants and with LLMs.

¹<https://ai.trt-bench.org>



125 **Figure 1: Structure of active probabilistic reasoning task.** **A:** Instructions provided to human
126 and LLM agents. Humans and LLM receive an analogous explanatory prompt before starting the
127 game. **B:** Schematic of the online platform template for humans. The participants sample from a
128 set of 4 buttons: A, B, C or D (with occlusions in dark grey). Upon click, a RED- or GREEN-
129 colored cue is revealed. After N rounds, the participant is asked which button has the highest bias
130 towards the RED cue. **C:** Analogous schematic for the *text-based* version of the task for LLMs. **D**
131 and **E:** We compare agents choices during both the sampling and inference rounds to various ideal
132 observers with a Bayesian belief updated at each round. Each observer is defined by a different
133 scoring function ϕ which integrates a Bayesian belief b_t over the sampled evidence.

3 COMPARING HUMAN AND SYNTHETIC COGNITION

134 We evaluate a broad set of Large Language Models (LLMs) on the proposed task (Figure 2).
135 The models span most of the current LLM landscape, ranging from *dense* to *Mixture-of-Experts*
136 (MoE) architectures across a range of model sizes and training paradigms, from *base* models to
137 *instruct-fine-tuned*, *reasoning*, and *hybrid-reasoning* LLMs (Vaswani et al., 2017; Schulman et al.,
138 2017; Shoeybi et al., 2019; Wei et al., 2021; Ouyang et al., 2022; Wei et al., 2022; Shu et al.,
139 2023; Shao et al., 2024; Cai et al., 2025). Our assessment covers both state-of-the-art closed-source
140 systems and competitive open-weight models. We evaluate a wide range of well-known model
141 families. This includes OpenAI’s *gpt 4o mini* (Hurst et al., 2024), *gpt 4.1 mini* (OpenAI, 2025a),
142 *gpt 5 mini* (OpenAI, 2025b), and the *gpt oss* open architectures in both the 20B and 120B parameter
143 variants (OpenAI, 2025c). We further considered several *llama* models (Touvron et al., 2023;
144 Dubey et al., 2024), including variants fine-tuned on human behavioral data (Binz et al., 2025), as
145 well as a distilled version of *deepseek* (Guo et al., 2025). Our assessment also covered Anthropic’s
146 *claude sonnet 4* and *claude haiku 3.5* (Anthropic, 2025), Google’s *gemini 2.5 pro/flash* and the
147 smaller *gemma* models (Comanici et al., 2025; Gemma Team, Google DeepMind, 2025), and the
148 *qwen* family, including the 235B Mixture-of-Experts (MoE) model as well as earlier dense variants
149 (Qwen Team, 2025; Yang et al., 2025b). Finally, we included the fully open-source *apertus* model
150 (Hernández-Cano et al., 2025), *grok 3 mini* (xAI, 2025), and *glm 4.5* (Zeng et al., 2025). A subset
151 of the *reasoning models* considered allows for control over *reasoning effort* (resulting in longer or
152 shorter *chain-of-thoughts* token streams), hence we evaluate their performance both in *low* and *high*
153 parameter condition, we report this as additional *Extended Thinking* bars in Fig. 2. For every LLM
154 and *reasoning effort* level, we evaluate a minimum of 1,400 individuals games spanning uniformly
155 the 2 to 15 rounds range, amounting to more than 55,000 games. For what concerns humans,
156 we performed data collection on 50 human subjects during a 1-hour live-competition setting
157 amounting to 5000 individual games played spanning uniformly the same 2 to 15 rounds range.
158 Beyond assessing task performance, this evaluation helps chart new directions in understanding

162
163

which architectures and training paradigms may give rise to viable substrates for cognitive modeling.

The average success rate among human participants is 61%, matching the performance of the best LLM, *gpt 5 mini*. However, the top 25% of human players outperform this model by a margin of 7%. Examining how success rates evolve across rounds (Fig. 2B) reveals a clear separation between models around the 45% mark. These two groups exhibit strikingly different behaviors: one shows positively sloped curves, indicating that the models leverage longer games (# of rounds) to improve their performance, while the other remains flat across rounds. Within the ranking, *claude haiku 3.5* is the first model to display this *lift-off*. From *DeepSeek R1 Qwen3 8B* onward, all models closely follow the success profiles of the lower 75% of human players. Interestingly, this subgroup aligns with the *reasoning* models. To account for the probabilistic nature of the task, we consider a complementary metric assessing the agreement of the agents' choices at *integration rounds* with that of an optimal Bayesian observer (Figure 2C). We build a Bayesian posterior over the evidence sampled by agents (see Appendix B for details), estimate the optimal choice according to a maximum-a-posteriori (MAP) agent, and compute the average agreement between the agents and MAP observer. Concretely, given a Bayesian posterior over a latent variable $z \in \mathbb{R}_+^K$, and a set of actions $a \in 1, \dots, K$ with $K = 4$, the MAP agent is defined at round t by a belief b_t , defined in this case as the Bayesian posterior over the evidence and a policy π_t^{MAP} . We can then calculate the *Bayesian agreement* score at round T , S_T (shown in Fig. 2C and 3A) is defined, for a trial with length T as

$$\pi_t^{\text{MAP}} = \arg \max_{i \in \{1, \dots, K\}} b_t(z = i) \quad , \quad S_T = \frac{1}{N} \sum_{i=1}^N \mathbb{I} [a_T = \pi_T^{\text{MAP}}] \quad (1)$$

with the indicator function is comparing the match of human/LLM agent and MAP choices.

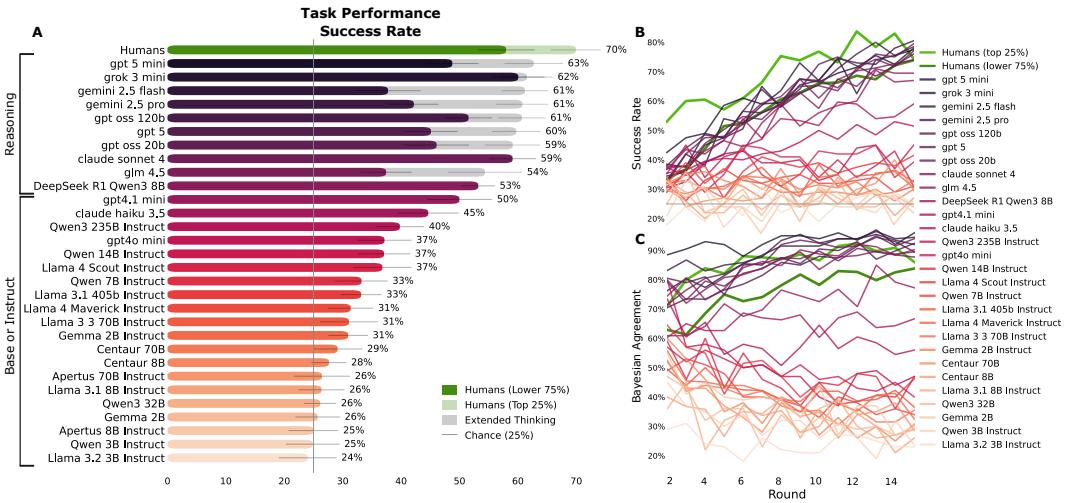


Figure 2: **Agents performance on activate probabilistic reasoning task.** **A:** Task performance based on success rate. Human performance (green) is split into the lower 75% and the top 25% of participants. LLM performance is shown as colored bars, grouped by model type (*base*, *instruct*, and *reasoning*) with *low*, *absent*, or *non-controllable reasoning effort*. Models with *high reasoning effort* (*extended thinking*) are shown as grey bars. Error bars represent standard deviations, computed across trial-cluster means with a uniform distribution over the number of rounds. Overall, *reasoning* models outperform *base* and *instruct* variants. Human participants achieved an average success rate of about 61%, comparable to the best LLM (*gpt 5 mini*), while the top 25% of humans exceeded it by 7%. **B:** Evolution of success rate across rounds. Models are color-coded by their average success rate from panel A. Human participants are shown in light green (top 25%) and dark green (lower 75%). For reasoning models allowing *extended thinking* we report only *high reasoning effort* performance. **C:** Evolution of Bayesian agreement reports the matching of agents' choices to the MAP decision based on the evidence they sampled across rounds.

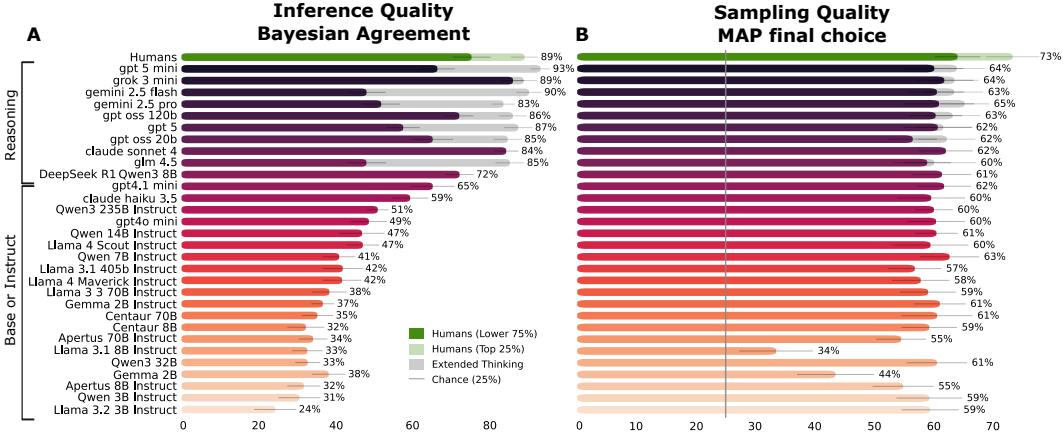


Figure 3: **Agents Inference and Sampling Quality.** **A:** Inference quality of human and LLM agents based on Bayesian agreement. Human performance (green) is split into the lower 75% and the top 25% of participants. LLM performance is shown as colored bars, grouped by model type (*base*, *instruct*, and *reasoning*) with *low*, *absent*, or *non-controllable reasoning effort*. Models with *high reasoning effort* (*extended thinking*) are shown as grey bars. Error bars represent standard deviations, computed across trial-cluster means with a uniform distribution over the number of rounds. Bars report the average matching of agents’ choices to the MAP decision based on the evidence they sampled across rounds. Top LLMs (*gpt 5 mini*, *grok 3 mini*, *gemini 2.5 Flash*) match or surpass the best human players. **B:** Sampling quality of human and LLM agents based on success rate with MAP optimal final choice. We observe modest differences across LLMs and only limited benefits from increased *reasoning effort*. In contrast, the top 25% of human participants consistently outperform all models.

The analysis of Bayesian agreement assesses agents’ *inference quality* by measuring their ability to integrate evidence gathered during *sampling rounds* relative to an optimal Bayesian observer. In particular, the evolution of Bayesian agreement, shown in Figure 2C, confirms the existence of distinct performance profiles among LLMs, with top-performing models aligning with the top 25% of human participants. When results are averaged across the number of rounds (Figure 3A), *gpt 5 mini*, *grok 3 mini*, and *gemini 2.5 Flash* match or even surpass the best human players in their agreement with the MAP agent, particularly in longer games. This evaluation underscores the central role of *reasoning effort*, operationalized as the generation of additional *chain-of-thought* tokens, in supporting successful evidence integration.

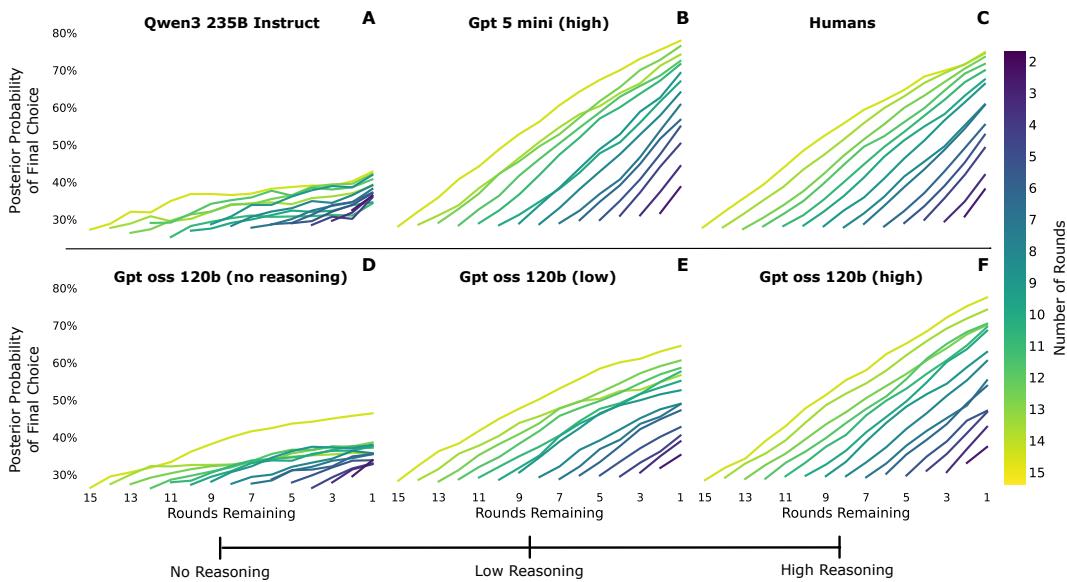
However, one question remains unanswered: if Bayesian agreement highlights the superiority of reasoning models over base and instruct variants, and even over humans, in integrating evidence, where do humans retain an advantage over these models? To address this, we examine the quality of agents’ *sampling strategies*. Concretely, we estimate the Bayesian posterior over the evidence sampled by each agent, derive the MAP-optimal choice, and compute the corresponding average success rate. This rate measures the maximum performance that a given agent could have achieved given the samples it actually collected. As shown in Figure 3B, this analysis reveals a more uniform distribution of success rates, indicating only modest differences in the quality of sampling strategies across LLMs. It further suggests that *reasoning effort* plays only a limited role in this regard, providing slim performance gains, whereas the top 25% of human participants consistently outperform all LLMs.

4 LANGUAGE MODELS SHOW HUMAN-LIKE POSTERIOR INTEGRATION

The analyses in Figures 2–3 revealed that top-performing LLMs match or outperform humans in inference quality. To better characterize how agents integrate evidence, we examine the evolution of their Bayesian posteriors over the course of sampling. Figure 4 reports the average posterior dynamics for games of fixed length, with trajectories showing how evidence accumulates toward the model choice in the final integration round. Each curve reflects the probability mass assigned to

270 the ultimately chosen option as additional samples are observed.
 271

272 Remarkably, we observe that LLMs can display evidence integration patterns that closely
 273 mirror those of humans. A first observation is that model size alone does not predict posterior
 274 quality. Large models such as *Qwen3 235B Instruct* fail to form well-structured evidence pro-
 275 files, trailing behind both humans and smaller models (panel **C**). By contrast, compact models
 276 equipped with sufficient reasoning capacity can closely approximate the posterior dynamics of
 277 top-performing LLMs and human participants. In successful agents, posterior trajectories separate
 278 quasi-monotonically across trial lengths: more rounds lead to more sharply defined posteriors,
 279 reflecting systematic integration of accumulating evidence. Poorer models, in contrast, exhibit a
 280 form of *mode collapse* (panel **D**): their posteriors remain flat in short trials and only show weak
 281 differentiation when the maximum number of rounds is reached.
 282



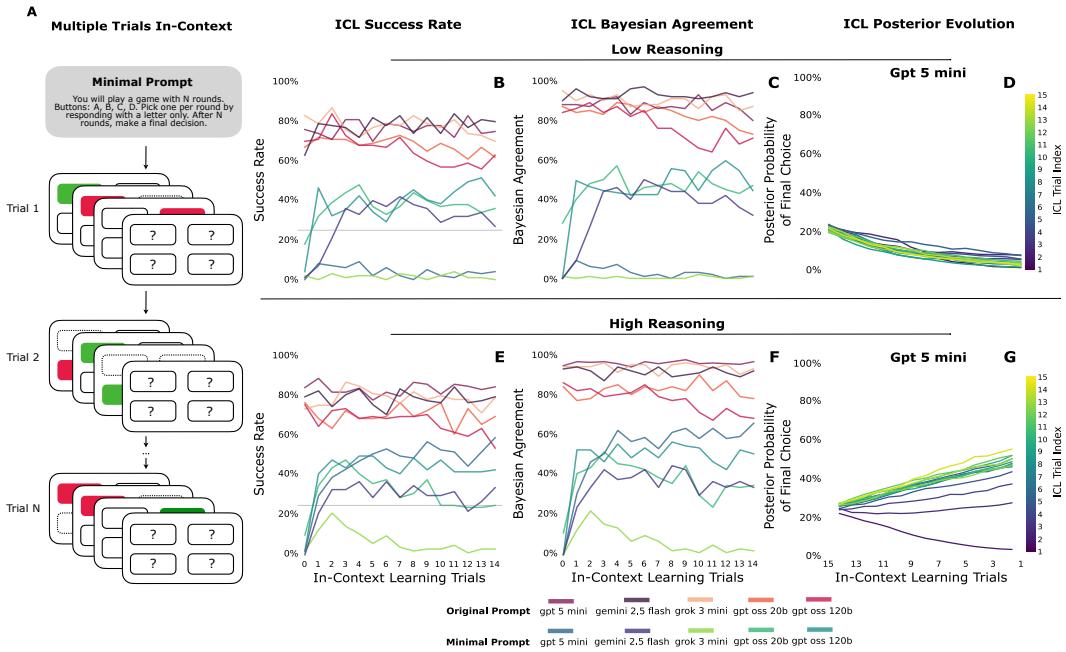
302 **Figure 4: Posterior evolution across rounds and reasoning levels.** Each curve shows the posterior
 303 probability of the final choice as evidence accumulates over rounds. **A:** Large *Qwen3 235B Instruct*
 304 model exhibits weak integration. **B:** High-reasoning *gpt 5 mini* shows rapid early growth and high
 305 final confidence. **C:** Humans display comparable accelerated integration with late plateau on longer
 306 games. **D-F:** Variants of *gpt oss 120b* highlight the effect of *reasoning effort*: with *no reasoning* (**D**)
 307 posteriors tend to remain flat; *low reasoning* (**E**) yields moderate gains; *high reasoning* (**F**)
 308 produces sharp separation and human-like trajectories. Overall, stronger reasoning effort shifts
 309 posterior gains earlier and raises final confidence, distinguishing reasoning models and humans from
 310 baseline LLMs. Figures reporting all model and reasoning levels combinations are included in Ap-
 311 pendix Fig. 9, 8.

312 *Reasoning effort* emerges as a key determinant of posterior quality. For instance, *gpt oss 120b* dis-
 313 plays near-random profiles under *low reasoning*, but transitions to human-like evidence integration
 314 as reasoning depth increases (*medium* and *high*). A similar effect is seen in the best-performing
 315 model, *gpt 5 mini*, where posterior trajectories become sharply separated only when extended rea-
 316 soning is enabled. This pattern confirms that the task requires non-trivial computation: without
 317 sufficient reasoning, models remain on par with non-reasoning baselines, but with increased rea-
 318 soning effort they converge toward the posterior profiles observed in skilled humans.
 319

320 5 REASONING IMPROVES PERFORMANCE DURING IN-CONTEXT-LEARNING

321 Thus far, our analyses used a single-trial (comprising N rounds) setup with a prompt (termed here
 322 *original prompt*, previously described in Fig. 1) that explicitly states the latent priors of the task (one
 323 cue 90/10, others 50/50) and a clear goal (i.e., *which button had the highest ratio of RED?*). This
 effectively provides models with an optimal prior. To study learning dynamics under minimal task

324 information, we also designed a *minimal prompt* that only specifies allowed choices (A–D), omitting
 325 priors, bias structure, and rewards (see Appendix E for prompt details). This minimal version
 326 removes optimal priors and goal framing, requiring models to infer task regularities directly from
 327 experience. We therefore evaluate in-context learning (ICL) across both prompting regimes, asking
 328 whether models can refine their performance under the *original prompt* and discover latent structure
 329 under the *minimal prompt*, as measured over repeated trials (Fig. 5). We run sequences of 1–15
 330 trials, each consisting of 15 rounds, with the transcript of completed trials carried over as context for
 331 subsequent ones (Fig. 5A). For the purpose of this analysis, we restrict the model space to include
 332 the top-performing closed- and open-source models: *gpt 5 mini*, *grok 3 mini*, *gemini 2.5 flash*, *gpt*
 333 *oss 20b* and *120b*. For each model, *reasoning effort* level and *prompt variation* we evaluated at least
 334 100 simulations amounting to more than 30,000 individual games. We then evaluate performance
 335 using the metrics defined in Sections 3, 4: *success rate* (Fig. 5 B–E), *inference quality* (Bayesian
 336 agreement) (Fig. 5 C–F), *sampling quality* (Appendix Fig. 10 C–F), and the evolution of posterior
 337 trajectories to capture changes in evidence accumulation toward the final choice across in-context
 338 trials (Fig. 5 D,G, and Appendix Fig. 11 for all models).



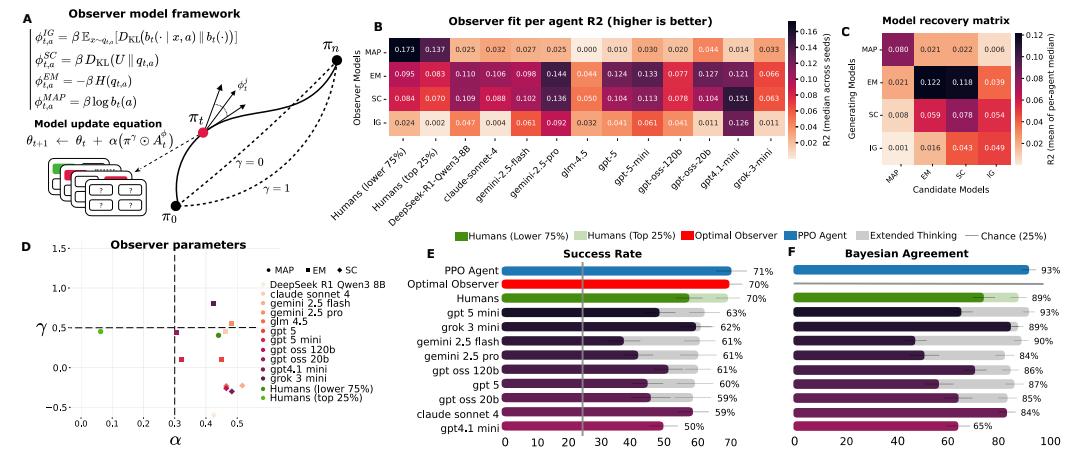
362 **Figure 5: In-context learning across repeated trials** **A:** Schematic of multi-trial in-context setup.
 363 Each trial transcript is carried over as context to the next. **B, E:** Success under the *original prompt*
 364 remains near baseline or degrades at both reasoning levels, while the *minimal prompt* shows het-
 365 erogeneous outcomes with models capable of ICL and others below chance level, with improved
 366 ICL performance for *gpt 5 mini* under high reasoning effort. **D:** Posterior dynamics for *gpt 5 mini*
 367 under low reasoning and minimal prompt: probability assigned to the final choice declines across
 368 trials, indicating impaired evidence integration. **C, F:** The Bayesian agreement analysis (panels C,
 369 F) corroborates the patterns of success rate. **G:** Posterior dynamics for *gpt 5 mini* under high rea-
 370 soning and minimal prompt: posterior mass on the final choice strengthens across trials, reflecting
 371 improved evidence accumulation.

372 Under the *original prompt*, success rates exhibit little systematic improvement across in-context tri-
 373 als, remaining close to the baseline single trial averages (Fig. 5 B–E). Notably, the open-source *gpt*
 374 *oss 20b* and *120b* variants show a progressive decline after approximately six trials (panel B), this
 375 degradation is delayed in the *20B* model and attenuated in the *120B* model under increased reasoning
 376 effort (panel E). The Bayesian agreement analysis (panels C, F) corroborates this pattern, demon-
 377 strating that extended reasoning stabilizes belief updating and yields consistently high-alignment
 378 with the Bayesian observer. Under the *minimal prompt*, both *grok 3 mini* and *gpt 5 mini* initially fail

378 to perform the task, falling below chance level in terms of both success rate and Bayesian agreement
 379 (panels **B**, **C**). By contrast, other models display clear signs of ICL, gradually improving their
 380 performance across trials. For *gemini 2.5 flash* and the *gpt oss* variants, performance remains largely
 381 stable across reasoning levels (panels **E**, **F**), while *grok 3 mini* shows only weak gains and remains
 382 below chance-level. However, increasing reasoning effort markedly enhances *gpt 5 mini*, which rises
 383 to top-tier performance on both success rate and Bayesian agreement, with strong evidence of ICL.
 384 The posterior dynamics (panels **D**, **G**) highlight this contrast: whereas low reasoning led to impaired
 385 integration, extended reasoning enables evidence accumulation that improves across trials under the
 386 minimal prompt.

387 6 HUMANS AND LANGUAGE MODELS SHOW DIFFERENT SAMPLING 388 STRATEGIES

390 Our earlier analyses showed that, while LLMs can integrate evidence as well as or better than hu-
 391 mans, their sampling strategies are weaker. To better understand this difference, we compare human
 392 and model behavior by fitting a set of observer models with distinct sampling policies both to hu-
 393 man and LLM data. We anchor each *observer* with the same belief b_t defined in Sec. 3, a policy
 394 on the simplex $\Delta \in \mathbb{R}$, $\pi_t \in \Delta^{K-1}$, and score function $\phi_t \in \mathbb{R}_+^K$, where $K = 4$ is the number
 395 of buttons of the task. The policy in this observer model is implemented through logits $\theta_t \in \mathbb{R}^K$
 396



412 Figure 6: **Human participants and LLMs show different sampling policies** **A:** Schematic of
 413 the gradient interpolating model that was fitted to both humans and language models, different γ
 414 lead to different curvatures of the gradient trajectories over the simplex. **B:** R^2 of the fit across the
 415 different observer classes (MAP, EM, SC, IG) for each of the top performing models. Humans show
 416 a larger preference for MAP-like sampling policies and language models for Entropy modulated
 417 policies. **C:** Model recovery matrix for the fitted dataset showing the recovery of the initial fit from
 418 generated data of the observers with the highest R^2 . **D:** Parameter span for α (learning rate) and γ
 419 (gradient interpolating factor) for the top performing models. Top 25% humans show as outliers in
 420 the parameter space. Models show higher variability in the interpolating factor than in the learning
 421 rate parameter. **E-F:** Evaluation of the trained PPO agent and the best performing Optimal Observer
 422 (MAP) on the same task. Both models show human-like performance. The PPO model fit to the task
 423 validates the performance range of our theoretical observer model for the success rate on the task.

424 by $\pi_t = \text{softmax}(\theta_t)$ and through the bayesian posterior beliefs b_t . In order to simulate different
 425 decision making strategies, the model is able to differentially reweigh the evidence and change its
 426 sampling policy directly on the logits as they go through this gradient descent. This gradient is de-
 427 fined by an *advantage* $A_t^\phi \in \mathbb{R}_+^K$ which at each timestep computes the distance of the *observer score*
 428 ϕ , which evaluates current and future evidence to the goal $J(\pi) = \sum_{i=1}^K \langle \pi, \phi_i \rangle$. Concretely this
 429 advantage is given by $A_t^\phi := \phi_t - \langle \pi_t, \phi_t \rangle \mathbf{1}$ with $\langle \pi, \phi \rangle = \sum_{i=1}^K \pi_i \phi_i$. Additionally, in order
 430 to explore the types of gradient updates being performed by the agents we unify the Euclidean and
 431 Fisher geometries by endowing the logit space with an interpolating metric $G_\gamma(\theta_t) = \text{diag}(\pi_t^{1-\gamma})$,

432 which leads to the following gradient update equation for the logits θ (proof in Appendix B.7)
 433

$$\theta_{t+1} = \theta_t + \alpha (\pi_t^\gamma \odot A_t^\phi). \quad (2)$$

435 This allows us to fit different gradient profiles within the statistical manifold of the underlying sim-
 436 plex of this task. It can be directly seen that this general expression reduces to the natural-gradient
 437 update for $\gamma = 0$, $\Delta\theta = \alpha A_t^\phi$ (Amari, 2016; Kakade, 2001; Kerimkulov et al., 2025), and to the
 438 Euclidean policy-gradient update for $\gamma = 1$, $\Delta\theta = \alpha(\pi_t \odot A_t^\phi)$ (Sutton et al., 2000). Classical
 439 observers can be integrated into this model by particular choices of the score ϕ_t . Different canonical
 440 observers can then be defined by their corresponding score function ϕ . We define a MAP agent,
 441 (Lai and Robbins, 1985), an *Entropy-Minimizing* agent EM by ϕ^{EM} , a *Self-Certainty* agent SC by
 442 ϕ^{SC} (Zhao et al., 2025) and a *Information Gain* agent with score function defined by $\phi_{t,a}^{IG}$ (Gersh-
 443 man, 2019). As these different scoring functions execute different computations over the evidence
 444 built by the posterior, the gradient will also evolve differently through the perturbations of the ad-
 445 vantage A_t^ϕ . In order to get an idea of the potential explanatory power of this model, we did an initial
 446 fit to the active probabilistic reasoning task of all the *observer model* types and compared it also to
 447 an on-policy MLP network with PPO(Schulman et al., 2017), showing in panels E, F². We then fit
 448 this model to the games played by the human players and a subset of the top performing LLMs in
 449 order to disentangle their sampling strategies. We show the R^2 score over random seeds of the trials
 450 dataset for each agent. Notably, we see a sharp distinction between human players and LLMs, with
 451 humans having the best fit for MAP-like sampling policies (see model fitting details in Appendix
 452 C). LLMs match more closely sampling strategies that are sensitive to the evolution of the posterior
 453 entropy, preferring overall EM and SC-like strategies. Furthermore, their gradient parameterization
 454 shows an interesting pattern; the top human players seem to adapt with smaller learning rates than
 455 the remaining bottom 75% of humans and language models. Overall the gradients executed lie in
 456 the middle between a fully natural gradient and a policy gradient as can be seen in Figure 6D.

457 7 CONCLUSION

458 In Section 2, we introduced an *active probabilistic reasoning task* enabling direct comparison
 459 between humans and LLMs. In Section 3, we showed that while some models reach or exceed
 460 human-level in inference capabilities, their sampling strategies remain consistently weaker. We
 461 observe striking similarities between LLM and human agents in their posterior integration trajec-
 462 tories where reasoning through *chain-of-thought* plays a critical role (Section 4). Further, Section 6
 463 shows that human and model behaviors map to distinct observer classes, with humans preferentially
 464 adopting MAP-like strategies, whereas LLMs rely more on entropy-driven sampling policies. These
 465 findings raise interesting questions as to how these differences emerge: whether they are related
 466 to model architectural choices and what training paradigms can be used to steer model behaviors
 467 toward human-like sampling strategies. The minimal environment of our task, and the possibility to
 468 derive optimal Bayesian policies, make of it a suitable framework to answer these questions.

469 Our in-context-learning experiments in Section 5 demonstrate the ability of these models to
 470 create a basic representation of the environment, exemplified by their performance improvements,
 471 even under settings with minimal information. Notably, the in-context learning experiments reveal a
 472 further dichotomy between the abilities for sampling and inference across different models: whereas
 473 inference quality improves in-context for some models, the sampling quality remains largely fixed
 474 throughout the in-context learning window. While these findings point to only a limited ability for
 475 in-context learning, even the partial improvements we observed support the idea that LLMs could
 476 become suitable candidates for simulators of cognition on decision-making tasks, as proposed in
 477 (Binz et al., 2024).

478 Beyond leading to precise insights into the abstract computational algorithms implemented
 479 by LLMs during *active probabilistic reasoning*, we believe that our task holds great promise as a
 480 tool towards *mechanistic interpretability* of LLMs (Elhage et al., 2021; 2022; Olsson et al., 2022).
 481 Our analysis reveals key latent variables accounting for a large fraction of the models’ sampling
 482 choices and inference, which are both based on properties of the Bayesian posterior probabilities.
 483 In analogy to neuroscience studies, the identification of correlates of these latent variables in model
 484 activity can provide a starting point for understanding the underlying mechanisms.

485 ²Bayesian agreement not shown for the optimal observer model as it shares the same mechanism as the
 486 underlying Bayesian scoring metric.

486 8 REPRODUCIBILITY STATEMENT
487488 To ensure reproducibility of our results, all code used in our experiments, along with detailed in-
489 structions for setup and execution, is available at: https://drive.google.com/drive/folders/17tQx0021LN1Vpb0F_IIiM9oSm8DmRik. Additionally, the active probabilistic
490 reasoning task used for data collection is accessible at <https://ai.trt-bench.org>.
491492 9 ETHICS STATEMENT
493494 We obtained institutional ethics approval for the collection, analysis, and publication of data col-
495 lected as part of this study. All participants provided informed consent after receiving study infor-
496 mation. Data were anonymized prior to analysis and access was restricted to the research team. The
497 no-risk cognitive task posed no safety concerns to participants.498 10 LANGUAGE MODEL USE STATEMENT
499500 We used large language models to polish prose and to surface related scientific work; all study de-
501 sign, analysis, and conclusions were generated by the authors, and models were not used to generate
502 data, or results; queries contained only non-sensitive text, outputs were edited for accuracy and style,
503 and all citations were independently verified.

504 505 REFERENCES

506 Steven A Sloman, Richard Patterson, and Aron K Barbey. Cognitive neuroscience meets the com-
507 munity of knowledge. *Frontiers in Systems Neuroscience*, 15:675127, 2021.508 Sander van Bree. A critical perspective on neural mechanisms in cognitive neuroscience: towards
509 unification. *Perspectives on Psychological Science*, 19(6):993–1010, 2024.510 Li Ji-An, Marcus K Benna, and Marcelo G Mattar. Discovering cognitive strategies with tiny recur-
511 rent neural networks. *Nature*, pages 1–9, 2025.512 Kevin Miller, Maria Eckstein, Matt Botvinick, and Zeb Kurth-Nelson. Cognitive model discovery
513 via disentangled rnns. *Advances in Neural Information Processing Systems*, 36:61377–61394,
514 2023.515 Guangyu Robert Yang and Xiao-Jing Wang. Artificial neural networks for neuroscientists: a primer.
516 *Neuron*, 107(6):1048–1070, 2020.517 Blake A Richards, Timothy P Lillicrap, Philippe Beaudoin, Yoshua Bengio, Rafal Bogacz, Amelia
518 Christensen, Claudia Clopath, Rui Ponte Costa, Archy de Berker, Surya Ganguli, et al. A deep
519 learning framework for neuroscience. *Nature neuroscience*, 22(11):1761–1770, 2019.520 Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
521 machines that learn and think like people. *Behavioral and brain sciences*, 40:e253, 2017.522 Joshua C Peterson, David D Bourgin, Mayank Agrawal, Daniel Reichman, and Thomas L Griff-
523 ths. Using large-scale experiments and machine learning to discover theories of human decision-
524 making. *Science*, 372(6547):1209–1214, 2021.525 Rishi Bommasani. On the opportunities and risks of foundation models. *arXiv preprint*
526 *arXiv:2108.07258*, 2021.527 Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
528 mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
529 intelligence: early experiments with gpt-4 (2023). *arXiv preprint arXiv:2303.12712*, 1, 2023.530 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
531 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
532 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.533 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
534 Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
535 heads. *arXiv preprint arXiv:2209.11895*, 2022.

540 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 541 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 542 *neural information processing systems*, 35:24824–24837, 2022.

543

544 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 545 language models are zero-shot reasoners. *Advances in neural information processing systems*,
 546 35:22199–22213, 2022.

547

548 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
 549 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
 550 assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*,
 551 2022.

552

553 Shane Griffith, Kaushik Subramanian, Jonathan Scholz, Charles L Isbell, and Andrea L Thomaz.
 554 Policy shaping: Integrating human feedback with reinforcement learning. *Advances in neural*
 555 *information processing systems*, 26, 2013.

556

557 Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
 558 Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. *arXiv preprint*
 559 *arXiv:2109.01652*, 2021.

560

561 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 562 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 563 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 564 27730–27744, 2022.

565

566 Marcel Binz, Elif Akata, Matthias Bethge, Franziska Brändle, Fred Callaway, Julian Coda-Forno,
 567 Peter Dayan, Can Demircan, Maria K. Eckstein, Noémi Éltető, Thomas L. Griffiths, Susanne
 568 Haridi, Akshay K. Jagadish, Li Ji-An, Alexander Kipnis, Sreejan Kumar, Tobias Ludwig, Marvin
 569 Mathony, Marcelo Mattar, Alireza Modirshanechi, Surabhi S. Nath, Joshua C. Peterson, Milena
 570 Rmus, Evan M. Russek, Tankred Saanum, Natalia Scharfenberg, Johannes A. Schubert, Luca
 571 M. Schulze Buschoff, Nishad Singhi, Xin Sui, Mirko Thalmann, Fabian Theis, Vuong Truong,
 572 Vishaal Udandarao, Konstantinos Voudouris, Robert C. Wilson, Kristin Witte, Shuchen Wu, Dirk
 573 Wulff, Huadong Xiong, and Eric Schulz. A foundation model to predict and capture human
 574 cognition. *Nature*, 2025. doi: 10.1038/s41586-025-09215-4.

575

576 Marcel Binz and Eric Schulz. Turning large language models into cognitive models. *arXiv preprint*
 577 *arXiv:2306.03917*, 2023.

578

579 Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning, Caro-
 580 line Falkman Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, et al. Fron-
 581 tiermath: A benchmark for evaluating advanced mathematical reasoning in ai. *arXiv preprint*
 582 *arXiv:2411.04872*, 2024.

583

584 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
 585 rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
 586 mark. In *First Conference on Language Modeling*, 2024.

587

588 Zirui Wang, Mengzhou Xia, Luxi He, Howard Chen, Yitao Liu, Richard Zhu, Kaiqu Liang, Xindi
 589 Wu, Haotian Liu, Sadhika Malladi, et al. Charxiv: Charting gaps in realistic chart understanding
 590 in multimodal llms. *Advances in Neural Information Processing Systems*, 37:113569–113697,
 2024.

591

592 Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
 593 Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. *arXiv preprint*
 594 *arXiv:2501.14249*, 2025.

595

596 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
 597 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
 598 modal understanding and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF*
 599 *Conference on Computer Vision and Pattern Recognition*, pages 9556–9567, 2024.

594 Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Benjamin Feuer, Siddhartha Jain, Ravid
 595 Schwartz-Ziv, Neel Jain, Khalid Saifullah, Sreemanti Dey, Shubh-Agrawal, Sandeep Singh
 596 Sandha, Siddartha Venkat Naidu, Chinmay Hegde, Yann LeCun, Tom Goldstein, Willie
 597 Neiswanger, and Micah Goldblum. Livebench: A challenging, contamination-free LLM bench-
 598 mark. In *The Thirteenth International Conference on Learning Representations*, 2025.

599 Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
 600 Narasimhan. SWE-bench: Can language models resolve real-world github issues? In *The Twelfth*
 601 *International Conference on Learning Representations*, 2024.

602 John Yang, Carlos E Jimenez, Alex L Zhang, Kilian Lieret, Joyce Yang, Xindi Wu, Ori Press,
 603 Niklas Muennighoff, Gabriel Synnaeve, Karthik R Narasimhan, Diyi Yang, Sida Wang, and Ofir
 604 Press. SWE-bench multimodal: Do AI systems generalize to visual software domains? In *The*
 605 *Thirteenth International Conference on Learning Representations*, 2025a.

606 Karl Friston. The history of the future of the bayesian brain. *NeuroImage*, 62(2):1230–1233, 2012.

607 Adam Kepecs and Zachary F. Mainen. A computational framework for the study of confidence in
 608 humans and animals. *Philosophical Transactions of the Royal Society B: Biological Sciences*,
 609 367(1594):1322–1337, 2012. doi: 10.1098/rstb.2012.0037. URL <https://doi.org/10.1098/rstb.2012.0037>.

610 Samuel J. Gershman. Deconstructing the human algorithms for exploration. *Cognition*, 173:34–42,
 611 2018. doi: 10.1016/j.cognition.2017.12.014.

612 David C. Knill and Alexandre Pouget. The Bayesian brain: the role of uncertainty in neural coding
 613 and computation. *Trends in Neurosciences*, 27(12):712–719, 2004. doi: 10.1016/j.tins.2004.10.
 614 007.

615 Jacob Russin, Ellie Pavlick, and Michael J. Frank. Parallel trade-offs in human cognition and neural
 616 networks: The dynamic interplay between in-context and in-weight learning. *Proceedings of the*
 617 *National Academy of Sciences of the United States of America*, 122(35):e2510270122, 2025. doi:
 618 10.1073/pnas.2510270122.

619 Ellen Su, Mark K. Ho, and Todd M. Gureckis. Integration of language and experience via the
 620 instructed bandit task. In *Proceedings of the 47th Annual Meeting of the Cognitive Science Soci-
 621 ety*, volume 47. Cognitive Science Society, 2025. URL <https://escholarship.org/uc/item/1j746305>. Conference paper.

622 Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
 623 algorithm is in-context learning? investigations with linear models, 2022.

624 Johannes von Oswald, Eyyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
 625 intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
 626 descent, 2022.

627 Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers learn in-
 628 context? a case study of simple function classes. In *Advances in Neural Information Processing
 629 Systems*, volume 35, 2022.

630 Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
 631 preconditioned gradient descent for in-context learning, 2023.

632 Deqing Fu, Tian-Qi Chen, Robin Jia, and Vatsal Sharan. Transformers learn to achieve second-order
 633 convergence rates for in-context linear regression. In *Advances in Neural Information Processing
 634 Systems*, 2024.

635 Fabian Falck, Ziyu Wang, and Christopher C. Holmes. Is in-context learning in large language mod-
 636 els bayesian? A martingale perspective. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller,
 637 Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp, editors, *Proceedings of
 638 the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine
 639 Learning Research*, pages 12784–12805. PMLR, 21–27 Jul 2024.

648 Ritwik Gupta, Rodolfo Corona, Jiaxin Ge, Eric Wang, Dan Klein, Trevor Darrell, and David M.
 649 Chan. Enough coin flips can make LLMs act Bayesian. In Wanxiang Che, Joyce Nabende, Eka-
 650 terina Shutova, and Mohammad Taher Pilehvar, editors, *Proceedings of the 63rd Annual Meeting*
 651 *of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 7634–7655, Vi-
 652 enna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0.
 653 doi: 10.18653/v1/2025.acl-long.377.

654 Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
 655 learning as implicit Bayesian inference. In *International Conference on Learning Representations*
 656 (*ICLR*), 2022. URL <https://openreview.net/forum?id=RdJVFCHjUMI>.

657 T. L. Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. *Advances in
 658 Applied Mathematics*, 6(1):4–22, 1985. doi: 10.1016/0196-8858(85)90002-8.

660 Nathaniel D. Daw, John P. O’Doherty, Peter Dayan, Ben Seymour, and Raymond J. Dolan. Cortical
 661 substrates for exploratory decisions in humans. *Nature Neuroscience*, 9(6):867–873, 2006. doi:
 662 10.1038/nn1743.

663 Jiri Najemnik and Wilson S. Geisler. Optimal eye movement strategies in visual search. *Nature*,
 664 434:387–391, 2005. doi: 10.1038/nature03390.

666 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 667 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 668 tion processing systems*, 30, 2017.

669 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 670 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

672 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
 673 Catanzaro. Megatron-Im: Training multi-billion parameter language models using model par-
 674 allelism. *arXiv preprint arXiv:1909.08053*, 2019.

675 Manli Shu, Jiongxiao Wang, Chen Zhu, Jonas Geiping, Chaowei Xiao, and Tom Goldstein. On
 676 the exploitability of instruction tuning. *Advances in Neural Information Processing Systems*, 36:
 677 61836–61856, 2023.

679 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 680 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 681 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

682 Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang, Sunghun Kim, and Jiayi Huang. A survey on
 683 mixture of experts in large language models. *IEEE Transactions on Knowledge and Data Engi-
 684 neering*, 2025.

686 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 687 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint
 688 arXiv:2410.21276*, 2024.

689 OpenAI. Gpt-4.1 mini — api model documentation, 2025a. Accessed 2025-09-23.

690 OpenAI. Gpt-5 system card. Technical report, OpenAI, 2025b. Accessed 2025-09-23.

692 OpenAI. gpt-oss-120b & gpt-oss-20b model card. *arXiv*, 2025c.

694 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 695 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 696 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

697 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 698 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 699 *arXiv e-prints*, pages arXiv–2407, 2024.

701 Dong Guo et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
 arXiv, 2025.

702 Anthropic. Claude opus 4 & claude sonnet 4 — system card. Technical report, Anthropic, 2025.
 703 Accessed 2025-09-23.
 704

705 Gabriel Comanici et al. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality,
 706 long context, and next generation agentic capabilities. *arXiv*, 2025.

707 Gemma Team, Google DeepMind. Gemma 3 technical report. *arXiv*, 2025.

708

709 Qwen Team. Qwen3-235b (moe) — hugging face model card, 2025. Accessed 2025-09-23.

710

711 An Yang et al. Qwen3 technical report. *arXiv*, 2025b.

712 Alejandro Hernández-Cano et al. Apertus: Democratizing open and compliant llms for global lan-
 713 guage environments. *arXiv*, 2025.

714

715 xAI. Grok 3 beta — the age of reasoning agents, 2025. Accessed 2025-09-23.

716

717 Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang,
 718 Da Yin, Hao Zeng, Jiajie Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation
 719 models. *arXiv preprint arXiv:2508.06471*, 2025.

720

721 Shun-ichi Amari. *Information Geometry and Its Applications*. Springer, Tokyo, 2016. doi: 10.1007/
 978-4-431-55978-8.

722

723 Sham Kakade. A natural policy gradient. In *Advances in Neural Information Processing Systems*,
 724 volume 14, pages 1531–1538, 2001.

725

726 Bauyrzhan Kerimkulov, Mohammadreza M. Pejman, Bernd Schmid, and René L. Schilling. A
 727 fisher-rao gradient flow for entropy-regularised mdps. *Foundations of Computational Mathemat-
 728 ics*, 2025. doi: 10.1007/s10208-025-09729-3. in press.

729

730 Richard S. Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. Policy gradient
 731 methods for reinforcement learning with function approximation. In Sara A. Solla, Todd K. Leen,
 732 and Klaus-Robert Müller, editors, *Advances in Neural Information Processing Systems 12 (NIPS
 1999)*, pages 1057–1063. MIT Press, 2000. ISBN 0-262-19450-3.

733

734 Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Song. Learning to reason
 735 without external rewards, 2025. URL <https://arxiv.org/abs/2505.19590>.

736

737 Samuel J. Gershman. Uncertainty and exploration. *Decision*, 6(3):277–286, 2019. doi: 10.1037/
 dec0000101.

738

739 Marcel Binz, Elif Akata, Matthias Bethge, Franziska Brändle, Fred Callaway, Julian Coda-Forno,
 740 Peter Dayan, Can Demircan, Maria K. Eckstein, Noémi Éltető, Thomas L. Griffiths, Susanne
 741 Haridi, Akshay K. Jagadish, Li Ji-An, Alexander Kipnis, Sreejan Kumar, Tobias Ludwig, Marvin
 742 Mathony, Marcelo Mattar, Alireza Modirshanechi, Surabhi S. Nath, Joshua C. Peterson, Milena
 743 Rmus, Evan M. Russek, Tankred Saanum, Natalia Scharfenberg, Johannes A. Schubert, Luca
 744 Schulze Buschoff, Nishad Singhi, Xin Sui, Mirko Thalmann, Fabian Theis, Vuong Truong,
 745 Vishaal Udandarao, Konstantinos Voudouris, Robert Wilson, Kristin Witte, Shuchen Wu, Dirk
 746 Wulff, Huadong Xiong, and Eric Schulz. Centaur: a foundation model of human cognition, 2024.
 747 URL <https://arxiv.org/abs/2410.20268>.

748

749 Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan Joseph, and Chris Olah. A math-
 750 ematical framework for transformer circuits. [https://transformer-circuits.pub/
 2021/framework/index.html](https://transformer-circuits.pub/2021/framework/index.html), 2021. Anthropic.

751

752 Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, and Chris Olah. Toy models of
 753 superposition. [https://transformer-circuits.pub/2022/toy_model/index.
 html](https://transformer-circuits.pub/2022/toy_model/index.html), 2022. Anthropic.

754

755 Shun-ichi Amari and Hiroshi Nagaoka. *Methods of Information Geometry*, volume 191 of *Trans-
 756 lations of Mathematical Monographs*. American Mathematical Society and Oxford University
 757 Press, 2000.

756 Panayotis Mertikopoulos and William H. Sandholm. Riemannian game dynamics. *Journal of Eco-*
757 *nomic Theory*, 159:306–347, 2016. doi: 10.1016/j.jet.2015.07.004.
758

759 Marc Harper. Information geometry and evolutionary game theory. *arXiv preprint*, 2009.
760

761 Siavash Shahshahani. A new mathematical framework for the study of linkage and selection. *Mem-*
762 *oirs of the American Mathematical Society*, 17(211), 1979.
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A ADDITIONAL FIGURES

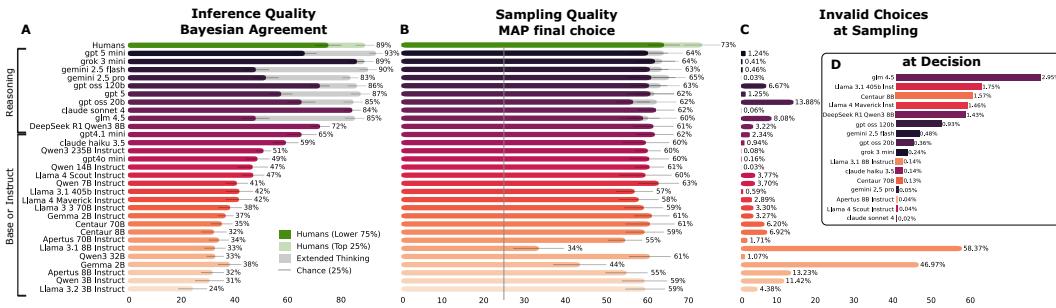


Figure 7: Extended benchmark analysis of inference, sampling, and invalid choices. A-B: inference quality (Bayesian agreement with the MAP observer) and sampling quality (success conditional on MAP-optimal choice). Human performance (green) is split into the lower 75% and the top 25% of participants; LLM performance is shown as colored bars, grouped by model type. Models with high reasoning effort (extended thinking) are shown as gray bars. C: the proportion of invalid choices, measured both during sampling rounds and at the final integration step. Invalid responses do not correlate strongly with overall success, indicating they are not the primary driver of model performance differences. High performing models like *gpt-oss-20b/120b* have a high invalid choice sampling rate yet retain a high overall success rate.

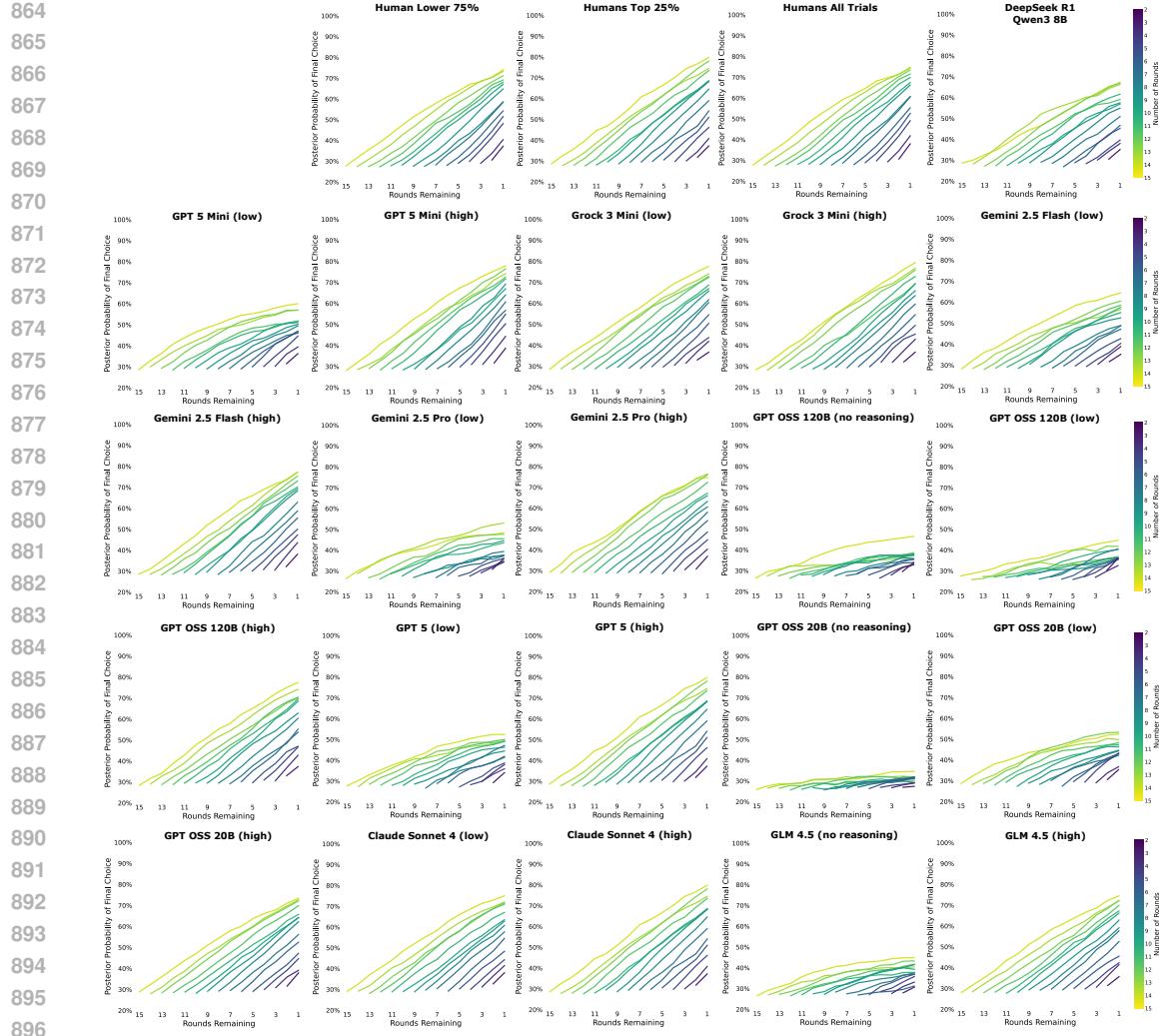


Figure 8: **Posterior evolution by rounds across humans and reasoning models.** Each curve shows the posterior probability assigned to the final choice as additional evidence is sampled, averaged across trials of the same length. Humans exhibit steady evidence accumulation, with the top 25% of participants showing clearer separation and stronger late-round convergence than the lower 75%. Overall, increasing *reasoning effort* shifts gains earlier in the trajectory and raises final confidence, indicating faster and more stable integration.

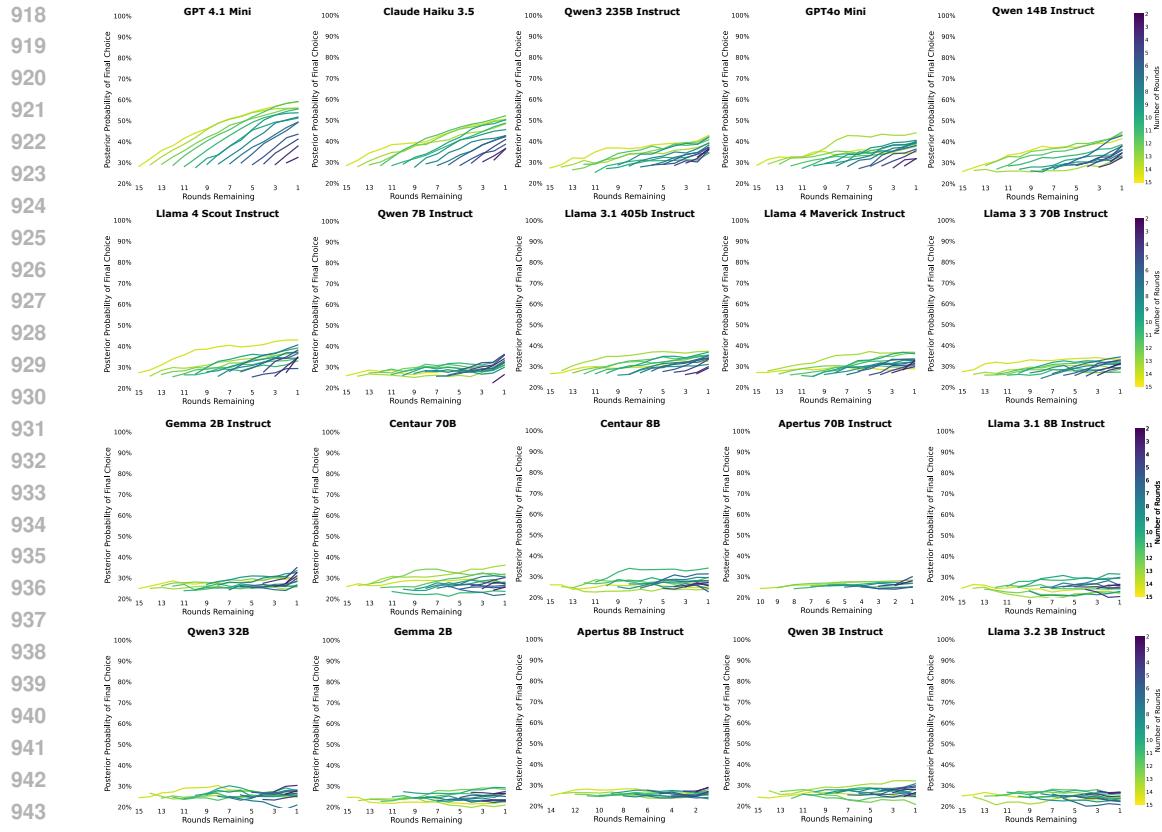


Figure 9: **Posterior evolution by rounds for base and instruct models.** Results are provided in task success rate rank order (left → right, row-wise ↓). Models are ordered by overall task success (left→right, row-wise). Relative to reasoning models (Figure 4; Figure 8), base/instruct variants show shallow growth and delayed or weak separation across trial lengths, indicating poor integration of sampled evidence even when longer rounds are available. As success rate decreases, posteriors increasingly resemble random baselines, with little growth in confidence even after many rounds.

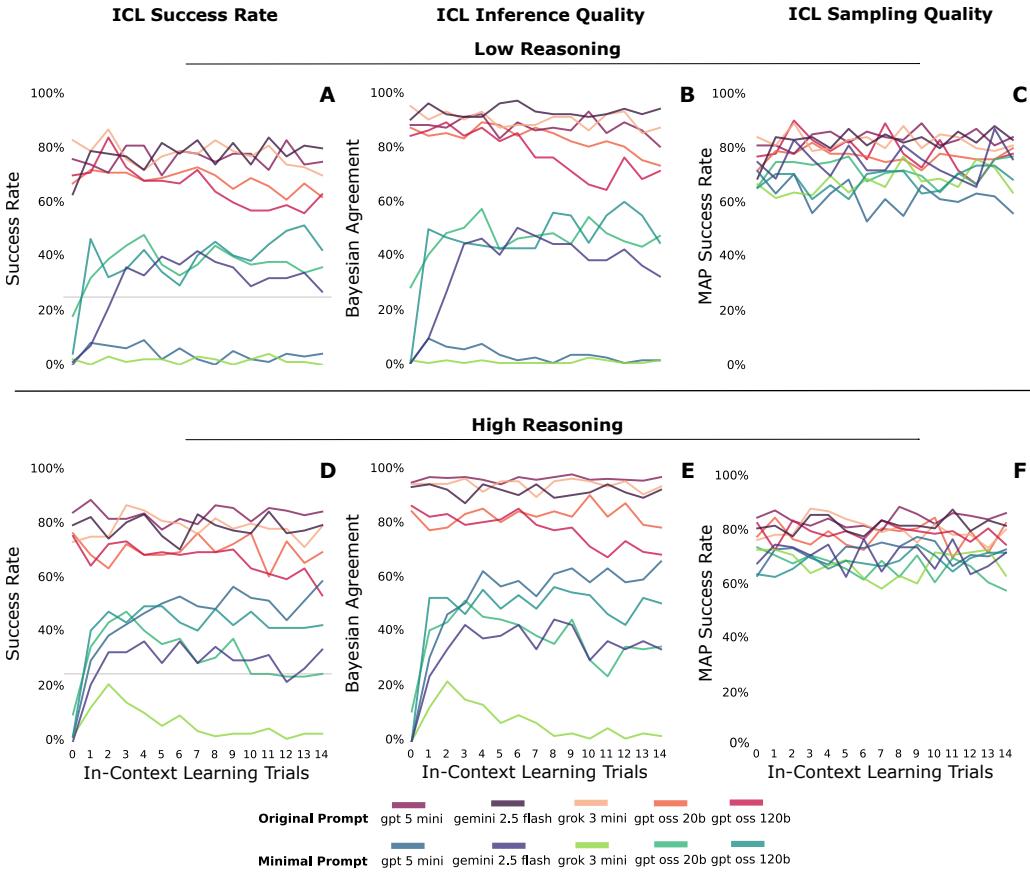


Figure 10: **In-context learning success rate, inference quality, and sampling quality by reasoning levels.** Each panel reports performance across repeated trials under the *original* and *minimal* prompt conditions. **A-B:** in the low reasoning condition, top models show limited or no improvement over trials, with substantial prompt dependent variability. **D-E:** by contrast, high reasoning stabilizes both inference and sampling dynamics, yielding steady gains across trials and reduced spread between prompts. **C, F** shows that in-context improvements and prompt variability arise primarily from enhanced *inference quality* rather than fundamental changes in *sampling strategy*.

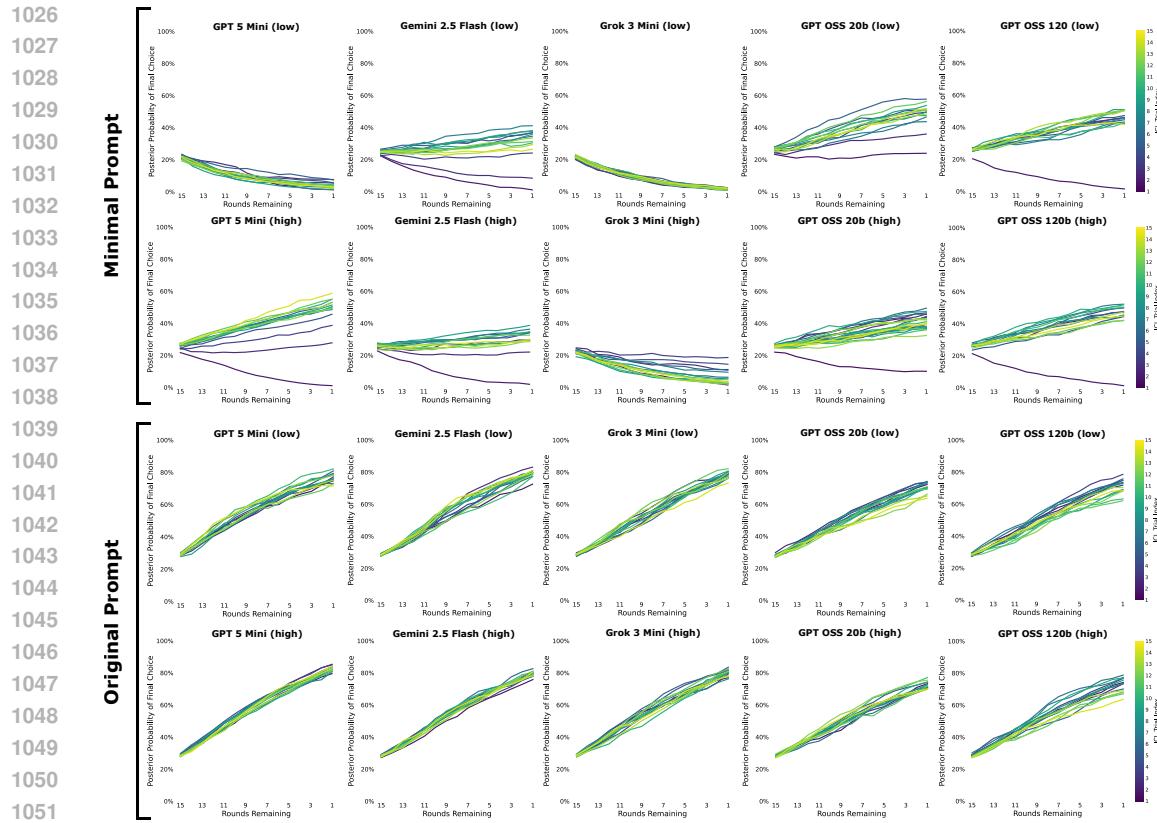


Figure 11: **In-context learning across repeated trials and posterior evolution by reasoning level and prompt.** Models show consistently better evidence integration under the original than the minimal prompt. With high reasoning, the posterior probability of the final choice increases across models and prompts. Additionally, high reasoning reduces across-trial variance in the posterior under the original prompt setting.

1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080 **B OBSERVER MODEL AND GEOMETRIC POLICY UPDATES**
 1081

1082 This section contains a self-contained derivation of the observer model presented in Section 6 based
 1083 on a categorical and coupled belief over a set of latent indexes, together with the derivations of
 1084 the interpolating family of gradients. We consider a single latent discrete variable $z \in \{1, \dots, K\}$
 1085 indicating which arm is currently biased. At the *start of round t* , the agent holds a categorical belief
 1086 $p_t(z)$ over the K possibilities. Since z is discrete, p_t lies on the $(K-1)$ -simplex:

$$1087 \sum_{k=1}^K p_t(z=k) = 1, \quad p_t(z=k) \geq 0. \quad (3)$$

1090 When the agent probes arm $i \in \{1, \dots, K\}$, it observes a Bernoulli outcome $x \in \{0, 1\}$ whose
 1091 success probability depends on whether the probed arm matches the latent index z . We fix the
 1092 outcome coding so that $x = 1$ denotes *RED* and $x = 0$ denotes *GREEN*. Let $0 < \theta_L < \theta_H < 1$
 1093 be the two *likelihood parameters* (emission probabilities): θ_H is the probability of observing RED
 1094 when the probed arm is the true latent ($z = i$), and θ_L is the probability of observing RED when it
 1095 is not ($z \neq i$). The likelihood is

$$1096 \Pr(x=1 \mid a=i, z=k) = \begin{cases} \theta_H & \text{if } k=i, \\ 1097 \theta_L & \text{if } k \neq i, \end{cases} \quad (4)$$

1098 Here θ_H and θ_L are *not* accumulated evidence; they are fixed (or slowly learned) per-trial emission
 1099 biases. Accumulated evidence appears in the posterior over the latent index, $p_t(z)$, which is updated
 1100 by Bayes' rule using the likelihood above.

$$1102 \Pr(x=0 \mid a=i, z=k) = 1 - \Pr(x=1 \mid a=i, z=k). \quad (5)$$

1103 This coupling through z induces *dependence* across arms: evidence that increases belief in $z=i$
 1104 simultaneously decreases belief in $z \neq i$. Alternative belief streams could be used as well to integrate
 1105 evidence, where the latents would be updated in an independent manner, with the likelihood in this
 1106 case being given by

$$1107 p(x \mid a=i, z_1, \dots, z_K) = z_i^x (1-z_i)^{1-x}, \quad (6)$$

1108 i.e., only the probed arm's latent z_i enters the Bernoulli likelihood while the coordinates $\{z_j\}_{j \neq i}$
 1109 remain unchanged for that observation. For the *Optimal Observer* fitting to the task in Figure 6, panel
 1110 E and on the behavioral data of the human and LLM games we use the shared rates in Equation 4.

1112 **B.1 PREDICTIVE DISTRIBUTIONS IN THE ACTIVE PROBABILISTIC REASONING TASK**

1113 Before acting, the agent can compute, for each candidate arm i , the distribution of possible outcomes
 1114 by marginalizing the likelihood against the current belief. The predictive distribution for arm i is

$$1116 q_{t,i}(x) = \int \Pr(x \mid a=i, z) p_t(z) dz, = \sum_{k=1}^K \Pr(x \mid a=i, z=k) p_t(z=k) \quad (7)$$

1117 where the integral equals the sum because z has finite support. Specializing to the Bernoulli case,
 1118 the success probability has the closed form

$$1120 q_{t,i}(1) = \theta_R + (\theta_R - \theta_G) p_t(z=i), \quad (8)$$

1122 and the failure probability is its complement $q_{t,i}(0) = 1 - q_{t,i}(1)$. Suppose the agent hypothetically
 1123 probed arm i and observed outcome $x \in \{0, 1\}$. The resulting *hypothetical* posterior is obtained by
 1124 Bayes' rule:

$$1125 p_{t|i,x}(z=k) = \frac{\Pr(x \mid a=i, z=k) p_t(z=k)}{\sum_{k'=1}^K \Pr(x \mid a=i, z=k') p_t(z=k')} \quad (9)$$

1127 After the *actual* action a_t and observation x_t , the *real* posterior at the start of round $t+1$ is given by
 1128 the belief $b_t(z)$

$$1130 b_{t|i}(z=k) = p_{t+1}(z=k) = \frac{\Pr(x_t \mid a_t, z=k) p_t(z=k)}{\sum_{k'=1}^K \Pr(x_t \mid a_t, z=k') p_t(z=k')} \quad (10)$$

1132 A greedy MAP chooser that converts the belief into a deterministic sample uses the posterior mode:

$$1133 \pi_t^{\text{MAP}} = \arg \max_{i \in \{1, \dots, K\}} p_t(z=i). \quad (11)$$

For the Bayesian agreement, present in Section 3 and Figures 2, 3 we define the agreement score as depending on what an agent which would build this posterior from the evidence would chose in its last round T , concretely the score is given by

$$S_T = \frac{1}{N} \sum_{i=1}^N \mathbb{I} [a_T = \pi_T^{MAP}] . \quad (12)$$

where a_T is the final action taken by the Human or LLM agent.

B.2 DEFINING A FAMILY OF SCORE-BASED OBSERVERS

At each round, the belief p_t is mapped to a per-arm *score* vector $\phi_t \in \mathbb{R}^K$. We write the Euclidean inner product as $\langle x, y \rangle = \sum_i x_i y_i$ and denote the all-ones vector by $\mathbf{1}$. The generic evidence score defined in panel E of Figure 1 for arm i takes the predictive expectation of a utility function u defined on the hypothetical posterior:

$$\phi_{t,i} = \mathbb{E}_{x \sim q_{t,i}} [u(p_{t|i,x}; i, x)] . \quad (13)$$

Explicitly, this predictive expectation can be defined as a function of the predictive distribution $q_{t,i}$ as

$$\phi_{t,i} = \int u(p_{t|i,x}; i, x) q_{t,i}(x) dx. = \sum_{x \in \{0,1\}} q_{t,i}(x) u(p_{t|i,x}; i, x) \quad (14)$$

For the modeling done in Section 6 we chose the following score functions that represent different sampling policies with temperature $\beta > 0$. These scores are inspired from multiple classical behavioural modelling paradigms (Gershman, 2018; Binz et al., 2024) and have been used extensively in computational neuroscience and cognitive psychology to model the behaviour of human subjects under psychophysical tasks. For the MAP agent we define the score function as

$$\phi_{t,i}^{MAP} = \beta \log p_t(z = i) \quad (15)$$

which favors the arm with the largest posterior mass and thus exploits current belief, ignoring how informative the next observation might be. Additionally, we define an *Entropy-Minimizing* agent by

$$\phi_{t,i}^{EM} = -\beta H(q_{t,i}) . \quad (16)$$

which prefers arms whose predictive is most peaked (lowest entropy), i.e., choices expected to yield a decisive RED/GREEN outcome regardless of which way it goes.

We define a *Self-Certainty* agent, inspired by (Zhao et al., 2025),

$$\phi_{t,i}^{SC} = \beta D_{KL}(U \| q_{t,i}) . \quad (17)$$

which seeks arms whose predictive deviates most from uniform (1/2), emphasizing certainty in the immediate observation rather than expected entropy reduction after updating.

Finally, an *Information-Gain* agent is defined by

$$\phi_{t,i}^{IG} = \beta \sum_{k=1}^K p_t(z = k) D_{KL}(\Pr(\cdot | a = i, z = k) \| q_{t,i}) . \quad (18)$$

which prefers arms whose outcomes are expected to most reduce uncertainty about z , balancing current belief $p_t(z)$ with the diagnostic gap between θ_H and θ_L .

B.3 POLICY PARAMETERIZATION

Actions are sampled from a softmax policy over logits $\theta_t \in \mathbb{R}^K$:

$$\pi_t = \text{softmax}(\theta_t), \quad (\pi_t)_i = \frac{e^{\theta_{t,i}}}{\sum_{j=1}^K e^{\theta_{t,j}}} . \quad (19)$$

At a given round, with belief (and thus score) held fixed, we consider the linear objective

$$J(\pi) = \langle \pi, \phi_t \rangle, \quad (20)$$

1188 which will allocate more probability to higher-scored arms, given the information previously sampled.
 1189 Softmax policies are invariant to adding a constant to all logits, and valid probability updates
 1190 must preserve normalization. Both constraints are enforced by *centering* the score through an "Ad-
 1191 vantage"

$$1192 \quad A_t^\phi = \phi_t - \langle \pi_t, \phi_t \rangle \mathbf{1}. \quad (21)$$

1193 The intuition for this definition goes as follows: positive entries imply that the corresponding arm
 1194 looks better than the one with the current highest probability, whilst negative entries mean "worse
 1195 than our average," and zeros mean "no change." If the policy already puts weight on the right arms,
 1196 the average is high and the advantages are small, so updates are mild. If the policy is missing a
 1197 good arm, that arm gets a large positive advantage and its probability is pushed up quickly. As more
 1198 evidence arrives and uncertainty drops, score gaps narrow and the whole advantage vector tends
 1199 toward zero, stabilizing the policy. When predictions are sharper (peaked $q_{t,i}$ or larger temperature
 1200 β in the corresponding score function of an agent), the score gaps widen and advantages grow,
 1201 producing stronger reallocation; when predictions are ambiguous, scores are flat and the advantages
 1202 are near zero, so the policy barely moves.

1203 One crucial distinguishing factor of this task, besides the binary sampling outcomes at each arm (or
 1204 button) is that the cues at each round can become occluded. We represent environmental occlusions
 1205 with a binary availability mask $m_t \in \{0, 1\}^K$, where $m_{t,i} = 1$ if arm i is visible at round t and
 $m_{t,i} = 0$ otherwise. The policy over *available* arms is the masked softmax

$$1207 \quad \pi_{t,i}^{\text{av}} = \frac{m_{t,i} e^{\theta_{t,i}}}{\sum_{j=1}^K m_{t,j} e^{\theta_{t,j}}} = \text{softmax}(\tilde{\theta}_t)_i, \quad \tilde{\theta}_{t,i} = \begin{cases} \theta_{t,i} & m_{t,i} = 1, \\ -\infty & m_{t,i} = 0. \end{cases} \quad (22)$$

1210 Unavailable arms receive zero probability and no gradient and the advantage is calculated only using
 1211 the available set. We thus normalize only over visible arms, compare each visible arm's score to the
 1212 masked average, and update only those logits; hidden arms neither draw probability mass nor receive
 1213 updates until they reappear.

1214 B.4 SOFTMAX JACOBIAN AND THE EUCLIDEAN POLICY GRADIENT IN LOGIT SPACE

1215 The Jacobian of the softmax map $\theta \mapsto \pi$ has entries

$$1217 \quad \frac{\partial \pi_i}{\partial \theta_j} = \pi_i (\delta_{ij} - \pi_j), \quad (23)$$

1219 so in matrix form

$$1220 \quad D\pi(\theta) = \text{diag}(\pi) - \pi\pi^\top. \quad (24)$$

1221 Using the chain rule, the Euclidean gradient of J with respect to logits is

$$1223 \quad \nabla_\theta J(\theta_t) = (D\pi)^\top \phi_t = (\text{diag}(\pi_t) - \pi_t \pi_t^\top) \phi_t. \quad (25)$$

1224 Separating the diagonal and rank-one terms yields

$$1226 \quad \nabla_\theta J(\theta_t) = \text{diag}(\pi_t) \phi_t - \pi_t \langle \pi_t, \phi_t \rangle = \pi_t \odot (\phi_t - \langle \pi_t, \phi_t \rangle \mathbf{1}) = \pi_t \odot A_t^\phi. \quad (26)$$

1228 Thus, the Euclidean policy-gradient (PG) step with step size $\alpha > 0$ is

$$1229 \quad \theta_{t+1} = \theta_t + \alpha (\pi_t \odot A_t^\phi). \quad (27)$$

1231 B.5 FISHER INFORMATION FOR SOFTMAX AND ITS TANGENT ACTION

1232 The Fisher information matrix (FIM) Amari and Nagaoka (2000); Mertikopoulos and Sandholm
 1233 (2016) of a categorical softmax policy equals the softmax Jacobian in this parametrization

$$1235 \quad F(\theta) = \mathbb{E}_{a \sim \pi_\theta} [\nabla_\theta \log \pi_\theta(a) \nabla_\theta \log \pi_\theta(a)^\top] = \text{diag}(\pi) - \pi\pi^\top. \quad (28)$$

1236 We note that the *null direction*, given by

$$1237 \quad F \mathbf{1} = 0, \quad (29)$$

1239 implies that shifting all logits together leaves the policy unchanged. Additionally, the *tangent action*
 1240 for any vector v with $\langle \pi, v \rangle = 0$ (i.e., v lies in the simplex tangent), i.e.

$$1241 \quad F v = \text{diag}(\pi) v. \quad (30)$$

1242 Since A_t^ϕ is tangent by construction, we obtain the identity
 1243

$$1244 F A_t^\phi = \text{diag}(\pi) A_t^\phi = \pi \odot A_t^\phi = \nabla_\theta J(\theta_t). \quad (31)$$

1245 This work connects with previous work linking replicator flows in statistical game theory which
 1246 links the underlying evolution of distributions in stochastic environments, such as k -armed bandits,
 1247 under Riemann metric (Harper, 2009; Shahshahani, 1979).

1248 B.6 NATURAL POLICY GRADIENT AS A RIEMANNIAN GRADIENT

1250 We now connect the Euclidean gradient from the previous subsection to the natural (Riemannian)
 1251 one and make explicit why the centered score A_t^ϕ is the natural ascent direction.

1252 For nearby logits θ and $\theta + \Delta\theta$, the KL divergence between the corresponding policies has the
 1253 second-order expansion

$$1254 D_{\text{KL}}(\pi_{\theta+\Delta\theta} \| \pi_\theta) = \frac{1}{2} \Delta\theta^\top F(\theta) \Delta\theta + o(\|\Delta\theta\|^2), \quad (32)$$

1256 so $F(\theta)$ acts as the local metric (inner product) on logit space.

1257 The natural gradient $\tilde{\nabla} J$ at θ is the unique tangent vector that reproduces the directional derivative
 1258 under this metric, i.e.

$$1259 F \tilde{\nabla} J = \nabla_\theta J. \quad (33)$$

1260 From the softmax Jacobian, we already obtained

$$1262 \nabla_\theta J(\theta_t) = \pi_t \odot A_t^\phi = \text{diag}(\pi_t) A_t^\phi, \quad (34)$$

1264 where $A_t^\phi = \phi_t - \langle \pi_t, \phi_t \rangle \mathbf{1}$ satisfies $\langle \pi_t, A_t^\phi \rangle = 0$ (so A_t^ϕ is tangent).

1265 From the Fisher's tangent action (shown earlier), any tangent v obeys $Fv = \text{diag}(\pi) v$. Applying
 1266 this to A_t^ϕ gives

$$1267 F A_t^\phi = \text{diag}(\pi_t) A_t^\phi = \nabla_\theta J(\theta_t), \quad (35)$$

1268 where the last equality used (34).

1269 Comparing (33) and (35) shows that A_t^ϕ solves the defining equation of the natural gradient. Because
 1270 A_t^ϕ is tangent (orthogonal to the null direction of F), it is the canonical solution:

$$1271 \tilde{\nabla} J = A_t^\phi. \quad (36)$$

1273 A natural-gradient (NG) step of size $\alpha > 0$ updates the logits by

$$1275 \theta_{t+1} = \theta_t + \alpha A_t^\phi = \theta_t + \alpha(\phi_t - \langle \pi_t, \phi_t \rangle \mathbf{1}). \quad (37)$$

1276 This step is (i) baseline-invariant (it ignores the shift direction), (ii) normalization-preserving in
 1277 policy space (because it is tangent), and (iii) curvature-aware: it “undoes” the $\text{diag}(\pi_t)$ scaling
 1278 present in the Euclidean gradient, yielding motion matched to the local KL geometry.

1279 B.7 AN INTERPOLATING FAMILY OF LOGIT GEOMETRIES

1280 To compare traversal geometries, endow the logit space with the diagonal metric

$$1282 G_\gamma(\theta) = \text{diag}(\pi^{1-\gamma}), \quad \gamma \in [0, 1]. \quad (38)$$

1284 At $\gamma = 1$ this is the Euclidean metric on logits ($G_1 = I$). At $\gamma = 0$ it is $G_0 = \text{diag}(\pi)$, which
 1285 coincides with the Fisher action on the simplex tangent.

1286 The steepest-ascent direction under G_γ solves the trust-region problem

$$1288 \max_u \nabla_\theta J^\top u \quad \text{subject to} \quad u^\top G_\gamma u \leq \varepsilon. \quad (39)$$

1289 By Cauchy–Schwarz in the G_γ inner product, the optimizer aligns with $G_\gamma^{-1} \nabla_\theta J$. Using $\nabla_\theta J =$
 1290 $\pi \odot A_t^\phi$ and the diagonal form of G_γ^{-1} ,

$$1292 G_\gamma^{-1} \nabla_\theta J = \text{diag}(\pi^{\gamma-1}) (\pi \odot A_t^\phi) = \pi^\gamma \odot A_t^\phi. \quad (40)$$

1294 Thus the *interpolated* logit update with step size α is

$$1295 \theta_{t+1} = \theta_t + \alpha(\pi_t^\gamma \odot A_t^\phi), \quad \gamma \in [0, 1]. \quad (41)$$

1296 The factor π_i^γ acts as a state-dependent throttle: larger γ damps motion on low-probability coordinates; smaller γ removes that damping.
 1297

1298 Under this definition we can then fully recover the classical gradients. When $\gamma = 1$, we have $G_1 = I$
 1299 and $G_1^{-1}\nabla_\theta J = \nabla_\theta J = \pi \odot A_t^\phi$, so the update is exactly the Euclidean policy-gradient step:
 1300

$$1301 \quad \theta_{t+1} = \theta_t + \alpha (\pi_t \odot A_t^\phi). \quad (42)$$

1302 When $\gamma = 0$, we have $G_0 = \text{diag}(\pi)$ and $G_0^{-1}\nabla_\theta J = \text{diag}(\pi)^{-1}(\pi \odot A_t^\phi) = A_t^\phi$, so we recover
 1303 the natural policy-gradient step:
 1304

$$1305 \quad \theta_{t+1} = \theta_t + \alpha A_t^\phi. \quad (43)$$

1306 Hence the interpolation continuously connects Euclidean PG and NPG in logit space.
 1307

1308 C MODEL FITTING DETAILS

1309 **Hyperparameters are explored on grids.** We fit observer models to 15-round choice sequences
 1310 from LLMs and humans. Each game yields $(m_{t,i}, a_t, r_t)$ for $t = 1..15$ with $m_{t,i}$ the available cue
 1311 mask defined in Equation 22, $a_t \in m_{t,i}$ the chosen cue, and $r_t \in \{0, 1\}$ (RED = 1). Each cue is
 1312 processed with the posterior defined in Equation 4. After each round we update the corresponding
 1313 ϕ_t for a given observer of the set $\{MAP, EM, SC, IG\}$, set $A_t = \phi_t - (\pi_t^\top \phi_t) \mathbf{1}$, and update
 1314 $\theta_{t+1} = \theta_t + \alpha (\pi_t^\gamma \odot A_t)$. For likelihood seeding, we set a cue-wise $\tilde{\mu}$ with the biased cue at 0.9 and
 1315 others at 0.5, which is the environment shared in the human version of the task.

1316 **Hyperparameters are explored on grids.** We use $\gamma \in \{-3, 3\}$, $\alpha \in \{0.01, 0.5\}$, and $\beta \in$
 1317 $\{-15, 15\}$. For each observer and each parameter triple (γ, α, β) , we iterate over 100 games sam-
 1318 pled over a set of 10 random seeds for an agent group (LLM model or human cohort), run the
 1319 15-round update, compute per-game log-likelihood, and average across games. The winning param-
 1320 eters are chosen over this set by the average log-likelihood over the grid per agent, and observer, and
 1321 seed are reported for their respective observer models in Figure 6 D.

1322 **Fitting results.** The pseudo- R^2 was used to quantify the explanatory power of each fitted and refit-
 1323 ted model (Figures 6 B,C) relative to a random baseline. For a given synthetic dataset and candi-
 1324 date observer, the refitting procedure yields the best log-likelihood LL_{model} after grid search over
 1325 (γ, α, β) . As a baseline, we compute LL_{random} , the log-likelihood of a uniform policy that assigns
 1326 equal probability to each currently available arm at every round. We report the pseudo- R^2 given
 1327 by $R^2 = 1 - \frac{LL_{\text{model}}}{LL_{\text{random}}}$. To account for stochasticity from both environment sampling and parameter
 1328 initialization, the R^2 calculation was repeated across multiple seeds. Specifically, for each (agent,
 1329 generating model), we ran 10 simulations of $n_{\text{games}} = 200$ games each, refitted candidate observers.
 1330 We show in Figure 6 C the corresponding winning seed R^2 matrix.

1331 D REINFORCEMENT LEARNING AGENT DETAILS

1332 We train a reinforcement learning (RL) to perform the task. We use Proximal Policy Optimization
 1333 (PPO)Schulman et al. (2017) to train the agent. Observations are a 13-dimensional vector com-
 1334 prising cue-color counts (8 total, 4 choices for two possible colors per button), a phase indicator
 1335 (sampling vs. decision), and a binary availability mask over cues (4). Environment parameters (cue
 1336 bias, hidden cues, trial length, etc.) follow that of the task with trial length selected uniformly at
 1337 random from possible game lengths. We assign rewards of +100 for a correct final choice, 0 for
 1338 valid sampling moves, and -1 for selecting an unavailable cue. Invalid selections advance the round
 1339 without informative evidence, incentivizing correct cue selection along with final selection.

1340 We performed a grid search for optimization and architecture parameters that maximizes correct cue
 1341 selection. The policy is an MLP with ten hidden layers of 64 units and \tanh activations. Training
 1342 uses PPO for 5×10^6 environment steps with learning rate 2×10^{-5} , minibatch size 128, each
 1343 iteration collects $T = 2048$ on-policy steps, and 10 optimization epochs per iteration. We set
 1344 $\gamma = 0.99$, $\lambda_{\text{GAE}} = 0.95$, and clipping $\varepsilon = 0.2$, with entropy and value losses weighted by 0.01 and
 1345 0.5 respectively.

1346 E PROMPTING STRUCTURE USED FOR THE LLMs IN THE TASK

1347 Here we outline the two main prompts used to evaluate the language models. The original
 1348 prompt includes task, mechanics, and scoring. States bias structure (one cue 90/10, others 50/50).
 1349 Mentions cue availability dynamics (cues may disappear; at least one always active). Enforces

1350 strict response format per round (single letter, no punctuation). Final query targets the cue with
 1351 the highest RED ratio. Provides feedback taxonomy (correct/incorrect/invalid) with reveal of the
 1352 biased cue. Specifies payoff: +100 for correct, 100 for wrong. This is the richest instruction set
 1353 for the task, with explicit probabilistic environment and payoff structure. Stronger priming toward
 1354 bias identification rather than generic correctness. Final feedback frames success as detecting the
 1355 “biased cue,” not just a “correct cue.”. The models are evaluated in an interactive environment and
 1356 fed round and trial related information based on their choices across whole trials or, in the case of
 1357 the ICL experiments in Section 5, multiple trials.

1358 **Original prompt**

1359

1360

1361 Task

1362 - You will play a game with {n_rounds} rounds.

1363 - In each round, some cues are available: A, B, C, D.

1364 - One cue is biased: 90% one color / 10% the other. The others are
 1365 50/50.

1366 - Available cues may disappear at random, but at least one is always
 1367 active.

1368 - Each round, respond with exactly one letter (A, B, C, or D). No
 1369 markup or punctuation.

1370 - After {n_rounds} rounds, identify the biased cue.

1371 - Scoring: Correct +100 points, Wrong 100 points.

1372 Round prompt

1373 - Trial {current_trial}, Round {current_round}: Available cues {
 1374 available_cues}. Which do you choose? Respond with exactly one
 1375 letter: A, B, C, or D.

1376 Round feedback

1377 - Trial {current_trial}, Round {current_round}: Available cues {
 1378 available_cues}. You chose {current_answer} and saw {result_text}.

1379 Final decision prompt

1380 - Trial {current_trial}: Based on all observed colors, which cue {
 1381 letters} had the highest ratio of RED? Respond with exactly one
 1382 letter: A, B, C, or D.

1383 Final feedback

1384 - Trial {current_trial}: Based on all observed colors, which cue {
 1385 letters} had the highest ratio of RED?
 1386 You chose {current_answer} which was {feedback}.

1387 You received {score} points.

1388 Feedback labels

1389 - Correct: the biased cue

1390 - Incorrect: not the biased cue. The biased cue was {biased_quadrant}

1391 - Invalid: an invalid choice

1392
 1393 The following prompt is the minimal prompt used for the ICL Section 5. Covers task and per-
 1394 round response rule only. Lists cues (A–D). Omits bias mechanics, cue disappearance dynamics,
 1395 and scoring. Final query asks for a choice without RED-ratio framing. Includes feedback taxonomy
 1396 (correct/incorrect/invalid) with reveal of the “correct cue.” No payoff details. No probabilistic struc-
 1397 ture or availability dynamics are provided. Neutral objective framing (“choose”) rather than bias
 1398 detection. Simplified feedback semantics (“correct cue” vs “biased cue”).

1399 **Minimal prompt**

1400

1401

1402 Task

1403 - You will play a game with {n_rounds} rounds.

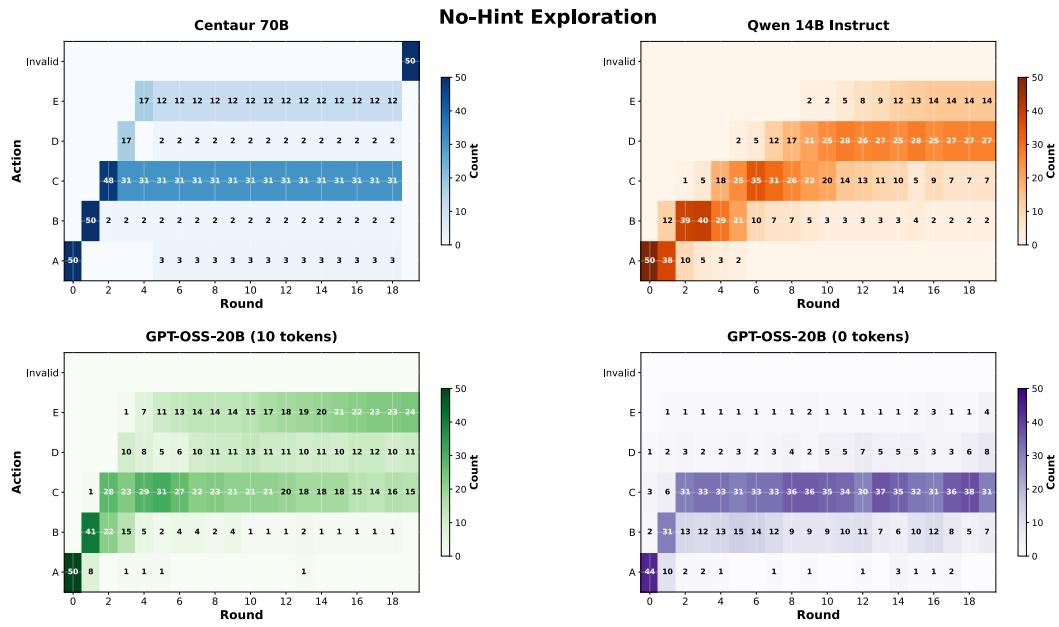
```

1404
1405     - In each round youll see cues: A, B, C, D.
1406     - Each round, respond with exactly one letter (A, B, C, or D). No
1407         markup or punctuation.
1408     - After {n_rounds} rounds, make a final decision.
1409
1410     Round prompt
1411     - Trial {current_trial}, Round {current_round}: Available cues {
1412         available_cues}. Which do you choose? Respond with exactly one
1413         letter: A, B, C, or D.
1414
1415     Round feedback
1416     - Trial {current_trial}, Round {current_round}: Available cues {
1417         available_cues}. You chose {current_answer} and saw {result_text}.
1418
1419     Final decision prompt
1420     - Trial {current_trial}: Based on all observed colors, which cue {
1421         letters} do you choose?
1422         Respond with exactly one letter: A, B, C, or D. I choose:
1423
1424     Final feedback
1425     - Trial {current_trial}: Based on all observed colors, which cue {
1426         letters} do you choose?
1427         You chose {current_answer} which was {feedback}.
1428         You received {score} points.
1429
1430     Feedback labels
1431     - Correct: the correct cue
1432     - Incorrect: not the correct cue. The correct cue was {biased_quadrant}
1433         }
1434     - Invalid: an invalid choice
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

```

1458 F TESTING A SUBSET OF MODELS ON AN INSTRUCTED BANDIT TASK
1459

1460 In order to further validate our methodology we tested a subset of models on a simpler task. One
1461 of the defining features of the the active probabilistic reasoning task presented in Section 3 is that it
1462 requires two explicit levels of information and decision making: *sampling* and *inference*. In order
1463 to confirm that the structure of this novel task is able to accurately grade performance outside of the
1464 distribution the available datasets, such as *Psych101* Binz et al. (2024) which contain over 100k trials
1465 on a multitude of psychophysics like tasks, we decided to test our pipeline on an **Instructed Bandit**
1466 Task Su et al. (2025) with rewards given at each arm sampled from a gaussian $\mathcal{N}(x; \mu, 10)$ and
1467 means vector $\mu = [10, 20, 40, 60, 80]$. We chose *Centaur70B-Instruct* model Binz et al. (2025), a
1468 model that was explicitly fine-tuned on *Psych-101* and for which the performance on our benchmark
1469 was slightly above random chance, and compare its performance with a smaller *Qwen-14B* model
1470 and the more recent reasoning architecture of the *GPT-OSS-20B*, on *LOW* and *MEDIUM* level of
1471 reasoning. We ran this experiment with 100 trials per model and each trial consisting of 20 rounds.
1472



1493 Figure 12: **Performance of Centaur70B vs other models on the instructed bandit task:** Models
1494 struggle to chose the highest reward option E when there's no hint for exploration.
1495

1496 Surprisingly, with the original prompt used in Su et al. (2025), which also tested Centaur against a
1497 Bayesian agent, the model collapses at arm "C", not being able to chose the correct arm most of the
1498 time, while *GPT-OSS-20B* shows a more active exploration profile.
1499

Instructed bandit prompt

1500

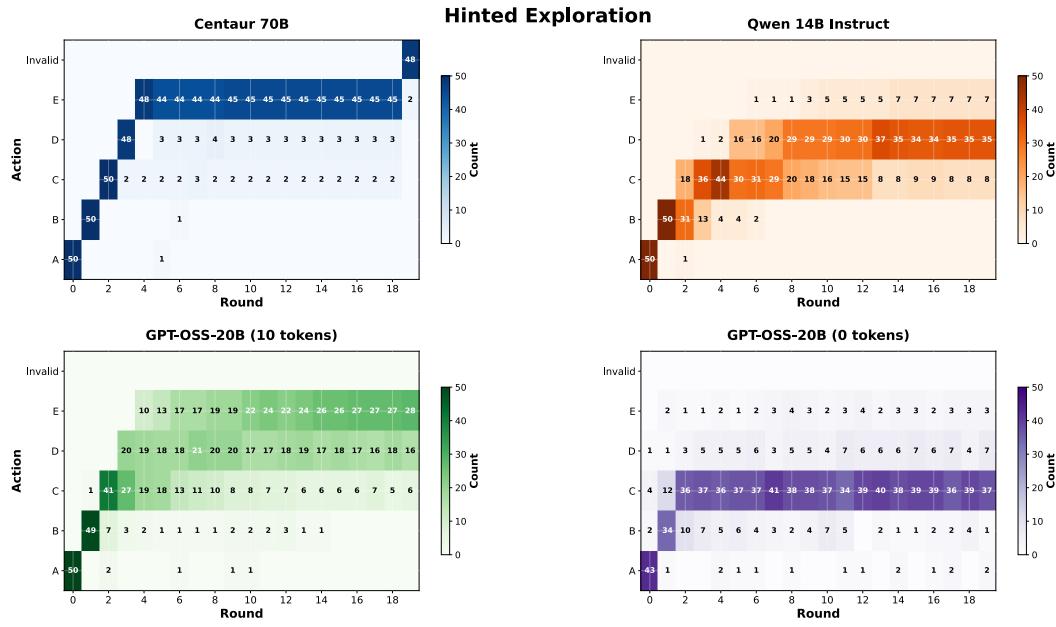
1501

1502 - Task
1503 You will play a game with {n_rounds} rounds.
1504 Five arms are available each round: A, B, C, D, E.
1505 Each arm has a fixed but unknown expected reward in [0,100].
1506 Each pull returns a stochastic reward around that arms expected value.
1507 All arms are always available. Values reset each new game.
1508 Goal: maximize total reward points across {n_rounds}.

1509 - Round prompt
1510

1511 Round {current_round}/{n_rounds}: Choose an arm to sample.
Available arms: A, B, C, D, E

1512
 1513 Which arm do you choose? Respond with exactly one letter: A, B, C, D,
 1514 E.
 1515
 1516 - Round feedback
 1517 Round {current_round}/{n_rounds}: You chose arm {current_answer} and
 1518 received {reward:.2f} points.
 1519 Running total: {total_reward:.2f} points.
 1520
 1521 - Final decision prompt
 1522 You have completed all {n_rounds} rounds and earned {total_reward:.2f}
 1523 total points.
 1524 Based on your experience, which arm has the highest expected reward?
 1525 Available arms: A, B, C, D, E
 1526 Your answer (one letter only):
 1527
 1528 - Final feedback
 1529 Your total reward: {total_reward:.2f} points
 1530
 1531 - Feedback labels
 1532 Correct: Correct! You successfully identified the optimal arm.
 1533 Incorrect: Incorrect. The arm with the highest expected reward was {
 1534 optimal_arm}.
 1535 Invalid: not specified



1558
 1559 Figure 13: **Performance of Centaur70B vs other models on the instructed bandit task:** Now
 1560 with the hint to explore all arms as much as possible, both Centaur-70B and GPT-OSS-20B with
 1561 *LOW* reasoning are able to find the right arm. *Qwen-14B* and *GPT-OSS-20B* without reasoning are
 1562 not able to pick this option with the same frequency.

1563 We further tested by adding a more explicit hint regarding exploration, which showed a visible in-
 1564 crease of performance. By adding the following **hint**: *Explore all arms as much as possible in*
 1565 *order to find the highest reward*, both *Centaur* and *GPT-OSS-20B* were now able to reach more
 frequently to the right arm *E*, which implies some prompting related modulation of the underlying

1566 active sampling policy of these models. Another distinguishing factor is the fact that this task
1567 contains a *running score* of the points gathered across a single trial of 20 rounds, which might allow
1568 models to more easily steer their choices. However, even in variants of our task where we had kept
1569 a running score we didn't observe an improvement in performance and as such did not use this task
1570 variant in the main version of the task present in the paper.

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619