
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Learning HJB Viscosity Solutions with PINNs for Continuous-Time
Reinforcement Learning

Anonymous Authors1

Abstract
Despite recent advances in Reinforcement Learn-
ing (RL), the Markov Decision Processes are not
always the best choice to model complex dynam-
ical systems requiring interactions at high fre-
quency. Being able to work with arbitrary time
intervals, Continuous Time Reinforcement Learn-
ing (CTRL) is more suitable for those problems.
Instead of the Bellman equation operating in dis-
crete time, it is the Hamilton-Jacobi-Bellman
(HJB) equation that describes value function evo-
lution in CTRL. Even though the value function
is a solution of the HJB equation, it may not be
its unique solution. To distinguish the value func-
tion from other solutions, it is important to look
for the viscosity solutions of the HJB equation.
The viscosity solutions constitute a special class
of solutions that possess uniqueness and stability
properties. This paper proposes a novel approach
to approximate the value function by training a
physics informed neural network (PINN) through
a specific ε-scheduling iterative process constrain-
ing the PINN to converge towards the viscosity
solution and shows experimental results with clas-
sical control tasks, where PINNs outperform pop-
ular RL algorithms in a nearly continuous-time
setting.

1. Introduction
Reinforcement learning (RL) is getting more and more at-
tention. Most of state-of-the-art RL methods are designed
to work with Markov Decision Processes (MDPs) and, in
particular, rely on a discrete time assumption. Even though
this assumption is not that restrictive in some tasks like
games, it is no longer valid in complex problems such as
driving cars, finance trading or controling a dynamical sys-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

tem. Such problems are usually described by a dynamical
system where discrete time RL (DTRL) often struggles to
provide accurate control within short time intervals due to
several reasons (Doya, 2000; Wang et al., 2020; Mukher-
jee & Liu, 2023). As DTRL algorithms operate in regular
discrete time steps, it becomes challenging to capture the
nuances of continuous state dynamics within small intervals.
Even when the timestep is set to be small, DTRL may fail
to learn the optimal policy as exploration cannot be done
efficiently.

Continuous Time Reinforcement Learning (CTRL) derives
from the optimal control theory and thus provides a promis-
ing theoretical framework to tackle aforementioned short-
comings of DTRL. CTRL is agnostic on the discretization
of time and thus can provide a good control at any chosen
frequency without the need to retrain the policy. Similar to
DTRL, one way to find an optimal policy is to compute it us-
ing the value function. Thus, the key ingredient in CTRL is
the Hamilton-Jacobi-Bellman (HJB) equation (Doya, 2000;
Munos, 2000), a Partial Differential Equation (PDE), which
is a continuous-time counterpart of the Bellman equation.
This PDE describes the evolution of the value function with
respect to a state of the system, which in turn evolves con-
tinuously with time. In principle, the value function is a
solution of the HJB equation. However, it is only a neces-
sary condition and not a sufficient one. The HJB equation
may have multiple solutions in a class of continuous func-
tions (Munos, 2000) making it a challenging task to find the
value function. Distinguishing the value function from the
other solutions of the HJB equation relies on the search for
the viscosity solution that possesses uniqueness and stability
properties.

However, there is no guarantee in general that the solution
found by existing methods is the good solution, i.e. the vis-
cosity solution. Moreover, even verifying if a given solution
is a viscosity solution is a hard task, let alone finding them.
The existing methods for solving the HJB equation are lim-
ited and mainly applicable to specific cases such as Linear
Quadratic Regulator (LQR) problems or variational prob-
lems (Fleming & Soner, 2006). There exist approaches that
can be applied in general case, such as Finite Difference
(FD), Finite Element Methods (FEM) (Grossmann et al.,

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Learning HJB Viscosity Solutions with PINNs

2007), and dynamic programming methods (Munos, 2000)
that transform a CTRL problem back to a DTRL problem
thanks to the discretization. However, their effectiveness
is hindered by the exponentially growing algorithmic com-
plexity with respect to the state space dimensionality. In
addition, they are also affected by discretization error.

Conversely, neural networks (NNs) are emerging as PDE
solvers that do not require discretization of the domain
and thus they better cope with the curse of dimensional-
ity (Raissi et al., 2019). Although neural networks have
shown a great potential in various domains (Lu et al., 2021;
Karniadakis et al., 2021), applying them to solve the HJB
equation requires caution because of the aforementioned
non-uniqueness issue.

In this paper, we revisit CTRL approaches and analyze how
the latest advances in deep learning can be applied and ad-
justed to solve the HJB equation in the viscosity sense. The
main contribution of this paper is to provide a NN based
framework to find the viscosity solutions of the general
HJB equation. To the best of our knowledge this is the first
attempt to do it. We focus on the case of deterministic envi-
ronments with known dynamics. The extension to stochastic
environments and unknown dynamics is possible (see Wang
et al. (2020); Çağatay Yıldız et al. (2021)), but left for fu-
ture work. To find viscosity solutions, our approach is to
solve sequentially a series of PDEs so that the solution of
the final one is the value function. We use NN solvers for
those PDEs and we propose several ways of building the
sequence of those equations. This work can be interesting
for the optimal control community as we show how to use
the neural networks to get the viscosity solutions and for the
reinforcement learning community as our work can be used
as a basis for Model Based Continuous Time Reinforcement
Learning.

This paper is organized as follows: we start with the analysis
of the existing literature in Section 2. Then, we carefully
introduce the definitions and notations related to CTRL in
Section 3.1, describe the HJB equation in Section 3.2 and
define viscosity solutions in Section 3.3. Then, different
ways of integrating neural networks in the process of solv-
ing the HJB equation are discussed in Section 4. Finally,
we demonstrate the performance of our approach in Sec-
tion 4 on classical control tasks from RL, and show that
our method performs significanly better than some popu-
lar DTRL algorithms in almost continuous-time setting in
Section 5.

2. Related Works
Doya (2000); Munos (2000); Coulom (2002) are among
the first papers to study CTRL. Those works introduced
the HJB equation as a key equation for finding the optimal

policy. In Doya (2000), different discretization schemes and
algorithms are analysed for computing the value function,
including continuous TD(λ) and continuous Actor-Critic. In
his Ph.D. (Coulom, 2002), Coulom studied the applicability
of Doya’s methods (Doya, 2000) to a large class of con-
trol problems. Munos (Munos, 2000) tackled CTRL by the
study of viscosity solutions and their properties. He demon-
strated the challenges of solving the HJB equation such
as the non-uniqueness of solutions and handling inequal-
ity boundary conditions. In addition, convergent numerical
schemes based on dynamic programming were derived to
approximate the value function. One of the problems of
numerical schemes is the curse of dimensionality. To miti-
gate this problem, sparse grids (Kang & Wilcox, 2016) can
be used instead of uniform grid. In this article, we take
the formalism proposed in Munos (2000), but we consider
neural network based approaches to find viscosity solutions,
while Munos (2000) considers tabular algorithms.

As it was first demonstrated in Munos et al. (1999), NNs
can be applied for solving the HJB equation (Liu et al.,
2014; Cheng et al., 2007; Tassa & Erez, 2007; Lutter et al.,
2020; Han et al., 2018; Adhyaru et al., 2011). In Tassa &
Erez (2007), the training is regularized to avoid converg-
ing to “bad” solutions. Moreover, the same work raised
the problem of falling in a local minimum of the squared
HJB residual, and some solutions to avoid it were proposed.
Compared to previous papers, Liu et al. (2014); Adhyaru
et al. (2011) have emphasized the robustness of the result-
ing controller and the stability of the proposed algorithm.
Adapting the former methods for more practical cases such
as the inverted pendulum and the cartpole was done in Lut-
ter et al. (2020). We consider similar approaches as Tassa
& Erez (2007); Lutter et al. (2020), but unlike them we
use the formalism proposed in Munos (2000) to develop an
approach that can converge to viscosity solutions.

Several extensions to the classical HJB equation were also
introduced such as HJB for an explorative reward func-
tion (Wang et al., 2020), the soft HJB equation with maxi-
mum entropy regularization (Kim & Yang, 2020; Halperin,
2021) and the distributional HJB equation (Wiltzer et al.,
2022). Those works extend the existing theory to other
definitions of the value function, however experiments are
conducted on a limited set of simple problems. Futhermore,
it is also possible to extend the HJB equation to continuous-
time partially observable Markov decision processes (CT-
POMDPs). (Alt et al., 2020), proposed a formalism to
describe CTPOMDPs, including the CTPOMDP HJB equa-
tion. Kim et al. (2021) tackle the problem of CTRL by
adapting the well-known DQN algorithm to this framework.
A definition for the Q-function in the continuous case is
given and the “HJB equation for the Q-function” is derived,
which results in a DQN-like algorithm for the semi-discrete
time setting. However, this approach is limited to Lipschitz

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Learning HJB Viscosity Solutions with PINNs

continuous control, while there are a lot of cases where
only discrete control is available. The HJB equation was
used to improve DTRL algorithms like PPO in Mukherjee
& Liu (2023). This resulted in a significant improvement on
MuJoCo tasks, proving that HJB loss is better adapted for
learning value functions of dynamical systems.

There were some attempts to propose alternative ways for
solving the HJB equation. Another NN approach to approx-
imate the value function based on Pontryagin’s maximum
principle has been proposed (Nakamura-Zimmerer et al.,
2021), assuming the concavity of the reward function. They
use numerical methods to collect a dataset of trajectories by
solving the boundary value problem on short time intervals
and then train a NN to fit them. Conversely, Darbon et al.
(2023) considers some special neural network architectures
inspired with min-plus algebra to solve some optimal control
problems with linear dynamics and quadratic rewards.

Another line of research exploits the continuous time formu-
lation to do more accurate Monte Carlo estimations of value
functions (Lutter et al., 2021b;a; Çağatay Yıldız et al., 2021)
rather than using the HJB equation. Lutter et al. (2021b)
adapted the fitted value iteration algorithm to the CTRL
problem. In Çağatay Yıldız et al. (2021), a model-based al-
gorithm was introduced, which aims at solving the problem
in an actor-critic manner. Bayesian neural ODEs are used
in order to learn the dynamics of the system.

3. Hamilton-Jacobi-Bellman Equation
3.1. Reinforcement Learning Formalism in the

Continuous Time Case

We consider the optimal control problem for infinite-horizon
deterministic dynamical systems. The state dynamics and
reward signal are known on the whole domain. The exten-
sion to unknown dynamics and rewards is left for future
works.

In what follows, we denote with O ⊆ Rd, the set of contro-
lable states of our system, and then the admissible control
u ∈ U keeps the state trajectory inside the domainO, where
U ⊂ Rm corresponds to the action/control space. We as-
sume that U is bounded. We use g ∈ C(O) to denote that
g is a continuous function on O, while g ∈ C1(O) denotes
that g is a continuously differentiable function on O.

The main difference between the continuous and discrete
time cases is that transitions depend on time t, which is a
continuous variable, generating trajectories of states con-
tinuously in time. More formally, in the continuous case
the states do not form a sequence {xt}∞t=0 but a trajectory
x : R+ → Ō ⊂ Rd. Similarly, the actions are defined for
any t: u : R+ → U . The dynamics of the environment
(the transition function) is defined through the following

ordinary differential equation (ODE):

dx(t)

dt
= f(x(t), u(t)) (1)

where f : Ō × U → Rd is called the state dynamics func-
tion. In the discrete case, x(t) is only defined at times
{0, dt, 2dt, . . . }, where dt is a time step. While the state x
is inside the control domain O (i.e. x(t) ∈ Ō), the reward
r : Ō × U → R is received.

Without loss of generality, we focus on the problem of
optimal control under state constraints, i.e. x(t) ∈ O for
any t > 0. Note that constraining the system to stay inside
O is a common requirement for dynamical systems. For
example, we may want to limit the maximal angular speed
in the inverted pendulum to mitigate the risk of wearing off
or breaking the mechanism. The interested reader can refer
to Appendix A.4 to learn more about other possible cases.

Given the initial state x(0) = x0, we define the cumulative
discounted reward for a given control function u(t) as:

J(x0;u(t)) =

∫ ∞
0

γtr(x(t), u(t))dt, (2)

where γ ∈ [0, 1) is a discount factor. J is called the rein-
forcement functional. Then, the value function is defined as:

V (x) = sup
u(t)∈Ux

J(x;u(t)), (3)

where Ux = {u(t)|x(t) ∈ O,∀t > 0 and x(0) = x}, i.e. a
control that keeps the state of the system inside the domain
O. Our goal is to find an optimal policy π : Ō → U ,
such that u∗(t) = π(x∗(t)) for any t, where u∗(t) and
x∗(t) are the control and state of the optimal trajectory, then
V (x) = J(x;u∗(t)).

3.2. Hamilton-Jacobi-Bellman Equation

Let L(x, u, p) = pT f(x, u) + r(x, u) and
H(x,W,∇xW ) = −W ln γ − sup

u∈U
L(x, u,∇xW ),

then the HJB equation can be expressed as

H(x,W,∇xW ) = 0. (4)

We can prove that the value function defined in equation 3
satisfies the following result (see Fleming & Soner (2006)):

Theorem 3.1. If the value function V is differentiable at x,
then it should satisfy the Hamilton-Jacobi-Bellman equa-
tion.

If the value function V (x) is known, then we can define a
feed-back control policy π : Ō → U such that π(x(t)) =
u∗(t) by setting:

π(x) ∈ argsup
u∈U

{
∇xV (x)T f(x, u) + r(x, u)

}
. (5)

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Learning HJB Viscosity Solutions with PINNs

In practice, if for some values u, L(x, u,∇xV ) ≈
maxu′ L(x, u′,∇xV ), then it is possible to pick up a wrong
control because of numerical instabilities.

One way to bypass this issue is to consider, similarly to
Kim & Yang (2020), a stochastic policy with a probability
distribution for a discrete set U :

π∗(x, u) =
exp(αL(x, u,∇xV ))∑

u′∈U exp(αL(x, u′,∇xV ))
, (6)

where α is an inverse temperature parameter. Compared
to equation 5, equation 6 applies a softmax to compute the
probability of the best control. Using π∗, one can compute
the soft version of the HJB equation:

−W ln γ − Eu∼π∗L (x, u,∇xW ) = 0. (7)

In the following we mainly focus on the general HJB equa-
tion (equation 4), but this soft version can be beneficial for
some practical cases as shown in our experiments.

When O 6≡ Rd, the control in state constrained optimal
control problems should also satisfies f(x, u∗(x))T η(x) ≤
0 for any x ∈ ∂O, where η(x) the external normal vector
at point x ∈ ∂O. The optimal policy is not known a priori
and thus it is hard to verify this constraint. In Fleming &
Soner (2006); Soner (1986), it was shown that it can be
reformulated as:

−H(x,W,∇xW + αη(x)) ≤ 0 ∀α ≤ 0, x ∈ ∂O. (8)

From equation 5, it is crucial to find an efficient way to
compute V to get the optimal control u∗. In DTRL, the
Bellman equation is traditionally used to find V . The HJB
equation can be seen as a continuous-time analog of the
Bellman equation. However, solving the HJB equation
involves several challenges (see Munos (2000)). First, the
value function V ∈ C(O), a continuous solution of the
HJB equation, may be non-differentiable on O, therefore
it cannot satisfy the HJB equation on the whole domain.
Second, the HJB equation may have multiple generalized
continuous solutions. Third, it is common that the HJB
equation (equation 4) has to be solved under inequality
boundary conditions. To address those points, we introduce
the viscosity property.

3.3. Viscosity

Here, we present the crucial and yet complex notion of
viscosity (Fleming & Soner, 2006). Refer to Appendix B
for a more intuitive presentation.

Definition 3.2 (Viscosity solution).

• W ∈ C(O) is a viscosity subsolution of the HJB equa-
tion in O if ∀ψ ∈ C1(O) and ∀x ∈ O local maximum

of W − ψ such that W (x) = ψ(x), we have:

H(x, ψ(x),∇xψ(x)) ≤ 0

• W ∈ C(O) is a viscosity supersolution of the HJB
equation in O if ∀ψ ∈ C1(O) and ∀x ∈ O local
minimum of W − ψ such that W (x) = ψ(x), we
have:

H(x, ψ(x),∇xψ(x)) ≥ 0

• If W ∈ C(O) is a viscosity subsolution and a superso-
lution then it is a viscosity solution.

Viscosity solutions were first introduced in Crandall & Li-
ons (1983) and they are proven to be unique for multiple
types of PDEs. Under some additional assumptions, which
include continuity of f and r, one can prove that the value
function is a unique viscosity solution for O = Rd (See
Appendix A.3 for more details). A similar result exists for
O ⊆ Rd and when the value function should satisfy the
boundary condition equation 8.

A large class of practical control problems with continuous
dynamics, like classical control or MuJoCo tasks (Todorov
et al., 2012), needs to find the unique viscosity solution
of the HJB equation to get a correct value function. Thus,
developping methods converging to the viscosity solution is
the key factor for CTRL. However, checking the conditions
of Definition 3.2 is not feasible in practice. Instead, we use
the next property of viscosity solutions (Fleming & Soner,
2006).
Lemma 3.3 (Stability). Let W ε be a viscosity subsolution
(resp. a supersolution) of

W ε(x) + F ε(x,W ε,∇xW ε,∇2
xW

ε) = 0

in O. Suppose that F ε converges to F uniformly on every
compact subset of its domain, and W ε converges to W
uniformly on compact subsets of Ō. Then W is a viscosity
subsolution (resp. a supersolution) of the limiting equation.

In our case, we are interested in the equation:

H(x,W ε,∇xW ε) = ε∆xW
ε(x), (9)

where the left hand side is the same as in equation 4, while
the right hand side depends linearly on ε > 0. Let ∆xW
be a Laplacian of W , then F ε(x,W ε,∇xW ε,∇2

xW
ε) =

− 1
ln γH(x,W ε,∇xW ε) − W ε(x) + ε

ln γ∆xW
ε(x) and

F (x,W,∇xW,∇2
xW ) = − 1

ln γH(x,W,∇xW ) − W (x)
in Lemma 3.3. In Fleming & Soner (2006), it is shown
that equation 9 has a unique smooth solution W ε(x), i.e. it
admits a classical solution, which is a viscosity solution at
the same time. Therefore, if W ε(x) converges uniformly
to W (x) (convergence of solutions) and ε∆xW

ε converges
uniformly to 0 (convergence of equations), then W (x) is a
viscosity solution of the original HJB equation (equation 4).

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Learning HJB Viscosity Solutions with PINNs

4. How to Reach Viscosity
In what follows, we present two methods to find viscosity
solutions of an HJB equation. First, we present the existing
method based on dynamic programming. Then, we intro-
duce a new neural approach. Further, we assume that the
state dynamics f(x, u) are known and the control space U
is discrete. The case of unknown f(x, u) and continuous
control space is left for future work.

4.1. Dynamic Programming

Several solvers exist such as Finite Difference method (FD)
or Finite Element Method (FEM). These methods require
the discretization of the domain (a grid for FD or a trian-
gulation for FEM). The work of Munos (2000) establishes
the connection between solving the HJB equation and the
classical reinforcement learning framework by deriving an
MDP from the discretization of the HJB equation, using
either FD or FEM schemes (see Appendix C for a short
summary of the method). The strong point of this method is
that there exist viscosity convergence guarantees (Munos,
2000). The weak point is that they are mesh-dependent,
making them sensible to the curse of dimensionality. For
example, in the case of the cartpole problem where O ⊆ R4,
a naive approach that divides all dimensions uniformly in
N parts results in N4 states. Setting N = 32, which may
not be sufficient to solve the problem, leads to 220 states,
which is already too many to process on a single device. In
Section 5, we present the performance of the FEM based
dynamic programming only on the inverted pendulum envi-
ronment due to the aforementioned reasons. Despite many
efforts, we were not able to make the algorithm based on
FD work in our experiments, thus it is not considered.

4.2. Neural Solver

The idea is to solve a series of PDE equations starting from
some ε0 and gradually decrease it so that the solution of
the final PDE for ε∞ = 0 is the desired viscosity solution.
Thus, the general framework to get viscosity solutions is the
following: define the sequence of {εn}∞n=0, choose a PDE
solver, then iteratively solve equation 9 so that W ε(x) form
a convergent sequence to W (x) and output W (x) as a final
result. In what follows, we choose PINNs as a PDE solver
and we define a few ε-schedulers to generate {εn}.

PINNs The idea of PINNs was proposed in Raissi
et al. (2019) and applied to some simple PDEs like one-
dimensional nonlinear Schrödinger equation, but not for
optimal control. In PINNs framework, the neural network
acts as a solution of the PDE that needs to be solved.
Being randomly initialized, the neural network is gradu-
ally fit to satisfy the PDE and its corresponding bound-
ary conditions with the help of optimization and automatic

differentiation that allows to compute precise derivatives.
For example, the solution of the equation W ′x −W = 0
for W ∈ C1(O = [0, 1]) with the boundary condi-
tion W (0) = 1 can be found by minimizing the loss
minW {‖W ′x − W‖22 + λ‖W (0) − 1‖22}. The first term
of this loss is called a PDE loss and the second term a
boundary loss, where λ is a hyperparameter that weighs a
boundary loss against a PDE loss. PINNs can be trained in
a self-supervised manner as a dataset can be generated by
simply drawing random samples from the domain O. Still,
if the solution is known at some points of the domain, then
the training can be augmented with a data-driven loss. Refer
to Appendix D for a more detailed introduction to PINNs.

Further, we denote W ε
θ and Wθ the two neural networks

that compute the solutions of equation 9 and equation 4
respectively with θ being its parameters. In PINNs-like
mannner, we define losses corresponding to equation 9 and
equation 8. Let us define SO ∼ U(O,NF ), a sample of
points drawn uniformly from O of size NF , and S∂O ∼
U(∂O,NB). We have:

LO(θ,SO) =

=
1

NF

∑
xi∈SO

(
H(xi,W

ε
θ ,∇W ε

θ )− εTr(∇2W ε
θ )
)2

(10)

L∂O(θ,S∂O) =

=
1

NB

∑
xi∈S∂O

(
[−H(xi,W

ε
θ ,∇W ε

θ + αη(xi))]
+
)2

(11)

where [f(x)]+ = max{f(x), 0}. In addition to PDE-
related and boundary-related losses, we introduce an MSE
regularization loss that should encourage uniform conver-
gence of solutions:

LR(θ,SO) =
1

NF

∑
xi∈SO

(
W ε
θ (xi)−W εn−1

θεn−1
(xi)

)2

(12)
where θεn−1

is the best parameters found for εn−1. The final
loss is:

L(θ,SO,S∂O) = LO(θ,SO) + λL∂O(θ,S∂O)

+ λRLR(θ,SO). (13)

For simplicity, we use the same amount of points to sample
from O and ∂O, i.e. NF = NB .

ε-schedulers Training is performed using multiple epochs
t, where each epoch starts from generating datasets DO and
D∂O of samples from O and ∂O respectively. To ensure
the uniform convergence of equation 9 to equation 4, we
need to define a sequence of {εn}∞n=0, such that εn → 0

5



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Learning HJB Viscosity Solutions with PINNs

30 25 20 15 10 5 0
ln

200

0

200

400

600

800
Max laplacian

1
5
10
15

Figure 1: Evolution of ‖∆xW
ε
θ‖∞ with respect to ln ε

shown for different nε values, computed for the Pendulum
environment (see Section 5).

and εn∆xW
εn
θ (x) → 0 uniformly for all x ∈ Ō when

n → ∞, or equivalently maxx∈O |εn∆xW
εn
θ (x)| → 0

(maxx∈O |εn∆xW
εn
θ (x)| also denoted as ‖εn∆xW

εn
θ ‖∞).

Each εn requires multiple epochs to get the best θεn so that
W εn
θεn
≈W εn . An update of ε can happen either at regular

frequency, i.e. after each Nu epochs, or it can be triggererd
by a special condition at the end of some epochs. Thus, we
distinguish two timelines, where one is indexed by t and
another one, slower, by n.

We propose three ways to define {εn}∞n=0. The first one is
the naive non-adaptive scheduler:

εn+1 = εnρ (14)

where ρ ∈ (0, 1) is the rate of εn decay. We keep the same
ε value for Nu epochs, thus n =

⌊
t
Nu

⌋
.

The second scheduler is called the adaptive scheduler.
Let δn = δ(εn) = maxx∈DO

∣∣∣εn∆xW
εn
θεn

(x)
∣∣∣ =∥∥∥εn∆xW

εn
θεn

∥∥∥DO
∞

. Given ε0, we get all the consecutive ele-
ments with the update rule:

εn+1 =

{
ρδn−1

δn
εn if ρδn−1 ≤ δn

εn otherwise,
(15)

where ρ has the same purpose as before. To compute the
best θεn for an estimation of W εn , we only update ε if
L(θ,SO,S∂O) does not improve for nε consecutive epochs,
i.e. L(θi) ≥ L(θi−1) ∀i : t − nε + 1 ≤ i ≤ t. Thus, nε
specifies the minimum number of epochs with fixed ε to
obtain W ε

θ (x) ≈W ε(x), a solution of equation 9.

The intuition behind the adaptive scheduler is to use actual
values of δn to regulate the speed with which εn goes to

zero so that δn decreases making ‖εn∆xW
εn‖∞ also de-

crease. Indeed, assume that we have decreasing sequences
ε0, ε1, . . . , εn−1 and δ0, δ1, . . . , δn−1 and we want to find a
new εn such that δn < δn−1. If a new candidate value ε′n, s.t.
ε′n < εn−1, corresponds to δ′n and δ′n ≥ δn−1, then recalcu-
late εn = ρ δn−1

δ′n
ε′n < ε′n. Let us also assume that the Lapla-

cian of W ε does not change much with ε: C‖∆xW
ε′

θε′
‖∞ ≥

‖∆xW
ε
θε
‖∞ for all ε < ε′ and empirically it holds, es-

pecially for small ε (see Figure 1). In this case, δn =

δ(εn) = εn

∥∥∥∆xW
εn
θεn

∥∥∥
∞

= ρ δn−1

δ′n
ε′n‖∆W

εn
θεn
‖∞ ≤

ρC δn−1

δ′n
ε′n‖∆W

ε′n
θε′n
‖∞ = δn−1

δ′n
δ′n = ρCδn−1. If ρ ≤ 1

C

then δn < δn−1, thus it encourages the uniform conver-
gence of equations.

We also propose a hybrid scheduler, mixing the two previous
schedulers by starting with the non-adaptive scheduler for
several ε-updates and then using the adaptive scheduler until
the end of the training. The nonadaptive scheduler serves
as a ”warm-start” at the beginning of the training allowing
us to do more regular updates for large ε for which training
is easier (see Appendix E.3). Then, it is better to use the
adaptive scheduler for smaller ε to ensure the convergence
δ(ε, θ)→ 0.

Putting everything together gives Algorithm 1.

Algorithm 1 ε-HJBPINNs

Set ε = ε0, θ = θ0, initialize W ε
θ

for epoch t in {1, . . . ,NB ITER} do
Generate datasets DO(ND) and D∂O(ND) of ND
states uniformly sampled from O and ∂O respectively
for batches SO ∈ U(DO, NF ) and S∂O ∈
U(D∂O, NF ) do

Update θt := θt − ν∇θL(θ,SO,S∂O), where
L(θ,SO,S) is computed with equation 13

end for
Update ε using one of the ε-schedulers

end for

5. Experimental Results
Environments We use continuous-time adaptations of in-
verted pendulum, cartpole and acrobot1. Those are chal-
lenging benchmarks for continuous time, similar to Lutter
et al. (2020), where PINNs are also applied to solve the HJB
equation.

Pendulum (dt = 0.001)2 The state space consists of the
angle φ and the angular speed φ̇. We consider O =

1We used the environments taken from https://github.
com/cagatayyildiz/oderl and slightly modified them to
define O explicitly in each case.

2In the gym inverted pendulum environment dt is set to 1/20.

6

https://github.com/cagatayyildiz/oderl
https://github.com/cagatayyildiz/oderl


330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Learning HJB Viscosity Solutions with PINNs

[−π, π]× [−10, 10] (reducing the domain makes the com-
parison fairer with respect to exploration-based algorithms
that do not compute value function on the whole domain)
and U = {−2, 0, 2}.

CartPole Swingup (dt = 0.005) The state space con-
sists of the pole angle φ, the pole angular speed φ̇, the
cart coordinate y and its speed ẏ. We consider a diffi-
cult version: the problem of swinging up the pole with
O = [−π, π] × [−10, 10] × [−5,−5] × [−5, 5] with U =
{−3, 0, 3}.

Acrobot (dt = 0.005) The state space consists of angles
φ1 and φ2 and their corresponding angular speeds φ̇1 and
φ̇2. The control is the torque applied to the extreme tip.
We consider O = [−π, π] × [−π, π] × [−12.57, 12.57] ×
[−28.27, 28.27] and U = {−5, 0, 5}.

We use cumulative rewards to compare the obtained poli-
cies, reported as mean cumulative rewards across several
rollouts (typically 5 during the training) in the discrete-time
environments. Each rollout is made of 5000 timesteps.

Analysis of ε-schedulers In this section we evaluate the
performance of Algorithm 13 for different ε-schedulers.

Each training was executed with 1000 epochs (NB ITER =
1000) and repeated for 8 different seeds. We have tested
several neural architectures and obtained the best perfor-
mance with a Fourier-Feature Network (FFN) (Yang et al.,
2022), consisting of 3 layers, where the first layer is of size
d× 40 (as recommended in the original article, where d is
the dimensionality of state space) and other layers contain
100 neurons each. The best performing activation function
is tanh. When working with PINNs, it is important to
use smooth activation functions as using non-smooth activa-
tions like relu may cause the training to fail. Indeed, the
PDE loss LO requires computing second order derivatives,
and even the third derivative during the backward propa-
gation, but those derivatives do not exist for relu. We
have also observed that the training is more stable if we
standardize the output of the neural networks, i.e. W ε(xi, θ)
and W εn−1(xi, θεn−1

), across the samples in the batch SO
just before computing the regularization loss (equation 12).
Indeed, the scale of the value function computed with the
neural network is constantly changing during the training,
therefore standardization helps to enforce uniform conver-
gence of solutions without restraining the neural network
training too much.

We have experimented with different ε-schedulers from Sec-
tion 4.2 and their hyperparameters for both equation 4 and
equation 7. The comparison of schedulers with the best hy-
perparameters are shown in Figure 2 and more can be found

3Placeholder for the repository link. The code will be available
for the final version.

in Appendix E.2. In case of Pendulum, all three schedulers
can learn a good policy. We also observe that using the soft
HJB equation is better than the original HJB equation to
find a policy with higher rewards. Indeed, the former one
yields better results when the best control only marginally
outperforms other controls. It can be seen when comparing
value maps in Figure 3, where the value at (φ, φ̇) = (0, 0)
is higher for the soft HJB equation. Figure 3 also indicates
that neural architectures for PINNs still struggle to approxi-
mate the non-smooth regions, thus further research in neural
architectures for PINNs is required. The soft HJB equation
leads to higher cumulative rewards for Acrobot as well, but
it is the opposite for Cartpole Swingup. Depending on the
problem, one ε-scheduler can perform better than the others,
thus we cannot conclude that one scheduler is strictly better
or worse than the other two.

However, training is very sensitive to hyperparameters, es-
pecially for the non-adaptive scheduler. Moreover, all sched-
ulers can fail if λR is too small, showing the importance of
the regularization loss equation 12, see Appendix E.2.

Comparison with DTRL Algorithms In this section,
we compare the performance of Algorithm 1 on differ-
ent classical RL control tasks with well-studied DTRL
algorithms such as PPO and A2C implemented in
stable-baselines3 (Raffin et al., 2021)4. To compare
PINNs and DTRL agents, we used the same total number
of training samples. However, note that this setting is less
advantageous for PINNs training as it requires to sample
uniformly across the whole domain to guarantee the viscos-
ity, while DTRL agents can learn more from the trajectories
that bring the highest outcome. For each algorithm, we take
the best trained agent and we report its evalution mean and
standard deviation over 100 rollouts in Table 1.

For all reported environments, DTRL algorithms struggle
to learn a good policy for so small dt and even completely
fail in case of Acrobot. PINNs is able to achieve nearly
optimal behaviour on Pendulum (stabilizing the pole). It
performs less well in the case of Acrobot and CartPole, but
its learnt policies still manage to swing up the pole in both
environments outperforming DTRL competitors.

Discussion on PINNs scalability Even if PINNs can be
executed for high-dimension problems, their precision can
be stronly degraded. This is because PINNs are difficult
to train with existing methods, which limits the complex-
ity of problems currently considered, in particular high-
dimensional ones. Wang et al. (2022b) analyse this effect
and propose a stochastic gradient descent (SGD) algorithm
taking into account the neural tangent kernel (NTK) eigen-

4It contains reliable implementations of RL agents. However,
the same algorithms from other packages may perform differently.

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Learning HJB Viscosity Solutions with PINNs

0 500 1000

1500

2000

2500

3000

3500

4000
hybrid
adaptive
non_adaptive

(a)

0 500 1000

1500

2000

2500

3000

3500

4000

(b)

0 500 1000
200

0

200

400

600

800

(c)

0 500 1000
200

0

200

400

600

800

(d)

0 500 1000
0

100

200

300

400

500

(e)

0 500 1000
0

100

200

300

400

500

(f)

Figure 2: Cumulative reward for different ε-schedulers along the training: (a) Pendulum, HJB, (b) Pendulum, soft HJB, (c)
CartPole Swingup, HJB (d) CartPole Swingup, soft HJB (e) Acrobot, HJB (f) Acrobot, soft HJB.

10 5 0 5 10
3

2

1

0

1

2

3
Value function

97.25

97.50

97.75

98.00

98.25

98.50

98.75

99.00

99.25

(a)

10 5 0 5 10
3

2

1

0

1

2

3
Value function

56.4

56.6

56.8

57.0

57.2

57.4

(b)

10 5 0 5 10
3

2

1

0

1

2

3
Value function

42.8

43.0

43.2

43.4

43.6

43.8

44.0

(c)

Figure 3: Value function of Pendulum with φ as Y axis and
φ̇ as X axis: (a) Ground Truth (computed with dynamic pro-
gramming (Munos, 2000)) (b) PINNs for HJB, equation 4
(c) PINNs for soft HJB, equation 7.

environment method mean std
Pendulum A2C 961.27 955.83

PPO 1048.02 755.56
PINNs 4006.17 562.97

CartPole Swing-Up A2C 79.16 10.35
PPO 79.16 10.35

PINNs 865.50 209.50
Acrobot A2C 0.0 0.0

PPO 0.0 8.21
PINNs 524.80 133.98

Table 1: Mean and standard deviation of the cumulative
reward for different methods.

values. Others have addressed this issue through adaptive
sampling of colocation points (Daw et al., 2023; Wu et al.,
2023), reformulation of the loss to get a single term (Es’kin
et al., 2023), NTK adaptive eigenvalue selection (Lau et al.,
2023). Wang et al. (2022a) focus on PINNs for HJB. They
prove that for the HJB equation (under certain assumptions),
PINNs require a high order loss to converge to a stable solu-
tion. They propose to rely on an l∞ norm computed through
an adversarial scheme to ensure convergence stability. Hu
et al. (2023) propose an extension of SGD to dimentional-
ity sampling to solve the HJB equation. But these papers
assume linear-quadratic-Gaussian (LQG) control guaran-

teeing a unique solution, and thus disregard the difficulty
of having a training scheme converging towards viscosity
solutions.

We also tried to apply the R3 method (Daw et al., 2023)
to our algorithm (see Appendix E.4), but it did not give
any noticeable improvement and it can even lead to worse
results for some tasks. Therefore, since adaptive sampling
is a promising way to increase scalability, a further study
on how to use adaptive sampling for viscosity solutions is
required.

6. Conclusion
In this article, we consider the problem of finding the viscos-
ity solutions of the deterministic HJB equation with neural
network solvers. We propose a general scheme, which relies
on solving a series of different PDE equations depending on
ε. This framework gives flexibility on how ε are updated. In
our experiments, we have shown that our scheme is able to
learn the value function with different ε-schedulers and thus
to find control policies that significanly outperform DTRL
approaches on classical control environments when dt is
small. Further work is required to improve the scalability
of our method. Integrating the adaptive sampling methods
can help to improve sample efficiency and considering more
sophisticated neural networks can help with an approxima-
tion of non-smooth areas. One limitation of our work is that
it assumes that the dynamics are continuous (f ∈ C(O)),
which is an important assumption for proving uniqueness
of a viscosity solution. Thus, the approach considered in
this paper cannot be applied to the case of non-continuous
dynamics in a straightforward way. As the latter case is very
important in real life applications, it should be studied in
the future work. Finally, an interesting research perspective
is to add model learning and actor/critic paradigm into our
algorithm to explore the unknown dynamics case and enable
the training based on trajectories.

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Learning HJB Viscosity Solutions with PINNs

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Adhyaru, D. M., Kar, I., and Gopal, M. Bounded robust

control of nonlinear systems using neural network–based
hjb solution. Neural Computing and Applications, 20:
91–103, 2011.

Alt, B., Schultheis, M., and Koeppl, H. POMDPs in con-
tinuous time and discrete spaces. Advances in Neural
Information Processing Systems, 33:13151–13162, 2020.

Cannarsa, P., Gozzi, F., and Soner, H. M. A boundary-value
problem for Hamilton-Jacobi equations in Hilbert spaces.
Applied Mathematics and Optimization, 24(1):197–220,
1991.

Cheng, T., Lewis, F. L., and Abu-Khalaf, M. Fixed-final-
time-constrained optimal control of nonlinear systems
using neural network HJB approach. IEEE Transactions
on Neural Networks, 18(6):1725–1737, 2007.

Coulom, R. Reinforcement Learning Using Neural Net-
works, with Applications to Motor Control. Theses, Insti-
tut National Polytechnique de Grenoble - INPG, June
2002. URL https://theses.hal.science/
tel-00003985.

Crandall, M. G. and Lions, P.-L. Viscosity solutions of
hamilton-jacobi equations. Transactions of the American
mathematical society, 277(1):1–42, 1983.

Darbon, J., Dower, P. M., and Meng, T. Neural net-
work architectures using min-plus algebra for solving
certain high-dimensional optimal control problems and
Hamilton-Jacobi PDEs. Mathematics of Control, Signals,
and Systems, 35(1):1–44, 2023.

Daw, A., Bu, J., Wang, S., Perdikaris, P., and Karpatne,
A. Mitigating propagation failures in physics-informed
neural networks using retain-resample-release (r3) sam-
pling. In Proceedings of the 40th International Con-
ference on Machine Learning, pp. 7264–7302. PMLR,
2023. URL https://proceedings.mlr.press/
v202/daw23a.html. ISSN: 2640-3498.

Doya, K. Reinforcement learning in continuous time and
space. Neural computation, 12(1):219–245, 2000.

Es’kin, V. A., Davydov, D. V., Egorova, E. D., Malkhanov,
A. O., Akhukov, M. A., and Smorkalov, M. E. About
optimal loss function for training physics-informed neural
networks under respecting causality, 2023.

Fleming, W. H. and Soner, H. M. Controlled Markov pro-
cesses and viscosity solutions, volume 25. Springer Sci-
ence & Business Media, 2006.

Grossmann, C., Roos, H.-G., and Stynes, M. Numerical
treatment of partial differential equations, volume 154.
Springer, 2007.

Halperin, I. Distributional offline continuous-time reinforce-
ment learning with neural physics-informed pdes (sciphy
rl for doctr-l). arXiv preprint arXiv:2104.01040, 2021.

Han, J., Jentzen, A., and E, W. Solving high-dimensional
partial differential equations using deep learning. Pro-
ceedings of the National Academy of Sciences, 115(34):
8505–8510, 2018.

Hu, Z., Shukla, K., Karniadakis, G. E., and Kawaguchi,
K. Tackling the curse of dimensionality with physics-
informed neural networks, 2023.

Ishii, H. Uniqueness of unbounded viscosity solution of
Hamilton-Jacobi equations. Indiana University Mathe-
matics Journal, 33(5):721–748, 1984.

Kang, W. and Wilcox, L. C. Mitigating the curse of dimen-
sionality: Sparse grid characteristics method for optimal
feedback control and HJB equations, 2016.

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris,
P., Wang, S., and Yang, L. Physics-informed machine
learning. Nature Reviews Physics, 3(6):422–440, 2021.

Kim, J. and Yang, I. Hamilton-Jacobi-Bellman equations
for maximum entropy optimal control. arXiv preprint
arXiv:2009.13097, 2020.

Kim, J., Shin, J., and Yang, I. Hamilton-Jacobi deep Q-
Learning for deterministic continuous-time systems with
Lipschitz continuous controls. The Journal of Machine
Learning Research, 22(1):9363–9396, 2021.

Lau, G. K. R., Hemachandra, A., Ng, S.-K., and Low, B.
K. H. Pinnacle: Pinn adaptive collocation and experi-
mental points selection. In NeurIPS 2023 Workshop on
Adaptive Experimental Design and Active Learning in
the Real World, 2023.

Liu, D., Wang, D., Wang, F.-Y., Li, H., and Yang, X. Neural-
network-based online hjb solution for optimal robust guar-
anteed cost control of continuous-time uncertain nonlin-
ear systems. IEEE transactions on cybernetics, 44(12):
2834–2847, 2014.

Lu, L., Meng, X., Mao, Z., and Karniadakis, G. E. Deep-
xde: A deep learning library for solving differential
equations. SIAM Review, 63(1):208–228, 2021. doi:
10.1137/19M1274067. URL https://doi.org/10.
1137/19M1274067.

9

https://theses.hal.science/tel-00003985
https://theses.hal.science/tel-00003985
https://proceedings.mlr.press/v202/daw23a.html
https://proceedings.mlr.press/v202/daw23a.html
https://doi.org/10.1137/19M1274067
https://doi.org/10.1137/19M1274067


495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Learning HJB Viscosity Solutions with PINNs

Lutter, M., Belousov, B., Listmann, K., Clever, D., and Pe-
ters, J. HJB optimal feedback control with deep differen-
tial value functions and action constraints. In Conference
on Robot Learning, pp. 640–650. PMLR, 2020.

Lutter, M., Mannor, S., Peters, J., Fox, D., and Garg, A.
Robust value iteration for continuous control tasks. arXiv
preprint arXiv:2105.12189, 2021a.

Lutter, M., Mannor, S., Peters, J., Fox, D., and Garg, A.
Value iteration in continuous actions, states and time.
arXiv preprint arXiv:2105.04682, 2021b.

Mukherjee, A. and Liu, J. Bridging physics-informed neural
networks with reinforcement learning: Hamilton-Jacobi-
Bellman Proximal Policy Optimization (HJBPPO). arXiv
preprint arXiv:2302.00237, 2023.

Munos, R. A Study of Reinforcement Learning in the
Continuous Case by the Means of Viscosity Solutions.
Machine Learning, 40:265–299, 2000. doi: 10.1023/A:
1007686309208.

Munos, R., Baird, L., and Moore, A. Gradient descent
approaches to neural-net-based solutions of the Hamilton-
Jacobi-Bellman equation. In IJCNN’99. International
Joint Conference on Neural Networks. Proceedings (Cat.
No.99CH36339), volume 3, pp. 2152–2157 vol.3, 1999.
doi: 10.1109/IJCNN.1999.832721.

Nakamura-Zimmerer, T., Gong, Q., and Kang, W. Adap-
tive deep learning for high-dimensional Hamilton-Jacobi-
Bellman equations. SIAM Journal on Scientific Comput-
ing, 43(2):A1221–A1247, 2021.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,
M., and Dormann, N. Stable-baselines3: Reliable rein-
forcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021. URL http:
//jmlr.org/papers/v22/20-1364.html.

Raissi, M., Perdikaris, P., and Karniadakis, G. Physics-
informed neural networks: A deep learning frame-
work for solving forward and inverse problems involv-
ing nonlinear partial differential equations. Journal
of Computational Physics, 378:686–707, 2019. ISSN
0021-9991. doi: https://doi.org/10.1016/j.jcp.2018.10.
045. URL https://www.sciencedirect.com/
science/article/pii/S0021999118307125.

Soner, H. M. Optimal control with state-space constraint
i. SIAM Journal on Control and Optimization, 24(3):
552–561, 1986. doi: 10.1137/0324032. URL https:
//doi.org/10.1137/0324032.

Tassa, Y. and Erez, T. Least squares solutions of the HJB
equation with neural network value-function approxima-
tors. IEEE transactions on neural networks, 18(4):1031–
1041, 2007.

Todorov, E., Erez, T., and Tassa, Y. MuJoCo: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp. 5026–5033. IEEE, 2012. doi: 10.1109/IROS.2012.
6386109.

Wang, C., Li, S., He, D., and Wang, L. Is l2 physics in-
formed loss always suitable for training physics informed
neural network? Advances in Neural Information Pro-
cessing Systems, 35:8278–8290, 2022a.

Wang, H., Zariphopoulou, T., and Zhou, X. Y. Reinforce-
ment learning in continuous time and space: A stochastic
control approach. The Journal of Machine Learning Re-
search, 21(1):8145–8178, 2020.

Wang, S., Yu, X., and Perdikaris, P. When and why pinns
fail to train: A neural tangent kernel perspective. Journal
of Computational Physics, 449:110768, 2022b.

Wiltzer, H. E., Meger, D., and Bellemare, M. G.
Distributional Hamilton-Jacobi-Bellman equations for
continuous-time reinforcement learning. In International
Conference on Machine Learning, pp. 23832–23856.
PMLR, 2022.

Wu, C., Zhu, M., Tan, Q., Kartha, Y., and Lu, L. A compre-
hensive study of non-adaptive and residual-based adaptive
sampling for physics-informed neural networks. Com-
puter Methods in Applied Mechanics and Engineering,
403:115671, 2023.

Yang, G., Ajay, A., and Agrawal, P. Overcoming the
spectral bias of neural value approximation. In In-
ternational Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=vIC-xLFuM6.

Çağatay Yıldız, Heinonen, M., and Lähdesmäki, H.
Continuous-time model-based reinforcement learning,
2021.

10

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://doi.org/10.1137/0324032
https://doi.org/10.1137/0324032
https://openreview.net/forum?id=vIC-xLFuM6
https://openreview.net/forum?id=vIC-xLFuM6


550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Learning HJB Viscosity Solutions with PINNs

A. Optimal Control Background
We use the same set-up as in Section 3.1. Further, we generalize the problem to the situations when exiting the domain O is
possible and we state some known theoretical results from the literature.

A.1. General Formalism

In addition to the notions defined in Section 3.1, we also introduce some additional notations related to exiting the domain.
Let τ denote the exit time. At time τ , we have x(τ) ∈ Ō. Thus, let us define the exit reward R : ∂O → R, which is obtained
at the boundary points when control is pushing the system out of Ō. Under these notations, we redefine the reinforcement
functional:

J(x0;u(t)) =

∫ τ

0

γtr(x(t), u(t))dt+ γτR(x(τ)) (16)

and the value function:
V (x) = sup

u(t)∈U
J(x;u(t)). (17)

Note that, when R(x)→ −∞, then τ →∞, which brings us back to the problem considered in Section 3.1

A.2. Hamilton-Jacobi-Bellman Equation

Similar to Section 3.2, the similar result holds for the value function defined with equation 17:

Theorem A.1. (Hamilton-Jacobi-Bellman). If the value function V is differentiable at x, then the Hamilton-Jacobi-Bellman
(HJB) equation holds at any x ∈ O:

V (x) ln(γ) + sup
u∈U

{
∇xV (x)T f(x, u) + r(x, u)

}
= 0. (18)

When O ⊂ Rd, V also satisfies the following boundary conditions:

V (x) ≥ R(x) for x ∈ ∂O (19)

A.3. Uniqueness of Viscosity Solutions

In this section, we state more formally the uniqueness result that holds for viscosity solutions and the additional assumptions
under which it is verified. This section presents the short summary of the main theoretical results from Fleming & Soner
(2006).

Assumption A.2.

(i) U is bounded,

(ii) f, r are bounded, f is continuous on Rd × U and r is uniform continuous on Rd × U ,

(iii) there exists Lf , such that ‖f(x, u)− f(y, u)‖ ≤ Lf‖x− y‖ for any x, y ∈ Rd.

Theorem A.3. Given Assumption A.2, the value function V is uniformly continuous and bounded in R and then it is a
unique viscosity solution of the HJB equation 4.

This theorem is given for the case when O = Rd and therefore there is no boundary condition. The other cases are discussed
in the next sections.

The proof of Theorem A.3 consists of several parts. First, one can prove that under Assumption A.2, the value function is
indeed uniform continuous and bounded. Then, one can show that it is a viscosity solution due to the dynamic programming
principle that holds in continuous time case as well. The uniqueness comes from the comparison principle. It states that
under Assumptions A.2, if W and V are viscosity subsolution and supersolution respectively and are bounded and uniformly
continuous functions, then W ≤ V . The comparison principle implies that if such W and V are viscosity solutions (both
subsolutions and supersolutions), then W ≤ V and W ≥ V , therefore W ≡ V . Thus, V is a unique viscosity solution of
the HJB equation in Rd.

11



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Learning HJB Viscosity Solutions with PINNs

domain O domain O domain O

Figure 4: Boundary conditions. Case 1(left), Case 2 (middle) and Case 3(right).

A.4. Viscosity for Different Boundary Conditions

When O 6≡ Rd, the additional assumptions on O are required.

Assumption A.4. For any x ∈ ∂O and its normal vector η(x)

(i) ∃u(x) ∈ U with f(x, u(x))T η(x) < 0;

(ii) ∃u(x) ∈ U with f(x, u(x))T η(x) > 0.

Assumption A.5 (Regularity condition). There exist ε0, r > 0 and η̂(x), a bounded and uniform continuous map of Ō,
satisfying

B(x+ εη̂(x), rε) ⊂ O, ∀x ∈ O, ε ∈ (0, ε0] (20)

with B(x, r) = {y ∈ Rd : ‖x− y‖ < r}.

In this section, we cover three different cases of boundary conditions that appear in control problems when O ⊂ Rd, which
are illustrated in Figure 4.

Case 1 If the system exits at any boundary point x ∈ ∂O once the boundary is reached, e.g. it is the case when the exit
reward R(x) is sufficiently high to prefer to leave the area, e.g. when R(x) ≡ R ≥ r for any x ∈ ∂O and r ≥ r(x̄, u(x̄))
for any x̄, u(x̄). Then, the boundary condition is described with the following equation:

V (x)−R(x) = 0 ∀x ∈ ∂O. (21)

The uniqueness result holds due to the comparison principle that states that under Assumptions A.2 and provided that W and
V are bounded and uniform continuous functions, if W and V are viscosity subsolution and supersolution respectively, then
supx∈Ō(W (x)−V (x)) ≤ supx∈∂O(W (x)−V (x)). The existence of such value function is assured with Assumption A.4-
(ii).

Case 2 If the system never exits the control domain. Let us denote the external normal vector at point x ∈ ∂O as η(x), then
this boundary can be expressed as f(x, u∗(x))T η(x) ≤ 0 for any x ∈ ∂O. The optimal policy is not known a priori and thus
it is hard to verify this constraint. In Fleming & Soner (2006); Soner (1986), it was shown that it can be reformulated as:

−H(x,W,∇xW + αη(x)) ≤ 0 ∀α ≤ 0, x ∈ ∂O. (22)

This allows to extend Definition 3.2.

Definition A.6 (Constrained viscosity solution). W ∈ C(Ō) is called a constrained viscosity solution of the HJB
equation equation 18 if it is a viscosity subsolution in O and a viscosity supersolution in Ō, i.e. if ∀ψ ∈ C1(Ō) and
∀x ∈ Ō ∪ arg min{(W − ψ)(x) : x ∈ Ō} with W (x) = ψ(x), we have:

H(x, ψ(x),∇xψ(x)) ≥ 0.

It is also possible to prove that there exists a continuous value function provided that Assumption A.4(i) holds and the set of
admissible actions is not empty for any state of the system. Under the additional Assumption A.5, there exists a unique
constrained viscosity solution (see Soner (1986)).

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Learning HJB Viscosity Solutions with PINNs

Case 3 If there exists a subset of points of the boundary at which the system exits the control domain. This is the same
boudary condition considered in Munos (2000). This boundary is formulated as follows:

R(x)− V (x) ≤ 0 ∀x ∈ ∂O. (23)

However, this boundary is not sufficient to have uniqueness, therefore we redefine viscosity for this inequality constraint equa-
tion 23.
Definition A.7 (Viscosity solution with the boundary condition equation 23).

• W ∈ C(Ō) is a viscosity subsolution of the HJB equation in O with the boundary condition equation 23 if it is a
viscosity subsolution in O and ∀ψ ∈ C1(Ō) and ∀x ∈ ∂O local maximum of W − ψ such that W (x) = ψ(x), we
have:

min{H(x, ψ(x),∇xψ(x)), R(x)−W (x)} ≤ 0

• W ∈ C(Ō) is a viscosity supersolution of the HJB equation in O with the boundary condition equation 23 if it is a
viscosity supersolution and ∀ψ ∈ C1(O) and ∀x ∈ ∂O local minimum of W − ψ such that W (x) = ψ(x), we have:

max{H(x, ψ(x),∇xψ(x)), R(x)−W (x)} ≥ 0

• If W ∈ C(Ō) is a viscosity subsolution and a supersolution with the boundary condition equation 23 then it is a
viscosity solution with the boundary condition equation 23.

It is easy to check that when equation 23 is verified then a viscosity subsolution W (x) in O is a viscosity subsolution with
the boundary condition equation 23. However, when W (x) > R(x) for some point x ∈ ∂O then definition A.7 imposes
an additional constraint that W (x) should be a viscosity supersolution at such boundary points. Then similarly to Case 2,
boundary condition equation 8 should be also satisfied, which can be interpreted as the system not being able to exit at those
points. Similarly to Case 2, there is a uniqueness result:
Theorem A.8. Let us assume that Assumptions A.2-A.5 hold, then the value function V is in C(Ō) and it is the unique
viscosity solution of the HJB equation in O with the boundary condition equation 23.

The proof of this theorem can be found in Fleming & Soner (2006); Cannarsa et al. (1991).

We choose to distinguish 3 different cases as it creates 3 different ways of approaching boundary conditions in practice.
Indeed, equation 21, equation 22 and equation 23 produce different boundary losses for PINNs, i.e. L∂O. However, note
that Case 1 and Case 2 are subcases of Case 3.

Finally, some of the assumptions can be relaxed and it is possible to obtain more general uniqueness results (see (Fleming &
Soner, 2006; Cannarsa et al., 1991; Ishii, 1984)). However, the assumptions mentioned earlier are verified for the large class
of control problems that appear in practice, like classical control or MuJoCo problems with no contacts (Todorov et al.,
2012). Dealing with more general dynamics should be tackled in the future works.

B. Intuition for Viscosity Solutions
In this section, we aim at providing the intuition behind the viscosity solutions. For that, we draw some parallels between
DTRL and CTRL.5

Let us consider the DTRL formulation of the problem. We know that the optimal value function V in DTRL should satisfy
the Bellman equation

V (x) = max
u
{r(x, u) + γ

∑
x′

p(x′|x, u)V (x′)}. (24)

From that, we can introduce the Bellman operator as

T (ψ)(x) = max
u
{r(x, u) + γ

∑
x′

p(x′|x, u)ψ(x′)} (25)

5This section is based on https://benjaminmoll.com/wp-content/uploads/2020/02/viscosity_for_
dummies.pdf.

13

https://benjaminmoll.com/wp-content/uploads/2020/02/viscosity_for_dummies.pdf
https://benjaminmoll.com/wp-content/uploads/2020/02/viscosity_for_dummies.pdf


715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Learning HJB Viscosity Solutions with PINNs

where ψ is an arbitrary function defined on the state space. This operator is known to be monotonic, i.e. for any functions
ψ,ψ′ we have

ψ ≥ ψ′ ⇒ T (ψ) ≥ T (ψ′). (26)

Moreover, from Eq. equation 24 follows that V should satisfy V = T (V ). Therefore, from Eq. equation 24-equation 26 we
get the alternative definition for the solution of the Bellman equation 24.

Definition B.1. Let V ∈ C(O), then V is the optimal value function if and only if

• ∀ψ ∈ C1(O) such that ψ ≥ V

max
u
{r(x, u) + γ

∑
x′

p(x′|x, u)ψ(x′)} ≥ V (x),∀x ∈ O,

• ∀ψ ∈ C1(O) such that ψ ≤ V

max
u
{r(x, u) + γ

∑
x′

p(x′|x, u)ψ(x′)} ≤ V (x),∀x ∈ O.

This definition can be seen as the discrete-time version of the viscosity solution definition. Therefore, in the discrete-time
case, satisfying the fixed point equation is equivalent to satisfying the ”discrete-time” viscosity solution definition.

As mentionned in the paper, V ∈ C(O) can be non differentiable at some points of O, thus it is impossible to verify whether
HJB equation is satisfied everywhere. Therefore, the main idea behind viscosity solutions is to replace V by some smooth
functions where V is non differentiable.

In the following, first, we suppose that V is differentiable everywhere and we show a connection between Hamilton-Jacobi-
Bellman equation and Bellman equation. Then, for the case when V is non smooth, we replace V by a smooth function and
we show that it is possible to derive the notions of viscosity super/subsolutions.

Let us discretize our continous-time problem with a time-step dt. For simplicity, we consider that for any x ∈ O there exists
an optimal control u∗ = π(x) ∈ U so that V (x) = J(x;u∗). Therefore, we replace sup with max in the definition of the
value function, though it is possible to show that the next results also hold in case of sup. From the definition of the value
function, we get

V (x(t)) = max
u

{∫ t+dt

t

γ(s−t)r(x(s), u(s))ds+ γdtV (x(t+ dt))

}

= max
u

{∫ t+dt

t

γ(s−t)r(x(s), u(s))ds+ edt ln(γ)V (x(t+ dt))

}
≈ max

u

{
r(x(t), u(t))dt+ edt ln(γ)V (x(t+ dt))

}
≈ max

u
{r(x(t), u(t))dt+ (1 + ln(γ)dt)V (x(t+ dt))}

So we derive this discrete-time dynamic programming problem:

V (xt) = max
u
{r(xt, u)dt+ (1 + ln(γ)dt)V (xt+dt)} , (27)

where xt+dt = f(xt, u)dt+ xt.

Let us suppose that V is differentiable for all x ∈ O and that dt ∈
(

0,− 1
ln(γ)

)
. By subtracting (1 + ln(γ)dt)V (xt) from

both sides of Eq. equation 27 and then dividing by dt, we obtain

− ln(γ)V (xt) = max
u

{
r(xt, u) +

(
1

dt
+ ln(γ)

)
(V (xt+dt)− V (xt))

}
.

If dt goes toward 0, we have

ln(γ)V (xt) = −max
u

{
r(xt, u) +∇xV (xt)

T f(xt, u)
}
.

14



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Learning HJB Viscosity Solutions with PINNs

This is exactly the Hamilton-Jacobi-Bellman equation, the continuous time equivalent of the Bellman equation.

Now, let us assume that V is non differentiable. As mentionned before, V should be replaced by a smooth function at the
points where ∇xV does not exist. Let ψ be an arbitrary smooth function on O such that V − ψ has a local maximum at xt
and V (xt) = ψ(xt). Therefore, V ≤ ψ in a neighborhood of xt. If 1 + ln(γ)dt > 0, then

V (xt) = max
u
{r(xt, u)dt+ (1 + ln(γ)dt)V (xt+dt)}

≤ max
u
{r(xt, u)dt+ (1 + ln(γ)dt)ψ(xt+dt)}

Let us subtract (1 + ln(γ)dt)ψ(xt) from both sides and use ψ(xt) = V (xt), as a result we have

− ln(γ)V (xt)dt ≤ max
u
{r(xt, u)dt+ (1 + ln(γ)dt)(ψ(xt+dt)− ψ(xt))}

Then, let us divide by dt and let dt goes toward 0, we have

− ln(γ)V (xt) ≤ max
u

{
r(xt, u) +∇xψ(xt)

T f(xt, u)
}

⇔ ln(γ)V (xt)−max
u

{
r(xt, u) +∇xψ(xt)

T f(xt, u)
}
≤ 0

⇔ H(xt, ψ(xt),∇xψ(xt)) ≤ 0.

This gives us the definition of a viscosity subsolution.

It is possible to obtain the definition of a viscosity supersolution in a like manner, by performing the same derivations
for an arbitrary ψ ∈ C1(O) such that V − ψ has a local minimum in xt and V (xt) = ψ(xt). In both cases, we use the
monotonicity of maxu {r(xt, u)dt+ (1 + ln(γ)dt)ψ(xt+dt)} in the function ψ, which is a counterpart of the Bellman
operator in Definition B.1.

Thus, we recover the definition of a viscosity solution. The intuition is whenever a solution V of the HJB equation is non
differentiable at some point x ∈ O, it should also satisfy other conditions imposed by viscosity for it to be a proper value
function. In this way, the viscosity property serves as a regularizer to help to eliminate “bad” solutions of the HJB equation.

C. Dynamic Programming
Further, we consider only FEM based dynamic programming proposed in Munos (2000). In the FEM case, we use a
triangulation Σδ to cover the state space. It is also possible to discretize the control space, denoted by U δ. The vertices of
the triangulation Σδ are denoted {ξ1, ξ2, ..., ξNδ} with Nδ ∈ N. In this setting, V is approximated by a piecewise linear
function V δ . Thus, for x ∈ Simplex(ξ0, .., ξd), we have

V δ(x) =

d∑
i=0

λξi(x)V δ(ξi)

where λξi(x) is the barycentric coordinates inside the simplex (ξ0, ..., ξd).

By using a FEM approximation scheme, the HJB equation is transformed into:

V δ(ξ) = sup
u∈Uδ

[γτ(ξ,u)V δ(η(ξ, u)) + τ(ξ, u)r(ξ, u)]

where η(ξ, u) = ξ + τ(ξ, u)f(ξ, u) and τ(ξ, u) is a time discretization function that should satisfy:

∃k1, k2 > 0,∀ξ ∈ Σδ,∀u ∈ Uδ, k1δ ≤ τ(ξ, u) ≤ k2δ

If F δ is defined as F δ[φ](ξ) = supu∈Uδ [γ
τ(ξ,u)

∑d
i=0 λξi(η(ξ, u))φ(ξi) + τ(ξ, u)r(ξ, u)], it is possible to show that F δ

satisfies a contraction property, and since V δ(ξ) = F δ[V δ](ξ) holds, dynamic programming techniques can be applied to
compute V δ. Moreover, it can be proved that V δ −→

δ→0
V uniformly on any compact of the state space. With this method,

one can derive algorithms that converge towards V , without even knowing the dynamics of the system. Thus, this is one of
the approaches that allows us to find a viscosity solution of the HJB equation (see Munos (2000) for more details).

15



825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Learning HJB Viscosity Solutions with PINNs

D. Introduction to PINNs
Here, we provide a short introduction to PINNs for those readers who are not familiar with this method. The adaptation of
PINNs to solving the HJB equation in the viscosity sense is covered in Section 4.2.

To solve a differential equation

F (x,W (x),∇xW (x),∇2
xW (x)) = 0, W : Ō → R, x ∈ O, (28)

with K1 equality boundary conditions

Bi(x,W (x),∇xW (x),∇2
xW (x)) = 0, x ∈ ∂O, i ≤ K1, (29)

and K2 inequality boundary conditions

Gi(x,W (x),∇xW (x),∇2
xW (x)) ≤ 0, x ∈ ∂O, i ≤ K2. (30)

one can assume that W (x) lies in the class of functions Fθ = {fθ(x) = NN(x, θ) : θ ∈ Θ} represented by neural networks
of a fixed architecture and parametrized with weights θ ∈ Θ. If it is the case then there exists θ such that Wθ[x] should
satisfy equation 28 and thus minimize the loss

LPDE(θ) =
1

NF

NF∑
i=1

(
F (xi,Wθ[xi],∇xWθ[xi],∇2

xWθ[xi])
)2 ∀xi ∈ Su(O,NF ), (31)

with Su(O,NF ) denoting a sample of NF points drawn uniformly from O. If the solution Wθ[x] should satisfy some
additional boundary constraints then it should also minimize the boundary losses for all k ≤ K1 and k′ ≤ K2

LBk(θ) =
1

Nk
B

NkB∑
i=1

(
Bk(xi,Wθ[xi],∇xWθ[xi],∇2

xWθ[xi])
)2 ∀xi ∈ Su(∂O,Nk

B) (32)

LGk′ (θ) =
1

Nk′
G

Nk
′
G∑

i=1

([
Gk′(xi,Wθ[xi],∇xWθ[xi],∇2

xWθ[xi])
]+)2

∀xi ∈ Su(∂O,Nk′

G ), (33)

where [f(x)]+ = max{f(x), 0}.

To put everything together, when solving a PDE in a PINNs-like manner, one should train a neural network Wθ[x] that
minimizes:

L(θ) = LPDE(θ) +

K1∑
k=1

λkLBk(θ) +

K2∑
k=1

λ′kLGk(θ). (34)

where λk, λ′k > 0 are some mixing coefficients for different boundary conditions.

E. Experimental Results. Supplementary
E.1. Dynamic Programming Experimental Results

In this section, we present the results obtained with one of the algorithms proposed in Munos (2000). First, a grid is built
by dividing each axis by N points. Then, we use the Delaunay’s triangulation over the grid and apply the Value Iteration
algorithm (VI) to the FEM-MDP derived in Munos (2000).

We set δ = 1
N , δ being the discretization step. The stopping criterion used at the step n is ‖Vn − Vn−1‖∞ ≤ ε where ε is a

chosen tolerance. In our experiments we work with ε = 10−5.

When δ goes towards 0, our approximated value function, V δ , converges towards the true value function. In our case, δ → 0
is equivalent to N → +∞. Empirically, we can see in Figure 5 that this property is satisfied. Indeed, as we increase N , we
obtain a more accurate V δ , and as a result, a better control that leads to a higher cumulative reward.

16



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Learning HJB Viscosity Solutions with PINNs

Figure 5: The cumulative reward obtained on the inverted pendulum for different grid sizes N .

E.2. Comparison of ε schedulers

As mentioned in Section 4.2, we tested three kind of ε-schedulers. All scheduler experiments have been performed with the
parameters described in Section E.5, except mentioned so.

Figure 6 depicts the performance of non-adaptive scheduler on Pendulum. The non-adaptive scheduler fails if ε is updated
too fast and the NN is not able to adjust to a new ε (see Figure 8a), but also it may fail if ε is updated too slow, as the NN
starts to overfit to the given ε. The adaptive scheduler shown in Figure 7 demonstrates a more robust performance with
respect to the choice of nε. Both schedulers fail more often when the contribution of the regularization loss, equation 12, is
too low (e.g. Figure 8b shows that the adaptive scheduler can produce the wrong value function).

E.3. Convergence of PINNs for a fixed ε

In this section, we provide the results that we have obtained for different fixed ε. We have used the same parameters as in
table 2. On figure 9, it is clear that it is easier for PINNs to approach W ε when ε is high enough. Therefore, we assume that
starting our ε scheduler from ε0 = 1 leads to a more stable convergence. That is one of the reasons we designed the hybrid
scheduler: to improve the stability while maintaining a good speed.

E.4. Adaptive Sampling

We have also experimented with adaptive sampling techniques. In particular, we considered the R3 method from Daw et al.
(2023). First, we have observed that using it together with ε-schedulers can be detrimental to the uniform convergence.
Therefore, we use this method only at the end of the training. After NB ITER epochs, we execute R3 for the additional 400
epochs with the fixed ε. It can be seen as the way to finetune the final result. Figures 10-12 demonstrate the effect of such
procedure on the classical control environments described in Section 5. The vertical dash line shows the start of the final
stage with the adaptive sampling. The results are shown for different dataset sizes used for adaptive sampling. One can
observe that adaptive sampling helps to improve the results for some tasks and some schedulers, e.g. it provides a noticeable
improvement for Acrobot with the adaptive and hybrid schedulers. Nevertheless, it can also lead to worse results, especially
when the big datasets are used. The degraded performance can be explained with the fact that the adaptive sampling of
R3 can break viscosity by overfitting the model on difficult non-smooth areas. Thus, futher research on how to combine
adaptive sampling with viscosity is necessary.

17



935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Learning HJB Viscosity Solutions with PINNs

0 200 400 600 800 1000

1000

1500

2000

2500

3000

1
10
25
50

(a)

0 200 400 600 800 1000

1000

1500

2000

2500

3000
1
10
25
50

(b)

Figure 6: Cumulative rewards on Pendulum with non-adaptive scheduler shown for differentNu (a) with strong regularization
λR = 10−3 (b) with weak regularization λR = 10−6.

0 200 400 600 800 1000

1500

2000

2500

3000

1
5
10
15

(a)

0 200 400 600 800 1000

1000

1500

2000

2500

3000

1
5
10
15

(b)

Figure 7: Cumulative rewards on Pendulum with adaptive scheduler shown for different nε (a) with strong regularization
λR = 10−3 (b) with weak regularization λR = 10−6.

18



990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Learning HJB Viscosity Solutions with PINNs

10 5 0 5 10
3

2

1

0

1

2

3
Value function

49.0

49.2

49.4

49.6

49.8

(a)

10 5 0 5 10
3

2

1

0

1

2

3
Value function

47.2

47.4

47.6

47.8

48.0

(b)

Figure 8: Value maps on Pendulum with the failed schedulers: (a) a non-adaptive scheduler with Nu = 1, λR = 10−3 (b) an
adaptive scheduler nε = 1, λR = 10−6.

Figure 9: W ε pinns loss and boundary loss for ε = 1, 10−3, 10−5.

E.5. Best Hyperparameters

The best performing hyperparameters are gathered in Table 2.

19



1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Learning HJB Viscosity Solutions with PINNs

0 200 400 600 800 1000 1200 1400

1500

2000

2500

3000

3500

4000

4500

5000 eps_scheduler: hybrid
eps_scheduler: adaptive
eps_scheduler: non_adaptive

(a)

0 200 400 600 800 1000 1200 1400

1000

1500

2000

2500

3000

eps_scheduler: hybrid
eps_scheduler: adaptive
eps_scheduler: non_adaptive

(b)

0 200 400 600 800 1000 1200 1400

1500

2000

2500

3000

3500

4000

4500

5000
eps_scheduler: hybrid
eps_scheduler: adaptive
eps_scheduler: non_adaptive

(c)

0 200 400 600 800 1000 1200 1400

1500

2000

2500

3000

3500

4000

eps_scheduler: hybrid
eps_scheduler: adaptive
eps_scheduler: non_adaptive

(d)

Figure 10: Cumulative reward for different adaptive sampling setting (pendulum environment): (a) HJB, dataset of size
1000, (b) HJB, dataset of size 10000, (c) Soft HJB, dataset of size 1000, (d) Soft HJB, dataset of size 10000.

0 200 400 600 800 1000 1200 1400
0

200

400

600

800

1000

eps_scheduler: hybrid
eps_scheduler: adaptive
eps_scheduler: non_adaptive

(a)

0 200 400 600 800 1000 1200 1400
200

0

200

400

600

800
eps_scheduler: hybrid
eps_scheduler: adaptive
eps_scheduler: non_adaptive

(b)

0 200 400 600 800 1000 1200 1400

200

100

0

100

200

300

400

500

600
eps_scheduler: hybrid
eps_scheduler: adaptive
eps_scheduler: non_adaptive

(c)

0 200 400 600 800 1000 1200 1400

200

0

200

400

600

800 eps_scheduler: hybrid
eps_scheduler: adaptive
eps_scheduler: non_adaptive

(d)

Figure 11: Cumulative reward for different adaptive sampling setting (cartpole swingup environment): (a) HJB, dataset of
size 1000, (b) HJB, dataset of size 10000, (c) Soft HJB, dataset of size 1000, (d) Soft HJB, dataset of size 10000.

0 200 400 600 800 1000 1200 1400

0

50

100

150

200

eps_scheduler: hybrid
eps_scheduler: adaptive
eps_scheduler: non_adaptive

(a)

0 200 400 600 800 1000 1200 1400

50

0

50

100

150

200

250

300

350
eps_scheduler: hybrid
eps_scheduler: adaptive
eps_scheduler: non_adaptive

(b)

0 200 400 600 800 1000 1200 1400

0

100

200

300

400

500

600
eps_scheduler: hybrid
eps_scheduler: adaptive
eps_scheduler: non_adaptive

(c)

0 200 400 600 800 1000 1200 1400

0

100

200

300

400

500

eps_scheduler: hybrid
eps_scheduler: adaptive
eps_scheduler: non_adaptive

(d)

Figure 12: Cumulative reward for different adaptive sampling setting (acrobot environment): (a) HJB, dataset of size 1000,
(b) HJB, dataset of size 10000, (c) Soft HJB, dataset of size 1000, (d) Soft HJB, dataset of size 10000.

20



1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Learning HJB Viscosity Solutions with PINNs

Environment Names Hyperparameters values
Shared batch size NF 64

learning rate ν 0.00085
patience adaptive scheduler nε 10
boundary loss coefficient λ 10−1

starting ε ε0 1
number of epochs between ε updates Nu 10
non-adaptive scheduler coefficient ρ 0.5
adaptive scheduler coefficient ρ′ 0.99
number of ε updates with non-adaptive scheduler Nε 5
reg loss coefficient λR 10−3

Pendulum number of sampled points ND 5000
Cartpole number of sampled points ND 5000
Acrobot number of sampled points ND 5000

Table 2: Hyperparameters for Algorithm 1.

21


