
Achieving Near-Optimal Convergence for Distributed
Minimax Optimization with Adaptive Stepsizes

Yan Huang
College of Control Science and Engineering

Zhejiang University, China
huangyan5616@zju.edu.cn

Xiang Li
Department of Computer Science

ETH Zurich, Switzerland
xiang.li@inf.ethz.ch

Yipeng Shen
College of Control Science and Engineering

Zhejiang University, China
22332074@zju.edu.cn

Niao He
Department of Computer Science

ETH Zurich, Switzerland
niao.he@inf.ethz.ch

Jinming Xu
College of Control Science and Engineering

Zhejiang University, China
jimmyxu@zju.edu.cn

Abstract

In this paper, we show that applying adaptive methods directly to distributed
minimax problems can result in non-convergence due to inconsistency in locally
computed adaptive stepsizes. To address this challenge, we propose D-AdaST, a
Distributed Adaptive minimax method with Stepsize Tracking. The key strategy is
to employ an adaptive stepsize tracking protocol involving the transmission of two
extra (scalar) variables. This protocol ensures the consistency among stepsizes of
nodes, eliminating the steady-state error due to the lack of coordination of stepsizes
among nodes that commonly exists in vanilla distributed adaptive methods, and
thus guarantees exact convergence. For nonconvex-strongly-concave distributed
minimax problems, we characterize the specific transient times that ensure time-
scale separation of stepsizes and quasi-independence of networks, leading to a
near-optimal convergence rate of Õ

(
ϵ−(4+δ)

)
for any small δ > 0, matching

that of the centralized counterpart. To our best knowledge, D-AdaST is the first
distributed adaptive method achieving near-optimal convergence without knowing
any problem-dependent parameters for nonconvex minimax problems. Extensive
experiments are conducted to validate our theoretical results.

1 Introduction

Distributed optimization has seen significant research progress over the last decade, resulting in
numerous algorithms (Nedic and Ozdaglar, 2009; Yuan et al., 2016; Lian et al., 2017; Pu and Nedić,
2021). However, the traditional focus of distributed optimization has primarily been on minimization
tasks. With the rapid growth of machine learning research, various applications have emerged that go
beyond simple minimization, such as Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014; Gulrajani et al., 2017), robust optimization (Mohri et al., 2019; Sinha et al., 2017), adversary
training of neural networks (Wang et al., 2021), fair machine learning (Madras et al., 2018), and just

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

to name a few. These tasks typically involve a minimax structure as follows:

min
x∈X

max
y∈Y

f (x, y) ,

where X ⊆ Rp, Y ⊆ Rd, and x, y are the primal and dual variables to be learned, respectively. One
of the simplest yet effective methods for solving the above minimax problem is Gradient Descent
Ascent (GDA) (Dem’yanov and Pevnyi, 1972; Nemirovski et al., 2009) which alternately performs
stochastic gradient descent for the primal variable and stochastic gradient ascent for the dual variable.
This approach has demonstrated its effectiveness in solving minimax problems, especially for convex-
concave objectives (Hsieh et al., 2021; Daskalakis et al., 2021; Antonakopoulos et al., 2021), i.e., the
function f(·, y) is convex for any y ∈ Y , and f(x, ·) is concave for any x ∈ X .

Adaptive gradient methods, such as AdaGrad (Duchi et al., 2011), Adam (Kingma and Ba, 2014), and
AMSGrad (Reddi et al., 2018), are often integrated with GDA to effectively solve minimax problems
with theoretical guarantees in convex-concave settings (Diakonikolas, 2020; Antonakopoulos et al.,
2021; Ene and Lê Nguyen, 2022). These adaptive methods are capable of adjusting stepsizes based
on historical gradient information, making it robust to hyper-parameters tuning and can converge
without requiring to know problem-dependent parameters (a characteristic often referred to as being
“parameter-agnostic"). However, in the nonconvex regime, it has been shown by Lin et al. (2020); Yang
et al. (2022b) that it is necessary to have a time-scale separation in stepsizes between the minimization
and maximization processes to ensure the convergence of GDA and GDA-based adaptive algorithms.
In particular, the stepsize ratio between primal and dual variables needs to be smaller than a threshold
depending on the properties of the problem such as the smoothness and strong-concavity parameters
(Li et al., 2022; Guo et al., 2021; Huang et al., 2021), which are often unknown or difficult to estimate
in real-world tasks, such as training deep neural networks.

Applying GDA-based adaptive methods into decentralized settings poses additional challenges due
to the presence of inconsistency in locally computed adaptive stepsizes. In particular, it has been
shown that the inconsistency of stepsizes can result in non-convergence in federated learning with
heterogeneous computation speeds (Wang et al., 2020; Sharma et al., 2023). This is mainly due to the
lack of a central node coordinating the stepsizes of nodes in distributed settings, making it difficult to
converge, as observed in minimization problems (Liggett, 2022; Chen et al., 2023b). As a result, the
following question arises naturally:

“Can we design an adaptive minimax method that ensures the time-scale separation and consistency of
stepsizes with provable convergence in fully distributed settings?"

Contributions. In this paper, we aim to propose a distributed adaptive method for efficiently solving
nonconvex-strongly-concave (NC-SC) minimax problems. The contributions are threefold:

• We construct counterexamples showing that directly applying adaptive methods designed
for centralized problems will lead to inconsistencies in locally computed adaptive stepsizes,
resulting in non-convergence in distributed settings. To tackle this issue, we propose the
first distributed adaptive minimax method, named D-AdaST, that incorporates an efficient
stepsize tracking mechanism to maintain consistency across local stepsizes, which involves
transmission of merely two extra (scalar) variables. The proposed algorithm exhibits time-
scale separation in stepsizes and parameter-agnostic capability in fully distributed settings.

• Theoretically, we prove that D-AdaST is able to achieve a near-optimal convergence rate of
Õ
(
ϵ−(4+δ)

)
with arbitrarily small δ > 0 to find an ϵ-stationary point for distributed NC-SC

minimax problems. In contrast, we also prove the existence of a constant steady-state
error in both the lower and upper bounds for GDA-based distributed minimax algorithms
when being directly integrated with the adaptive stepsize rule without the stepsize tracking
mechanism. Moreover, we explicitly characterize the transient times that ensure time-scale
separation and quasi-independence of network, respectively.

• We conduct extensive experiments on real-world datasets to verify our theoretical findings
and the effectiveness of D-AdaST on a variety of tasks, including robust training of neural
networks and optimizing Wasserstein GANs. In all tasks, we demonstrate the superiority of
D-AdaST over several vanilla distributed adaptive methods across various graphs, initial
stepsizes and data distributions (see also additional experiments in Appendix A).

2

1.1 Related Works

Distributed nonconvex minimax methods. In the realm of federated learning, Deng and Mahdavi
(2021) introduce Local SGDA algorithm combining FedAvg/Local SGD with stochastic GDA and
show an Õ

(
ϵ−6
)

sample complexity for NC-SC objective functions. Sharma et al. (2022) provide
improved complexity result of Õ

(
ϵ−4
)

matching that of the lower bound of first-order algorithms
for both NC-SC and nonconvex-Polyak-Lojasiewicz (NC-PL) settings (Li et al., 2021; Zhang et al.,
2021a) . Yang et al. (2022a) integrate Local SGDA with stochastic gradient estimators to eliminate the
data heterogeneity. More recently, Zhang et al. (2023) adopt compressed momentum methods with
Local SGD to increase the communication efficiency of the algorithm. For decentralized nonconvex
minimax problems, Liu et al. (2020) study the training of GANs using decentralized optimistic
stochastic gradient and provide non-asymptotic convergence with fixed stepsizes. Tsaknakis et al.
(2020) propose a double-loop decentralized SGDA algorithm with gradient tracking techniques (Pu
and Nedić, 2021) and achieve Õ

(
ϵ−4
)

sample complexity. With a stronger assumption of average
smoothness, some studies employ variance reduction techniques to accelerate convergence (Zhang
et al., 2021b; Chen et al., 2022; Xian et al., 2021; Tarzanagh et al., 2022; Wu et al., 2023; Chen et al.,
2024; Zhang et al., 2024), which require more memory and computational resources due to the need
for larger batch-sizes or full gradient evaluations. However, all the above-mentioned methods use a
fixed or uniformly decaying stepsize, requiring the prior knowledge of smoothness and concavity.

(Distributed) adaptive minimax methods. For centralized nonconvex minimax problems, Yang
et al. (2022b) show that, even in deterministic settings, GDA-based methods necessitate the time-
scale separation of the stepsizes for primal and dual updates. Many attempts have been made for
ensuring the time-scale separation requirement (Lin et al., 2020; Yang et al., 2022c; Boţ and Böhm,
2023; Huang et al., 2023). However, these methods typically come with the prerequisite of having
knowledge about problem-dependent parameters, which can be a significant drawback in practical
scenarios. To this end, Yang et al. (2022b) introduce a nested adaptive algorithm named NeAda
that achieves parameter-agnosticism by incorporating an inner loop to effectively maximize the dual
variable, which can obtain an optimal sample complexity of Õ

(
ϵ−4
)

when the strong-concavity
parameter is known. More recently, Li et al. (2023) introduce TiAda, a single-loop parameter-agnostic
adaptive algorithm for nonconvex minimax optimization which employs separated exponential factors
on the adaptive primal and dual stepsizes, improving upon NeAda on the noise-adaptivity. There
has been few works dedicated to adaptive minimax optimization in federated learning settings. For
instance, Huang et al. (2024) introduces a federated adaptive algorithm that integrates the stepsize
rule of Adam with full-client participation, resembling the centralized counterpart. Ju et al. (2023)
study a federated Adam algorithm for fair federated learning where the objective function is properly
weighted to account for heterogeneous updates among nodes. To the best of our knowledge, it is
still unknown how one can design an adaptive minimax method capable of fulfilling the time-scale
separation requirement and being parameter-agnostic in fully distributed settings.

Notations. Throughout this paper, we denote by E [·] the expectation of a random variable, ∥·∥ the
Frobenius norm, ⟨·, ·⟩ the inner product of two vectors, ⊙ the Hadamard product (entry wise), ⊗
the Kronecker product. We denote by 1 the all-ones vector, I the identity matrix and J = 11T /n
the averaging matrix with n dimension. For a vector or matrix A and constant α, we denote Aα the
entry-wise exponential operations. We denote Φ (x) := f (x, y∗ (x)) as the primal function where
y∗ (x) = argmax

y∈Y
f (x, y), and PY (·) as the projection operation onto set Y .

2 Distributed Adaptive Minimax Methods

We consider the distributed minimax problem collaboratively solved by a set of agents over a network.
The overall objective of the agents is to solve the following finite-sum problem:

min
x∈Rp

max
y∈Y

f (x, y) =
1

n

n∑
i=1

Eξi∼Di
[Fi (x, y; ξi)]︸ ︷︷ ︸

:=fi(x,y)

, (1)

where fi : Rp+d → R is the local private loss function accessible only by the associated node
i ∈ N = {1, 2, · · · , n}, Y ⊂ Rd is closed and convex, and ξi ∼ Di denotes the data sample locally
stored at node i ∈ N with distribution Di. We consider a graph G = (V, E), here, V = {1, 2, ..., n}
represents the set of agents, and E ⊆ V × V denotes the set of edges consisting of ordered pairs (i, j)

3

0.0 0.5 1.0 1.5 2.0
x

0

1

2

3

4

y

stationary points
D-SGDA
D-TiAda
D-AdaST

(a) trajectory

0 2000 4000 6000 8000 10000
Iterations

10−5

10−3

10−1

101

103

||∇
xf
(x
,y

)||
2

D-SGDA
D-TiAda
D-AdaST

(b) convergence of ∥∇xf (x, y)∥2

0 2000 4000 6000 8000 10000
Iterations

10−8

10−6

10−4

10−2

100

In
co

ns
ist

en
cy

 ζ
2 v

D-SGDA
D-TiAda
D-AdaST

(c) convergence of ζ2v

Figure 1: Comparison among D-SGDA, D-TiAda and D-AdaST for NC-SC quadratic objective
function (6) with n = 2 nodes and γx = γy. In (a), it shows the trajectories of primal and dual
variables of the algorithms, the points on the black dash line are stationary points of f . In (b), it
shows the convergence of ∥∇xf (xk, yk)∥2 over the iterations. In (c), it shows the convergence of
the inconsistency of stepsizes, ζ2v defined in (8), over the iterations. Notably, ζ2v fails to converge for
D-TiAda and ζ2v = 0 for non-adaptive D-SGDA.

representing the communication link from node j to node i. For node i, we define Ni = {j | (i, j) ∈
E} as the set of its neighboring nodes. Before proceeding to the discussion of distributed algorithms,
we first introduce the following notations for brevity:

xk := [x1,k, x2,k, · · · , xn,k]T ∈ Rn×p, yk := [y1,k, y2,k, · · · , yn,k]T ∈ Rn×d,

where xi,k ∈ Rp, yi,k ∈ Y denote the primal and dual variable of node i at each iteration k, and

∇xF (xk,yk; ξ
x
k) :=

[
· · · ,∇xFi

(
xi,k, yi,k; ξ

x
i,k

)
, · · ·

]T
,

∇yF (xk,yk; ξ
y
k) :=

[
· · · ,∇yFi

(
xi,k, yi,k; ξ

y
i,k

)
, · · ·

]T
are the corresponding partial stochastic gradients with i.i.d. samples ξxk , ξ

y
k in a compact form.

Next, we will first explain the pitfalls of directly applying centralized adaptive stepsize rules to
decentralized settings, and then introduce our newly proposed solution to address the challenge.

2.1 Non-Convergence of Direct Extensions

For the distributed minimax optimization problem as depicted in (1) involving NC-SC objective
functions, we will show shortly that the Distributed Stochastic Gradient Descent Ascent (D-SGDA)
method may not converge due to the inability of time-scale separation with constant stepsizes (c.f.,
Figure 1), which is also observed in centralized settings (Lin et al., 2020; Yang et al., 2022b). To
address this issue, one can adopt the adaptive stepsize rule used in centralized TiAda (Li et al., 2023)
for each individual node, which is renowned for its ability to adaptively fulfill the time-scale separation
requirements. As a result, we arrive at the following Distributed TiAda (D-TiAda) algorithm.

xk+1 =W
(
xk − γxV −α

k+1∇xF (xk,yk; ξ
x
k)
)
, (2a)

yk+1 = PY

(
W
(
yk + γyU

−β
k+1∇yF (xk,yk; ξ

y
k)
))

, (2b)

where γx and γy are the stepsizes, W is a doubly-stochastic weight matrix induced by graph G (Xiao
et al., 2006) (c.f., Assumption 4), and

V −α
k+1 = diag

{
v−α
i,k+1

}n

i=1
, U−β

k+1 = diag
{
u−β
i,k+1

}n

i=1
, (3)

with vi,k+1 = max
{
mx

i,k+1,m
y
i,k+1

}
, ui,k+1 = my

i,k+1, and

mx
i,k+1 = mx

i,k +
∥∥∇xFi

(
xi,k, yi,k; ξ

x
i,k

)∥∥2 , my
i,k+1 = my

i,k +
∥∥∥∇yFi

(
xi,k, yi,k; ξ

y
i,k

)∥∥∥2 (4)

are the local accumulated gradient norm. Note that we impose a maximum operator in the precon-
ditioner vi,k, and employ different stepsize decaying rates, i.e., 0 < β < α < 1, for the primal and

4

dual variables, respectively. Such design allows to balance the updates of x and y, and achieves the
desired time-scale separation without requiring any knowledge of parameters (Li et al., 2023).

However, in the distributed setting, such direct extension may fail to converge to a stationary point
because vi,k and ui,k can be inconsistent due to the difference of local objective functions fi, In
particular, we can rewrite the above vanilla distributed optimization algorithm (2) in the sense of
average system of primal variables as below,

x̄k+1 = x̄k − γxv̄−α
k

1T

n
∇xF (xk,yk; ξ

x
k)︸ ︷︷ ︸

adaptive descent

− γx

(
ṽ−α
k+1

)T
n

∇xF (xk,yk; ξ
x
k)︸ ︷︷ ︸

inconsistancy

, (5)

where
(
ṽ−α
k

)T
:=
[
· · · , v−α

i,k − v̄
−α
k , · · ·

]
, x̄k := 1Txk/n and v̄k := 1/n

∑n
i=1 vi,k.

It is evident that, in comparison to centralized adaptive methods, an unexpected term (i.e., ṽk) on
the right-hand side (RHS) arises due to inconsistencies. This term introduces inaccuracies in the
directions of gradient descent, degrading the optimization performance. The theorem presented
below reveals a gap near the stationary points in a properly designed counterexample, indicating the
non-convergence of D-TiAda. The proof is available in Appendix B.3.
Theorem 1. There exists a distributed minimax problem in the form of Problem (1) and certain
initialization such that after running D-TiAda with any 0 < β < 0.5 < α < 1 and γx, γy > 0, it
holds that for any t = 0, 1, 2, . . . , we have,

∥ ∇xf(xt, yt) ∥=∥ ∇xf(x0, y0) ∥, ∥ ∇yf(xt, yt) ∥=∥ ∇yf(x0, y0) ∥,
where ∥∇xf(x0, y0)∥ and ∥∇yf(x0, y0)∥ can be arbitrarily large depending on the initialization.
Remark 1. The counterexample we constructed consists of three nodes, forming a complete graph.
Without the stepsize tracking, D-TiAda will remain stationary, and the iterates will not progress if
initiated along a specific line. In this counterexample, the only stationary point is at (0, 0), but initial
points along the line (c.f., Eq. (72)) can be positioned arbitrarily far away from this stationary point,
implying the non-convergence of D-TiAda with certain initialization.

Apart from the counterexample discussed in Theorem 1, we also experimentally observe the diver-
gence of of D-SGDA and D-TiAda even in a simple scenario involving only two connected agents.
This phenomenon is illustrated in Figure 1 and the functions are depicted as follows:

f1 (x, y) = −
9

20
y2 +

3

5
y − x+ xy − 1

2
x2,

f2 (x, y) = −
9

20
y2 +

3

5
y − x+ 2xy − 2x2.

(6)

It is not difficult to verify that the points on the line 3y = 5x+ 2 are stationary points of f (x, y) =
1/2 (f1 (x, y) + f2 (x, y)). It follows from Figure 1(a) and 1(b) that D-SGDA does not converge to a
stationary point because of the lack of time-scale separation, and D-TiAda also fails to converge due
to stepsize inconsistency, as shown in Figure 1(c). In contrast, the utilization of the stepsize tracking
protocol in D-AdaST ensures convergence to a stationary point, with the inconsistency in stepsizes
gradually diminishing (c.f., Lemma 9). These two motivating examples effectively highlight the
challenges associated with applying adaptive minimax algorithms to distributed settings.

2.2 The Proposed D-AdaST Algorithm

To address the issue of stepsize inconsistency across different nodes, we propose the following
Distributed Adaptive minimax optimization algorithm with Stepsize Tracking protocol, termed D-
AdaST, which allows us to asymptotically eliminate the stepsize inconsistency in a decentralized
manner over networks. The pseudo-code for the algorithm is summarized in Algorithm 1, and can be
rewritten in a compact form as follows:

mx
k+1 =W (mx

k + hx
k) , (7a)

my
k+1 =W (my

k + hy
k) , (7b)

xk+1 =W
(
xk − γxV −α

k+1∇xF (xk,yk; ξ
x
k)
)
, (7c)

yk+1 = PY

(
W
(
yk + γyU

−β
k+1∇yF (xk,yk; ξ

y
k)
))

, (7d)

5

Algorithm 1 Distributed Adaptive Minimax Method with Stepsize Tracking (D-AdaST)
Initialization: xi,0 ∈ Rp, yi,0 ∈ Y , buffers mx

i,0 = my
i,0 = c > 0, stepsizes γx, γy > 0,

exponential factors 0 < β < α < 1 and weight matrix W .
1: for iteration k = 0, 1, · · · , each node i ∈ [n], do
2: Sample i.i.d. gxi,k = ∇xFi

(
xi,k, yi,k; ξ

x
i,k

)
and gyi,k = ∇yFi

(
xi,k, yi,k; ξ

y
i,k

)
.

3: Accumulate the gradient norm:

mx
i,k+1 = mx

i,k + ∥gxi,k∥2, m
y
i,k+1 = my

i,k + ∥gyi,k∥
2.

4: Compute the ratio:

ψi,k+1 = (mx
i,k+1)

α/max
{
(mx

i,k+1)
α, (my

i,k+1)
α
}
⩽ 1.

5: Update primal and dual variables locally:

xi,k+1 = xi,k − γxψi,k+1

(
mx

i,k+1

)−α
gxi,k, yi,k+1 = yi,k + γy(m

y
i,k+1)

−βgyi,k.

6: Communicate adaptive stepsizes and decision variables with neighbors:{
mx

i,k+1,m
y
i,k+1, xi,k+1, yi,k+1

}
←
∑
j∈Ni

Wi,j

{
mx

j,k+1,m
y
j,k+1, xj,k+1, yj,k+1

}
.

7: Projection of dual variable on the set Y: yi,k+1 ← PY (yi,k+1).
8: end for

where mx
k = [· · · ,mx

i,k, · · ·]T , my
k = [· · · ,my

i,k, · · ·]T denote the tracking variables for the accu-
mulated global gradient norm, i.e., for z ∈ {x, y},

1T

n
mz

k+1 =
1

n

∑n

i=1

(∑k

t=0

∥∥gzi,t∥∥2 +mz
i,0

)
while hz

k = [· · · , ∥ gzi,k ∥2, · · ·]T , and Vk, Uk are diagonal matrices with vi,k = max
{
mx

i,k,m
y
i,k

}
and ui,k = mx

i,k. Note that we also provide a variant of D-AdaST with coordinate-wise adaptive
stepsizes in Algorithm 2, along with its convergence analysis in Appendix B.5.

3 Convergence Analysis

In this section, we present the main convergence results for the proposed D-AdaST algorithm and
compare it with D-TiAda to show the effectiveness of the proposed stepsize tracking protocol.

To this end, letting ūk := 1/n
∑n

i=1 ui,k, we define the following metrics to evaluate the level of
inconsistency of stepsizes among nodes, which are ensured to be bounded by Assumption 3.

ζ2v := sup
i∈[n],k>0

{(
v−α
i,k − v̄

−α
k

)2
/
(
v̄−α
k

)2}
, ζ2u := sup

i∈[n],k>0

{(
u−β
i,k − ū

−β
k

)2
/
(
ū−β
k

)2}
. (8)

3.1 Assumptions

We consider the NC-SC setting of Problem (1) with the following assumptions that are commonly
used in the existing works (c.f., Remark 2 and Remark 3). Notably, for the function and algorithm
class determined by the assumptions of this work, Li et al. (2021) derived a lower complexity bound
of Ω

(
ϵ−4
)

and proved that such a dependency on ϵ is optimal (c.f., Remark 2).

Assumption 1 (µ-strong concavity in y). Each objective function fi (x, y) is µ-strongly concave in
y, i.e., ∀x ∈ Rp, ∀y, y′ ∈ Y and µ > 0,

fi (x, y)− fi (x, y′) ⩾ ⟨∇yfi (x, y) , y − y′⟩+
µ

2
∥ y − y′∥2 . (9)

6

Assumption 2 (Joint smoothness). Each objective function fi (x, y) is L-smooth in x and y, i.e.,
∀x, x′ ∈ Rp and ∀y, y′ ∈ Y , there exists a constant L such that for z ∈ {x, y},

∥∇zfi (x, y)−∇zfi (x
′, y′)∥2 ⩽ L2

(
∥x− x′∥2 + ∥y − y′∥2

)
. (10)

Furthermore, fi is second-order Lipschitz continuous for y, i.e., for z ∈ {x, y},∥∥∇2
zyfi (x, y)−∇2

zyfi (x
′, y′)

∥∥2 ⩽ L2
(
∥x− x′∥2 + ∥y − y′∥2

)
. (11)

Remark 2. Assumption 1 does not require the convexity in x and the objective function thus can be
nonconvex. Assumption 1 and 2 ensure that y∗(·) is smooth (c.f., Lemma 2), which is essential for
achieving (near) optimal convergence rate (Chen et al., 2021; Li et al., 2023). Besides, it can be
verified that the constructed ‘hard’ examples for obtaining the lower complexity bound in Li et al.
(2021) satisfy the above second-order Lipschitz continuity (11) on y, implying that the achievable
optimal complexity for the function and algorithm class considered in this work is O

(
ϵ−4
)
.

Assumption 3 (Stochastic gradient). For i.i.d. sample ξi, the stochastic gradient of each i is unbiased,
i.e., ∀x ∈ Rp, y ∈ Y , Eξi [∇zFi (x, y; ξi)] = ∇zfi (x, y), for z ∈ {x, y}, and there is a constant
C > 0 such that ∥∇zFi (x, y; ξi)∥ ⩽ C.

Remark 3. Assumption 3 on unbiased stochastic gradient is widely used for establishing convergence
rates of both minimization and minimax optimization methods with AdaGrad (Kavis et al., 2022; Li
et al., 2023) or Adam (Zou et al., 2019; Chen et al., 2023a; Huang et al., 2024) adaptive stepsize.
We note that under Assumption 2, this assumption can be easily satisfied in many real-world tasks
by imposing constraints on the compact domain of f , e.g., neural networks with rectified activation
(Dinh et al., 2017) and GANs with projections on the critic (Gulrajani et al., 2017).

Next, we make the following assumption on the underlying graph to ensure its connectivity.
Assumption 4 (Graph connectivity). The weight matrix W induced by graph G is doubly stochastic,
i.e., W1 = 1,1TW = 1T and ρW := ∥W − J∥22 < 1.

Note that one can always find a proper weight matrix W compliant to the graph that satisfies
Assumption 4 once the underlying graph is undirected and connected. For instance, the weight matrix
can be easily determined based on the Metropolis-Hastings protocol (Xiao et al., 2006). Moreover,
this assumption is more general than that in Lian et al. (2017); Borodich et al. (2021) in the sense
that W is not required to be symmetric, implying that certain directed graphs can be included in this
assumption, e.g., directed ring and exponential graphs (Ying et al., 2021).

3.2 Main Results

We are now ready to present the key convergence results in terms of the primal function Φ (x) :=
f (x, y∗ (x)) with y∗ (x) = argmax

y∈Y
f (x, y), whose proofs can be found in Appendix B.4.

Theorem 2. Suppose Assumption 1-4 hold. Let 0 < β < α < 1 and the total iteration K satisfy

Ω

max

(
γ2xκ

4

γ2y

) 1
α−β

,

(
1

(1− ρW)
2

)max{ 1
α , 1β}

 (12)

with κ := L/µ to ensure time-scale separation and quasi-independence of the network. For D-AdaST,
we have 1

1

K

K−1∑
k=0

E
[
∥∇Φ (x̄k)∥2

]
= Õ

(
1

K1−α
+

1

(1− ρW)
α
Kα

)
+ Õ

(
1

K1−β
+

1

(1− ρW)Kβ

)
.

(13)
Remark 4 (Near-optimal convergence). Theorem 2 implies that if the total number of iterations
satisfies the conditions (12), the proposed D-AdaST algorithm converges to a stationary point exactly
for Problem (1) with an Õ

(
ϵ−(4+δ)

)
sample complexity for arbitrarily small δ > 0, e.g., letting

1The complete convergence result can be found in (75) in Appendix.

7

α = 0.5 + δ/ (8 + 2δ) and β = 0.5− δ/ (8 + 2δ). It is worth noting that this rate is near-optimal
compared to the existing lower bound of Ω

(
ϵ−4
)

(Li et al., 2021) for a class of smooth NC-SC
functions. Moreover, this result recovers the centralized TiAda algorithm (Li et al., 2023) as a special
case, i.e., setting ρW = 0, without assuming the existence of interior optimal point (c.f., Assumption
3.3 Li et al. (2023)). To the best of our knowledge, there is no existing fully parameter-agnostic
method that achieves a convergence rate of Õ

(
ϵ−4
)
, even in a centralized setting.

Remark 5 (Parameter-agnostic property and transient times). The above results show that D-AdaST
converges without requiring to know any problem-dependent parameters, i.e., L, µ and ρW , or tuning
the initial stepsize γx and γy, and is thus parameter-agnostic. Moreover, we explicitly characterize
the transient times (c.f., Eq. (12)) that ensure time-scale separation and quasi-independence of the
network, respectively. Indeed, we can see that if α and β are close to each other, the time required for
time-scale separation to occur increases significantly, which has been observed in (Li et al., 2023).
On the other hand, if α and β are relatively large, then Õ

(
1/K1−α + 1/K1−β

)
dominates the other

terms, indicating independence on the network. These observations highlight the trade-offs between
the convergence rate and the required duration of the transition phase.

For proper comparison, we also derive an upper bound for D-TiAda as follows. Together with
the lower bound in Theorem 1, we demonstrate that without the stepsize tracking mechanism, the
inconsistency among local stepsizes prevents D-TiAda from converging in the distributed setting.
Corollary 1. Under the same conditions of Theorem 2. For the proposed D-TiAda, we have

1

K

K−1∑
k=0

E
[
∥∇Φ (x̄k)∥2

]
= Õ

(
1

K1−α
+

1

(1− ρW)
α
Kα

)
+ Õ

(
1

K1−β
+

1

(1− ρW)Kβ

)
+ Õ

((
ζ2v + κ2ζ2u

)
C2
)
.

(14)

4 Experiments

In this section, we conduct experiments to validate the theoretical findings and demonstrate the
effectiveness of the proposed algorithm on real-world machine learning tasks. We compare the
proposed D-AdaST with the distributed variants of AdaGrad (Duchi et al., 2011), TiAda (Li et al.,
2023) and NeAda (Yang et al., 2022b), namely D-AdaGrad, D-TiAda and D-NeAda, respectively.
These experiments run across multiple nodes with different networks, and we consider heteroge-
neous distributions of local objective functions/datasets. For example, each node can only access
samples with a subset of labels on MNIST and CIFAR-10 datasets, which is a common scenario in
decentralized and federated learning tasks (Sharma et al., 2023; Huang et al., 2022). The experiments
cover three main tasks: synthetic function, robust training of the neural network, and training of
Wasserstein GANs (Heusel et al., 2017). For the exponential factors of stepsize, we set α = 0.6 and
β = 0.4 for both D-TiAda and D-AdaST. More detailed settings and additional experiments with
different initial stepsizes, data distributions and choices of α and β can be found in Appendix A.

Synthetic example. We consider a distributed minimax problem with the following NC-SC local
objective functions over exponential networks with n = 50 (ρW = 0.71) and n = 100 (ρW = 0.75).

fi (x, y) = −
1

2
y2 + Lixy −

L2
i

2
x2 − 2Lix+ Liy, (15)

where Li ∼ U (1.5, 2.5). The local gradient of each node is computed with an additive N (0, 0.1)
Gaussian noise. It follows from Figure 2 (a) and 2 (b) that the proposed D-AdaST algorithm
outperforms other distributed adaptive methods for both initial stepsize settings, especially in cases
with a favorable initial stepsize ratio, as illustrated in plots (b) and (d) where γx/γy = 0.2. Similar
observation can be found in Figure 2 (c) and 2 (d), demonstrating the effectiveness of D-AdaST.

Robust training of neural networks. Next, we consider the task of robust training of neural
networks, in the presence of adversarial perturbations on data samples (Sharma et al., 2022; Deng
and Mahdavi, 2021). The problem can be formulated as min

x
max

y
1/n

∑n
i=1 fi (x; ξi + y)− η ∥y∥2,

where x denotes the parameters of the model, y denotes the perturbation and ξi denotes the data
sample of node i. Note that if η is large enough, the problem is NC-SC. We conduct experiments on

8

0 1000 2000 3000 4000
Gradient calls

10−4

10−3

10−2

10−1

100

101

102

||∇
xf
(x
,y

)||
2

D-AdaGrad
D-NeAda
D-TiAda
D-AdaST

(a) γx = 0.1, n = 50

0 1000 2000 3000 4000
Gradient calls

10−4

10−3

10−2

10−1

100

101

102

||∇
xf
(x
,y

)||
2

D-AdaGrad
D-NeAda
D-TiAda
D-AdaST

(b) γx = 0.02, n = 50

0 1000 2000 3000 4000
Gradient calls

10−4

10−3

10−2

10−1

100

101

102

||∇
xf
(x
,y

)||
2

D-AdaGrad
D-NeAda
D-TiAda
D-AdaST

(c) γx = 0.1, n = 100

0 1000 2000 3000 4000
Gradient calls

10−4

10−3

10−2

10−1

100

101

102

||∇
xf
(x
,y

)||
2

D-AdaGrad
D-NeAda
D-TiAda
D-AdaST

(d) γx = 0.02, n = 100

Figure 2: Performance comparison of algorithms on quadratic functions over exponential graphs with
node counts n = {50, 100} and different initial stepsizes (γy = 0.1).

0 1000 2000 3000 4000
Gradient calls

10−1

100

101

||∇
xf
(x
,y

)||
2

D-AdaGrad
D-NeAda
D-TiAda
D-AdaST

(a) ring, ρW = 0.97

0 1000 2000 3000 4000
Gradient calls

10−1

100

101

||∇
xf
(x
,y

)||
2

D-AdaGrad
D-NeAda
D-TiAda
D-AdaST

(b) exp., ρW = 0.67

0 1000 2000 3000 4000

Gradient calls

10

−1

10

0

10

1

|
|
∇

x

f
(
x
,
y
)
|
|

2

D-AdaGrad

D-NeAda

D-TiAda

D-AdaST

(c) dense, ρW = 0.55

0 4000 8000 12000 16000
Gradient calls

10−1

100

101

||∇
xf
(x
,y
)||

2

D-AdaST, n=2
D-AdaST, n=8
D-AdaST, n=32

(d) scalability

0 1000 2000 3000 4000 5000 6000
Gradient calls

10−2

10−1

100

101

 ∇
xf

(x
,y

)
2

D-Adam
D-NeAda-Adam
D-TiAda-Adam
D-AdaST-Adam

(e) ring, ρW = 0.97

0 1000 2000 3000 4000 5000 6000
Gradient calls

10−2

10−1

100

101

 ∇
xf

(x
,y

)
2

D-Adam
D-NeAda-Adam
D-TiAda-Adam
D-AdaST-Adam

(f) exp., ρW = 0.67

0 1000 2000 3000 4000 5000 6000
Gradient calls

10−2

10−1

100

101
 ∇

xf
(x

,y
)

2
D-Adam
D-NeAda-Adam
D-TiAda-Adam
D-AdaST-Adam

(g) dense, ρW = 0.55

0 2000 4000 6000 8000
Gradient calls

10−1

100

101

||∇
xf
(x
,y
)||

2

D-AdaST-Adam, n=4
D-AdaST-Adam, n=16
D-AdaST-Adam, n=64

(h) scalability

Figure 3: Comparison of the algorithms on training robust CNN on MNIST dataset. The first row
shows the results of AdaGrad-like stepsize, and the second row is for Adam-like stepsize. For
the first three columns, we compare the algorithms on different graphs with n = 20. For the last
column, we show the scalability of D-AdaST in terms of number of nodes. Initial stepsizes are set as
γx = 0.01, γy = 0.1 for AdaGrad-like stepsize, and γx = 0.1, γy = 0.1 for Adam-like stepsize.

MNIST dataset over different networks, e.g., ring graph, exponential (exp.) graph (Ying et al., 2021)
and dense graph with n/2 edges for each node. We consider a heterogeneous scenario in which each
node possesses only two distinct classes of labeled samples, resulting in heterogeneity among the
local datasets across nodes, while the data is i.i.d within each node.

In Figure 3, we compare D-AdaST with D-AdaGrad, D-TiAda and D-NeAda, using adaptive stepsizes
in AdaGrad (first row) and Adam (second row, name suffixed with Adam) respectively, it can be
observed from the first three columns that the proposed D-AdaST outperforms the others on three
different graphs and it is not very sensitive to the graph connectivity (i.e., ρW), demonstrating
the quasi-independence of network as indicated in Theorem 2. It should be noted that Adam-like
algorithms exhibit more fluctuations in the later stages of optimization as the gradient norm vanishes,
leading to an inevitable increase in the Adam stepsize as the optimization process converges (Kingma
and Ba, 2014). In plots (d) and (h), we further demonstrate that D-AdaST can scale efficiently
with respect to the number of nodes, while keeping a constant batch-size of 64 for each node. This
showcases the algorithm’s ability to handle large-scale distributed scenarios effectively.

Generative Adversarial Networks. We further illustrate the effectiveness of D-AdaST on another
popular task of training GANs, which has a generator and a discriminator used to generate and
distinguish samples respectively (Goodfellow et al., 2014). In this experiment, we train Wasserstein
GANs (Gulrajani et al., 2017) on CIFAR-10 dataset in a decentralized setting where each discriminator
is 1-Lipschitz and has access to only two classes of samples. We compare the inception score of
D-AdaST with D-Adam and D-TiAda adopting Adam-like stepsizes in Figure 4. It can be observed
from the figure that D-AdaST achieves higher inception scores in three cases with different initial
stepsizes, and has a small score loss as the initial step size changes. We believe that this example
shows the great potential of D-AdaST in solving real-world problems.

9

0 20000 40000 60000 80000

Gradient calls

2.0

2.5

3.0

3.5

4.0

4.5

5.0

I
n
c
e
p
t
i
o
n
s
c
o
r
e

D-Adam

D-TiAda-Adam

D-AdaST-Adam

(a) γx = γy = 0.001

0 20000 40000 60000 80000

Gradient calls

2.0

2.5

3.0

3.5

4.0

4.5

5.0

I
n
c
e
p
t
i
o
n
s
c
o
r
e

D-Adam

D-TiAda-Adam

D-AdaST-Adam

(b) γx = γy = 0.01

0 20000 40000 60000 80000

Gradient calls

2.0

2.5

3.0

3.5

4.0

4.5

5.0

I
n
c
e
p
t
i
o
n
s
c
o
r
e

D-Adam

D-TiAda-Adam

D-AdaST-Adam

(c) γx = γy = 0.05

Figure 4: Training GANs on CIFAR-10 dataset over exponential graphs with n = 10 nodes.

5 Conclusion

We introduced a new distributed adaptive minimax method, D-AdaST, designed to tackle the issue of
non-convergence in nonconvex-strongly-concave minimax problems caused by the inconsistencies
among locally computed adaptive stepsizes. Vanilla distributed adaptive methods could suffer from
such inconsistencies, as highlighted by the carefully designed counterexamples for demonstrating
their potential non-convergence. In contrast, our proposed method employs an efficient adaptive
stepsize tracking protocol that not only ensures the time-scale separation, but also guarantees stepsize
consistency among nodes and thus effectively eliminates steady-state errors. Theoretically, we showed
that D-AdaST can achieve a near-optimal convergence rate of Õ

(
ϵ−(4+δ)

)
with any arbitrarily small

δ > 0. Extensive experiments on both real-world and synthetic datasets have been conducted to
validate our theoretical findings across various scenarios.

Acknowledgments

The work of Huang, Shen and Xu has been supported by the National Key R&D Program of China
under Grant No. 2022YFB3102100, and in parts by National Natural Science Foundation of China
under Grants 62373323, 62088101. The work of Li and He has been supported by the ETH research
grant and Swiss National Science Foundation (SNSF) Starting Grant.

References
Antonakopoulos, K., Belmega, V. E., and Mertikopoulos, P. (2021). Adaptive extra-gradient methods

for min-max optimization and games. In ICLR 2021-9th International Conference on Learning
Representations, pages 1–28.

Borodich, E., Beznosikov, A., Sadiev, A., Sushko, V., Savelyev, N., Takáč, M., and Gasnikov, A.
(2021). Decentralized personalized federated min-max problems. arXiv preprint arXiv:2106.07289.

Boţ, R. I. and Böhm, A. (2023). Alternating proximal-gradient steps for (stochastic) nonconvex-
concave minimax problems. SIAM Journal on Optimization, 33(3):1884–1913.

Chen, C., Shen, L., Liu, W., and Luo, Z.-Q. (2023a). Efficient-adam: Communication-efficient
distributed adam. IEEE Transactions on Signal Processing.

Chen, L., Ye, H., and Luo, L. (2022). A simple and efficient stochastic algorithm for decentralized
nonconvex-strongly-concave minimax optimization. arXiv preprint arXiv:2212.02387.

Chen, L., Ye, H., and Luo, L. (2024). An efficient stochastic algorithm for decentralized nonconvex-
strongly-concave minimax optimization. In International Conference on Artificial Intelligence and
Statistics, pages 1990–1998. PMLR.

Chen, T., Sun, Y., and Yin, W. (2021). Closing the gap: Tighter analysis of alternating stochastic
gradient methods for bilevel problems. Advances in Neural Information Processing Systems,
34:25294–25307.

Chen, X., Karimi, B., Zhao, W., and Li, P. (2023b). On the convergence of decentralized adaptive
gradient methods. In Asian Conference on Machine Learning, pages 217–232. PMLR.

10

Daskalakis, C., Skoulakis, S., and Zampetakis, M. (2021). The complexity of constrained min-
max optimization. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 1466–1478.

Dem’yanov, V. F. and Pevnyi, A. B. (1972). Numerical methods for finding saddle points. USSR
Computational Mathematics and Mathematical Physics, 12(5):11–52.

Deng, Y. and Mahdavi, M. (2021). Local stochastic gradient descent ascent: Convergence analysis
and communication efficiency. In International Conference on Artificial Intelligence and Statistics,
pages 1387–1395. PMLR.

Diakonikolas, J. (2020). Halpern iteration for near-optimal and parameter-free monotone inclusion
and strong solutions to variational inequalities. In Conference on Learning Theory, pages 1428–
1451. PMLR.

Dinh, L., Pascanu, R., Bengio, S., and Bengio, Y. (2017). Sharp minima can generalize for deep nets.
In International Conference on Machine Learning, pages 1019–1028. PMLR.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7).

Ene, A. and Lê Nguyen, H. (2022). Adaptive and universal algorithms for variational inequalities with
optimal convergence. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pages 6559–6567.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.,
and Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing
systems, 27.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C. (2017). Improved training
of wasserstein gans. Advances in neural information processing systems, 30.

Guo, Z., Xu, Y., Yin, W., Jin, R., and Yang, T. (2021). A novel convergence analysis for algorithms
of the adam family. arXiv preprint arXiv:2112.03459.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. (2017). Gans trained by a
two time-scale update rule converge to a local nash equilibrium. Advances in neural information
processing systems, 30.

Hsieh, Y.-P., Mertikopoulos, P., and Cevher, V. (2021). The limits of min-max optimization algorithms:
Convergence to spurious non-critical sets. In International Conference on Machine Learning,
pages 4337–4348. PMLR.

Huang, F., Wang, X., Li, J., and Chen, S. (2024). Adaptive federated minimax optimization with
lower complexities. In International Conference on Artificial Intelligence and Statistics, pages
4663–4671. PMLR.

Huang, F., Wu, X., and Hu, Z. (2023). Adagda: Faster adaptive gradient descent ascent methods for
minimax optimization. In International Conference on Artificial Intelligence and Statistics, pages
2365–2389. PMLR.

Huang, F., Wu, X., and Huang, H. (2021). Efficient mirror descent ascent methods for nonsmooth
minimax problems. Advances in Neural Information Processing Systems, 34:10431–10443.

Huang, Y., Sun, Y., Zhu, Z., Yan, C., and Xu, J. (2022). Tackling data heterogeneity: A new unified
framework for decentralized SGD with sample-induced topology. In Proceedings of the 39th
International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pages 9310–9345. PMLR.

Ju, L., Zhang, T., Toor, S., and Hellander, A. (2023). Accelerating fair federated learning: Adaptive
federated adam. arXiv preprint arXiv:2301.09357.

Kavis, A., Levy, K. Y., and Cevher, V. (2022). High probability bounds for a class of nonconvex
algorithms with adagrad stepsize. In International Conference on Learning Representations.

11

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Li, H., Farnia, F., Das, S., and Jadbabaie, A. (2022). On convergence of gradient descent ascent:
A tight local analysis. In International Conference on Machine Learning, pages 12717–12740.
PMLR.

Li, H., Tian, Y., Zhang, J., and Jadbabaie, A. (2021). Complexity lower bounds for nonconvex-
strongly-concave min-max optimization. Advances in Neural Information Processing Systems,
34:1792–1804.

Li, X., YANG, J., and He, N. (2023). Tiada: A time-scale adaptive algorithm for nonconvex minimax
optimization. In The Eleventh International Conference on Learning Representations.

Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W., and Liu, J. (2017). Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent. Advances in Neural Information Processing Systems, 30.

Liggett, B. (2022). Distributed learning with automated stepsizes.

Lin, T., Jin, C., and Jordan, M. (2020). On gradient descent ascent for nonconvex-concave minimax
problems. In International Conference on Machine Learning, pages 6083–6093. PMLR.

Liu, M., Zhang, W., Mroueh, Y., Cui, X., Ross, J., Yang, T., and Das, P. (2020). A decentralized
parallel algorithm for training generative adversarial nets. Advances in Neural Information
Processing Systems, 33:11056–11070.

Madras, D., Creager, E., Pitassi, T., and Zemel, R. (2018). Learning adversarially fair and transferable
representations. In International Conference on Machine Learning, pages 3384–3393. PMLR.

Mohri, M., Sivek, G., and Suresh, A. T. (2019). Agnostic federated learning. In International
Conference on Machine Learning, pages 4615–4625. PMLR.

Nedic, A. and Ozdaglar, A. (2009). Distributed subgradient methods for multi-agent optimization.
IEEE Transactions on Automatic Control, 54(1):48–61.

Nedic, A., Ozdaglar, A., and Parrilo, P. A. (2010). Constrained consensus and optimization in
multi-agent networks. IEEE Transactions on Automatic Control, 55(4):922–938.

Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. (2009). Robust stochastic approximation
approach to stochastic programming. SIAM Journal on optimization, 19(4):1574–1609.

Pu, S. and Nedić, A. (2021). Distributed stochastic gradient tracking methods. Mathematical
Programming, 187(1):409–457.

Reddi, S. J., Kale, S., and Kumar, S. (2018). On the convergence of adam and beyond. In International
Conference on Learning Representations.

Sharma, P., Panda, R., and Joshi, G. (2023). Federated minimax optimization with client heterogeneity.
arXiv preprint arXiv:2302.04249.

Sharma, P., Panda, R., Joshi, G., and Varshney, P. (2022). Federated minimax optimization: Improved
convergence analyses and algorithms. In International Conference on Machine Learning, pages
19683–19730. PMLR.

Sinha, A., Namkoong, H., Volpi, R., and Duchi, J. (2017). Certifying some distributional robustness
with principled adversarial training. arXiv preprint arXiv:1710.10571.

Tarzanagh, D. A., Li, M., Thrampoulidis, C., and Oymak, S. (2022). Fednest: Federated bilevel,
minimax, and compositional optimization. In International Conference on Machine Learning,
pages 21146–21179. PMLR.

Tsaknakis, I., Hong, M., and Liu, S. (2020). Decentralized min-max optimization: Formulations,
algorithms and applications in network poisoning attack. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5755–5759. IEEE.

12

Wang, J., Liu, Q., Liang, H., Joshi, G., and Poor, H. V. (2020). Tackling the objective inconsistency
problem in heterogeneous federated optimization. Advances in neural information processing
systems, 33:7611–7623.

Wang, J., Zhang, T., Liu, S., Chen, P.-Y., Xu, J., Fardad, M., and Li, B. (2021). Adversarial attack
generation empowered by min-max optimization. Advances in Neural Information Processing
Systems, 34:16020–16033.

Wu, X., Sun, J., Hu, Z., Zhang, A., and Huang, H. (2023). Solving a class of non-convex minimax
optimization in federated learning. In Thirty-seventh Conference on Neural Information Processing
Systems.

Xian, W., Huang, F., Zhang, Y., and Huang, H. (2021). A faster decentralized algorithm for nonconvex
minimax problems. Advances in Neural Information Processing Systems, 34:25865–25877.

Xiao, L., Boyd, S., and Lall, S. (2006). Distributed average consensus with time-varying metropolis
weights. Automatica, 1:1–4.

Yang, H., Liu, Z., Zhang, X., and Liu, J. (2022a). Sagda: Achieving O
(
ε−2
)

communication
complexity in federated min-max learning. In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave,
D., Cho, K., and Oh, A., editors, Advances in Neural Information Processing Systems, volume 35,
pages 7142–7154. Curran Associates, Inc.

Yang, J., Li, X., and He, N. (2022b). Nest your adaptive algorithm for parameter-agnostic nonconvex
minimax optimization. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K., editors, Advances in
Neural Information Processing Systems.

Yang, J., Orvieto, A., Lucchi, A., and He, N. (2022c). Faster single-loop algorithms for minimax
optimization without strong concavity. In International Conference on Artificial Intelligence and
Statistics, pages 5485–5517. PMLR.

Ying, B., Yuan, K., Chen, Y., Hu, H., Pan, P., and Yin, W. (2021). Exponential graph is provably
efficient for decentralized deep training. Advances in Neural Information Processing Systems,
34:13975–13987.

Yuan, K., Ling, Q., and Yin, W. (2016). On the convergence of decentralized gradient descent. SIAM
Journal on Optimization, 26(3):1835–1854.

Zhang, S., Choudhury, S., Stich, S. U., and Loizou, N. (2023). Communication-efficient gradient
descent-accent methods for distributed variational inequalities: Unified analysis and local updates.
arXiv preprint arXiv:2306.05100.

Zhang, S., Yang, J., Guzmán, C., Kiyavash, N., and He, N. (2021a). The complexity of nonconvex-
strongly-concave minimax optimization. In Uncertainty in Artificial Intelligence, pages 482–492.
PMLR.

Zhang, X., Liu, Z., Liu, J., Zhu, Z., and Lu, S. (2021b). Taming communication and sample
complexities in decentralized policy evaluation for cooperative multi-agent reinforcement learning.
Advances in Neural Information Processing Systems, 34:18825–18838.

Zhang, X., Mancino-Ball, G., Aybat, N. S., and Xu, Y. (2024). Jointly improving the sample and
communication complexities in decentralized stochastic minimax optimization. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 38, pages 20865–20873.

Zhou, D., Chen, J., Cao, Y., Tang, Y., Yang, Z., and Gu, Q. (2018). On the convergence of adaptive
gradient methods for nonconvex optimization. arXiv preprint arXiv:1808.05671.

Zou, F., Shen, L., Jie, Z., Zhang, W., and Liu, W. (2019). A sufficient condition for convergences of
adam and rmsprop. In Proceedings of the IEEE/CVF Conference on computer vision and pattern
recognition, pages 11127–11135.

13

A Additional Experiments

In this section, we provide detailed experimental settings and perform additional experiments on the
task of training robust neural networks with different choices of hyper-parameters. All experiments
are deployed in a server with Intel Xeon E5-2680 v4 CPU @ 2.40GHz and 8 Nvidia RTX 3090 GPUs,
and implemented using distributed communication package torch.distributed in PyTorch 2.0, where
each process serves as a node, and we use inter-process communication to mimic communication
between nodes. For the AdaGrad-like algorithms considered in the experiments of training neural
networks, similar to the Adam-like stepsize, we adopt a coordinate-wise adaptive stepsize rule
as commonly used in existing centralized adaptive methods (Yang et al., 2022b; Li et al., 2023).
Moreover, since we attempt to develop a parameter-agnostic algorithm that does not need much effort
in tuning hyper-parameters, we set α = 0.6 and β = 0.4 for all tasks in the main text, and evaluate
the effect of the choices of α and β on the performance of D-AdaST individually in an additional
experiment on the synthetic objective function as shown in Appendix A.4.

A.1 Experimental details

Communication topology. For the experiments in the main text, we utilize three commonly used
communication topologies: indirect ring, exponential graph and dense graph. An indirect ring is a
sparse graph in which each node is sequentially connected to form a ring, with only two neighbors
per node. Exponential graph (Ying et al., 2021) is a directed graph where each node is connected to
nodes at distances of 20, 21..., 2logn. Exponential graphs achieve a good balance between the degree
and connectivity of the graph. A dense graph is an indirect graph where each node is connected to
nodes at distances of 1, 2, 4, ..., n. We also consider directed ring and fully connected graphs, which
are more sparsely and densely connected, respectively, in the additional experiments.

Robust training of neural network. In this task, we train CNNs with three convolutional layers
and one fully connected layer on MNIST dataset containing images of 10 classes. Each layer adopts
batch normalization and ELU activation. The total batch-size is 1280, and the batch-size of each node
during training is 1280/n. For Adam-like algorithms, we set the first and second moment parameters
as β1 = 0.9, β2 = 0.999 respectively. Since NeAda is a double-loop algorithm, for fair comparison,
we imply D-AdaGrad and D-Adam using 15 iterations of inner loop in this task.

Generative Adversarial Networks. In this task, we train Wasserstein GANs on CIFAR-10 dataset,
where the model used for discriminator is a four layer CNNs, and for generator is a four layer CNNs
with transpose convolution layers. The total batch-size is 1280, and the batch-size of each node
during training is 128 with 10 nodes. For Adam-like algorithms, we use β1 = 0.5, β2 = 0.9. To
obtain the inception score, we use 8000 artificially generated samples to feed the previously trained
inception network.

A.2 Additional experiments on robust training of neural network.

In this part, we conduct additional experiments on robust training of CNNs on MNIST dataset
considering a variety of settings. We compare the convergence performance of D-AdaST with
D-AdaGrad, D-TiAda and D-NeAda using adaptive stepsizes of AdaGrad and Adam. Unless
otherwise specified, the total batch-size is set to 1280; the initial stepsizes for x and y are assigned
as γx = 0.01, γy = 0.1 for AdaGrad-like algorithms, and γx = γy = 0.1 for Adam-like algorithms.
Specifically, we consider two extra graphs that are more sparse and more dense, respectively in
Figure 5, e.g., directed ring and fully-connected (fc) graphs. We consider more initial stepsizes
settings for x and y respectively in Figure 6. Further, we also consider different data distributions
where each node has samples from 4 of the 10 classes in Figure 7. Finally, we perform a comparison
experiment with 40 nodes in Figure 8. Under all settings, the proposed D-AdaST outperforms the
others, demonstrating the superiority of D-AdaST.

A.3 Additional experiments on training GANs

We provide additional experiments of training GANs on a more complicated dataset CIFAR-100
to further illustrate the effectiveness of the proposed D-AdaST, as shown in Figure 9. We use the
entire training set of CIFAR-100 with coarse labels (20 classes) to train GANs over networks, where
each node is assigned with four distinct classes of labeled samples. Under the same settings as in

14

0 1000 2000 3000 4000

Gradient calls

10

−1

10

0

10

1

|
|
∇

x

f
(
x
,
y
)
|
|

2

D-AdaGrad

D-NeAda

D-TiAda

D-AdaST

(a) directed-ring

0 1000 2000 3000 4000

Gradient calls

10

−1

10

0

10

1

|
|
∇

x

f
(
x
,
y
)
|
|

2

D-AdaGrad

D-NeAda

D-TiAda

D-AdaST

(b) fc

0 1000 2000 3000 4000 5000 6000

10

−2

10

−1

10

0

10

1

|
|
∇

x

f
(
x
,
y
)
|
|

2

D-Adam

D-NeAda-Adam

D-TiAda-Adam

D-AdaST-Adam

(c) directed-ring

0 1000 2000 3000 4000 5000 6000

10

−2

10

−1

10

0

10

1

|
|
∇

x

f
(
x
,
y
)
|
|

2

D-Adam

D-NeAda-Adam

D-TiAda-Adam

D-AdaST-Adam

(d) fc

Figure 5: Performance comparison of training CNN on MNIST with n = 20 nodes over directed
ring and fully connected graphs.

0 1000 2000 3000 4000

Gradient calls

10

−1

10

0

10

1

|
|
∇

x

f
(
x
,
y
)
|
|

2

D-AdaGrad

D-NeAda

D-TiAda

D-AdaST

(a) 0.01, 0.01

0 1000 2000 3000 4000

Gradient calls

10

−1

10

0

10

1

|
|
∇

x

f
(
x
,
y
)
|
|

2

D-AdaGrad

D-NeAda

D-TiAda

D-AdaST

(b) 0.001, 0.01

0 1000 2000 3000 4000 5000 6000

10

−3

10

−2

10

−1

10

0

10

1

|
|
∇

x

f
(
x
,
y
)
|
|

2

D-Adam

D-NeAda-Adam

D-TiAda-Adam

D-AdaST-Adam

(c) 0.01, 0.01

0 1000 2000 3000 4000 5000 6000

10

−3

10

−2

10

−1

10

0

10

1

|
|
∇

x

f
(
x
,
y
)
|
|

2

D-Adam

D-NeAda-Adam

D-TiAda-Adam

D-AdaST-Adam

(d) 0.01, 0.1

Figure 6: Performance comparison of training CNN on MNIST with n = 20 nodes with different
initial stepsizes γx and γy .

0 1000 2000 3000 4000

Gradient calls

10

−1

10

0

10

1

|
|
∇

x

f
(
x
,
y
)
|
|

2

D-AdaGrad

D-NeAda

D-TiAda

D-AdaST

(a) exp.

0 1000 2000 3000 4000

Gradient calls

10

−1

10

0

10

1

|
|
∇

x

f
(
x
,
y
)
|
|

2

D-AdaGrad

D-NeAda

D-TiAda

D-AdaST

(b) dense

0 1000 2000 3000 4000 5000 6000

10

−1

10

0

10

1

|
|
∇

x

f
(
x
,
y
)
|
|

2

D-Adam

D-NeAda-Adam

D-TiAda-Adam

D-AdaST-Adam

(c) exp.

0 1000 2000 3000 4000 5000 6000

10

−1

10

0

10

1

|
|
∇

x

f
(
x
,
y
)
|
|

2

D-Adam

D-NeAda-Adam

D-TiAda-Adam

D-AdaST-Adam

(d) dense

Figure 7: Performance comparison of training CNN on MNIST with n = 20 nodes over exponential
and dense graphs where each node has 4 sample classes.

0 1000 2000 3000 4000

Gradient calls

10

−1

10

0

10

1

|
|
∇

x

f
(
x
,
y
)
|
|

2

D-AdaGrad

D-NeAda

D-TiAda

D-AdaST

(a) exp.

0 1000 2000 3000 4000

Gradient calls

10

−1

10

0

10

1

|
|
∇

x

f
(
x
,
y
)
|
|

2

D-AdaGrad

D-NeAda

D-TiAda

D-AdaST

(b) dense

0 1000 2000 3000 4000 5000 6000

10

−2

10

−1

10

0

10

1

|
|
∇

x

f
(
x
,
y
)
|
|

2

D-Adam

D-NeAda-Adam

D-TiAda-Adam

D-AdaST-Adam

(c) exp.

0 1000 2000 3000 4000 5000 6000

10

−2

10

−1

10

0

10

1

|
|
∇

x

f
(
x
,
y
)
|
|

2

D-Adam

D-NeAda-Adam

D-TiAda-Adam

D-AdaST-Adam

(d) dense

Figure 8: Performance comparison of training CNN on MNIST with n = 40 nodes over exponential
and dense graphs.

Figure 4 (a), it can be observed that D-AdaST outperforms the others in terms of the inception score.
Together with other experimental results in the main text, we believe that we have demonstrated the
effectiveness of the proposed D-AdaST method and its potential for further real-world applications.

15

0 7500 15000 22500 30000
Gradient calls

2.0

2.5

3.0

3.5

4.0

4.5

5.0

In
ce

pt
io
n
sc
or
e

D-Adam
D-TiAda-Adam
D-AdaST-Adam

Figure 9: Performance comparison of D-AdaST with D-Adam and D-TiAda adopting Adam-like
stepsizes for training GANs on CIFAR-100 with coarse labels over the exponential graph consisting
of n = 10 nodes under initial stepsizes γx = γy = 0.001.

0 2000 4000 6000 8000
Gradient calls

0

20

40

60

80

100

 ∇
xf

(x
,y

)
2

D-AdaST: α= 0.6, β= 0.4
D-AdaST: α= 0.62, β= 0.38
D-AdaST: α= 0.64, β= 0.36
D-AdaST: α= 0.66, β= 0.34

Figure 10: Performance comparison of D-AdaST on quadratic functions over an exponential graph of
n = 50 nodes with different choices of α and β.

A.4 Additional experiments with different choices of α and β

In this part, we evaluate the effect of the choices of α and β on the performance of D-AdaST. In
particular, we provide an additional experimental result on the synthetic quadratic objective functions
(15) with a larger ratio of initial stepsizes, i.e., γx/γy = 20 (indicating faster minimization and
slower maximization processes at the beginning). As shown in Figure 10, it can be observed that
the transient time (iteration before the inflection point) becomes longer as α− β decreases, while
the convergence rate is relatively faster, which is consistent with Theorem 2 and the result in the
centralized TiAda algorithm (c.f., Figure 5, Li et al., 2023).

B Proof of the main results

We recall here some definitions used in the main text. The averaged variables and the inconsistency
are defined as follows:

x̄k :=
1T

n
xk, v̄k :=

1

n

n∑
i=1

vi,k,
(
ṽ−α
k

)T
:=
[
· · · , v−α

i,k − v̄
−α
k , · · ·

]
,

ȳk :=
1T

n
yk, ūk :=

1

n

n∑
i=1

ui,k,
(
ũ−β
k

)T
:=
[
· · · , u−β

i,k − ū
−β
k , · · ·

]
.

16

The inconsistency of stepsizes of the primal and dual variables is defined as follows:

ζ2v := sup
i∈[n],k>0

{(
v−α
i,k − v̄

−α
k

)2
/
(
v̄−α
k

)2}
, ζ2u := sup

i∈[n],k>0

{(
u−β
i,k − ū

−β
k

)2
/
(
ū−β
k

)2}
.

Proof Sketch. The convergence analysis of the main results in Theorem 2 is mainly based on carefully
analyzing the average system as shown in (5), and the difference between the distributed system and
the averaged system. In general, under Assumption 1-4, we first give a telescoped descent lemma
from 0 to K − 1 iterations in Lemma 3, which is upper bounded by the following key error terms:

• S1 := 1
nK

∑K−1
k=0 E

[
v̄−α
k+1 ∥∇xF (xk,yk; ξ

x
k)∥

2
]
: The asymptotically decaying terms by

adopting adaptive stepsize;

• S2 := 1
nK

∑K−1
k=0 E

[
∥xk − 1x̄k∥2 + ∥yk − 1ȳk∥2

]
: The consensus error of x and y be-

tween the distributed system and the average system;

• S3 := 1
K

∑K−1
k=0 E [f (x̄k, y

∗ (x̄k))− f (x̄k, ȳk)]: The optimality gap in dual variable y;

• S4 := 1
K

∑K−1
k=0 E

[∥∥∥∥ (ṽ−α
k+1)

T

nv̄−α
k+1

∇xF (xk,yk; ξ
x
k)

∥∥∥∥2
]

: The inconsistency of stepsize of x.

Next, we prove the contraction properties of these terms in Lemma 4-8 and Lemma 9 respectively.
Finally, these results are integrated into the descent lemma to complete the proof. We note that the
proof is not trivial in the sense that these terms are coupled and therefore are needed to be carefully
analyzed. This proof can also be adapted to analyze the coordinate-wise adaptive stepsize variant of
D-AdaST as explained in Appendix B.5, which is of independent interest.

B.1 Supporting lemmas

In this part, we provide several supporting lemmas that have been shown in the existing literature,
which are essential to the subsequent convergence analysis.

Lemma 1 (Lemma A.2 in Yang et al. (2022b)). Let {xt}T−1
t=0 be a sequence of non-negative real

numbers, x0 > 0 and α ∈ (0, 1). Then we have,(
T−1∑
t=0

xt

)1−α

⩽
T−1∑
t=0

xt(∑t
k=0 xk

)α ⩽
1

1− α

(
T−1∑
t=0

xt

)1−α

. (16)

When α = 0, we have
T−1∑
t=0

xt(∑t
k=0 xk

)α ⩽ 1 + log

(∑T−1
t=0 xt
x0

)
. (17)

Lemma 2. Suppose Assumption 1 and 2 hold. Define Φ (x) := f (x, y∗ (x)) as the envelope function
and y∗ (x) = argmax

y∈Y
f (x, y). Then, we have,

• Φ (·) is LΦ-smooth with LΦ = L (1 + κ), and ∇Φ (x) = ∇xf (x, y
∗ (x)) (c.f., Lemma 4.3

in Lin et al. (2020));

• y∗ (·) is κ-Lipschitz and L̂-smooth with L̂ = κ (1 + κ)
2(c.f., Lemma 2 in Chen et al. (2021)).

B.2 Key Lemmas

In this subsection, we give the key lemmas to help the analysis of the main results. For simplicity,
we define ∆k := ∥xk − 1x̄k∥2 + ∥yk − 1ȳk∥2 as the consensus error for primal and dual variables.
Then, we have the following lemmas.

17

Lemma 3 (Descent lemma). Suppose Assumption 1-4 hold. Then, we have

1

K

K−1∑
k=0

E
[
∥∇Φ (x̄k)∥2

]
⩽

8C2α (Φmax − Φ∗)

γxK1−α
− 4

K

K−1∑
k=0

E
[
∥∇xf (x̄k, ȳk)∥2

]
+ 8γxLΦ

(
1 + ζ2v

) 1

nK

K−1∑
k=0

E
[
v̄−α
k+1 ∥∇xF (xk,yk; ξ

x
k)∥

2
]

︸ ︷︷ ︸
S1

+ 8L2 1

nK

K−1∑
k=0

E [∆k]︸ ︷︷ ︸
S2

+ 8κL
1

K

K−1∑
k=0

E [f (x̄k, y
∗ (x̄k))− f (x̄k, ȳk)]︸ ︷︷ ︸
S3

+ 16
1

K

K−1∑
k=0

E

∥∥∥∥∥
(
ṽ−α
k+1

)T
nv̄−α

k+1

∇xF (xk,yk; ξ
x
k)

∥∥∥∥∥
2

︸ ︷︷ ︸
S4

,

(18)
where κ := L/µ is the condition number of the function in y, Φmax = max

x
Φ (x) , Φ∗ = min

x
Φ (x).

Proof. By the smoothness of Φ given in Lemma 2, i.e.,

Φ (x̄k+1)− Φ (x̄k) ⩽ ⟨∇Φ (x̄k) , x̄k+1 − x̄k⟩+
LΦ

2
∥x̄k+1 − x̄k∥2 ,

and noticing that the scalar v̄k, ūk are random variables, we have

E

[
Φ (x̄k+1)− Φ (x̄k)

γxv̄
−α
k+1

]

⩽ −E
[〈
∇Φ (x̄k) ,

1T

n
∇xF (xk,yk; ξk)

〉]
− E

[〈
∇Φ (x̄k) ,

(
ṽ−α
k+1

)T
nv̄−α

k+1

∇xF (xk,yk; ξ
x
k)

〉]

+
γxLΦ

2
E

 1

v̄−α
k+1

∥∥∥∥∥
(
v̄−α
k+11

T

n
+

(
ṽ−α
k+1

)T
n

)
∇xF (xk,yk; ξ

x
k)

∥∥∥∥∥
2
 ,

(19)
where we have used the definition of x̄k+1 as presented in (5). Then, we bound the inner-product
terms on the RHS. Firstly,

− E
[〈
∇Φ (x̄k) ,

1T

n
∇xF (xk,yk; ξ

x
k)

〉]
= −E

[〈
∇Φ (x̄k) ,

1T

n
∇xF (xk,yk)−

1T

n
∇xF (1x̄k,1ȳk) +

1T

n
∇xF (1x̄k,1ȳk)

〉]
⩽

1

4
E
[
∥∇Φ (x̄k)∥2

]
+ E

[∥∥∥∥1T

n
∇xF (xk,yk)−

1T

n
∇xF (1x̄k,1ȳk)

∥∥∥∥2
]

+
1

2

(
E
[
∥∇Φ (x̄k)−∇xf (x̄k, ȳk)∥2

]
− E

[
∥∇Φ (x̄k)∥2

]
− E

[
∥∇xf (x̄k, ȳk)∥2

])
⩽ −1

4
E
[
∥∇Φ (x̄k)∥2

]
+
L2

n
E [∆k] +

L2

2
E
[
∥ȳk − y∗ (x̄k)∥2

]
− 1

2
E
[
∥∇xf (x̄k, ȳk)∥2

]
.

(20)

wherein the last inequality we have used the smoothness of the objective functions. Then, for the
second inner-product in (19), using Young’s inequality we get

− E

[〈
∇Φ (x̄k) ,

(
ṽ−α
k+1

)T
nv̄−α

k+1

∇xF (xk,yk; ξ
x
k)

〉]

⩽
1

8
E
[
∥∇Φ (x̄k)∥2

]
+ 2E

∥∥∥∥∥
(
ṽ−α
k+1

)T
nv̄−α

k+1

∇xF (xk,yk; ξ
x
k)

∥∥∥∥∥
2
 . (21)

18

Then, for the last term on the RHS of (18), recalling the definition of stepsize inconsistency in (8), we
have

γxLΦ

2
E

 1

v̄−α
k+1

∥∥∥∥∥
(
v̄−α
k+11

T

n
+

(
ṽ−α
k+1

)T
n

)
∇xF (xk,yk; ξ

x
k)

∥∥∥∥∥
2

⩽
γxLΦ

(
1 + ζ2v

)
n

E
[
v̄−α
k+1 ∥∇xF (xk,yk; ξ

x
k)∥

2
]
.

(22)

Plugging the obtained inequalities into (18) and telescoping the terms, we get

K−1∑
k=0

E
[
∥∇Φ (x̄k)∥2

]
⩽ 8

K−1∑
k=0

E
[
Φ (x̄k)− Φ (x̄k+1)

γxv̄
−α
k

]
− 4

K−1∑
k=0

E
[
∥∇xf (x̄k, ȳk)∥2

]
+ 4L2

K−1∑
k=0

E
[
∥ȳk − ȳ∗∥2

]
+

8L2

n

K−1∑
k=0

E [∆k]

+
8γxLΦ

(
1 + ζ2v

)
n

K−1∑
k=0

E
[
v̄−α
k ∥∇xF (xk,yk; ξ

x
k)∥

2
]

+ 16

K−1∑
k=0

E

∥∥∥∥∥
(
ṽ−α
k+1

)T
nv̄−α

k+1

∇xF (xk,yk; ξ
x
k)

∥∥∥∥∥
2
.

(23)

Now it remains to bound the first term on the RHS of the above inequality. With the help of
Assumption 3, we have

K−1∑
k=0

E

[
Φ (x̄k)− Φ (x̄k+1)

γxv̄
−α
k+1

]

=

K−1∑
k=0

E

[
Φ (x̄k)

γxv̄
−α
k

− Φ (x̄k+1)

γxv̄
−α
k+1

+ Φ (x̄k)

(
1

γxv̄
−α
k+1

− 1

γxv̄
−α
k

)]

⩽ E
[
Φmax

γxv̄
−α
0

− Φ∗

γxv̄
−α
K

]
+

K−1∑
k=0

E

[
Φmax

(
1

γxv̄
−α
k+1

− 1

γxv̄
−α
k

)]

⩽
(Φmax − Φ∗)

γx
E [v̄αK]

⩽
(Φmax − Φ∗)

(
KC2

)α
γx

.

(24)

Noticing that E
[
∥ȳk − y∗ (x̄k)∥2

]
⩽ 2

µE [f (x̄k, y
∗ (x̄k))− f (x̄k, ȳk)], we thus complete the proof.

Next, we need to bound the last four terms S1-S4 in (18) respectively. For S1, we have the asymptotic
convergence for both primal and dual variables in the following lemma.

Lemma 4. Suppose Assumption 1-4 hold. Then, we have

1

nK

K−1∑
k=0

E
[
v̄−α
k+1 ∥∇xF (xk,yk; ξ

x
k)∥

2
]
⩽

C2−2α

(1− α)Kα
, (25)

and
1

nK

K−1∑
k=0

E
[
ū−β
k+1 ∥∇yF (xk,yk; ξ

y
k)∥

2
]
⩽

C2−2β

(1− β)Kβ
. (26)

19

Proof. With the help of Lemma 1 and Assumption 3, taking the primal variable x as an example, and
noticing that vi,0 > 0, i ∈ [n], we have

1

K

K−1∑
k=0

E
[
v̄−α
k+1 ∥∇xF (xk,yk; ξ

x
k)∥

2
]

=
1

K

K−1∑
k=0

1

n

n∑
i=1

∥∥∥∇xFi

(
xi,k, yi,k; ξ

x
i,k

)∥∥∥2
v̄αk+1

⩽
1

K

K−1∑
k=0

1

n

n∑
i=1

∥∥∥∇xFi

(
xi,k, yi,k; ξ

x
i,k

)∥∥∥2(∑k
t=0

1
n

∑n
j=1

∥∥∇xFj

(
xj,t, yj,t; ξxj,t

)∥∥2)α
⩽

1

1− α
1

K

(
K−1∑
k=0

1

n

n∑
i=1

∥∥∇xFi

(
xi,k, yi,k; ξ

x
i,k

)∥∥2)1−α

⩽
C2−2α

(1− α)Kα
.

The similar result can be obtained for dual variable y and we thus complete the proof.

Next, we bound the the consensus error term S2 in the following lemma.

Lemma 5. Suppose Assumption 1-4 hold. Then, we have

1

K

K∑
k=0

E [∆k] ⩽
2E [∆0]

(1− ρW)K

+
8nρW γ2x

(
1 + ζ2v

)
(1− ρW)

2

(
C2−4α

(1− 2α)K2α
Iα<1/2 +

1 + log vK − log v1

Kv̄2α−1
1

Iα⩾1/2

)
+

8nρW γ2y
(
1 + ζ2u

)
(1− ρW)

2

(
C2−4β

(1− 2β)K2β
Iβ<1/2 +

1 + log uK − log u1

Kū2β−1
1

Iβ⩾1/2

)
,

(27)

where I[·] ∈ {0, 1} is the indicator for specific condition, and the initial consensus error ∆0 can be
set to 0 with proper initialization.

Proof. By the updating rule of the primal variable, we have

E
[
∥xk+1 − 1x̄k+1∥2

]
= E

[∥∥W (
xk − γxV −α

k+1∇xF (xk,yk; ξ
x
k)
)
− J

(
xk − γxV −α

k+1∇xF (xk,yk; ξ
x
k)
)∥∥2]

⩽
1 + ρW

2
E
[
∥xk − 1x̄k∥2

]
+

2γ2x (1 + ρW) ρW
1− ρW

E
[
v̄−2α
k+1 ∥∇xF (xk,yk; ξ

x
k)∥

2
]

+
2γ2x (1 + ρW) ρW

1− ρW
E
[∥∥(V −α

k+1 − v̄
−α
k+1I

)
∇xF (xk,yk; ξ

x
k)
∥∥2] ,

(28)

where we have used Young’s inequality. Then, by the definition of ζv in (8), we have

E
[∥∥(V −α

k+1 − v̄
−α
k+1I

)
∇xF (xk,yk; ξ

x
k)
∥∥2] ⩽ ζ2vE

[
v̄−2α
k+1 ∥∇xF (xk,yk; ξ

x
k)∥

2
]
, (29)

and thus

K−1∑
k=0

E
[
∥xk+1 − 1x̄k+1∥2

]
⩽

2

1− ρW
E
[
∥xk − 1x̄k∥2

]
+

8γ2xρW
(
1 + ζ2v

)
(1− ρW)

2

K−1∑
k=0

E
[
v̄−2α
k+1 ∥∇xF (xk,yk; ξ

x
k)∥

2
]
.

(30)

20

Then, we bound the last term on the RHS of the above inequality by Lemma 4. For the case α < 1/2,
by Assumption 3 we have

K−1∑
k=0

E
[
v̄−2α
k+1 ∥∇xF (xk,yk; ξ

x
k)∥

2
]

=

K−1∑
k=0

n∑
i=1

E

∥∥∥∇xFi

(
xi,k, yi,k; ξ

x
i,k

)∥∥∥2
v̄2αk+1

 ⩽
n
(
KC2

)1−2α

(1− 2α)
.

(31)

For the case α ⩾ 1/2, with the help of Lemma 1, we have

K−1∑
k=0

E
[
v̄−2α
k+1 ∥∇xF (xk,yk; ξ

x
k)∥

2
]

=

K−1∑
k=0

n∑
i=1

E

∥∥∥∇xFi

(
xi,k, yi,k; ξ

x
i,k

)∥∥∥2
v̄k+1 · v̄2α−1

k+1

 ⩽
n (1 + log vT − log v1)

v̄2α−1
1

.

(32)

For the dual variable, we have

yk+1 = PY

(
W
(
yk + γyU

−β
k+1∇yF (xk,yk; ξ

y
k)
))

=Wyk + γy∇yĜ

where

∇yĜ =
1

γy

(
PY

(
W
(
yk + γyU

−β
k+1∇yF (xk,yk; ξ

y
k)
))
−Wyk

)
.

Then, using Young’s inequality with parameter λ, we have

E
[
∥yk+1 − 1ȳk+1∥2

]
= E

[∥∥∥Wyk + γy∇yĜ− J
(
Wyk + γy∇yĜ

)∥∥∥2]
⩽ (1 + λ) ρWE

[
∥yk − Jyk∥

2
]

+

(
1 +

1

λ

)
E
[∥∥∥PY

(
W
(
yk + γyU

−β
k+1∇yF (xk,yk; ξ

y
k)
))
−Wyk

∥∥∥2]
⩽

1 + ρW
2

E
[
∥yk − Jyk∥

2
]

+
1 + ρW
1− ρW

E
[∥∥∥PY

(
W
(
yk + γyU

−β
k+1∇yF (xk,yk; ξ

y
k)
))
−Wyk

∥∥∥2] .
Noticing that Wyk = PY (Wyk) holds for convex set Y , we get

E
[
∥yk+1 − 1ȳk+1∥2

]
⩽

1 + ρW
2

E
[
∥yk − Jyk∥

2
]

+
1 + ρW
1− ρW

E
[(∥∥∥PY

(
W
(
yk + γyU

−β
k+1∇yF (xk,yk; ξ

y
k)
))
− PY (Wyk)

∥∥∥)2]
⩽

1 + ρW
2

E
[
∥yk − Jyk∥

2
]
+

1 + ρW
1− ρW

E
[∥∥∥γyU−β

k+1∇yF (xk,yk; ξ
y
k)
∥∥∥2]

⩽
1 + ρW

2
E
[
∥yk − Jyk∥

2
]
+

4γ2y
(
1 + ζ2u

)
(1− ρW)

E
[
ū−2β
k+1 ∥∇yF (xk,yk; ξ

y
k)∥

2
]
,

21

where we have used the non-expansiveness of projection operator. Then, we have
K−1∑
k=0

E
[
∥yk − 1ȳk∥2

]
⩽

2

1− ρW
E
[
∥y0 − Jy0∥

2
]
+

8γ2y
(
1 + ζ2u

)
(1− ρW)

2

K−1∑
k=0

E
[
ū−2β
k+1 ∥∇yF (xk,yk; ξ

y
k)∥

2
]
.

Similar to the primal variable, we can bound the last term above, which completes the proof.

Next, we need to bound the term S3 i.e., the optimality gap in dual variable. The intuition of the proof
relies on the adaptive two time-scale protocol, that is, for given α and β, we try to find the threshold
of the iterations k0, after which the inner sub-problem can be well solved (faster) to ensure that the
computation of outer sub-problem can be solved accurately (slower). In specific, we suppose that
there is a constant G such that ūk ⩽ G hold for k = 0, 1, · · · , k0 − 1, then the analysis is divided
into two phases.
Lemma 6 (First phase). Suppose Assumption 1-4 hold. If ūk ⩽ G, k = 0, 1, · · · , k0 − 1, then we
have

k0−1∑
k=0

E [f (x̄k, y
∗ (x̄k))− f (x̄k, ȳk)]

⩽
k0−1∑
k=0

E [E1,k] +
γ2xκ

2
(
1 + ζ2v

)
G2β

nµγ2y

k0−1∑
k=0

E
[
v̄−2α
k+1 ∥∇xF (xk,yk; ξ

x
k)∥

2
]

+
γy
(
1 + ζ2u

)
n

k0−1∑
k=0

E
[
ū−β
k+1 ∥∇yF (xk,yk; ξk)∥2

]
+

4κL

n

k0−1∑
k=0

E
[
∥xk − 1x̄k∥2

]

+
4

µ

k0−1∑
k=0

E

∥∥∥∥∥ ũ−β
k+1

nū−β
k+1

∇yF (xk,yk; ξ
y
k)

∥∥∥∥∥
2
+ C

k0−1∑
k=0

E

[√
1

n
∥yk − 1ȳk∥2

]
,

(33)

where

E1,k :=
1− 3µγyū

−β
k+1/4

2γyū
−β
k+1n

∥yk − 1y∗ (x̄k)∥2 −
∥yk+1 − 1y∗ (x̄k+1)∥2(
2 + µγyū

−β
k+1

)
γyū

−β
k+1n

. (34)

Proof. Using Young’s inequality with parameter λk, we get
1

n
∥yk+1 − 1ȳ∗ (x̄k+1)∥2

⩽
(1 + λk)

n
∥yk+1 − 1y∗ (x̄k)∥2 +

(
1 +

1

λk

)
∥y∗ (x̄k)− y∗ (x̄k+1)∥2 .

(35)

Recalling that yk+1 = PY

(
W
(
yk + γyU

−β
k+1∇yF (xk,yk; ξ

y
k)
))

, we further define

ŷk+1 =W
(
yk + γyU

−β
k+1∇yF (xk,yk; ξ

y
k)
)
.

Then, for the first term on the RHS of (35), by the non-expansiveness property of projection operator
PY(·) (c.f., Lemma 1 in (Nedic et al., 2010)), we have
1

n
∥yk+1 − 1y∗ (x̄k)∥2

⩽
1

n
∥ŷk+1 − 1y∗ (x̄k)∥2 −

1

n
∥yk+1 − ŷk+1∥2

⩽
1

n
∥yk − 1y∗ (x̄k)∥2 +

γ2y
n

∥∥∥U−β
k+1∇yF (xk,yk; ξ

y
k)
∥∥∥2

− 1

n

n∑
i=1

2
〈
γyū

−β
k+1g

y
i,k, yi,k − y

∗ (x̄k)
〉
− 1

n

n∑
i=1

2
〈
γy

(
u−β
i,k+1 − ū

−β
k+1

)
gyi,k, yi,k − y

∗ (x̄k)
〉
,

(36)

22

wherein the last inequality we have used the fact ∥W∥22 ⩽ 1. Then, multiplying by 1/
(
γyū

−β
k+1

)
on

both sides of (35) we get

1

nγyū
−β
k+1

∥yk+1 − 1y∗ (x̄k)∥2

⩽
1 + λk

λkγyū
−β
k+1

∥ȳ∗ (x̄k)− ȳ∗ (x̄k+1)∥2

+ (1 + λk)

(
1

nγyū
−β
k+1

∥yk − 1y∗ (x̄k)∥2 +
γy

nū−β
k+1

∥∥∥U−β
k+1∇yF (xk,yk; ξ

y
k)
∥∥∥2)

− (1 + λk)

(
1

n

n∑
i=1

2
〈
gyi,k, yi,k − y

∗ (x̄k)
〉
− 1

n

n∑
i=1

2

〈(
u−β
i,k+1 − ū

−β
k+1

ū−β
k+1

)
gyi,k, yi,k − y

∗ (x̄k)

〉)
.

(37)
For the inner-product terms on the RHS, taking expectation on both sides, we have

1

n

n∑
i=1

E
[
−2
〈
gyi,k, yi,k − y

∗ (x̄k)
〉]

=
1

n

n∑
i=1

E [−2 ⟨∇yfi (x̄k, yi,k) , yi,k − y∗ (x̄k)⟩]

+
1

n

n∑
i=1

E [−2 ⟨∇yfi (xi,k, yi,k)−∇yfi (x̄k, yi,k) , yi,k − y∗ (x̄k)⟩]

⩽
1

n

n∑
i=1

E
[
−2 (fi (x̄k, y∗ (x̄k))− fi (x̄k, yi,k))− µ ∥yi,k − y∗ (x̄k)∥2

]
+

1

n

n∑
i=1

E
[
8

µ
∥∇yfi (xi,k, yi,k)−∇yfi (x̄k, yi,k)∥2 +

µ

8
∥yi,k − ȳ∗ (x̄k)∥2

]

⩽ E [−2 (f (x̄k, y∗ (x̄k))− f (x̄k, ȳk))] +
1

n

n∑
i=1

E [−2 (fi (x̄k, ȳk)− fi (x̄k, yi,k))]

+
8κL

n

n∑
i=1

E
[
∥xi,k − x̄k∥2

]
− 7µ

8n

n∑
i=1

E
[
∥yi,k − y∗ (x̄k)∥2

]
,

(38)

where we have used Young’s inequality and strong-concavity of fi, and

1

n

n∑
i=1

E

[
−2

〈(
u−β
i,k+1 − ū

−β
k+1

ū−β
k+1

)
gyi,k, yi,k − y

∗ (x̄k)

〉]

⩽
1

n

n∑
i=1

E

 8

µ

∥∥∥∥∥
(
u−β
i,k+1 − ū

−β
k+1

ū−β
k+1

)
gyi,k

∥∥∥∥∥
2

+
µ

8
∥yi,k − y∗ (x̄k)∥2

. (39)

For the consensus error of dual variable on the objective function, using strong-concavity of fi and
Jensen’s inequality, we have

1

n

n∑
i=1

−2 (fi (x̄k, ȳk)− fi (x̄k, yi,k))

⩽
1

n

n∑
i=1

2 ⟨∇yfi (x̄k, ȳk) , yi,k − ȳk⟩ −
µ

n
∥yk − 1ȳk∥2

⩽ 2C
1

n

n∑
i=1

∥yi,k − ȳk∥ ⩽ 2C

√
1

n
∥yk − 1ȳk∥2.

(40)

23

Letting λk = µγyū
−β
k+1/2, we get

E [f (x̄k, ȳ
∗ (x̄k))− f (x̄k, ȳk)]

⩽ E

1− 3µγyū
−β
k+1/4

2γyū
−β
k+1n

∥yk − 1y∗ (x̄k)∥2 −
∥yk+1 − 1y∗ (x̄k+1)∥2(
2 + µγyū

−β
k+1

)
γyū

−β
k+1n

+
γ2xκ

2
(
1 + ζ2v

)
G2β

nµγ2y
E
[
v̄−2α
k+1 ∥∇xF (xk,yk; ξ

x
k)∥

2
]

+
γy
(
1 + ζ2u

)
n

n∑
i=1

E
[
ū−β
k+1 ∥∇yF (xk,yk; ξk)∥2

]
+

4κL

n
E
[
∥xk − 1ȳk∥2

]

+
4

µ
E

∥∥∥∥∥ ũ−β
k+1

nū−β
k+1

∇yF (xk,yk; ξ
y
k)

∥∥∥∥∥
2
+ CE

[√
1

n
∥yk − 1ȳk∥2

]
.

(41)

By the κ-smoothness of y∗, we have

∥y∗ (x̄k+1)− y∗ (x̄k)∥2

⩽ κ2 ∥x̄k+1 − x̄k∥2

= κ2

∥∥∥∥∥γxv̄−α
k+1

1T

n
∇xF (xk,yk; ξk)− γx

(
ṽ−α
k+1

)T
n

∇xF (xk,yk; ξ
x
k)

∥∥∥∥∥
2

⩽
2γ2xκ

2
(
1 + ζ2v

)
v̄−2α
k+1

n
∥∇xF (xk,yk; ξ

x
k)∥

2
.

(42)

Telescoping the obtained terms from 0 to k0 − 1 and noticing that ūk ⩽ G for k ⩽ k0 − 1 we
complete the proof.

For the second phase, i.e., k ⩾ k0, we have the following lemma.

Lemma 7 (Second phase). Suppose Assumption 1-4 hold. If ūk ⩽ G, k = 0, 1, · · · , k0 − 1, then we
have

K−1∑
k=k0

E [f (x̄k, ȳ
∗ (x̄k))− f (x̄k, ȳk)]

⩽
K−1∑
k=k0

E [E1,k] +
8γ2xκ

2
(
1 + ζ2v

)
µγ2yG

2α−2β

K−1∑
k=k0

∥∇xf (x̄k, ȳk)∥2

+

(
8γ2xκ

2L2
(
1 + ζ2v

)
nµγ2yG

2α−2β
+

4κL

n

)
K−1∑
k=k0

E [∆k]

+
γy
(
1 + ζ2u

)
n

E
[
ū−β
k+1 ∥∇yF (xk,yk; ξk)∥2

]
+ C

K−1∑
k=k0

E

[√
1

n
∥yk − 1ȳk∥2

]

+
γ2x
(
1 + ζ2v

)
γy v̄

α−β
1

(
κ2 +

2γ2x
(
1 + ζ2v

)
C2L̂2

µγy v̄
2α−β
1

)
K−1∑
k=k0

E

[
v̄−α
k+1

n
∥∇xF (xk,yk; ξ

x
k)∥

2

]

+
4γxκ (1 + ζv)C

2

µγy v̄α1
E
[
ūβK

]
+

4

µ

K−1∑
k=k0

E

∥∥∥∥∥ ũ−β
k+1

nū−β
k+1

∇yF (xk,yk; ξ
y
k)

∥∥∥∥∥
2
.

(43)

24

Proof. Firstly, by the non-expansiveness of projection operator, we have

∥yi,k+1 − y∗ (x̄k+1)∥2

⩽ ∥ŷi,k+1 − y∗ (x̄k+1)∥2 − ∥yi,k+1 − ŷi,k+1∥2

= ∥ŷi,k+1 − y∗ (x̄k)∥2 + ∥y∗ (x̄k+1)− y∗ (x̄k)∥2

− 2 ⟨ŷi,k+1 − y∗ (x̄k) , y∗ (x̄k+1)− y∗ (x̄k)⟩
= ∥ŷi,k+1 − y∗ (x̄k)∥2 + ∥y∗ (x̄k+1)− y∗ (x̄k)∥2

− 2 (ŷi,k+1 − y∗ (x̄k))T ∇y∗ (x̄k) (x̄k+1 − x̄k)T

− 2 (ŷi,k+1 − y∗ (x̄k))T
(
y∗ (x̄k+1)− y∗ (x̄k)−∇y∗ (x̄k) (x̄k+1 − x̄k)T

)
.

(44)

Then, for the first inner-product term on the RHS, letting∇xF̃k = ∇xF (xk,yk; ξk)−∇xF (xk,yk),
we get

− 2 (ŷi,k+1 − y∗ (x̄k))T ∇y∗ (x̄k) (x̄k+1 − x̄k)T

= 2γx (ŷi,k+1 − y∗ (x̄k))T ∇y∗ (x̄k) (∇xF (xk,yk))
T

(
1v̄−α

k+1

n
+

ṽ−α
k+1

n

)

+ 2γx (ŷi,k+1 − y∗ (x̄k))T ∇y∗ (x̄k)
(
∇xF̃k

)T (1v̄−α
k+1

n
+

ṽ−α
k+1

n

)

⩽ 2γxκ ∥ŷi,k+1 − y∗ (x̄k)∥

∥∥∥∥∥(∇xF (xk,yk))
T

(
1v̄−α

k+1

n
+

ṽ−α
k+1

n

)∥∥∥∥∥
+ 2γx (ŷi,k+1 − y∗ (x̄k))T ∇y∗ (x̄k)

(
∇xF̃k

)T (1v̄−α
k+1

n
+

ṽ−α
k+1

n

)
.

(45)

wherein the last inequality we have used the fact that y∗ is κ-Lipschitz. Then, using Young’s inequality
with parameter λk, we get

− 2 (ŷi,k+1 − y∗ (x̄k))T ∇y∗ (x̄k) (x̄k+1 − x̄k)T

⩽ λk ∥ŷi,k+1 − y∗ (x̄k)∥2

+
2γ2xv̄

−2α
k+1 κ

2

λk

∥∥∥∥1T

n
∇xF (xk,yk)

∥∥∥∥2 +
∥∥∥∥∥
(
ṽ−α
k+1

)T
nv̄−α

k+1

∇xF (xk,yk)

∥∥∥∥∥
2

+ 2γx (ŷi,k+1 − y∗ (x̄k))T ∇y∗ (x̄k)
(
∇xF̃k

)T (1v̄−α
k+1

n
+

ṽ−α
k+1

n

)
.

(46)

For the second inner-product term on the RHS, noticing that y∗ is L̂ = κ (1 + κ)
2 smooth given in

Lemma 2, we have

2 (ŷi,k+1 − y∗ (x̄k))T
(
y∗ (x̄k)− y∗ (x̄k+1) +∇y∗ (x̄k) (x̄k+1 − x̄k)T

)
⩽ 2 ∥ŷi,k+1 − y∗ (x̄k)∥ ∥y∗ (x̄k)− y∗ (x̄k+1) +∇y∗ (x̄k) (x̄k+1 − x̄k)∥2

⩽ 2 ∥ŷi,k+1 − y∗ (x̄k)∥
L̂

2
∥x̄k+1 − x̄k∥2

⩽ γ2xL̂ ∥ŷi,k+1 − y∗ (x̄k)∥

∥∥∥∥∥
(
v̄−α
k+11

T

n
+

(
ṽ−α
k+1

)T
n

)
∇xF (xk,yk; ξ

x
k)

∥∥∥∥∥
2

⩽ γ2xL̂ ∥ŷi,k+1 − y∗ (x̄k)∥
2v̄−2α

k+1

(
1 + ζ2v

)
C

n
∥∇xF (xk,yk; ξ

x
k)∥

⩽ τγ2xv̄
−2α
k+1

(
1 + ζ2v

)
C2L̂ ∥ŷi,k+1 − y∗ (x̄k)∥2 +

γ2xv̄
−2α
k+1

(
1 + ζ2v

)
L̂

τn
∥∇xF (xk,yk; ξ

x
k)∥

2
,

(47)

25

wherein the last inequality we have used Young’s inequality with parameter τ . Plugging the obtained
inequalities into (44), we get

∥yi,k+1 − y∗ (x̄k+1)∥2

⩽
(
1 + λk + τγ2xv̄

−2α
k+1

(
1 + ζ2v

)
C2L̂

)
∥ŷi,k+1 − y∗ (x̄k)∥2

+
γ2xv̄

−2α
k+1

(
1 + ζ2v

)
n

(
2κ2 +

L̂

τ

)
∥∇xF (xk,yk; ξk)∥2

+
2γ2xv̄

−2α
k+1 κ

2

λk

∥∥∥∥1T

n
∇xF (xk,yk)

∥∥∥∥2 +
∥∥∥∥∥
(
ṽ−α
k+1

)T
nv̄−α

k+1

∇xF (xk,yk)

∥∥∥∥∥
2

+ 2γx (ŷi,k+1 − y∗ (x̄k))T ∇y∗ (x̄k)
(
∇xF̃

)T (1v̄−α
k+1

n
+

ṽ−α
k+1

n

)
.

(48)

Setting the parameters for Young’s inequalities we used as follows,

λk =
µγyū

−β
k+1

4
, τ =

µγy v̄
2α−β
0

4γ2x (1 + ζ2v)C
2L̂
, (49)

then we get

∥yi,k+1 − y∗ (x̄k+1)∥2

⩽

(
1 +

µγyū
−β
k+1

2

)
∥ŷi,k+1 − y∗ (x̄k)∥2

+
γ2x
(
1 + ζ2v

)
n

(
2κ2 +

4γ2x
(
1 + ζ2v

)
C2L̂2

µγy v̄
2α−β
0

)
v̄−2α
k+1 ∥∇xF (xk,yk; ξk)∥2

+
8γ2xv̄

−2α
k+1 κ

2

µγyū
−β
k+1

∥∥∥∥1T

n
∇xF (xk,yk)

∥∥∥∥2 +
∥∥∥∥∥
(
ṽ−α
k+1

)T
nv̄−α

k+1

∇xF (xk,yk)

∥∥∥∥∥
2

+ 2γx (ŷi,k+1 − y∗ (x̄k))T ∇y∗ (x̄k)
(
∇xF̃k

)T (1v̄−α
k+1

n
+

ṽ−α
k+1

n

)
.

(50)

Recalling that

1

n

n∑
i=1

E

[
1

γyū
−β
k+1

∥ŷi,k+1 − ȳ∗ (x̄k)∥2
]

⩽
1

n

n∑
i=1

E

[
1− 3µγyū

−β
k+1/4

γyū
−β
k+1

∥yi,k − ȳ∗ (x̄k)∥2
]
+

8κL

n
E
[
∥xk − 1ȳk∥2

]
+

2γy
(
1 + ζ2u

)
n

E
[
ū−β
k+1 ∥∇yF (xk,yk; ξk)∥2

]
− E [2 (f (x̄k, ȳ

∗ (x̄k))− f (x̄k, ȳk))]

+
8

µ
E

∥∥∥∥∥ ũ−β
k+1

nū−β
k+1

∇yF (xk,yk; ξ
y
k)

∥∥∥∥∥
2
+ 2CE

[√
1

n
∥yk − 1ȳk∥2

]
,

26

and multiplying by 2

(2+µγyū
−β
k+1)γyū

−β
k+1

on both sides of (50), we obtain that

E [f (x̄k, ȳ
∗ (x̄k))− f (x̄k, ȳk)]

⩽ E [E1,k] +
γy
(
1 + ζ2u

)
n

E
[
ū−β
k+1 ∥∇yF (xk,yk; ξk)∥2

]
+

4κL

n
E
[
∥xk − 1ȳk∥2

]
+

4

µ
E

∥∥∥∥∥ ũ−β
k+1

nū−β
k+1

∇yF (xk,yk; ξ
y
k)

∥∥∥∥∥
2
+ CE

[√
1

n
∥yk − 1ȳk∥2

]

+ E

4γ2xv̄−2α
k+1 κ

2

µγ2y ū
−2β
k+1

∥∥∥∥1T

n
∇xF (xk,yk)

∥∥∥∥2 +
∥∥∥∥∥
(
ṽ−α
k+1

)T
nv̄−α

k+1

∇xF (xk,yk)

∥∥∥∥∥
2

︸ ︷︷ ︸
E[E2,k]

+
γ2x
(
1 + ζ2v

)
n

(
κ2 +

2γ2x
(
1 + ζ2v

)
C2L̂2

µγy v̄
2α−β
1

)
E

[
v̄−2α
k+1

γyū
−β
k+1

∥∇xF (xk,yk; ξk)∥2
]

︸ ︷︷ ︸
E[E3,k]

+
1

n

n∑
i=1

E

[
γx

γyū
−β
k+1

(ŷi,k+1 − y∗ (x̄k))T ∇y∗ (x̄k)
(
∇xF̃k

)T (1v̄−α
k+1

n
+

ṽ−α
k+1

n

)]
︸ ︷︷ ︸

E[E4,k]

.

(51)

Telescoping the terms from t0 to K − 1, we get

K−1∑
k=k0

E [f (x̄k, ȳ
∗ (x̄k))− f (x̄k, ȳk)]

⩽
K−1∑
k=k0

E [E1,k] +

K−1∑
k=k0

E [E2,k] +

K−1∑
k=k0

E [E3,k] +

K−1∑
k=k0

E [E4,k]

+
γy
(
1 + ζ2u

)
n

E
[
ū−β
k+1 ∥∇yF (xk,yk; ξk)∥2

]
+

4κL

n

K−1∑
k=k0

E
[
∥xk − 1ȳk∥2

]

+
4

µ
E

∥∥∥∥∥ ũ−β
k+1

nū−β
k+1

∇yF (xk,yk; ξ
y
k)

∥∥∥∥∥
2
+ C

K−1∑
k=k0

E

[√
1

n
∥yk − 1ȳk∥2

]
.

(52)

Next we need to further bound the running sums of E [E2,k], E [E3,k] and E [E4,k] respectively. For
E [E2,k], with the help of Assumption 2 and noticing that ūk ⩽ G, k = 0, 1, · · · , k0 − 1, we get

K−1∑
k=k0

E [E2,k]

⩽
K−1∑
k=k0

E

4γ2xv̄−2α
k+1 κ

2

µγ2y ū
−2β
k+1

∥∥∥∥1T

n
∇xF (xk,yk)

∥∥∥∥2 +
∥∥∥∥∥
(
ṽ−α
k+1

)T
nv̄−α

k+1

∇xF (xk,yk)

∥∥∥∥∥
2

⩽
8γ2xκ

2
(
1 + ζ2v

)
µγ2yG

2α−2β

K−1∑
k=k0

E
[
∥∇xf (x̄k, ȳk)∥2 +

L2

n
∆k

]
.

(53)

27

Then, for the term E [E3,k], noticing that ūk+1 ⩽ v̄k+1 and v̄k+1 ⩾ v̄1, we have

K−1∑
k=k0

E [E3,k]

⩽
K−1∑
k=k0

E

[
γ2x
(
1 + ζ2v

)
nγy

(
κ2 +

2γ2x
(
1 + ζ2v

)
C2L̂2

µγy v̄
2α−β
1

)
v̄−2α
k+1

ū−β
k+1

∥∇xF (xk,yk; ξ
x
k)∥

2

]

⩽
γ2x
(
1 + ζ2v

)
γy v̄

α−β
1

(
κ2 +

2γ2x
(
1 + ζ2v

)
C2L̂2

µγy v̄
2α−β
1

)
K−1∑
k=k0

E

[
v̄−α
k+1

n
∥∇xF (xk,yk; ξ

x
k)∥

2

]
.

(54)

For the term E4,k, we denote

ek :=
γx

γyū
−β
k+1

(
1

n

n∑
i=1

(ŷi,k+1 − y∗ (x̄k))T
)
∇y∗ (x̄k)

(
∇xF̃k

)T (1

n
+

ṽ−α
k+1

nv̄−α
k+1

)
,

then we have

|ek| ⩽
γxκ

γyū
−β
k+1

1

n

n∑
i=1

∥ŷi,k+1 − y∗ (x̄k)∥

∥∥∥∥∥(∇xF̃k

)T (1

n
+

ṽ−α
k+1

nv̄−α
k+1

)∥∥∥∥∥
⩽
γxκ (1 + ζv)

γy
√
nū−β

k+1

(
1

n

n∑
i=1

1

µ
∥∇yf (x̄k, ŷi,k+1)−∇yf (x̄k, y

∗)∥

)∥∥∥∇xF̃
∥∥∥

⩽
2γxκ (1 + ζv)C

2ūβK
µγy︸ ︷︷ ︸
M

,

(55)

where we have used the Lipschitz continuity of y∗ given in Lemma 2 and Assumption 3. Then,
noticing that E

[
∇xF̃k

]
= 0, we obtain

K−1∑
k=k0

E [E4,k] =

K−1∑
k=k0

E
[
ekv̄

−α
k+1

]

= E
[
ek0

v̄−α
k0+1

]
+

K−1∑
k=k0+1

E
[
ekv̄

−α
k

]
︸ ︷︷ ︸

0

+
K−1∑

k=k0+1

E

−ek(v̄−α
k − v̄−α

k+1

)︸ ︷︷ ︸
>0

⩽ E
[
Mv̄−α

k0+1

]
+

K−1∑
k=k0+1

E
[
M
(
v̄−α
k − v̄−α

k+1

)]
⩽ 2E

[
Mv̄−α

k0+1

]
⩽

4γxκ (1 + ζv)C
2

µγy v̄α1
E
[
ūβK

]
.

(56)

Therefore, combining the obtained inequalities, we complete the proof.

Now, it remains to bound the term E1,k.

Lemma 8. Suppose Assumption 1-4 hold. Then, we have

K−1∑
k=0

E [E1,k] ⩽
1

2γyū
−β
1 n

∥y0 − 1y∗ (x̄0)∥2 +
2
(
4βC2

)2+ 1
1−β

µ3+ 1
1−β γ

2+ 1
1−β

y ū2−2β
1

. (57)

28

Proof. Recalling the definition of E1,k as given in (34), we have

K−1∑
k=0

E

1− 3µγyū
−β
k+1/4

2γyū
−β
k+1n

∥yk − 1y∗ (x̄k)∥2 −
∥yk+1 − 1y∗ (x̄k+1)∥2(
2 + µγyū

−β
k+1

)
γyū

−β
k+1n

⩽

1− 3µγyū
−β
1 /4

2γyū
−β
1 n

∥y0 − 1y∗ (x̄0)∥2

+

K−1∑
k=1

E

1− 3µγyū
−β
k+1/4

2γyū
−β
k+1n

− 1

2nγyū
−β
k

(
2 + µγyū

−β
k

)
 ∥yk − 1y∗ (x̄k)∥2

⩽

1− 3µγyū
−β
1 /4

2γyū
−β
1 n

∥y0 − 1y∗ (x̄0)∥2

+

K−1∑
k=1

E

1

2γyū
−β
k+1

− 1

4γyū
−β
k

− µ

8
+

µ

2
(
2 + µγyū

−β
k

) − µ

2︸ ︷︷ ︸
<0

1

n
∥yk − 1y∗ (x̄k)∥2

.

(58)

Next, we show that the term 1

2γyū
−β
k+1

− 1

2γyū
−β
k

− µ
8 is positive for only a constant number of iterations.

If the term is positive at iteration k, then we have

0 <
ūβk+1

2γy
−

ūβk
2γy
− µ

8

⩽ ūβk

(
1 + ∥∇yF (xk,yk; ξ

y
k)∥

2
/nūβk

)β
2γy

−
ūβk
2γy
− µ

8

⩽ ūβk

(
1 + β ∥∇yF (xk,yk; ξ

y
k)∥

2
/nūk

)
2γy

−
ūβk
2γy
− µ

8

=
β ∥∇yF (xk,yk; ξ

y
k)∥

2

2γynū
1−β
k

− µ

8
,

(59)

wherein the last inequality we used Bernoulli’s inequality. Then we have the following two conditions, 1
n ∥∇yF (xk,yk; ξk)∥2 ⩾

γyū
1−β
k+1

4β ⩾ γyū
1−β
1

4β ,

4βG2

µγy
⩾

4β∥∇yF(xk,yk;ξ
y
k)∥2

µγyn
⩾ ū1−β

k+1 ,
(60)

which implies that we have at most (
4βC2

µγy

) 1
1−β 4β

µγyū
1−β
1

(61)

constant number of iterations when the term is positive. Furthermore, when the term is positive, by
the inequality (59), we have(

1

2γyū
−β
k+1

− 1

2γyū
−β
k

− µ

8

)
1

n
∥yk − 1y∗ (x̄k)∥2

⩽
β ∥∇yF (xk,yk; ξ

y
k)∥

2

2γynū
1−β
1

1

n
∥yk − 1y∗ (x̄k)∥2

⩽
βC2

2µ2γyū
1−β
1

1

n

n∑
i=1

∥∇yfi (x̄k, yi,k)−∇yfi (x̄k, y
∗)∥2

⩽
2βC4

µ2γyū
1−β
1

,

(62)

29

where we have used the concavity of fi in y and Assumption 3. Then, we have

K−1∑
k=1

E

[(
1

2γyū
−β
k+1

− 1

2γyū
−β
k

− µ

8

)
1

n
∥yk − 1y∗ (x̄k)∥2

]

⩽
2βC4

µ2γyū
1−β
1

(
4βC2

µγy

) 1
1−β 4β

µγyū
1−β
1

⩽
2
(
4βC2

)2+ 1
1−β

µ3+ 1
1−β γ

2+ 1
1−β

y ū2−2β
1

,

(63)

which completes the proof.

Next, we show in the following lemma that the inconsistency terms, as described in (5), exhibit
asymptotic convergence for the proposed D-AdaST algorithm.

Lemma 9 (Convergence of inconsistency terms). Suppose Assumption 1-4 hold. For the proposed
D-AdaST in Algorithm 1, we have

1

K

K−1∑
k=0

E

∥∥∥∥∥
(
ṽ−α
k+1

)T
nv̄−α

k+1

∇xF (xk,yk; ξ
x
k)

∥∥∥∥∥
2
 ⩽

√√√√ 1

n1−α

(
4ρW

(1− ρW)
2

)α
(1 + ζv) ζvC

2−α

(1− α)Kα
,

(64)
and

1

K

K−1∑
k=0

E

∥∥∥∥∥∥∥
(
ũ−β
k+1

)T
nū−β

k+1

∇yF (xk,yk; ξ
y
k)

∥∥∥∥∥∥∥
2
 ⩽

√√√√ 1

n1−β

(
4ρW

(1− ρW)
2

)β
(1 + ζu) ζuC

2−β

(1− β)Kβ
.

(65)

Proof. By the definition of vi,k in (3), we have

E

∥∥∥∥∥
(
ṽ−α
k+1

)T
nv̄−α

k+1

∇xF (xk,yk; ξ
x
k)

∥∥∥∥∥
2

⩽ E

 1

n2

n∑
i=1

(
v̄αk+1 − vαi,k+1

)2 ∥∥∥gxi,k∥∥∥2
v2αi,k+1

⩽ E

 1

n2

n∑
i=1

(
v̄αk+1 − vαi,k+1

)2 v̄αk+1

v2αi,k+1

∥∥∥gxi,k∥∥∥2
v̄αk+1

 .
(66)

30

Noticing that |v̄
α
k+1−vα

i,k+1|
vα
i,k+1

⩽ ζv , we have

E

∥∥∥∥∥
(
ṽ−α
k+1

)T
nv̄−α

k+1

∇xF (xk,yk; ξ
x
k)

∥∥∥∥∥
2

⩽ E

 1

n2

n∑
i=1

(
v̄αk+1 − vαi,k+1

)2(v̄αk+1 − vαi,k+1

v2αi,k+1

+
1

vαi,k+1

) ∥∥∥gxi,k∥∥∥2
v̄αk+1

⩽ E

 1

n2

n∑
i=1

(
v̄αk+1 − vαi,k+1

)2
v2αi,k+1

∣∣v̄αk+1 − vαi,k+1

∣∣
∥∥∥gxi,k∥∥∥2
v̄αk+1

+ E

 1

n2

n∑
i=1

∣∣∣v̄αk+1 − vαi,k+1

∣∣∣
vαi,k+1

∣∣v̄αk+1 − vαi,k+1

∣∣
∥∥∥gxi,k∥∥∥2
v̄αk+1

⩽ (1 + ζv) ζvE

 1

n

n∑
i=1

∣∣v̄αk+1 − vαi,k+1

∣∣ 1
n

n∑
i=1

∥∥∥gxi,k∥∥∥2
v̄αk+1

 .

(67)

By Lemma 4, we get

1

K

K−1∑
k=0

E

∥∥∥∥∥
(
ṽ−α
k+1

)T
nv̄−α

k+1

∇xF (xk,yk; ξ
x
k)

∥∥∥∥∥
2

⩽ (1 + ζv) ζvE

 1

n

n∑
i=1

∣∣v̄αk+1 − vαi,k+1

∣∣ 1

K

K−1∑
k=0

1
n

∑n
i=1

∥∥∥gxi,k∥∥∥2
v̄αk+1

⩽ (1 + ζv) ζvE

[
1

n

n∑
i=1

∣∣v̄αk+1 − vαi,k+1

∣∣] C2−2α

(1− α)Kα

⩽ (1 + ζv) ζv

√
1

n
E
[
∥vk+1 − 1v̄k+1∥2α

] C2−2α

(1− α)Kα
.

(68)

Next, for the term of inconsistency of the stepsize ∥vk − 1v̄k∥2, we consider two cases due to the
max operator we used. At iteration k, for the case mx

k ⩾ my
k with ∥mx

0 − 1m̄x
0∥

2
= 0, we have

E
[
∥vk+1 − 1v̄k+1∥2

]
= E

[∥∥mx
k+1 − 1m̄x

k+1

∥∥2]
= E

[
∥(W − J) (mx

k − 1m̄x
k) + ηk (W − J)hx

k∥
2
]

⩽
1 + ρW

2
E
[
∥mx

k − 1m̄x
k∥

2
]
+

(1 + ρW) ρW
1− ρW

E
[
∥hx

k∥
2
]

⩽

(
1 + ρW

2

)k

E
[
∥mx

0 − 1m̄x
0∥

2
]
+
nC2 (1 + ρW) ρW

1− ρW

k∑
t=0

(
1 + ρW

2

)k−t

⩽
2nC2 (1 + ρW) ρW

(1− ρW)
2 .

(69)

For the case mx
k <my

k, with ∥my
0 − 1m̄y

0∥
2
= 0,

E
[
∥vk+1 − 1v̄k+1∥2

]
= E

[∥∥my
k+1 − 1m̄y

k+1

∥∥2] ⩽ 2nC2 (1 + ρW) ρW

(1− ρW)
2 , (70)

31

Combining these two cases, and using Lemma 4 and the fact ∥vα
k − 1v̄αk ∥

2 ⩽ ∥vk − 1v̄k∥2α for
α ∈ (0, 1), we obtain the result for primal decision variable. Following the same proof, we can also
derive the result for dual decision variable. We thus complete the proof.

We further give the following lemma to show that the inconsistency of stepsize remains uniformly
bounded for the vanilla D-TiAda algorithm as given in (2).

Lemma 10 (Inconsistency for D-TiAda). Suppose Assumption 1-4 hold. Then, for D-TiAda, we have

1

K

K−1∑
k=0

E

∥∥∥∥∥
(
ṽ−α
k+1

)T
nv̄−α

k+1

∇xF (xk,yk; ξ
x
k)

∥∥∥∥∥
2
 ⩽ ζ2vC

2,

1

K

K−1∑
k=0

E

∥∥∥∥∥∥∥
(
ũ−β
k+1

)T
nū−β

k+1

∇yF (xk,yk; ξ
y
k)

∥∥∥∥∥∥∥
2
 ⩽ ζ2uC

2.

(71)

Proof. By the definition of inconsistency of stepsizes in (8) and Assumption 3 on bounded gradient,
we immediately get the result.

B.3 Proof of Theorem 1

Proof of Theorem 1. Consider a complete graph with 3 nodes where the functions corresponding to
the nodes are as follows:

f1(x, y) = −
1

2
y2 + xy − 1

2
x2,

f2(x, y) = f3(x, y) = −
1

2
y2 − (1 +

1

a
+

1

b
)xy − 1

2
x2,

where a = 2
−1

2α−1 and b = 2
−1

2β−1 .

Notice that the only stationary point of f(x, y) = (f1(x, y) + f2(x, y) + f3(x, y))/3 is (0, 0). We
denote gxi,k = ∇xfi(xk, yk) and gyi,k = ∇yfi(xk, yk).

Now we consider points initialized in line

y = − 1 + a

a+ a
b

x, (72)

where we have

gx1,0 = y0 − x0 = −2ab+ a+ b

ab+ a
x0

gx2,0 = gx3,0 = −
(
1 +

1

b
+

1

a

)
y0 − x0 =

2ab+ a+ b

a2(b+ 1)
x0

gy1,0 = x0 − y0 =
2ab+ a+ b

ab+ a
x0

gy2,0 = gy2,0 = −2ab+ a+ b

ab(b+ 1)
x0.

Note that by our assumptions of the range of α and β, we have a < b. Thus, we have

|gx1,0| = |g
y
1,0| and |gx2,0| > |g

y
2,0|,

32

which means gx2,0 would be chosen in the maximum operator in the denominator of TiAda stepsize
for x. Therefore, after one step, we have

x1 = x0 − ηx
(

gx1,0(
|gx1,0|2

)α +
gx2,0(
|gx2,0|2

)α +
gx3,0(
|gx3,0|2

)α
)

︸ ︷︷ ︸
=0

y1 = y0 − ηy
(

gy1,0(
|gy1,0|2

)β +
gy2,0(
|gy2,0|2

)β +
gy3,0(
|gy3,0|2

)β
)

︸ ︷︷ ︸
=0

.

Next, we will use induction to show that x and y will stay in x0 and y0 for any iteration. Assuming
for all iterations k in 1, . . . , t, xk = x0 and yk = y0, then we have in next step

xt+1 = xt − ηx
(

gx1,0(
t · |gx1,0|2

)α +
gx2,0(

t · |gx2,0|2
)α +

gx3,0(
t · |gx3,0|2

)α
)
.

Note that gx1,0 = −a · gx2,0. Then, we get

xt+1 = xt − ηx
(

−p · gx2,0
tα · a2α · |gx2,0|2α

+
2gx2,0

tα · |gx2,0|2α

)

= xt −
gx2,0

tα · |gx2,0|2α
(
2− a1−2α

)︸ ︷︷ ︸
=0 (by definition of a)

= xt.

Similarly, we can show that yt+1 = yt. Therefore all iterates will stay at (x0, y0) if initialized at line
y = − ab+b

ab+ax, which implies that the initial gradient norm can be arbitrarily large by picking x0 to be
large.

B.4 Proof of Theorem 2 and Corollary 1

Proof of Theorem 2. Combining the results obtained in Lemma 6, 7 and 8, we get
K−1∑
k=0

E [f (x̄k, y
∗ (x̄k))− f (x̄k, ȳk)]

=

k0−1∑
k=0

E [f (x̄k, y
∗ (x̄k))− f (x̄k, ȳk)] +

K−1∑
k=k0

E [f (x̄k, y
∗ (x̄k))− f (x̄k, ȳk)]

⩽
1

2γyū
−β
1 n

E
[
∥y0 − 1y∗ (x̄0)∥2

]
+

2
(
4βC2

)2+ 1
1−β

µ3+ 1
1−β γ

2+ 1
1−β

y ū2−2β
1

+
2γ2xκ

2
(
1 + ζ2v

)
G2β

nµγ2y

k0−1∑
k=0

E
[
v̄−2α
k+1 ∥∇xF (xk,yk; ξ

x
k)∥

2
]

+
γy
(
1 + ζ2u

)
n

K−1∑
k=0

E
[
ū−β
k+1 ∥∇yF (xk,yk; ξk)∥2

]
+ C

K−1∑
k=0

E

[√
1

n
∥yk − 1ȳk∥2

]

+
4

µ

K−1∑
k=0

E

∥∥∥∥∥ ũ−β
k+1

nū−β
k+1

∇yF (xk,yk; ξ
y
k)

∥∥∥∥∥
2
+

8γ2xκ
2
(
1 + ζ2v

)
µγ2yG

2α−2β

K−1∑
k=k0

∥∇xf (x̄k, ȳk)∥2

+

(
8γ2xκ

2L2
(
1 + ζ2v

)
nµγ2yG

2α−2β
+

4κL

n

)
K−1∑
k=0

E [∆k] +
4γxκ (1 + ζv)C

2

µγy v̄α1
E
[
ūβK

]
+
γ2x
(
1 + ζ2v

)
γy v̄

α−β
1

(
κ2 +

2γ2x
(
1 + ζ2v

)
C2L̂2

µγy v̄
2α−β
1

)
K−1∑
k=k0

E

[
v̄−α
k+1

n
∥∇xF (xk,yk; ξ

x
k)∥

2

]
.

(73)

33

Letting the separation point between the two phases discussed in Lemma 6 and 7 satisfy

G =

(
16
(
1 + ζ2v

)
γ2xκ

4

γ2y

) 1
2α−2β

, (74)

then, plugging above inequality into (18), with the help of Lemma 4-8 and Lemma 9, we get

1

K

K−1∑
k=0

E
[
∥∇Φ (x̄k)∥2

]
⩽ E0 + EG + EW +

8C2α (Φmax − Φ∗)

γxK1−α

+
32γxκ

3 (1 + ζv)C
2+2β

γy v̄α1K
1−β

+
8κLγy

(
1 + ζ2u

)
C2−2β

(1− β)Kβ

+

(
γxLΦ +

κ3Lγ2x

γy v̄
α−β
1

+
2γ4xκ

2
(
1 + ζ2v

)
C2L̂2

γ2y v̄
3α−2β
1

)
8
(
1 + ζ2v

)
C2−2α

(1− α)Kα

+

√√√√ 1

n1−α

(
4ρW

(1− ρW)
2

)α
16 (1 + ζv) ζvC

2−α

(1− α)Kα

+

√√√√ 1

n1−β

(
4ρW

(1− ρW)
2

)β
32κ2 (1 + ζu) ζuC

2−β

(1− β)Kβ

+ 8κLC

√√√√8ρW γ2y (1 + ζ2u)

(1− ρW)
2

(
C2−4β

(1− 2β)K2β
Iβ<1/2 +

1 + log uK − log v1

Kū2β−1
1

Iβ⩾1/2

)
,

(75)

where L̂ = κ (1 + κ)
2
, LΦ = L (1 + κ), and

E0 :=
4κL

Kγyū
−β
1 n

E
[
∥y0 − 1y∗ (x̄0)∥2

]
+

16κ2
(
4βC2

)2+ 1
1−β

Kµ2+ 1
1−β γ

2+ 1
1−β

y ū2−2β
1

,

EG :=
16γ2xκ

4
(
1 + ζ2v

)
G2β

γ2y

(
C2−4α

(1− 2α)K2α
Iα<1/2 +

1 + log vK − log v1

Kv̄2α−1
1

Iα⩾1/2

)
,

EW :=
32
(
8κL+ 3L2

)
ρW γ2x

(
1 + ζ2v

)
(1− ρW)

2

(
C2−4α

(1− 2α)K2α
Iα<1/2 +

1 + log vK − log v1

Kv̄2α−1
1

Iα⩾1/2

)
+

32
(
8κL+ 3L2

)
ρW γ2y

(
1 + ζ2u

)
(1− ρW)

2

(
C2−4β

(1− 2β)K2β
Iβ<1/2 +

1 + log uK − log v1

Kū2β−1
1

Iβ⩾1/2

)
.

Letting the total iteration K satisfy the conditions given in (12) such that the terms E0, EG and EW

are dominated by the others, we thus complete the proof.

Proof of Corollary 1. With the help of Lemma 10, we can directly adapt the proof of Theorem 2 to
get the result in (14).

B.5 Extend the proof to coordinate-wise stepsize

In this subsection, we show how to extend our convergence analysis of D-AdaST to the coordinate-
wise adaptive stepsize (Zhou et al., 2018) variant. We first present this variant in Algorithm 2, which
can be rewritten in a compact form with the Hadamard product denoted by ⊙.

34

Algorithm 2 D-AdaST with coordinate-wise adaptive stepsize
Initialization: xi,0 ∈ Rp, yi,0 ∈ Y , buffers mx

i,0,m
y
i,0 > 0, stepsizes γx, γy > 0 and 0 < β <

α < 1.
1: for iteration k = 0, 1, · · · , each node i ∈ [n], do
2: Sample i.i.d ξxi,k and ξyi,k, compute:

gxi,k = ∇xfi
(
xi,k, yi,k; ξ

x
i,k

)
, gyi,k = ∇yfi

(
xi,k, yi,k; ξ

y
i,k

)
.

3: Accumulate the gradient with Hadamard product:

mx
i,k+1 = mx

i,k + gxi,k ⊙ gxi,k, m
y
i,k+1 = my

i,k + gyi,k ⊙ g
y
i,k

4: Compute the ratio:

ψi,k+1 =
∥∥mx

i,k+1

∥∥2α /max

{∥∥mx
i,k+1

∥∥2α ,∥∥∥my
i,k+1

∥∥∥2α} ⩽ 1.

5: Update primal and dual variables locally:

xi,k+1 = xi,k − γxψi,k+1

(
mx

i,k+1

)−α ⊙ gxi,k,

yi,k+1 = yi,k + γy

(
my

i,k+1

)−β

⊙ gyi,k.

6: Communicate parameters with neighbors:{
mx

i,k+1,m
y
i,k+1, xi,k+1, yi,k+1

}
←
∑
j∈Ni

Wi,j

{
mx

j,k+1,m
y
j,k+1, xj,k+1, yj,k+1

}
.

7: Projection of dual variable on to set Y: yi,k+1 ← PY (yi,k+1).
8: end for

mx
k+1 =W (mx

k + hx
k) , (76a)

my
k+1 =W (my

k + hy
k) , (76b)

xk+1 =W
(
xk − γxV −α

k+1 ⊙∇xF (xk,yk; ξ
x
k)
)
, (76c)

yk+1 = PY

(
W
(
yk + γyU

−β
k+1 ⊙∇yF (xk,yk; ξ

y
k)
))

, (76d)

where

hx
k =

[
· · · , gxi,k ⊙ gxi,k, · · ·

]T ∈ Rn×p, hy
k =

[
· · · , gyi,k ⊙ g

y
i,k, · · ·

]T
∈ Rn×d,

and the matrices Uα
k and V β

k are redefined as follows:

V −α
k =

[
· · · , v−α

i,k , · · ·
]T
, [vi,k]j = max

{[
mx

i,k

]
j
,
[
my

i,k

]
j

}
, j ∈ [p] ,

U−β
k =

[
· · · , u−β

i,k , · · ·
]T
, [ui,k]j =

[
my

i,k

]
j
, j ∈ [d] ,

(77)

where [·]j denotes the j-th element of a vector.

Recalling the definitions of inconsistency of stepsize in (8), we give the following notations:

Ṽk = Vk − v̄k11T
p , v̄k =

1

np

n∑
i=1

p∑
j

Vij , v̄i,k =
1

p

p∑
j

Vij , v̄j,k =
1

n

n∑
i=1

Vij ,

Ũk = Uk − ūk11T
p , ūk =

1

nd

n∑
i=1

d∑
j

Uij , ūi,k =
1

d

d∑
j

Uij , ūj,k =
1

n

n∑
i=1

Uij ,

(78)

35

and

ζ2V = sup
k⩾0

{∥∥V −α
k − v̄−α

k 11T
p

∥∥2
np
(
v̄−α
k

)2
}
, ζ̂2v = sup

k⩾0

∥∥∥V −α

k − (VkJp)
−α
∥∥∥2

np
(
v̄−α
k

)2
 ,

ζ2U = sup
k⩾0

∥∥∥U−β

k − ū−β
k 11T

d

∥∥∥2
nd
(
ū−β
k

)2
 , ζ̂2u = sup

k⩾0

∥∥∥U−β

k − (UkJd)
−β
∥∥∥2

nd
(
ū−β
k

)2
 .

Building upon the established definitions of coordinate-wise stepsize inconsistency, the subsequent
lemma is presented to show the non-convergence of the inconsistency term compared to Lemma 9.

Lemma 11 (Inconsistency, coordinate-wise). Suppose Assumption 1-4 hold. For the proposed
D-AdaST algorithm, we have

1

K

K−1∑
k=0

E

∥∥∥∥∥ 1T

nv̄−α
k+1

Ṽ −α
k+1 ⊙∇xF (xk,yk; ξ

x
k)

∥∥∥∥∥
2

⩽ 2 (1 + ζv) ζv

√√√√ 1

n1−α

(
4C2ρW

(1− ρW)
2

)α
C2−2α

(1− α)Kα
+ 2npζ̂2vC

2

(79)

and

1

K

K−1∑
k=0

E

∥∥∥∥∥ 1T

nū−β
k+1

Ũ−β
k+1 ⊙∇yF (xk,yk; ξ

y
k)

∥∥∥∥∥
2

⩽ 2 (1 + ζu) ζu

√√√√ 1

n1−β

(
4C2ρW

(1− ρW)
2

)β
C2−2β

(1− β)Kβ
+ 2ndζ̂2uC

2.

(80)

In contrast, for D-TiAda, we have

1

K

K−1∑
k=0

E

∥∥∥∥∥ 1T

nv̄−α
k+1

Ṽ −α
k+1 ⊙∇xF (xk,yk; ξ

x
k)

∥∥∥∥∥
2
 ⩽ pζ2V C

2,

1

K

K−1∑
k=0

E

∥∥∥∥∥ 1T

nū−β
k+1

Ũ−β
k+1 ⊙∇yF (xk,yk; ξ

y
k)

∥∥∥∥∥
2
 ⩽ dζ2UC

2.

(81)

Proof. For the coordinate-wise adaptive stepsize, with the definitions of Frobenius norm and
Hadamard product, we have

E

∥∥∥∥∥ 1T

nv̄−α
k+1

Ṽ −α
k+1 ⊙∇xF (xk,yk; ξ

x
k)

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1T

nv̄−α
k+1

(
V −α
k+1 − (Vk+1J)

−α
+ (Vk+1J)

−α − v̄−α
k+111

T
p

)
⊙∇xF (xk,yk; ξ

x
k)

∥∥∥∥∥
2

⩽ 2E

∥∥∥∥∥ 1T

nv̄−α
k+1

(
(Vk+1J)

−α − v̄−α
k+111

T
p

)
⊙∇xF (xk,yk; ξ

x
k)

∥∥∥∥∥
2

+ 2E

∥∥∥∥∥ 1T

nv̄−α
k+1

(
V −α
k+1 − (Vk+1J)

−α
)
⊙∇xF (xk,yk; ξ

x
k)

∥∥∥∥∥
2
 .

(82)

36

For the first term on the RHS, according to the definitions given in (78), we have

E

∥∥∥∥∥ 1T

nv̄−α
k+1

(
(Vk+1J)

−α − v̄−α
k+111

T
p

)
⊙∇xF (xk,yk; ξ

x
k)

∥∥∥∥∥
2

⩽ E

[
1

n2v̄−2α
k+1

n∑
i=1

(
v̄αi,k+1 − v̄αk+1

)2 ∥∥∇xfi
(
xi,k, yi,k; ξ

x
i,k

)∥∥2] .
(83)

Then, for the second part, we have

E

∥∥∥∥∥ 1T

nv̄−α
k+1

(
V −α
k+1 − (Vk+1J)

−α
)
⊙∇xF (xk,yk; ξ

x
k)

∥∥∥∥∥
2

⩽
1

n
E

∥∥∥∥∥V −α
k+1 − (Vk+1J)

−α

v̄−α
k+1

∥∥∥∥∥
2

∥∇xF (xk,yk; ξ
x
k)∥

2

⩽ pζ̂2vE

[
∥∇xF (xk,yk; ξ

x
k)∥

2
]
.

(84)

where the term ζ̂2v is not guaranteed to be convergent because the stepsizes between the different
dimensions of each node are not consistent. Then, similar to the proof of Lemma 9, we can obtain the
result presented in (79).

Next, noticing that for D-TiAda,

E

∥∥∥∥∥ 1T

nv̄−α
k+1

Ṽ −α
k+1 ⊙∇xF (xk,yk; ξ

x
k)

∥∥∥∥∥
2
 ⩽

1

n
E

∥∥∥∥∥ Ṽ −α
k+1

v̄−α
k+1

∥∥∥∥∥
2

∥∇xF (xk,yk; ξ
x
k)∥

2

 ⩽ pζ2V C
2,

(85)
and using Lemma 9, we complete the proof.

Theorem 3. Suppose Assumption 1-4 hold. Let 0 < β < α < 1 and the total iteration satisfy

K = Ω

max

(
γ2xκ

4

γ2y

) 1
α−β

,

(
1

(1− ρW)
2

)max{ 1
α , 1β}

 .

to ensure time-scale separation and quasi-independence of network. For D-AdaST with coordinate-
wise adaptive stepsize, we have

1

K

K−1∑
k=0

E
[
∥∇Φ (x̄k)∥2

]
= Õ

(
1

K1−α
+

1

(1− ρW)
α
Kα

+
1

K1−β
+

1

(1− ρW)Kβ

)
+O

(
n
(
pζ̂2v + κ2dζ̂2u

)
C2
)
.

(86)

Proof. With the help of Lemma 11 and the obtained result (75) in the proof of Theorem 2, we can
derive the convergence results for D-AdaST with coordinate-wise adaptive stepsize.

Remark 6. In Theorem 3, we show that the coordinate-wise variant of D-AdaST exhibits a steady-
state error in its upper bound. This error depends on the number of nodes and the dimension of
the problem, which stems from the stepsize inconsistency in each dimension of the local decision
variables for each node (c.f., Line 3 of Algorithm 2).

37

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contributions and scope of this work have been accurately discussed.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] ,
Justification: We have carefully discussed the limitations of this work in terms of assumptions
and main results.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

38

Justification: We have provided a full set of assumptions and complete proof for the
theoretical results. See Section 3 and Appendix B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided detailed experimental settings and reproducibility informa-
tion for the experiments of this work. See Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

39

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code of this work is included in the supplementary.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided detailed experimental settings in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Multiple runs with averaging are used to produce the experimental curves in
this work.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

40

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provided sufficient information on the computer resources in Ap-
pendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This work conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none of which we
feel are negative.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

41

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The license/copyright information of the code and dataset in this paper is clear.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

42

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code of this paper is included in the supplementary.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

43

	Introduction
	Related Works

	Distributed Adaptive Minimax Methods
	Non-Convergence of Direct Extensions
	The Proposed D-AdaST Algorithm

	Convergence Analysis
	Assumptions
	Main Results

	Experiments
	Conclusion
	Additional Experiments
	Experimental details
	Additional experiments on robust training of neural network.
	Additional experiments on training GANs
	Additional experiments with different choices of and

	Proof of the main results
	Supporting lemmas
	Key Lemmas
	Proof of Theorem 1
	Proof of Theorem 2 and Corollary 1
	Extend the proof to coordinate-wise stepsize

