Learning HJB Viscosity Solutions with PINNs for Continuous-Time
Reinforcement Learning

Anonymous Authors'

Abstract

Despite recent advances in Reinforcement Learn-
ing (RL), the Markov Decision Processes are not
always the best choice to model complex dynam-
ical systems requiring interactions at high fre-
quency. Being able to work with arbitrary time
intervals, Continuous Time Reinforcement Learn-
ing (CTRL) is more suitable for those problems.
Instead of the Bellman equation operating in dis-
crete time, it is the Hamilton-Jacobi-Bellman
(HJB) equation that describes value function evo-
lution in CTRL. Even though the value function
is a solution of the HJB equation, it may not be
its unique solution. To distinguish the value func-
tion from other solutions, it is important to look
for the viscosity solutions of the HIB equation.
The viscosity solutions constitute a special class
of solutions that possess uniqueness and stability
properties. This paper proposes a novel approach
to approximate the value function by training a
physics informed neural network (PINN) through
a specific e-scheduling iterative process constrain-
ing the PINN to converge towards the viscosity
solution and shows experimental results with clas-
sical control tasks, where PINNs outperform pop-
ular RL algorithms in a nearly continuous-time
setting.

1. Introduction

Reinforcement learning (RL) is getting more and more at-
tention. Most of state-of-the-art RL methods are designed
to work with Markov Decision Processes (MDPs) and, in
particular, rely on a discrete time assumption. Even though
this assumption is not that restrictive in some tasks like
games, it is no longer valid in complex problems such as
driving cars, finance trading or controling a dynamical sys-

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

tem. Such problems are usually described by a dynamical
system where discrete time RL (DTRL) often struggles to
provide accurate control within short time intervals due to
several reasons (Doya, 2000; Wang et al., 2020; Mukher-
jee & Liu, 2023). As DTRL algorithms operate in regular
discrete time steps, it becomes challenging to capture the
nuances of continuous state dynamics within small intervals.
Even when the timestep is set to be small, DTRL may fail
to learn the optimal policy as exploration cannot be done
efficiently.

Continuous Time Reinforcement Learning (CTRL) derives
from the optimal control theory and thus provides a promis-
ing theoretical framework to tackle aforementioned short-
comings of DTRL. CTRL is agnostic on the discretization
of time and thus can provide a good control at any chosen
frequency without the need to retrain the policy. Similar to
DTRL, one way to find an optimal policy is to compute it us-
ing the value function. Thus, the key ingredient in CTRL is
the Hamilton-Jacobi-Bellman (HJB) equation (Doya, 2000;
Munos, 2000), a Partial Differential Equation (PDE), which
is a continuous-time counterpart of the Bellman equation.
This PDE describes the evolution of the value function with
respect to a state of the system, which in turn evolves con-
tinuously with time. In principle, the value function is a
solution of the HIB equation. However, it is only a neces-
sary condition and not a sufficient one. The HIB equation
may have multiple solutions in a class of continuous func-
tions (Munos, 2000) making it a challenging task to find the
value function. Distinguishing the value function from the
other solutions of the HIB equation relies on the search for
the viscosity solution that possesses uniqueness and stability
properties.

However, there is no guarantee in general that the solution
found by existing methods is the good solution, i.e. the vis-
cosity solution. Moreover, even verifying if a given solution
is a viscosity solution is a hard task, let alone finding them.
The existing methods for solving the HIB equation are lim-
ited and mainly applicable to specific cases such as Linear
Quadratic Regulator (LQR) problems or variational prob-
lems (Fleming & Soner, 2006). There exist approaches that
can be applied in general case, such as Finite Difference
(FD), Finite Element Methods (FEM) (Grossmann et al.,

Learning HJB Viscosity Solutions with PINNs

2007), and dynamic programming methods (Munos, 2000)
that transform a CTRL problem back to a DTRL problem
thanks to the discretization. However, their effectiveness
is hindered by the exponentially growing algorithmic com-
plexity with respect to the state space dimensionality. In
addition, they are also affected by discretization error.

Conversely, neural networks (NNs) are emerging as PDE
solvers that do not require discretization of the domain
and thus they better cope with the curse of dimensional-
ity (Raissi et al., 2019). Although neural networks have
shown a great potential in various domains (Lu et al., 2021;
Karniadakis et al., 2021), applying them to solve the HIB
equation requires caution because of the aforementioned
non-uniqueness issue.

In this paper, we revisit CTRL approaches and analyze how
the latest advances in deep learning can be applied and ad-
justed to solve the HJB equation in the viscosity sense. The
main contribution of this paper is to provide a NN based
framework to find the viscosity solutions of the general
HIJB equation. To the best of our knowledge this is the first
attempt to do it. We focus on the case of deterministic envi-
ronments with known dynamics. The extension to stochastic
environments and unknown dynamics is possible (see Wang
et al. (2020); Cagatay Yildiz et al. (2021)), but left for fu-
ture work. To find viscosity solutions, our approach is to
solve sequentially a series of PDEs so that the solution of
the final one is the value function. We use NN solvers for
those PDEs and we propose several ways of building the
sequence of those equations. This work can be interesting
for the optimal control community as we show how to use
the neural networks to get the viscosity solutions and for the
reinforcement learning community as our work can be used
as a basis for Model Based Continuous Time Reinforcement
Learning.

This paper is organized as follows: we start with the analysis
of the existing literature in Section 2. Then, we carefully
introduce the definitions and notations related to CTRL in
Section 3.1, describe the HJB equation in Section 3.2 and
define viscosity solutions in Section 3.3. Then, different
ways of integrating neural networks in the process of solv-
ing the HIB equation are discussed in Section 4. Finally,
we demonstrate the performance of our approach in Sec-
tion 4 on classical control tasks from RL, and show that
our method performs significanly better than some popu-
lar DTRL algorithms in almost continuous-time setting in
Section 5.

2. Related Works

Doya (2000); Munos (2000); Coulom (2002) are among
the first papers to study CTRL. Those works introduced
the HIB equation as a key equation for finding the optimal

policy. In Doya (2000), different discretization schemes and
algorithms are analysed for computing the value function,
including continuous TD(\) and continuous Actor-Critic. In
his Ph.D. (Coulom, 2002), Coulom studied the applicability
of Doya’s methods (Doya, 2000) to a large class of con-
trol problems. Munos (Munos, 2000) tackled CTRL by the
study of viscosity solutions and their properties. He demon-
strated the challenges of solving the HIB equation such
as the non-uniqueness of solutions and handling inequal-
ity boundary conditions. In addition, convergent numerical
schemes based on dynamic programming were derived to
approximate the value function. One of the problems of
numerical schemes is the curse of dimensionality. To miti-
gate this problem, sparse grids (Kang & Wilcox, 2016) can
be used instead of uniform grid. In this article, we take
the formalism proposed in Munos (2000), but we consider
neural network based approaches to find viscosity solutions,
while Munos (2000) considers tabular algorithms.

As it was first demonstrated in Munos et al. (1999), NNs
can be applied for solving the HIB equation (Liu et al.,
2014; Cheng et al., 2007; Tassa & Erez, 2007; Lutter et al.,
2020; Han et al., 2018; Adhyaru et al., 2011). In Tassa &
Erez (2007), the training is regularized to avoid converg-
ing to “bad” solutions. Moreover, the same work raised
the problem of falling in a local minimum of the squared
HIB residual, and some solutions to avoid it were proposed.
Compared to previous papers, Liu et al. (2014); Adhyaru
et al. (2011) have emphasized the robustness of the result-
ing controller and the stability of the proposed algorithm.
Adapting the former methods for more practical cases such
as the inverted pendulum and the cartpole was done in Lut-
ter et al. (2020). We consider similar approaches as Tassa
& Erez (2007); Lutter et al. (2020), but unlike them we
use the formalism proposed in Munos (2000) to develop an
approach that can converge to viscosity solutions.

Several extensions to the classical HIB equation were also
introduced such as HJB for an explorative reward func-
tion (Wang et al., 2020), the soft HIB equation with maxi-
mum entropy regularization (Kim & Yang, 2020; Halperin,
2021) and the distributional HIB equation (Wiltzer et al.,
2022). Those works extend the existing theory to other
definitions of the value function, however experiments are
conducted on a limited set of simple problems. Futhermore,
it is also possible to extend the HIB equation to continuous-
time partially observable Markov decision processes (CT-
POMDPs). (Alt et al., 2020), proposed a formalism to
describe CTPOMDPs, including the CTPOMDP HIB equa-
tion. Kim et al. (2021) tackle the problem of CTRL by
adapting the well-known DQN algorithm to this framework.
A definition for the Q-function in the continuous case is
given and the “HJB equation for the Q-function” is derived,
which results in a DQN-like algorithm for the semi-discrete
time setting. However, this approach is limited to Lipschitz

Learning HJB Viscosity Solutions with PINNs

continuous control, while there are a lot of cases where
only discrete control is available. The HIB equation was
used to improve DTRL algorithms like PPO in Mukherjee
& Liu (2023). This resulted in a significant improvement on
MuJoCo tasks, proving that HIB loss is better adapted for
learning value functions of dynamical systems.

There were some attempts to propose alternative ways for
solving the HIB equation. Another NN approach to approx-
imate the value function based on Pontryagin’s maximum
principle has been proposed (Nakamura-Zimmerer et al.,
2021), assuming the concavity of the reward function. They
use numerical methods to collect a dataset of trajectories by
solving the boundary value problem on short time intervals
and then train a NN to fit them. Conversely, Darbon et al.
(2023) considers some special neural network architectures
inspired with min-plus algebra to solve some optimal control
problems with linear dynamics and quadratic rewards.

Another line of research exploits the continuous time formu-
lation to do more accurate Monte Carlo estimations of value
functions (Lutter et al., 2021b;a; Cagatay Yildiz et al., 2021)
rather than using the HJB equation. Lutter et al. (2021b)
adapted the fitted value iteration algorithm to the CTRL
problem. In Cagatay Yildiz et al. (2021), a model-based al-
gorithm was introduced, which aims at solving the problem
in an actor-critic manner. Bayesian neural ODEs are used
in order to learn the dynamics of the system.

3. Hamilton-Jacobi-Bellman Equation

3.1. Reinforcement Learning Formalism in the
Continuous Time Case

We consider the optimal control problem for infinite-horizon
deterministic dynamical systems. The state dynamics and
reward signal are known on the whole domain. The exten-
sion to unknown dynamics and rewards is left for future
works.

In what follows, we denote with O C R, the set of contro-
lable states of our system, and then the admissible control
u € U keeps the state trajectory inside the domain O, where
U C R™ corresponds to the action/control space. We as-
sume that U is bounded. We use g € C(O) to denote that
g is a continuous function on O, while g € C'*(O) denotes
that g is a continuously differentiable function on O.

The main difference between the continuous and discrete
time cases is that transitions depend on time ¢, which is a
continuous variable, generating trajectories of states con-
tinuously in time. More formally, in the continuous case
the states do not form a sequence {z;}$°, but a trajectory
z: Ry — O C R% Similarly, the actions are defined for
any t: v : Ry — U. The dynamics of the environment
(the transition function) is defined through the following

ordinary differential equation (ODE):

dx(t)
dt

= f(z(t), u(t)) (1)

where f : O x U — R%is called the state dynamics func-
tion. In the discrete case, x(t) is only defined at times
{0,dt, 2dt, . ..}, where dt is a time step. While the state x
is inside the control domain O (i.e. x(t) € O), the reward
r: 0 x U — Ris received.

Without loss of generality, we focus on the problem of
optimal control under state constraints, i.e. z(t) € O for
any ¢ > 0. Note that constraining the system to stay inside
O is a common requirement for dynamical systems. For
example, we may want to limit the maximal angular speed
in the inverted pendulum to mitigate the risk of wearing off
or breaking the mechanism. The interested reader can refer
to Appendix A.4 to learn more about other possible cases.

Given the initial state z(0) = z, we define the cumulative
discounted reward for a given control function u(t) as:

T(aos u(t)) = / Tt)l @)

where v € [0,1) is a discount factor. .J is called the rein-
forcement functional. Then, the value function is defined as:

V(z) = sup J(z;u(t)), 3)

u(t)eU,
where U, = {u(t)|z(t) € O,Vt > 0and 2(0) = z}, i.e. a
control that keeps the state of the system inside the domain
O. Our goal is to find an optimal policy 7 : O — U,
such that u*(t) = w(z*(¢)) for any ¢, where u*(¢) and
x*(t) are the control and state of the optimal trajectory, then
V(z) = J(x;u*(t)).

3.2. Hamilton-Jacobi-Bellman Equation

Let L(z,u,p) =
H(z,W,V, W) =

p' f(z,u) + r(z,u) and
—Wlny — sup L(z,u, VW),
ucl
then the HJB equation can be expressed as

H(z, W, V,W) = 0. @)
We can prove that the value function defined in equation 3

satisfies the following result (see Fleming & Soner (2006)):

Theorem 3.1. [fthe value function V is differentiable at
then it should satisfy the Hamilton-Jacobi-Bellman equa-
tion.

If the value function V'(x) is known, then we can define a
feed-back control policy 7 : O — U such that w(x(t)) =
u*(t) by setting:

m(x) € arges[blp (V. V(@) f(z,u) +r(z,u)}. (5)

Learning HJB Viscosity Solutions with PINNs

In practice, if for some values u, L(z,u,V,V) =
max, L(z,u’',V,V), then it is possible to pick up a wrong
control because of numerical instabilities.

One way to bypass this issue is to consider, similarly to
Kim & Yang (2020), a stochastic policy with a probability
distribution for a discrete set U4:

exp(aL(z,u,V,V))
>weuexplaL(z,u',V,V))’

where « is an inverse temperature parameter. Compared
to equation 5, equation 6 applies a softmax to compute the
probability of the best control. Using 7*, one can compute
the soft version of the HIB equation:

(6)

™ (z,u) =

—Winy —Eyn- L (2,u, V,W) =0. @)

In the following we mainly focus on the general HIB equa-
tion (equation 4), but this soft version can be beneficial for
some practical cases as shown in our experiments.

When O # R4, the control in state constrained optimal
control problems should also satisfies f(z,u*(z))Tn(z) <
0 for any = € 9O, where n(x) the external normal vector
at point z € 90. The optimal policy is not known a priori
and thus it is hard to verify this constraint. In Fleming &
Soner (2006); Soner (1986), it was shown that it can be
reformulated as:

—H(z,W,V,W+an(z)) <0 Va<0,z€d0. (8)

From equation 5, it is crucial to find an efficient way to
compute V' to get the optimal control v*. In DTRL, the
Bellman equation is traditionally used to find V. The HIB
equation can be seen as a continuous-time analog of the
Bellman equation. However, solving the HIB equation
involves several challenges (see Munos (2000)). First, the
value function V' € C(0O), a continuous solution of the
HJB equation, may be non-differentiable on O, therefore
it cannot satisfy the HIB equation on the whole domain.
Second, the HIB equation may have multiple generalized
continuous solutions. Third, it is common that the HJB
equation (equation 4) has to be solved under inequality
boundary conditions. To address those points, we introduce
the viscosity property.

3.3. Viscosity

Here, we present the crucial and yet complex notion of
viscosity (Fleming & Soner, 2006). Refer to Appendix B
for a more intuitive presentation.

Definition 3.2 (Viscosity solution).

o W € C(O) is a viscosity subsolution of the HIB equa-
tion in O if Vip € C*(O) and Vx € O local maximum

of W — ¢ such that W (x) = ¢(z), we have:
H(z, ¢(x), Voip(x)) <0

e W € C(O) is a viscosity supersolution of the HIB
equation in O if V¢p € C'(O) and Vz € O local
minimum of W — 1 such that W (z) = ¢(x), we
have:

Hz, (), Vath(x)) > 0

e If W € C(O) is a viscosity subsolution and a superso-
lution then it is a viscosity solution.

Viscosity solutions were first introduced in Crandall & Li-
ons (1983) and they are proven to be unique for multiple
types of PDEs. Under some additional assumptions, which
include continuity of f and r, one can prove that the value
function is a unique viscosity solution for O = R? (See
Appendix A.3 for more details). A similar result exists for
O C R and when the value function should satisfy the
boundary condition equation 8.

A large class of practical control problems with continuous
dynamics, like classical control or MuJoCo tasks (Todorov
et al., 2012), needs to find the unique viscosity solution
of the HJB equation to get a correct value function. Thus,
developping methods converging to the viscosity solution is
the key factor for CTRL. However, checking the conditions
of Definition 3.2 is not feasible in practice. Instead, we use
the next property of viscosity solutions (Fleming & Soner,
2006).

Lemma 3.3 (Stability). Let W€ be a viscosity subsolution
(resp. a supersolution) of

We(z) + F(x, W, VW, VW) =0

in O. Suppose that F° converges to F uniformly on every
compact subset of its domain, and W€ converges to W
uniformly on compact subsets of O. Then W is a viscosity
subsolution (resp. a supersolution) of the limiting equation.

In our case, we are interested in the equation:
H(x, WV, W) = eA, W(x), 9)

where the left hand side is the same as in equation 4, while
the right hand side depends linearly on ¢ > 0. Let A, W
be a Laplacian of W, then F¢(z, W, V,W¢ V2W*¢) =
—ﬁH(m, We, v, We) — We(x) + ﬁAmWS(x) and
in Lemma 3.3. In Fleming & Soner (2006), it is shown
that equation 9 has a unique smooth solution W€ (z), i.e. it
admits a classical solution, which is a viscosity solution at
the same time. Therefore, if W¢(z) converges uniformly
to W (x) (convergence of solutions) and €A, W€ converges
uniformly to O (convergence of equations), then W (z) is a

viscosity solution of the original HIB equation (equation 4).

Learning HJB Viscosity Solutions with PINNs

4. How to Reach Viscosity

In what follows, we present two methods to find viscosity
solutions of an HIB equation. First, we present the existing
method based on dynamic programming. Then, we intro-
duce a new neural approach. Further, we assume that the
state dynamics f(z,u) are known and the control space U
is discrete. The case of unknown f(z,) and continuous
control space is left for future work.

4.1. Dynamic Programming

Several solvers exist such as Finite Difference method (FD)
or Finite Element Method (FEM). These methods require
the discretization of the domain (a grid for FD or a trian-
gulation for FEM). The work of Munos (2000) establishes
the connection between solving the HIB equation and the
classical reinforcement learning framework by deriving an
MDP from the discretization of the HIB equation, using
either FD or FEM schemes (see Appendix C for a short
summary of the method). The strong point of this method is
that there exist viscosity convergence guarantees (Munos,
2000). The weak point is that they are mesh-dependent,
making them sensible to the curse of dimensionality. For
example, in the case of the cartpole problem where O C R4,
a naive approach that divides all dimensions uniformly in
N parts results in N* states. Setting N = 32, which may
not be sufficient to solve the problem, leads to 220 states,
which is already too many to process on a single device. In
Section 5, we present the performance of the FEM based
dynamic programming only on the inverted pendulum envi-
ronment due to the aforementioned reasons. Despite many
efforts, we were not able to make the algorithm based on
FD work in our experiments, thus it is not considered.

4.2. Neural Solver

The idea is to solve a series of PDE equations starting from
some ¢ and gradually decrease it so that the solution of
the final PDE for €., = 0 is the desired viscosity solution.
Thus, the general framework to get viscosity solutions is the
following: define the sequence of {¢, }5, choose a PDE
solver, then iteratively solve equation 9 so that W¢(x) form
a convergent sequence to W (z) and output W (z) as a final
result. In what follows, we choose PINNs as a PDE solver
and we define a few e-schedulers to generate {¢, }.

PINNs The idea of PINNs was proposed in Raissi
et al. (2019) and applied to some simple PDEs like one-
dimensional nonlinear Schrédinger equation, but not for
optimal control. In PINNs framework, the neural network
acts as a solution of the PDE that needs to be solved.
Being randomly initialized, the neural network is gradu-
ally fit to satisfy the PDE and its corresponding bound-
ary conditions with the help of optimization and automatic

differentiation that allows to compute precise derivatives.
For example, the solution of the equation W, — W = 0
for W € CY(O = [0,1]) with the boundary condi-
tion W(0) = 1 can be found by minimizing the loss
miny {||W, — W||3 + A|W(0) — 1]|3}. The first term
of this loss is called a PDE loss and the second term a
boundary loss, where)\ is a hyperparameter that weighs a
boundary loss against a PDE loss. PINNs can be trained in
a self-supervised manner as a dataset can be generated by
simply drawing random samples from the domain O. Still,
if the solution is known at some points of the domain, then
the training can be augmented with a data-driven loss. Refer
to Appendix D for a more detailed introduction to PINNs.

Further, we denote W and Wy the two neural networks
that compute the solutions of equation 9 and equation 4
respectively with 6 being its parameters. In PINNs-like
mannner, we define losses corresponding to equation 9 and
equation 8. Let us define Sp ~ U(O, Nr), a sample of
points drawn uniformly from O of size N, and Spo ~
U(00, Ng). We have:

Lo(8,S50) =
1 € € 2 e\ 2
= (H (i, W5, VW5) — €Tr(V2W5))~ (10)
F z;€ESo
Loo(0,Ss0) =
1 € € + 2
= 2 (I-H(,Ws YW+ an())])
B z.e850

Y

where [f(z)]" = max{f(z),0}. In addition to PDE-
related and boundary-related losses, we introduce an MSE
regularization loss that should encourage uniform conver-
gence of solutions:

1 € €n— 2
La(0.80) = 5= 3 (Wiled) =Wy~ ()
z;€ESo
(12)
where 0., _, is the best parameters found for €,,_;. The final
loss is:

L(0,S0,8s0) = Lo(0,50) + ALoo (8, Sp0)
+ ARLR(6,80). (13)

For simplicity, we use the same amount of points to sample
from O and 00, i.e. Np = Np.

e-schedulers Training is performed using multiple epochs
t, where each epoch starts from generating datasets Do and
Dao of samples from O and JO respectively. To ensure
the uniform convergence of equation 9 to equation 4, we
need to define a sequence of {e,}2°, such thate, — 0

Learning HJB Viscosity Solutions with PINNs

Max laplacian

800

a—1
‘ 5
600 £ 10
| — 15
400 / ‘\\
200
0
\ /’
—-200 A 4

-30 -25 -20 -15 -10 -5 0

Ine

Figure 1: Evolution of ||A,Wj|| with respect to Ine
shown for different n. values, computed for the Pendulum
environment (see Section 5).

and €,A,Wg"(z) — 0 uniformly for all € O when
n — oo, or equivalently max,co e, A, Wy (x)] — 0
(max,co |€,A, Wy ()| also denoted as ||e, Az W™ || o).
Each e, requires multiple epochs to get the best 6. so that
W; ~ W*~. An update of € can happen either at regular
freqﬁency, i.e. after each V,, epochs, or it can be triggererd
by a special condition at the end of some epochs. Thus, we
distinguish two timelines, where one is indexed by ¢ and
another one, slower, by n.

We propose three ways to define {e,, }° . The first one is
the naive non-adaptive scheduler:

En+1 = EnpP (14)

where p € (0, 1) is the rate of €,, decay. We keep the same

€ value for IV, epochs, thus n = L\f J .

The second scheduler is called the adaptive scheduler.
Let 0, = 0(e,) = en AWyt (z)| =

Do
. Given ¢g, we get all the consecutive ele-
o0

maXgeDy

€ng Wg"
ments with the update rule:

%en 1f P5n—1 S 671,
€nt1 = " .
€n otherwise,

15)

where p has the same purpose as before. To compute the
best 6., for an estimation of W, we only update € if
L(6,S0,Ss0) does not improve for n. consecutive epochs,
ie. L(0;) > L(O;—1)Vi:t—n.+1 < i<t Thus, n.
specifies the minimum number of epochs with fixed € to
obtain Wi (x) = W¢(z), a solution of equation 9.

The intuition behind the adaptive scheduler is to use actual
values of §,, to regulate the speed with which €, goes to

zero so that J,, decreases making |le, A, W || also de-
crease. Indeed, assume that we have decreasing sequences
€0,€1,...,€n_1 and g, d1,...,0,_1 and we want to find a
new €, such that 6,, < d,,_1. If a new candidate value €/, s.7.
€, < €n—1, corresponds to ¢/, and &, > &,,—1, then recalcu-

late €,, = pég,’l el < e, Let us also assume that the Lapla-

cian of ¢ does not change much with e: C||A, W |00 >
[A:W§ |loo for all € < € and empirically it holds, es-
pecially for small € (see Figure 1). In this case, J,, =

“n 671,— “n
d(en) = e€n AIW(;TL = p 5;/15;LHAW9F€“ o <
PO AW, oo = 25728, = pCony. T p < &
then §,, < d,_1, thus it encourages the uniform conver-
gence of equations.

We also propose a hybrid scheduler, mixing the two previous
schedulers by starting with the non-adaptive scheduler for
several e-updates and then using the adaptive scheduler until
the end of the training. The nonadaptive scheduler serves
as a "warm-start” at the beginning of the training allowing
us to do more regular updates for large e for which training
is easier (see Appendix E.3). Then, it is better to use the
adaptive scheduler for smaller € to ensure the convergence
d(e,0) — 0.

Putting everything together gives Algorithm 1.

Algorithm 1 e-HIBPINNs

Set € = €g, 0 = 0, initialize W
for epoch t in {1, ... ,NB_ITER} do
Generate datasets Do (Np) and Dyo(Np) of Np
states uniformly sampled from O and 0O respectively
for batches So € U(Dop,Nr) and Syso €
U(Dyo, Nr) do
Update 6, = 60, — vVyL(0,S0,Ss0), where
L(8,S0, S) is computed with equation 13
end for
Update € using one of the e-schedulers
end for

S. Experimental Results

Environments We use continuous-time adaptations of in-
verted pendulum, cartpole and acrobot'. Those are chal-
lenging benchmarks for continuous time, similar to Lutter
et al. (2020), where PINNs are also applied to solve the HIB
equation.

Pendulum (dt = 0.001)?> The state space consists of the
angle ¢ and the angular speed ¢. We consider O =

"We used the environments taken from https://github.
com/cagatayyildiz/oderl and slightly modified them to
define O explicitly in each case.

’In the gym inverted pendulum environment d# is set to 1,/20.

https://github.com/cagatayyildiz/oderl
https://github.com/cagatayyildiz/oderl

Learning HJB Viscosity Solutions with PINNs

[—7, 7] x [-10,10] (reducing the domain makes the com-
parison fairer with respect to exploration-based algorithms
that do not compute value function on the whole domain)
and U = {-2,0, 2}.

CartPole Swingup (dt = 0.005) The state space con-
sists of the pole angle ¢, the pole angular speed gb the
cart coordinate y and its speed y. We consider a diffi-
cult version: the problem of swinging up the pole with
O = [-m,m x [-10,10] x [=5,—5] x [=5,5] with U =
{-3,0,3}.

Acrobot (dt = 0.005) The state space consists of angles
¢1 and ¢- and their corresponding angular speeds $1 and
$2. The control is the torque applied to the extreme tip.
We consider O = [—7, 7] X [—m, 7] x [=12.57,12.57] x

[—28.27,28.27] and U = {—5,0,5}.

We use cumulative rewards to compare the obtained poli-
cies, reported as mean cumulative rewards across several
rollouts (typically 5 during the training) in the discrete-time
environments. Each rollout is made of 5000 timesteps.

Analysis of e-schedulers In this section we evaluate the
performance of Algorithm 13 for different e-schedulers.

Each training was executed with 1000 epochs (NB_ITER =
1000) and repeated for 8 different seeds. We have tested
several neural architectures and obtained the best perfor-
mance with a Fourier-Feature Network (FFN) (Yang et al.,
2022), consisting of 3 layers, where the first layer is of size
d x 40 (as recommended in the original article, where d is
the dimensionality of state space) and other layers contain
100 neurons each. The best performing activation function
is tanh. When working with PINNSs, it is important to
use smooth activation functions as using non-smooth activa-
tions like relu may cause the training to fail. Indeed, the
PDE loss Lo requires computing second order derivatives,
and even the third derivative during the backward propa-
gation, but those derivatives do not exist for relu. We
have also observed that the training is more stable if we
standardize the output of the neural networks, i.e. W¢(x;, 6)
and We—1(x;, 6., _,), across the samples in the batch Sp
just before computing the regularization loss (equation 12).
Indeed, the scale of the value function computed with the
neural network is constantly changing during the training,
therefore standardization helps to enforce uniform conver-
gence of solutions without restraining the neural network
training too much.

We have experimented with different e-schedulers from Sec-
tion 4.2 and their hyperparameters for both equation 4 and
equation 7. The comparison of schedulers with the best hy-
perparameters are shown in Figure 2 and more can be found

3Placeholder for the repository link. The code will be available
for the final version.

in Appendix E.2. In case of Pendulum, all three schedulers
can learn a good policy. We also observe that using the soft
HIJB equation is better than the original HIB equation to
find a policy with higher rewards. Indeed, the former one
yields better results when the best control only marginally
outperforms other controls. It can be seen when comparing
value maps in Figure 3, where the value at (¢, ¢) = (0,0)
is higher for the soft HIB equation. Figure 3 also indicates
that neural architectures for PINNS still struggle to approxi-
mate the non-smooth regions, thus further research in neural
architectures for PINNS is required. The soft HIB equation
leads to higher cumulative rewards for Acrobot as well, but
it is the opposite for Cartpole Swingup. Depending on the
problem, one e-scheduler can perform better than the others,
thus we cannot conclude that one scheduler is strictly better
or worse than the other two.

However, training is very sensitive to hyperparameters, es-
pecially for the non-adaptive scheduler. Moreover, all sched-
ulers can fail if A is too small, showing the importance of
the regularization loss equation 12, see Appendix E.2.

Comparison with DTRL Algorithms In this section,
we compare the performance of Algorithm 1 on differ-
ent classical RL control tasks with well-studied DTRL
algorithms such as PPO and A2C implemented in
stable-baselines3 (Raffinetal., 2021)*. To compare
PINNs and DTRL agents, we used the same total number
of training samples. However, note that this setting is less
advantageous for PINNSs training as it requires to sample
uniformly across the whole domain to guarantee the viscos-
ity, while DTRL agents can learn more from the trajectories
that bring the highest outcome. For each algorithm, we take
the best trained agent and we report its evalution mean and
standard deviation over 100 rollouts in Table 1.

For all reported environments, DTRL algorithms struggle
to learn a good policy for so small dt and even completely
fail in case of Acrobot. PINNSs is able to achieve nearly
optimal behaviour on Pendulum (stabilizing the pole). It
performs less well in the case of Acrobot and CartPole, but
its learnt policies still manage to swing up the pole in both
environments outperforming DTRL competitors.

Discussion on PINNs scalability Even if PINNs can be
executed for high-dimension problems, their precision can
be stronly degraded. This is because PINNs are difficult
to train with existing methods, which limits the complex-
ity of problems currently considered, in particular high-
dimensional ones. Wang et al. (2022b) analyse this effect
and propose a stochastic gradient descent (SGD) algorithm
taking into account the neural tangent kernel (NTK) eigen-

“It contains reliable implementations of RL agents. However,
the same algorithms from other packages may perform differently.

Learning HJB Viscosity Solutions with PINNs

4000 4000
—— hybrid
adaptive

3500
3500 —— non_adaptive

3000 3000

2500
2500

2000 /7
2000 4

1500
1500

0 500 1000 0 500 1000 0 500 1000

(2) (b) ©)

800 500 500

600

S 0
0 500 1000 0 500 1000 0 500 1000

Figure 2: Cumulative reward for different e-schedulers along the training: (a) Pendulum, HJB, (b) Pendulum, soft HIB, (c)
CartPole Swingup, HIB (d) CartPole Swingup, soft HIB (e) Acrobot, HIB (f) Acrobot, soft HIB.

(a) (b) (©)
Figure 3: Value function of Pendulum with ¢ as Y axis and
¢ as X axis: (a) Ground Truth (computed with dynamic pro-

gramming (Munos, 2000)) (b) PINNs for HJB, equation 4
(c) PINNSs for soft HIB, equation 7.

| environment method mean std |

Pendulum A2C 961.27 955.83
PPO 1048.02 755.56
PINNs 4006.17 562.97

CartPole Swing-Up A2C 79.16 10.35
PPO 79.16 10.35
PINNs 865.50 209.50

Acrobot A2C 0.0 0.0
PPO 0.0 8.21
PINNs 524.80 133.98

Table 1: Mean and standard deviation of the cumulative
reward for different methods.

values. Others have addressed this issue through adaptive
sampling of colocation points (Daw et al., 2023; Wu et al.,
2023), reformulation of the loss to get a single term (Es’kin
et al., 2023), NTK adaptive eigenvalue selection (Lau et al.,
2023). Wang et al. (2022a) focus on PINNs for HJB. They
prove that for the HIB equation (under certain assumptions),
PINNS require a high order loss to converge to a stable solu-
tion. They propose to rely on an [, norm computed through
an adversarial scheme to ensure convergence stability. Hu
et al. (2023) propose an extension of SGD to dimentional-
ity sampling to solve the HIB equation. But these papers
assume linear-quadratic-Gaussian (LQG) control guaran-

teeing a unique solution, and thus disregard the difficulty
of having a training scheme converging towards viscosity
solutions.

We also tried to apply the R3 method (Daw et al., 2023)
to our algorithm (see Appendix E.4), but it did not give
any noticeable improvement and it can even lead to worse
results for some tasks. Therefore, since adaptive sampling
is a promising way to increase scalability, a further study
on how to use adaptive sampling for viscosity solutions is
required.

6. Conclusion

In this article, we consider the problem of finding the viscos-
ity solutions of the deterministic HIB equation with neural
network solvers. We propose a general scheme, which relies
on solving a series of different PDE equations depending on
e. This framework gives flexibility on how € are updated. In
our experiments, we have shown that our scheme is able to
learn the value function with different e-schedulers and thus
to find control policies that significanly outperform DTRL
approaches on classical control environments when dt is
small. Further work is required to improve the scalability
of our method. Integrating the adaptive sampling methods
can help to improve sample efficiency and considering more
sophisticated neural networks can help with an approxima-
tion of non-smooth areas. One limitation of our work is that
it assumes that the dynamics are continuous (f € C(O)),
which is an important assumption for proving uniqueness
of a viscosity solution. Thus, the approach considered in
this paper cannot be applied to the case of non-continuous
dynamics in a straightforward way. As the latter case is very
important in real life applications, it should be studied in
the future work. Finally, an interesting research perspective
is to add model learning and actor/critic paradigm into our
algorithm to explore the unknown dynamics case and enable
the training based on trajectories.

Learning HJB Viscosity Solutions with PINNs

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

Adhyaru, D. M., Kar, I., and Gopal, M. Bounded robust
control of nonlinear systems using neural network—based
hjb solution. Neural Computing and Applications, 20:
91-103, 2011.

Alt, B., Schultheis, M., and Koeppl, H. POMDPs in con-
tinuous time and discrete spaces. Advances in Neural
Information Processing Systems, 33:13151-13162, 2020.

Cannarsa, P., Gozzi, F., and Soner, H. M. A boundary-value
problem for Hamilton-Jacobi equations in Hilbert spaces.
Applied Mathematics and Optimization, 24(1):197-220,
1991.

Cheng, T., Lewis, F. L., and Abu-Khalaf, M. Fixed-final-
time-constrained optimal control of nonlinear systems
using neural network HJB approach. IEEE Transactions
on Neural Networks, 18(6):1725-1737, 2007.

Coulom, R. Reinforcement Learning Using Neural Net-
works, with Applications to Motor Control. Theses, Insti-
tut National Polytechnique de Grenoble - INPG, June
2002. URL https://theses.hal.science/
tel-00003985.

Crandall, M. G. and Lions, P-L. Viscosity solutions of
hamilton-jacobi equations. Transactions of the American
mathematical society, 277(1):1-42, 1983.

Darbon, J., Dower, P. M., and Meng, T. Neural net-
work architectures using min-plus algebra for solving
certain high-dimensional optimal control problems and
Hamilton-Jacobi PDEs. Mathematics of Control, Signals,
and Systems, 35(1):1-44, 2023.

Daw, A., Bu, J.,, Wang, S., Perdikaris, P., and Karpatne,
A. Mitigating propagation failures in physics-informed
neural networks using retain-resample-release (r3) sam-
pling. In Proceedings of the 40th International Con-
ference on Machine Learning, pp. 7264-7302. PMLR,
2023. URL https://proceedings.mlr.press/
v202/daw23a.html. ISSN: 2640-3498.

Doya, K. Reinforcement learning in continuous time and
space. Neural computation, 12(1):219-245, 2000.

Es’kin, V. A., Davydov, D. V., Egorova, E. D., Malkhanov,
A. O., Akhukov, M. A., and Smorkalov, M. E. About
optimal loss function for training physics-informed neural
networks under respecting causality, 2023.

Fleming, W. H. and Soner, H. M. Controlled Markov pro-
cesses and viscosity solutions, volume 25. Springer Sci-
ence & Business Media, 2006.

Grossmann, C., Roos, H.-G., and Stynes, M. Numerical
treatment of partial differential equations, volume 154.
Springer, 2007.

Halperin, 1. Distributional offline continuous-time reinforce-
ment learning with neural physics-informed pdes (sciphy
rl for doctr-1). arXiv preprint arXiv:2104.01040, 2021.

Han, J., Jentzen, A., and E, W. Solving high-dimensional
partial differential equations using deep learning. Pro-
ceedings of the National Academy of Sciences, 115(34):
8505-8510, 2018.

Hu, Z., Shukla, K., Karniadakis, G. E., and Kawaguchi,
K. Tackling the curse of dimensionality with physics-
informed neural networks, 2023.

Ishii, H. Uniqueness of unbounded viscosity solution of
Hamilton-Jacobi equations. Indiana University Mathe-
matics Journal, 33(5):721-748, 1984.

Kang, W. and Wilcox, L. C. Mitigating the curse of dimen-
sionality: Sparse grid characteristics method for optimal
feedback control and HIB equations, 2016.

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris,
P, Wang, S, and Yang, L. Physics-informed machine
learning. Nature Reviews Physics, 3(6):422-440, 2021.

Kim, J. and Yang, I. Hamilton-Jacobi-Bellman equations
for maximum entropy optimal control. arXiv preprint
arXiv:2009.13097, 2020.

Kim, J., Shin, J., and Yang, I. Hamilton-Jacobi deep Q-
Learning for deterministic continuous-time systems with
Lipschitz continuous controls. The Journal of Machine
Learning Research, 22(1):9363-9396, 2021.

Lau, G. K. R., Hemachandra, A., Ng, S.-K., and Low, B.
K. H. Pinnacle: Pinn adaptive collocation and experi-
mental points selection. In NeurIPS 2023 Workshop on
Adaptive Experimental Design and Active Learning in
the Real World, 2023.

Liu, D., Wang, D., Wang, F-Y., Li, H., and Yang, X. Neural-
network-based online hjb solution for optimal robust guar-
anteed cost control of continuous-time uncertain nonlin-
ear systems. IEEE transactions on cybernetics, 44(12):
2834-2847, 2014.

Lu, L., Meng, X., Mao, Z., and Karniadakis, G. E. Deep-
xde: A deep learning library for solving differential
equations. SIAM Review, 63(1):208-228, 2021. doi:
10.1137/19M1274067. URL https://doi.org/10.
1137/19M1274067.

https://theses.hal.science/tel-00003985
https://theses.hal.science/tel-00003985
https://proceedings.mlr.press/v202/daw23a.html
https://proceedings.mlr.press/v202/daw23a.html
https://doi.org/10.1137/19M1274067
https://doi.org/10.1137/19M1274067

Learning HJB Viscosity Solutions with PINNs

Lutter, M., Belousov, B., Listmann, K., Clever, D., and Pe-
ters, J. HIB optimal feedback control with deep differen-
tial value functions and action constraints. In Conference
on Robot Learning, pp. 640-650. PMLR, 2020.

Lutter, M., Mannor, S., Peters, J., Fox, D., and Garg, A.
Robust value iteration for continuous control tasks. arXiv
preprint arXiv:2105.12189, 2021a.

Lutter, M., Mannor, S., Peters, J., Fox, D., and Garg, A.
Value iteration in continuous actions, states and time.
arXiv preprint arXiv:2105.04682, 2021b.

Mukherjee, A. and Liu, J. Bridging physics-informed neural
networks with reinforcement learning: Hamilton-Jacobi-
Bellman Proximal Policy Optimization (HIBPPO). arXiv
preprint arXiv:2302.00237, 2023.

Munos, R. A Study of Reinforcement Learning in the
Continuous Case by the Means of Viscosity Solutions.
Machine Learning, 40:265-299, 2000. doi: 10.1023/A:
1007686309208.

Munos, R., Baird, L., and Moore, A. Gradient descent
approaches to neural-net-based solutions of the Hamilton-
Jacobi-Bellman equation. In IJCNN’99. International
Joint Conference on Neural Networks. Proceedings (Cat.
No.99CH36339), volume 3, pp. 2152-2157 vol.3, 1999.
doi: 10.1109/1IJCNN.1999.832721.

Nakamura-Zimmerer, T., Gong, Q., and Kang, W. Adap-
tive deep learning for high-dimensional Hamilton-Jacobi-
Bellman equations. SIAM Journal on Scientific Comput-
ing, 43(2):A1221-A1247, 2021.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,
M., and Dormann, N. Stable-baselines3: Reliable rein-
forcement learning implementations. Journal of Machine
Learning Research, 22(268):1-8, 2021. URL http:
//jmlr.org/papers/v22/20-1364.html.

Raissi, M., Perdikaris, P., and Karniadakis, G. Physics-
informed neural networks: A deep learning frame-
work for solving forward and inverse problems involv-
ing nonlinear partial differential equations. Journal
of Computational Physics, 378:686-707, 2019. ISSN
0021-9991. doi: https://doi.org/10.1016/j.jcp.2018.10.
045. URL https://www.sciencedirect.com/
science/article/pii/S0021999118307125.

Soner, H. M. Optimal control with state-space constraint
i. SIAM Journal on Control and Optimization, 24(3):
552-561, 1986. doi: 10.1137/0324032. URL https:
//doi.org/10.1137/0324032.

Tassa, Y. and Erez, T. Least squares solutions of the HIB
equation with neural network value-function approxima-
tors. IEEE transactions on neural networks, 18(4):1031-
1041, 2007.

10

Todorov, E., Erez, T., and Tassa, Y. MuJoCo: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp- 5026-5033. IEEE, 2012. doi: 10.1109/IROS.2012.
6386109.

Wang, C., Li, S., He, D., and Wang, L. Is 2 physics in-
formed loss always suitable for training physics informed
neural network? Advances in Neural Information Pro-
cessing Systems, 35:8278-8290, 2022a.

Wang, H., Zariphopoulou, T., and Zhou, X. Y. Reinforce-
ment learning in continuous time and space: A stochastic
control approach. The Journal of Machine Learning Re-
search, 21(1):8145-8178, 2020.

Wang, S., Yu, X., and Perdikaris, P. When and why pinns
fail to train: A neural tangent kernel perspective. Journal
of Computational Physics, 449:110768, 2022b.

Wiltzer, H. E., Meger, D., and Bellemare, M. G.
Distributional Hamilton-Jacobi-Bellman equations for
continuous-time reinforcement learning. In International
Conference on Machine Learning, pp. 23832-23856.
PMLR, 2022.

Wu, C., Zhu, M., Tan, Q., Kartha, Y., and Lu, L. A compre-
hensive study of non-adaptive and residual-based adaptive
sampling for physics-informed neural networks. Com-
puter Methods in Applied Mechanics and Engineering,
403:115671, 2023.

Yang, G., Ajay, A., and Agrawal, P. Overcoming the
spectral bias of neural value approximation. In In-
ternational Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=vIC-xLFuMé.

Cagatay Yildiz, Heinonen, M., and Lihdesmiki, H.
Continuous-time model-based reinforcement learning,
2021.

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://doi.org/10.1137/0324032
https://doi.org/10.1137/0324032
https://openreview.net/forum?id=vIC-xLFuM6
https://openreview.net/forum?id=vIC-xLFuM6

Learning HJB Viscosity Solutions with PINNs

A. Optimal Control Background

We use the same set-up as in Section 3.1. Further, we generalize the problem to the situations when exiting the domain O is
possible and we state some known theoretical results from the literature.

A.1. General Formalism

In addition to the notions defined in Section 3.1, we also introduce some additional notations related to exiting the domain.
Let 7 denote the exit time. At time 7, we have z(7) € O. Thus, let us define the exit reward R : 90 — R, which is obtained
at the boundary points when control is pushing the system out of O. Under these notations, we redefine the reinforcement
functional:

Haogu) = ['r(a(®)ule)it+ 5 Ria() (16)
and the value function:
Viz) = sup J(z;u(t)). (17)
u(t)eU

Note that, when R(xz) — —oo, then 7 — oo, which brings us back to the problem considered in Section 3.1

A.2. Hamilton-Jacobi-Bellman Equation

Similar to Section 3.2, the similar result holds for the value function defined with equation 17:
Theorem A.1. (Hamilton-Jacobi-Bellman). If the value function V' is differentiable at x, then the Hamilton-Jacobi-Bellman
(HJB) equation holds at any x € O:

V(x)In(y) + 51615 {VmV(x)Tf(m,u) +r(z,u)} =0. (18)

When O C R%, V also satisfies the following boundary conditions:

V(z) > R(x) forxz € 00 (19)

A.3. Uniqueness of Viscosity Solutions

In this section, we state more formally the uniqueness result that holds for viscosity solutions and the additional assumptions
under which it is verified. This section presents the short summary of the main theoretical results from Fleming & Soner
(2006).

Assumption A.2.

(i) U is bounded,

(ii) f,r are bounded, f is continuous on R? x U and r is uniform continuous on R% x U,
(iii) there exists Ly, such that || f(z,u) — f(y,u)| < Ls||z — y|| for any z,y € R4

Theorem A.3. Given Assumption A.2, the value function V' is uniformly continuous and bounded in R and then it is a
unique viscosity solution of the HIB equation 4.

This theorem is given for the case when O = R< and therefore there is no boundary condition. The other cases are discussed
in the next sections.

The proof of Theorem A.3 consists of several parts. First, one can prove that under Assumption A.2, the value function is
indeed uniform continuous and bounded. Then, one can show that it is a viscosity solution due to the dynamic programming
principle that holds in continuous time case as well. The uniqueness comes from the comparison principle. It states that
under Assumptions A.2, if W and V' are viscosity subsolution and supersolution respectively and are bounded and uniformly
continuous functions, then W < V. The comparison principle implies that if such W and V' are viscosity solutions (both
subsolutions and supersolutions), then W < V and W > V, therefore W = V. Thus, V is a unique viscosity solution of
the HIB equation in R

11

Learning HJB Viscosity Solutions with PINNs

domain O domain O domain O

Figure 4: Boundary conditions. Case 1(left), Case 2 (middle) and Case 3(right).

A 4. Viscosity for Different Boundary Conditions

When O # R?, the additional assumptions on O are required.

Assumption A.4. For any x € 9O and its normal vector ()

() Ju(z) € U with f(z,u(x))Tn(x) < 0;
(i) Ju(z) € U with f(z,u(z))Tn(z) > 0.

Assumption A.5 (Regularity condition). There exist €y, > 0 and #(x), a bounded and uniform continuous map of O,
satisfying
B(z + en(z),re) C O, Ve O,e € (0,¢)] (20)

with B(z,r) = {y € R?: ||z —y|| < r}.

In this section, we cover three different cases of boundary conditions that appear in control problems when O C R?, which
are illustrated in Figure 4.

Case 1 If the system exits at any boundary point € 0O once the boundary is reached, e.g. it is the case when the exit
reward R(x) is sufficiently high to prefer to leave the area, e.g. when R(xz) = R > r forany « € 9O and r > r(Z, u(Z))
for any Z, u(Z). Then, the boundary condition is described with the following equation:

V(z) — R(z) =0 Vz € 00. (21)

The uniqueness result holds due to the comparison principle that states that under Assumptions A.2 and provided that W and
V' are bounded and uniform continuous functions, if W and V" are viscosity subsolution and supersolution respectively, then
sup,eo(W(z) —V(x)) < sup,cpo(W(x) — V(x)). The existence of such value function is assured with Assumption A.4-
(i1).

Case 2 If the system never exits the control domain. Let us denote the external normal vector at point = € dO as n(z), then
this boundary can be expressed as f(z, u*(z))Tn(x) < 0 for any z € dO. The optimal policy is not known a priori and thus
it is hard to verify this constraint. In Fleming & Soner (2006); Soner (1986), it was shown that it can be reformulated as:

—H(z,W,V, W+ an(z)) <0 VYa<0,z¢€do. (22)

This allows to extend Definition 3.2.

Definition A.6 (Constrained viscosity solution). W € C(O) is called a constrained viscosity solution of the HIB
equation equation 18 if it is a viscosity subsolution in O and a viscosity supersolution in O, i.e. if Vi) € C'(0) and
Vo € O Uargmin{(W — ¢)(x) : x € O} with W (z) = ¢ (x), we have:

H(z, ¢ (x), Vaip(x)) = 0.

It is also possible to prove that there exists a continuous value function provided that Assumption A.4(i) holds and the set of
admissible actions is not empty for any state of the system. Under the additional Assumption A.5, there exists a unique
constrained viscosity solution (see Soner (1986)).

12

Learning HJB Viscosity Solutions with PINNs

Case 3 If there exists a subset of points of the boundary at which the system exits the control domain. This is the same
boudary condition considered in Munos (2000). This boundary is formulated as follows:

R(z)—V(xz) <0 Vze€dO. (23)

However, this boundary is not sufficient to have uniqueness, therefore we redefine viscosity for this inequality constraint equa-
tion 23.

Definition A.7 (Viscosity solution with the boundary condition equation 23).

e W € C(0) is a viscosity subsolution of the HIB equation in O with the boundary condition equation 23 if it is a
viscosity subsolution in O and V) € C1(0) and Vx € 9O local maximum of W — 1) such that W (z) = ¢(z), we
have:

min{H (z, ¢ (x), Vy(z)), R(x) — W(x)} <0

e W € C(O) is a viscosity supersolution of the HIB equation in O with the boundary condition equation 23 if it is a
viscosity supersolution and V¢ € C'*(O) and Vz € 9O local minimum of W — 4} such that W (x) = 1(x), we have:

max{H (z,¥(z), Vy¥(z)), R(z) = W(z)} >0
e If W € C(O) is a viscosity subsolution and a supersolution with the boundary condition equation 23 then it is a
viscosity solution with the boundary condition equation 23.

It is easy to check that when equation 23 is verified then a viscosity subsolution W (z) in O is a viscosity subsolution with
the boundary condition equation 23. However, when W (x) > R(x) for some point z € 9O then definition A.7 imposes
an additional constraint that W () should be a viscosity supersolution at such boundary points. Then similarly to Case 2,
boundary condition equation 8 should be also satisfied, which can be interpreted as the system not being able to exit at those
points. Similarly to Case 2, there is a uniqueness result:

Theorem A.8. Let us assume that Assumptions A.2-A.5 hold, then the value function V is in C(O) and it is the unique
viscosity solution of the HIB equation in O with the boundary condition equation 23.

The proof of this theorem can be found in Fleming & Soner (2006); Cannarsa et al. (1991).

We choose to distinguish 3 different cases as it creates 3 different ways of approaching boundary conditions in practice.
Indeed, equation 21, equation 22 and equation 23 produce different boundary losses for PINNS, i.e. £50. However, note
that Case 1 and Case 2 are subcases of Case 3.

Finally, some of the assumptions can be relaxed and it is possible to obtain more general uniqueness results (see (Fleming &
Soner, 2006; Cannarsa et al., 1991; Ishii, 1984)). However, the assumptions mentioned earlier are verified for the large class
of control problems that appear in practice, like classical control or MuJoCo problems with no contacts (Todorov et al.,
2012). Dealing with more general dynamics should be tackled in the future works.

B. Intuition for Viscosity Solutions

In this section, we aim at providing the intuition behind the viscosity solutions. For that, we draw some parallels between
DTRL and CTRL.

Let us consider the DTRL formulation of the problem. We know that the optimal value function V' in DTRL should satisfy
the Bellman equation

V() = max{r(z,u) +7)_ pla'lr,u)V (")} (24)
x/
From that, we can introduce the Bellman operator as

T($)(x) = max{r(z,u) +7 Y p(a'z, u)p(2)} (25)

x

SThis section is based on https://benjaminmoll.com/wp-content/uploads/2020/02/viscosity_for_
dummies.pdf.

13

https://benjaminmoll.com/wp-content/uploads/2020/02/viscosity_for_dummies.pdf
https://benjaminmoll.com/wp-content/uploads/2020/02/viscosity_for_dummies.pdf

Learning HJB Viscosity Solutions with PINNs

where 1 is an arbitrary function defined on the state space. This operator is known to be monotonic, i.e. for any functions
1, 1)’ we have

b2y = T) 2 TE). (26)

Moreover, from Eq. equation 24 follows that V' should satisfy V' = T'(V'). Therefore, from Eq. equation 24-equation 26 we
get the alternative definition for the solution of the Bellman equation 24.

Definition B.1. Let V' € C(O), then V is the optimal value function if and only if
e Vi) € C1(O) such that) >V

mliax{r(x,u) + WZp(gc'pc, wp(z')} > V(x),Vz € O,

e Vi) € C*(O) such thatyp <V
max{r(z,u) + 7Y p(a’|z, u) ()} < V() ¥z € O.

This definition can be seen as the discrete-time version of the viscosity solution definition. Therefore, in the discrete-time
case, satisfying the fixed point equation is equivalent to satisfying the “discrete-time” viscosity solution definition.

As mentionned in the paper, V' € C(O) can be non differentiable at some points of O, thus it is impossible to verify whether
HIB equation is satisfied everywhere. Therefore, the main idea behind viscosity solutions is to replace V' by some smooth
functions where V' is non differentiable.

In the following, first, we suppose that V' is differentiable everywhere and we show a connection between Hamilton-Jacobi-
Bellman equation and Bellman equation. Then, for the case when V' is non smooth, we replace V' by a smooth function and
we show that it is possible to derive the notions of viscosity super/subsolutions.

Let us discretize our continous-time problem with a time-step dt. For simplicity, we consider that for any « € O there exists
an optimal control u* = 7(x) € U so that V(z) = J(z; u*). Therefore, we replace sup with max in the definition of the
value function, though it is possible to show that the next results also hold in case of sup. From the definition of the value
function, we get

t+dt
V(a(t)) = max { / A0 (a(s), u(s))ds + AV (w(t + dt))}

t+dt
= max { / EOp(2(s), u(s))ds + eIV (x(t + dt))}

~ max {r(x(t), u(t))dt + eV (z(t + dt))}

A max {r(z(t),u(t))dt + (1 + In(y)dt)V (z(t + dt))}
So we derive this discrete-time dynamic programming problem:

V(zy) = max {r(xs, w)dt + (1 4+ In(y)dt)V (z¢4at) } 27
where Ty gt = f (2, uw)dt + x4

Let us suppose that V' is differentiable for all z € O and that dt € (O, —ﬁ) By subtracting (1 + In(v)dt)V (x;) from

both sides of Eq. equation 27 and then dividing by dt, we obtain

1)V (o) = mx {0 + (#1060) (V(orea) = Vi) |
If dt goes toward 0, we have

In(y)V(z) = — max {r(ze,u) + VoV (x)T fy, u)} .

14

Learning HJB Viscosity Solutions with PINNs

This is exactly the Hamilton-Jacobi-Bellman equation, the continuous time equivalent of the Bellman equation.

Now, let us assume that V' is non differentiable. As mentionned before, V' should be replaced by a smooth function at the
points where V, V' does not exist. Let 1) be an arbitrary smooth function on O such that V' — 1) has a local maximum at x;
and V(z¢) = ¢(x). Therefore, V' < ¢ in a neighborhood of x;. If 1 4 In(~y)dt > 0, then

Vi(zy) = max {r(ze, w)dt + (1 + In(y)dt)V (2eae) }
< max {r(zs, u)dt + (1 +In(y)d)(zrpar)}

Let us subtract (1 + In(y)dt)1(z;) from both sides and use 9 (x;) = V' (x;), as a result we have
—In(y)V(z:)dt < max{r(z;,u)di + (1 +n(y)dt)((zs4a0) = (1))}
Then, let us divide by dt and let dt goes toward 0, we have
—ln(y)V(zy) < max {r(@e, u) + Voto(z)" fa,u)}
< In(y)V(xy) — max {r(zs,u) + Voo (z) T flze,u)} <0
& H(z¢, (), Varb(zy)) < 0.
This gives us the definition of a viscosity subsolution.

It is possible to obtain the definition of a viscosity supersolution in a like manner, by performing the same derivations
for an arbitrary 1 € C*(O) such that V' — 9 has a local minimum in z; and V (z;) = 1 (z¢). In both cases, we use the
monotonicity of max,, {r(xs u)dt + (1 4+ In(y)dt)y(zs44)} in the function ¢, which is a counterpart of the Bellman
operator in Definition B.1.

Thus, we recover the definition of a viscosity solution. The intuition is whenever a solution V' of the HIB equation is non
differentiable at some point « € O, it should also satisfy other conditions imposed by viscosity for it to be a proper value
function. In this way, the viscosity property serves as a regularizer to help to eliminate “bad” solutions of the HIB equation.

C. Dynamic Programming

Further, we consider only FEM based dynamic programming proposed in Munos (2000). In the FEM case, we use a
triangulation X% to cover the state space. It is also possible to discretize the control space, denoted by U°. The vertices of
the triangulation X2° are denoted {&;, &, ..., €n, } with N5 € N. In this setting, V is approximated by a piecewise linear
function V%, Thus, for x € Simplez (&, .., £4), we have

d
Vo) =) A, (2)V°(&)
1=0

where \¢, () is the barycentric coordinates inside the simplex (&, ..., &q).

By using a FEM approximation scheme, the HIB equation is transformed into:

V&) = sup yTEIV (n(€,) + 7 (€ w)r (€, w)]

where 7(§,u) = £+ 7(&,w) f(§,u) and 7(&, u) is a time discretization function that should satisfy:
Tky, kg > 0,V6 € 20 Vu € U%, k16 < 7(&,u) < kad

If 9 is defined as FO[¢](€) = sup,crs [77E™ S0 Ae, (n(€,w))p(&;) + (€, u)r (€, u)], it is possible to show that F
satisfies a contraction property, and since V°(¢) = F?[V?](£) holds, dynamic programming techniques can be applied to

compute V. Moreover, it can be proved that V° 5—) V uniformly on any compact of the state space. With this method,
—0

one can derive algorithms that converge towards V', without even knowing the dynamics of the system. Thus, this is one of
the approaches that allows us to find a viscosity solution of the HIB equation (see Munos (2000) for more details).

15

Learning HJB Viscosity Solutions with PINNs

D. Introduction to PINNs

Here, we provide a short introduction to PINN s for those readers who are not familiar with this method. The adaptation of
PINNSs to solving the HJB equation in the viscosity sense is covered in Section 4.2.

To solve a differential equation
F(x,W(x),V,W(x),V2W(z)) =0, W:0—=R,z€O, (28)
with K equality boundary conditions
Bi(x, W (z), V,W(z), V2W(x)) =0, z€0d0,i<Kj, (29)
and K> inequality boundary conditions
Gi(z,W(z),V,W(x),ViW(2)) <0, z€090,i< K. (30)

one can assume that W () lies in the class of functions Fy = {fo(x) = NN (x,0) : 6 € ©} represented by neural networks
of a fixed architecture and parametrized with weights 6 € ©. If it is the case then there exists 6 such that Wjy[z] should
satisfy equation 28 and thus minimize the loss

Nr
S (Flas, Wolz), VaWlai], VEWelz)))® Vi € Su(0, Nr), 31)

i=1

1
Lppr(f) = o

with 8, (O, Nr) denoting a sample of Ny points drawn uniformly from O. If the solution Wp[z| should satisfy some
additional boundary constraints then it should also minimize the boundary losses for all k < K; and k' < K>

Nk‘
1 B
L5,(0) = < D (Bulaws, Wolar], Vo Wylai), V2V,)" Va; € 8.,(00, NE) (32)
B =1
N 2
L6,(0) = < > ([Gk/ (5, Woli], Vo Welas], V2 Wy [mim+) Va; € S,(00, NE), (33)
G =1

where [f(z)]t = max{f(z),0}.

To put everything together, when solving a PDE in a PINNs-like manner, one should train a neural network Wy[z] that
minimizes:

K1 K>
L0) = Lrpe®) + > MLp, (0) + > N.La, (6). (34)
k=1 k=1

where Ai, A}, > 0 are some mixing coefficients for different boundary conditions.

E. Experimental Results. Supplementary
E.1. Dynamic Programming Experimental Results

In this section, we present the results obtained with one of the algorithms proposed in Munos (2000). First, a grid is built
by dividing each axis by NV points. Then, we use the Delaunay’s triangulation over the grid and apply the Value Iteration
algorithm (VI) to the FEM-MDP derived in Munos (2000).

We set § = -, § being the discretization step. The stopping criterion used at the step n is [|V;, — V,—1]| . < € where e is a
chosen tolerance. In our experiments we work with e = 1072,

When § goes towards 0, our approximated value function, Ve, converges towards the true value function. In our case, § — 0
is equivalent to N — +o0. Empirically, we can see in Figure 5 that this property is satisfied. Indeed, as we increase N, we
obtain a more accurate V9, and as a result, a better control that leads to a higher cumulative reward.

16

Learning HJB Viscosity Solutions with PINNs

woo bl e +

3000

-

2000

cumulative reward

1000

=]
— o _

0 25 50 75 100 125 150 175 200
number of points per axis

Figure 5: The cumulative reward obtained on the inverted pendulum for different grid sizes V.

E.2. Comparison of ¢ schedulers

As mentioned in Section 4.2, we tested three kind of e-schedulers. All scheduler experiments have been performed with the
parameters described in Section E.5, except mentioned so.

Figure 6 depicts the performance of non-adaptive scheduler on Pendulum. The non-adaptive scheduler fails if € is updated
too fast and the NN is not able to adjust to a new e (see Figure 8a), but also it may fail if € is updated too slow, as the NN
starts to overfit to the given €. The adaptive scheduler shown in Figure 7 demonstrates a more robust performance with
respect to the choice of n.. Both schedulers fail more often when the contribution of the regularization loss, equation 12, is
too low (e.g. Figure 8b shows that the adaptive scheduler can produce the wrong value function).

E.3. Convergence of PINNs for a fixed ¢

In this section, we provide the results that we have obtained for different fixed e. We have used the same parameters as in
table 2. On figure 9, it is clear that it is easier for PINNs to approach W€ when € is high enough. Therefore, we assume that
starting our € scheduler from €y = 1 leads to a more stable convergence. That is one of the reasons we designed the hybrid
scheduler: to improve the stability while maintaining a good speed.

E.4. Adaptive Sampling

We have also experimented with adaptive sampling techniques. In particular, we considered the R3 method from Daw et al.
(2023). First, we have observed that using it together with e-schedulers can be detrimental to the uniform convergence.
Therefore, we use this method only at the end of the training. After NB_ITER epochs, we execute R3 for the additional 400
epochs with the fixed e. It can be seen as the way to finetune the final result. Figures 10-12 demonstrate the effect of such
procedure on the classical control environments described in Section 5. The vertical dash line shows the start of the final
stage with the adaptive sampling. The results are shown for different dataset sizes used for adaptive sampling. One can
observe that adaptive sampling helps to improve the results for some tasks and some schedulers, e.g. it provides a noticeable
improvement for Acrobot with the adaptive and hybrid schedulers. Nevertheless, it can also lead to worse results, especially
when the big datasets are used. The degraded performance can be explained with the fact that the adaptive sampling of
R3 can break viscosity by overfitting the model on difficult non-smooth areas. Thus, futher research on how to combine
adaptive sampling with viscosity is necessary.

17

Learning HJB Viscosity Solutions with PINNs

935

936

937

938 3000
939
940
941
942
943
944
945 2000
946

947

948

950

951

952 1000
953

954

955

956

957 (a) (b)
958
959
960
961
962
963
964
965
966
o7 3000
968

969

970

971 2500
972

973

974

975 2000
976

9717

978

979

980

981

982 0 200 400 600 800 1000 0 200 400 600 800 1000
983

984 () ()

985

0s6 Figure 7: Cumulative rewards on Pendulum with adaptive scheduler shown for different n. (a) with strong regularization

097 Ar = 1073 (b) with weak regularization A\ = 1076.
988
989

3000

2000

2500

1500

1000

o

200 400 600 800 1000

o

200 400 600 800 1000

Figure 6: Cumulative rewards on Pendulum with non-adaptive scheduler shown for different V,, (a) with strong regularization
Ar = 1073 (b) with weak regularization A\ = 1076.

3000

2500

2000

1500

1500
1000

18

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Learning HJB Viscosity Solutions with PINNs

Value function Value function
1 0

3 -49.8 3 _.
------ - 48.0
2| -49.6 2
-478
1 1
-49.4
-476
s 0 e 0
-49.2
1 1 -47.4
| -49.0 5 472
-3 -3
-10 -5 0 5 10 -10 -5 0 5 10
(a) (b)

Figure 8: Value maps on Pendulum with the failed schedulers: (a) a non-adaptive scheduler with N,, = 1, A\g = 1072 (b) an
adaptive scheduler n. = 1, \g = 107,

PINNs loss Boundary loss

10-1 —— eps: 0.001
eps: 1
— eps: 1e-05
1072 4x%1072

1072

3x107?
107
10-°

2x1072
10-°

1077

1078
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Figure 9: W€ pinns loss and boundary loss for e = 1,1073,107°.

E.S. Best Hyperparameters

The best performing hyperparameters are gathered in Table 2.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Learning HJB Viscosity Solutions with PINNs

5000
— eps_scheduler: hybrid

eps_scheduler: adaptive

4500 — eps_scheduler:

5000 — eps_scheduler: hybrid
eps_scheduler: adaptive
— eps_scheduler: non_adaptive 3000

4000

4500 non_adaptive

3500

4000 4000
2500
3000

3500 3500

3000 2000 3000 2500

2500 2500 2000

1500

2000 2000
— eps_scheduler: hybrid

1000 eps_scheduler: adaptive.
— eps_scheduler: non_adaptive

1500 — eps_schedul
eps_schedul e
—— eps_scheduler: non_adaptive

1500

1500

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400

(a) (b) (©) (@)

Figure 10: Cumulative reward for different adaptive sampling setting (pendulum environment): (a) HIB, dataset of size
1000, (b) HIB, dataset of size 10000, (c) Soft HIB, dataset of size 1000, (d) Soft HIB, dataset of size 10000.

— eps_scheduler: hybrid — eps_scheduler: hybrid
eps_scheduler: adaptive 800 eps_scheduler: adaptive
1000 — eps_sch daptive — eps_scheduler: non_adaptive 500

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400

(a) (b) (©) (d)

Figure 11: Cumulative reward for different adaptive sampling setting (cartpole swingup environment): (a) HIB, dataset of
size 1000, (b) HIB, dataset of size 10000, (¢) Soft HIB, dataset of size 1000, (d) Soft HIB, dataset of size 10000.

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400

(a) (b) © (d)

Figure 12: Cumulative reward for different adaptive sampling setting (acrobot environment): (a) HIB, dataset of size 1000,
(b) HIB, dataset of size 10000, (c) Soft HIB, dataset of size 1000, (d) Soft HIB, dataset of size 10000.

20

Learning HJB Viscosity Solutions with PINNs

| Environment Names Hyperparameters values ||
Shared batch size Np 64
learning rate v 0.00085
patience adaptive scheduler Ne 10
boundary loss coefficient A 1071
starting € €0 1
number of epochs between € updates N, 10
non-adaptive scheduler coefficient p 0.5
adaptive scheduler coefficient 0 0.99
number of e updates with non-adaptive scheduler N, 5
reg loss coefficient AR 1073
Pendulum number of sampled points Np 5000
Cartpole number of sampled points Np 5000
Acrobot number of sampled points Np 5000

Table 2: Hyperparameters for Algorithm 1.

21

