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Abstract

Many challenges remain before AI agents can be deployed in real-world
environments. However, one virtue of such environments is that they are
inherently multi-agent, and contain experienced expert agents (like humans)
who demonstrate useful behaviors. Such behaviors can help an Al agent
generalize and apply to new use-cases and scenarios. While this type of social
learning ability could improve generalization and human-AT interaction, it
is currently difficult to study due to the lack of open-ended multi-agent
environments. In this work, we present an environment in which multiple
self-interested agents can pursue complex, independent goals. We have
developed the first multi-agent version of the Craftax benchmark. Built
upon the Craftax-Classic environment in JAX, this extension supports
efficient multi-agent training on accelerators B Our experiments reveal that
using a 4-agent LSTM model on an Nvidia T4 GPU can complete 100 million
steps in approximately one hour. This environment will enable research
into improving the social learning capabilities of Al agents in open-ended
multi-agent settings, potentially enabling better generalization and faster
learning through observing other agents.

1 Introduction

The real world is inherently multi-agent. For AI systems to be useful to people for a variety
of applications, from autonomous cars to household robots, they will need to be able to
effectively navigate human multi-agent environments. In recent years, the field of multi-agent
reinforcement learning (MARL) has garnered significant attention in applications such as
games, robotics, and autonomous driving [24]. In such situations, agents are not only
required to perform individual tasks but must also collaborate and adapt to dynamic, often
unpredictable conditions.

However, multi-agent environments do not merely present additional challenges such as
coordinating with other agents; they also present new opportunities. Acquiring information
from other intelligent agents in the environment through social learning can actually address
fundamental challenges with modern AT algorithms, like sample complexity and generalization.
It is well-known that acquiring skills by learning from expert agents can massively improve
sample complexity vs. randomly exploring to attempt to independently discover a complex
solution to a sparse reward problem [20]. Further, a recent line of work [211 [§] 2] has begun
to demonstrate that social learning can actually address the fundamental problem faced by
modern AT algorithms: generalization outside the training data. Consider for example an
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autonomous car that encounters a novel situation on deployment that it never experienced
during training: an underpass it is approaching is flooded. Rather than simply relying on
the training strategy and driving directly into the water, it could instead take cues from
what other cars are doing in order adapt safely to this unexpected scenario [17]. By learning
how to learn from other agents, agents can use social learning to adapt to fundamentally
new tasks at test time [21].

Social learning is especially effective in realistic multi-agent environments that contain
many self-interested agents who are pursuing their own goals. This effect was convincingly
demonstrated in a study of social learning in a multi-agent multi-armed bandit tournament
[22]. In this tournament, agents could either independently explore to find the best strategy,
or take an action to copy the strategy of another agent. The authors found that there
was a linear relationship between the amount of copying performed by agents and their
success in the tournament, with the most successful strategies performing copy on over
90% of turns [22]. The reason copying other agents strategies was so effective is that each
agent was attempting to win the tournament, and thus maximize its own reward. Thus,
at each timestep they were playing the most rewarding strategy they know how to play.
Human environments have precisely this quality; most humans are not acting randomly or
adversarially, but instead sensibly going about their business the best way they know how.
AT agents deployed to these environments should be able to leverage this information to
improve their performance on everyday tasks of interest.

Therefore, we propose to create a multi-agent environment with these properties, where
multiple agents can independently pursue highly rewarding behavior. Our goal is for each
agent to be able to pursue different final goals, but that the goals will share overlapping
subtasks. This will enable testing whether agents can use skilled social learning to acquire
related skills from other agents, even if the ultimate goal of those agents is not precisely
the same. Further, the environment should test complex skills like exploration, long-term
planning, and the ability to coordinate with others.

To this end, we present Multi-agent Craftax, the
first multi-agent version of Craftax [I9]. Our envi-
ronment has the advantage of fast performance, en-
abling a wide variety of novel open-world experiments.
Just like Craftax-Classic, we consider long-horizon,
complex tasks requiring the completion of multiple
subtasks. Agents must gather resources, such as wood,
and craft tools, such as pickaxes, to unlock more ad-
vanced tasks like mining. These tasks necessitate an
understanding of both the immediate environment
and the long-term dependencies between actions. For
example, to mine ore, an agent must first gather
wood to craft a pickaxe, highlighting the importance
of task-sequencing, resource management, and long-
term planning. In addition, we can also test agents’
abilities to work together. For example, one agent
can create a crafting table that another agent uses
later to craft tools.

Figure 1: Sample pixel representation
of a single agent during the game.

We present experiments benchmarking the state-of-

the-art multi-agent learning algorithm, independent Proximal Policy Optimization (IPPO)
[6, 23], in our environment. We compare the performance of multi-agent IPPO to single-agent
PPO, and find that they both yield similar performance, with low sample efficiency and
low probability of achieving the most complex tasks. This suggests that state-of-the-art
multi-agent learning algorithms are incapable of using social learning to benefit from the
presence of other intelligent learning agents in their environment. This highlights a crucial
gap in current methods and presents an open research topic in the field of MARL.

The observed performance bottlenecks point to the need for more sophisticated strategies,
such as social learning, where agents could learn from the discoveries and skills of other
agents, or adapt their behavior based on shared knowledge and experience. Such approaches



could lead to more effective collaboration, resource management, and task prioritization
in complex, dynamic environments. Our environment, with its task dependencies and
resource constraints, offers an ideal test bed for exploring social learning and other advanced
coordination techniques in multi-agent systems. By investigating these methods, future
research could develop more robust solutions for multi-agent cooperation, addressing the
limitations seen with current RL approaches.

2 Background

2.1 Crafter

Crafter [11] is an open world survival game, partially based on Minecraft, that evaluates a
wide range of general abilities within a single environment. Figure |I|shows as example of
the type of visual input used in the game. The Crafter game is designed with the following
criteria in mind:

e Challenging. Crafter tests capabilities lacking from state-of-the-art Al systems,
including generalization (through procedurally generating novel environments),
exploration (through a deep technology tree) and long-term reasoning and credit
assignment (through repeated subtasks and sparse reward).

e Meaningful and consistent evaluation. Crafter measures the range of achieve-
ments that can be unlocked in each episode. The achievements are picked such that
they represent meaningful milestones in behavior. For example, ‘Eat Cow’ represents
a milestone in gathering food while ‘Make Wood Pickaxe’ represents a milestone
being able to collect new resources.

o Performance. Crafter offers fast iteration speed due to evaluating multiple different
agent abilities in a single environment, which vastly reduces the computational
requirement of benchmarking multiple agent abilities compared to using a benchmark
suite that runs a single agent across multiple different environments.

One limitation of Crafter is it being written in pure Python. While simpler to modify and
extend, it introduces a bottleneck as the environment must be simulated on the CPU. As a
result, the benchmark is limited to only 1 million environment interactions, which places a
stronger emphasis on sample efficiency compared to other RL benchmarks.

2.2 RL Environments in JAX

JAX [3] is a Python library that facilitates high-performance, accelerator-optimized array
computation and automatic differentiation. By leveraging Accelerated Linear Algebra (XLA),
JAX allows Python code to be seamlessly compiled and executed on hardware accelera-
tors such as GPUs and TPUs. This capability is particularly beneficial in reinforcement
learning (RL) environments, where performance can be significantly improved by offloading
computationally intensive tasks to specialized hardware.

A key advantage of using JAX in RL environments is its support for function transformations,
such as jit, vmap, and pmap, which enable the compilation and parallelization of code
across multiple devices. For instance, vmap allows the creation of vectorized environments by
applying operations over batches of data, which is highly efficient for training multiple agents
in parallel. This is especially relevant for multi-agent RL, where agents operate in parallel
and interact with complex, dynamic environments. Furthermore, scan is often employed
to perform entire rollouts of an environment in a highly optimized, loop-unrolling fashion,
minimizing overhead and maximizing throughput.

Another crucial benefit of JAX is the ability to write both the environment logic and the
neural network model in the same framework, which avoids the performance penalties
associated with data transfer between the environment and the model. Libraries built on
JAX, such as Flax [12] or Equinox [14], offer additional flexibility for building and training
neural networks without incurring unnecessary computational overhead.



By utilizing JAX in multi-agent RL environments, we can efficiently scale simulations,
optimize resource use, and significantly accelerate both training and inference, providing a
powerful platform for research in open-world, task-dependent environments.

2.3 Craftax

Craftax [19] is a recently developed RL benchmark that is designed to strike a balance
between computational efficiency and task complexity. For instance, environments like
Crafter [11], NetHack [I5], and Minecraft [I0] are highly complex but slow, requiring
substantial computational resources, while others like Minigrid [4] and Procgen [5] are fast
but lacks the mechanics that make the previous environments so interesting.

Craftax-Classic [19], a reimplementation of Crafter using JAX, offers significant computa-
tional speed improvements, running up to 250 times faster than the Python-native Crafter
environment. This efficiency allows RL algorithms like Proximal Policy Optimization (PPO)
to perform one billion environment interactions in under an hour on a single GPU while
achieving near-optimal performance. The benchmark is designed to simulate open-ended
tasks, demanding deep exploration, long-term planning, memory, and adaptation to novel
scenarios.

This makes Craftax an ideal test bed for exploring advanced RL algorithms, particularly in
resource-constrained settings, without sacrificing task complexity. Despite its advancements,
current RL methods like global and episodic exploration struggle to make significant progress
on this benchmark, demonstrating the need for novel approaches.

In this project, we extended the Craftax-Classic environment as it had less complexity,
making it easier to modify.

2.4 Partially Observable Markov Games

The environment is modeled as a partially observable markov game M = (S, A, T, R,Q,0,~)
such that S, A, and Q define the environment’s joint state, action, and observation space
respectively [9]. In each environment interaction, each agent 4 selects action a; € A;, which
yields the joint action (ai,...,a,) of all agents. The environment subsequently transitions
to a new state according to the transition function 7" : S x A — S, and produces the
corresponding observations consistent with O : S x A — Q. Finally, the reward is calculated
according to the reward function R : S x A — R". Each agent’s policy is represented as
m; : Q; — A;, and the goal of each agent’s policy is to maximize its own expected future
discounted reward E [>°,2 v'r;] where v € [0,1] is the discount factor and r4; is the reward
at time ¢ for agent i. The set of all agents’ policies m = (71, ..., 7,) is referred to as the joint

policy [9].

3 Related Works

There have been many attempts at creating minecraft-like or minecraft-based environments
such as Minecraft Building Assistance Game [16] and VillagerBench [7]. However, we believe
that this is the first multi-agent minecraft-like environment with the logic entirely written in
JAX.

4 Environment Mechanics

This section describes the game mechanics of the environment, which is largely derived from
Craftax-Classic.

4.1 Game Objective

The core game is equivalent to Craftax-Classic, which in turn has almost exactly the same
characteristics as Crafter, except for being rewritten and some performance optimizations
that should not affect normal gameplay. Agents need to complete as many achievements



Collect Drink

Collect Sapling > Place Plant » Eat Plant

Make Wood Pickaxe Collect Coal
-

Collect Wood » Place Table : Make Iron Pickaxe » Collect Diamond

Make Wood Sword /—> Place Furnace
Defeat Zombie Collect Stone N - Make Iron Sword
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Figure 2: Tech Tree of the 22 achievements that can be achieved each episode. The arrows
indicate the order that achievements need to be completed. In order to complete a task, all
previous tasks with arrows to the current task must be completed. Note that some tasks
need to repeated multiple times, such as requiring two wood in order to place a table. In the
multi-agent environment, all previous tasks do not necessarily need to be finished by the
same agent in order for an agent to finish the current task. For example, an agent can make
a wood pickaxe without achieving “Place Table” if another agent has already placed a table.

as possible within a single episode. However, in order to have time to complete their
achievements, players will also need to try to survive by keeping their health above zero. This
is achieved by keeping their intrinsics (food, water, energy) positive and avoiding attacks
from zombies and skeletons.

The 22 Achievements are structured in a way that balances depth and breadth. Some
achievements, such as creating iron tools, require many subtasks such as building a furnace,
collecting coal, and collecting iron, but many other achievements, such as COLLECT DRINK
and EAT COW, can be completed without completing any other tasks. Consult Figure [2| for
more details.

Additionally, achievements are structured in a way such that they represent significant
milestones in the abilities of the agents. Therefore, achievements are an appropriate way
to objectively measure agent performance. An agent that can on average obtain more
achievements per episode than another agent is objectively better in its exploration and
long-term planning abilities.

4.2 Observation

Just like Craftax, the game has both Symbolic and Pixel environments. The Pixel environment
directly shows the game in terms of RGB pixels as a human would if they play it, while
the Symbolic environment expresses the game state in a more compact way that is easier
to process for machines. The simulations ran in this environment all used the Symbolic
environment as it requires a smaller neural network, less training, and faster iteration, and
we are interested in studying the social learning capabilities of RL agents rather than the
computer vision task of extracting information from pixels.

The observation is returned in an array with shape (n, 1346), where n is the number of players
in the environment. Each agent’s observation contains the locations of blocks, mobs, and
other players within 4 blocks horizontally and 43 blocks vertically of the player. If needed,
the observations can be modified relatively easily by modifying the rendering function. For
more information, refer to appendix [A]

Returning an array of observations also makes it possible to implement other multi-agent
algorithms which allow agents to share observations as a way of enabling social learning
through post-processing of the observations.



4.3 Actions

This environment implements a discrete action space, which can be used with many modern
deep RL algorithms. At each time step, each player picks one of 17 actions, which includes
movement actions, the DO action for interacting with objects, crafting actions, or NOOP. More
specific information is in appendix

4.4 Rewards

The reward calculation is largely unchanged from Craftax-Classic [19], except that the
rewards are calculated for each agent individually and returned as an array with the same
length as the number of agents. Each agent would get a reward of +1 if an achievement was
achieved during an environment step. Additionally, to encourage agents to preserve their
health, a reward of 0.1 times the change in the player’s health is added to the reward.

4.5 Player Constraints

The only constraints placed on the multi-agent environment is that only one player is allowed
to perform a DO or block placement action on the same block. If, for example, two players try
to perform DO on the same tree at the same time step, one player will be chosen at random
to complete the action, while the action of the other players will be changed to a NOOP. This
prevents players from exploiting the game through acquiring duplicate resources from the
same block, and more closely model real-world dynamics.

For computing which actions conflict and the number of conflicts for each action in JAX, a
naive O(n?) search was implemented that iterates through every agent pair, which runs fast
as long as the number of agents in the environment is reasonable.

4.6 Mob Logic

Craftax-Classic [19] optimizes the performance by not computing updates for mobs that
are unseen by players. The main mobs in Craftax-Classic (zombies, skeletons, and cows)
are spawned near the agent and despawned when the agent moves too far away. However, this
logic needs to be modified in the case of multiple agents. In the multi-agent case, the nearest
player would be considered. This means that any tile that is within mob_despawn_distance
from the closest player can have a mob spawned (if all mob spawning conditions are met),
and any mob that is farther than mob_despawn_distance from the closest player will be
despawned. The tiles are calculated by computing a (n,64,64) array of distances, and folding
it along the first axis by taking the minimum.

A similar calculation was made for computing the direction that the mobs would take. In
Craftax, the direction that the mobs would move in depended on the mob type and distance
from the player. For example, a skeleton would move towards the player if it is too far
from the player, move away from the player if it is too close, or move in a random direction
otherwise. In the multi-agent case, the movement of the skeleton is simply based on the
nearest player instead.

4.7 Handling of Dead Players

During the course of a single episode, some agents will inevitably die before other agents.
This means that special logic was required to handle ‘dead’ agents. In this implementation,
the environment will continue to run until all agents have died, either through depletion of
player health or running into lava. During the course of each episode, all agents will receive
their respective observations whether dead or alive, but each player will have a ‘dead’ bit
set to 0 or 1 in their observation arrays. The environment would modify the actions of
dead players into NOOPs. Additionally, dead players do not gain or lose health, and are no
longer visible to other players. Therefore, models should be able to learn that no further
achievements are possible once dead.

One potential issue with this current implementation is that agents that perform better will
likely last longer, causing it to have more opportunities to train compared to agents that die
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earlier. This could allow those agents to perform even better relative to other agents, causing
the training curve to diverge. However, this behavior was not observed when training for
only 100 million environment interactions.

5 Experimental Setup

All experiments were run with 4 agents with 100 million steps on a Google Colab instance
with a single Nvidia T4 GPU, which is accessible for free by any researcher. Being written
in JAX, training with 4 agents took approximately 1 hour, making it relatively easy to
anyone to replicate. We used Independent PPO [6] 23], a state-of-the-art MARL algorithm
which trains all agents independently with PPO with no additional information sharing
mechanisms. Instead of only evaluating one agent each step, we evaluated all of the agents,
and independently applied PPO updates after each environment batch. The PPO algorithm
is based on CleanRL [13], Recurrent PPO in JAX [1], and PureJaxRL [18]. The two variants
tested were a version with only linear activation layers and an LSTM version.

Later, we ran another LSTM model for the same number of steps but with only a single agent.
We compared the single agent performance with the average of the multi-agent version.

All experiments were conducted using the Symbolic environment instead of the Pixel environ-
ment to focus more efficiently on testing social learning capabilities rather than improving
computer visual skills.

6 Experimental Results

Figures|3|and [ were generated by using the mean and standard deviation of the achievements
in one episode over 50 random starting environments as all agents had a similar number of
achievements per episode throughout training.

Using snapshots of the models during training, we ran each snapshot over a random distri-
bution of environments and averaged the achievements. Comparing Figures [3| and {4l the
LSTM performed better than the model with only linear and activation layers due to the
environment being only partially observed. While replaying the episodes, we noticed that the
non-LSTM version would occasionally get stuck if the agent’s position was mostly surrounded
by objects, while the LSTM version would try a variety of unique techniques in order to get
unstuck.

Comparing the single and multi-agent performance in Figure [5) we notice that the version
with a single agent is performed slightly better on average than the scenario with four agents.
This indicates that agents are not benefitting from being in an environment with other
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agent, using a sample of 50 episodes. The multi-agent average takes the average of all four
agents.

learning agents, even though those other agents are simultaneously discovering behaviors and
skills that could be useful to learn from. Therefore, our results indicate that state-of-the-art
MARL algorithms are not able to effectively leverage social learning from other self-interested
agents. Therefore we propose that there is significant work to be done to improve these
abilities, and argue that Multi-agent Craftax is a useful tool in facilitating this research.

7 Discussion

7.1 Future Work

While this environment is challenging for agents to perform well in a small number of
environment interactions, the authors of Craftax have shown that after training for a billion
environment interactions on the Craftax-Classic environment, they were able to have a
model that solved around 90% of all possible achievements [19]. This represents extremely
poor sample efficiency. We believe that if agents could leverage social learning to aquire skills
from other agents and build on them, this sample complexity could be significantly reduced.

7.2 Conclusion

We present the first multi-agent adaptation of Craftax that supports multiple agents in
an open world environment. This environment enables testing and improving the social
intelligence of Al agents in a complex environment that presents significant exploration, long-
term planning, and reasoning challenges. Preliminary testing conducted with state-of-the-art
MARL algorithms shows no significant improvement over the single agent case, indicating
that agents are not currently able to benefit from social learning to improve performance, in
spite of having access to more information about how to successfully obtain achievements.
We hope that this benchmark will spur research into the development of improved social
learning abilities for Al agents.
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Agent Observations

The following are the observations in the Symbolic Environment.

B

e 21 7 x 9 grids, one-hot encoded, which show surrounding objects or mobs around the
player, who is always in the center of the grid. Each grid indicates different objects
or mobs. A 1 in a position means that there is a specific mob or object, and 0 means
there is no mob or object of a specific type at that location. Observed mobs include
zombies, skeletons, cows, arrows, and other players.

e An entry for each inventory of the player, 0.0 meaning that the player does not have
a specific item in the inventory, and 0.9 meaning that the player has 9 items of that
type in their inventory

e An entry for each of the player intrinsic (health, food, drink, energy). 0.0 means
that the player does not have any of that intrinsic, and 0.9 means that the player
has the max of that intrinsic.

e One hot encoding for each of the 4 possible player directions
o Light level of the environment

e Whether the player is sleeping

o Whether the player is alive

Agent Actions

At each time step, each player can take the following actions:

e NOOP: Don’t perform any action

e LEFT, RIGHT, UP, DOWN: Move actions. This is equivalent to a NOOP if there is a mob,
tree, stone, plant, or water blocking the way.

e DO: The DO action performs a different action depending on the block that the player
is facing.
— Grass: The player will try to collect saplings.
— Stone, coal, iron, or diamond block: the player will try to mine that block.
— Tree: The player will mine for wood.
— Water: The player will drink and replenish the drink intrinsic.
— Cow: The player will eat the cow and replenish the hunger intrinsic.

— Plant: If ripe, the player will eat fruits on the plant and replenish the hunger
intrinsic.
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— Zombie or Skeleton: The player will try to attack.
— Other blocks will be equivalent to a NOOP.
e SLEEP: If the player’s energy level is less than 9, begin sleeping.
e PLACE STONE, PLACE TABLE, PLACE FURNACE, PLACE PLANT: Placement actions that
will place the specified item if the player has the required inventory.

o MAKE WOOD PICKAXE, MAKE STONE PICKAXE, MAKE IRON PICKAXE, MAKE WwO0OD
SWORD, MAKE STONE SWORD, MAKE IRON SWORD: Player will create the specified items
given that the conditions are met.

C Training Parameters

The MLP policy had two hidden layers with size 64 for both the actor and critic networks.
The LSTM policy had a shared network with hidden layers of size 64 and 32, connected to
an LSTM block with 32 features. This is connected to separate actor and critic networks
each with a hidden layer of size 64.

For both instances, we used the same parameters as the CleanRL [13] defaults, but with 400
parallel environments, 8 minibatches, 500 steps per batch, and no learning rate annealing.
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