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Abstract
This paper investigates the use of transformers to
approximate the mean-field dynamics of interact-
ing particle systems exhibiting collective behavior.
Such systems are fundamental in modeling phe-
nomena across physics, biology, and engineering,
including opinion formation, biological networks,
and swarm robotics. The key characteristic of
these systems is that the particles are indistin-
guishable, leading to permutation-equivariant dy-
namics. First, we empirically demonstrate that
transformers are well-suited for approximating
a variety of mean field models, including the
Cucker-Smale model for flocking and milling,
and the mean-field system for training two-layer
neural networks. We validate our numerical ex-
periments via mathematical theory. Specifically,
we prove that if a finite-dimensional transformer
effectively approximates the finite-dimensional
vector field governing the particle system, then the
L∞ distance between the expected transformer
and the infinite-dimensional mean-field vector
field can be bounded by a function of the number
of particles observed during training. Leveraging
this result, we establish theoretical bounds on the
distance between the true mean-field dynamics
and those obtained using the transformer.

1 Introduction
The identification of dynamical system models for physical
processes is a fundamental application of machine learning
(ML). Of particular interest are systems of particles exhibit-
ing collective behaviors—such as swarming, flocking, opin-
ion dynamics, and consensus. These systems involve a large
number of particles or agents that follow identical dynamics,
which are independent of the particles’ identities and are
permutation-equivariant. Examples include biological enti-
ties (Lopez et al., 2012), robots (Elamvazhuthi & Berman,
2019), traffic flow (Piccoli et al., 2009; Siri et al., 2021), and
parameters in two-layer neural networks (Mei et al., 2019).
A common approach to simplifying the analysis of such
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systems is to consider the continuum limit as the number
of particles n → ∞, resulting in mean-field models rooted
in statistical physics. Instead of specifying the dynamics
of each agent, the particles are modeled using probability
measures. This paper learns the mean-field dynamics of
particles via particle trajectories using transformers.

Let Ω ⊂ Rd. Consider a vector field F : Ω× P(Ω) → Rd.
The following equation describes the general mean-field
behavior of interacting particles evolving on Ω,

dz

dt
= F(z, µ), z(0) = z0 ∼ µ0,

where z ∈ Ω denotes the state of a particle, µ ∈ P(Ω) is
the distribution of the particles at time t, and µ0 is the initial
distribution. The above equation can be approximated by
a finite particle-level model. Let z = (z1, . . . , zn) ∈ Ωn

represent the state of n particles, and consider the following,

żi = F(zi, ν
n
z ),

where the empirical distribution of the n-particle system
given by νnz := 1

n

∑n
i=1 δzi ∈ Dn(Ω). Several works

learn the mean-field dynamics by learning the particle-level
dynamics. Pham & Warin (2023) constructed a neural net-
work via binning as approximations of the vector field and
proved approximation capabilities when restricted to dy-
namics on measures that admit densities. The works of
Feng et al. (2021); Lu et al. (2019); Miller et al. (2023)
present a kernel-based method for identifying the dynam-
ics of interacting particle systems. Whereas, Messenger
& Bortz (2022) presents a form of the SINDy algorithm
for identifying mean-field dynamics of interacting particle
systems. Additionally, Furuya et al. (2024) use a continu-
ous version of transformers and attention (Vuckovic et al.,
2020; Geshkovski et al., 2023) and provide universal ap-
proximation of measure theoretic maps. Similarly (Adu &
Gharesifard, 2024) have proven an approximation result for
measure theoeretic maps arising from solutions of continuity
equations on the sphere using a different architecture.

This paper explores the use of transformers to approximate
the dynamical systems that govern the collective behavior of
interacting particles with permutation-equivariant dynamics.
We compare the transformer against models from Pham &
Warin (2023) and Messenger & Bortz (2022) as well as
two additional permutation equivariant baselines models on

1



Universal Approximation of Mean-Field Models via Transformers

synthetic and real data from the Cucker-Smale model for
swarming and milling. We prove theoretical guarantees for
the transformer by lifting it from a sequence-to-sequence
map to a map on measures, by taking the expectation of
a finite-dimensional transformer with respect to a product
measure. We refer to this as the expected transformer.

The main contributions are as follows:

1. We empirically show that transformers approximate the
vector field better compared to other network architec-
tures (see Table 1).

2. We define a continuum version of the transformer as an
expectation of finite-dimensional transformers (see (9)).

3. We establish approximation rate bounds of measure-
valued maps by this expected transformer (see Theo-
rem 4.7).

4. We mathematically show that the solution to the mean-
field model can be approximated by approximating the
vector field by the expected transformer (see Theo-
rem 4.14 and Figure 2).

The rest of the paper is organized as follows. Section 1.1
defines the notation used in the paper. Section 2 defines the
problem, Section 3 presents our numerical experiments, and
Section 4 presents our theoretical results.

1.1 Notation

Let Rd denote the d-dimensional Euclidean space, and let
Z+ denote the set of positive integers. The diameter of a
subset A ⊂ Rd is defined as diam(A) := sup{∥x − y∥ :
x, y ∈ A} and let Br(z) be the closed ball of radius r > 0
centered at z ∈ Rd.

We denote by P(Rd) the set of all Borel probability mea-
sures on Rd. Similarly, for a subset Ω ⊂ Rd, P(Ω) de-
notes the set of Borel probability measures on Ω. The
subset of probability measures ν with finite p-th moments,
Mp(ν) :=

(∫
Rd ∥x∥p dν(x)

)1/p
is denoted by Pp(Rd) :={

ν ∈ P(Rd) : Mp(ν) < ∞
}

. Let Pc(Rd) be the set of
probability measures with compact support. The set of
empirical measures formed by finite sums of n Dirac-
delta measures is denoted by Dn(Rd) := {ν ∈ P(Rd) :
ν = 1

n

∑n
i=1 δxi , xi ∈ Rd}. Similarly, the set Dn(Ω)

denotes the set of empirical measures on Ω ⊂ Rd. For
ν ∈ P(Rd), the n-fold product measure on (Rd)n is de-
noted by ν⊗n := ν × · · · × ν︸ ︷︷ ︸

n times

. The support of a measure

ν ∈ P(Rd), denoted by supp(ν), is the smallest closed
set S ⊂ Rd such that µ(Rd \ S) = 0. Given a mea-
surable map X : Rd → Rd and a measure µ ∈ P(Rd),
the pushforward measure X#µ ∈ P(Rd) is defined by
X#µ(A) := µ

(
X−1(A)

)
for every Borel measurable set

A ⊂ Rd.

For a vector y ∈ Rd, the i-th component is denoted by yi.
The p-norm, p ∈ [1,∞), and ∞-norm of y are, respectively,
∥y∥pp =

∑d
i=1 |yi|p, ∥y∥∞ = maxi |yi|. Boldface letters,

such as z, denote elements in Rd×n, representing collection
of n vectors in Rd. The i, j-th element is denoted by zi,j .
The corresponding p-norm (p ∈ [1,∞)) and ∞-norm of
z are, respectively, ∥z∥pp =

∑d
i=1

∑n
j=1 |zij |p, ∥z∥∞ =

maxi,j |zij |.

A function f : Rd×n → Rd×n is permutation equiv-
ariant if for any permutation σ ∈ Sn, where Sn is
the symmetric group on n elements, and for any x =
(x1, . . . , xn) ∈ Rd×n, we have f(xσ(1), . . . , xσ(n)) =(
fσ(1)(x), . . . , fσ(n)(x)

)
, where fi(x) denotes the i-th

component of the output. We denote by Ck(Rd) the space
of k-times continuously differentiable functions on Rd. The
space of continuous functions with compact support is de-
noted by Cc(Rd).

2 Problem Formulation
We briefly introduced the problem in Section 1, we restate
the equations again for clarity. Let Ω ⊂ Rd. Consider a
vector field F : Ω× P(Ω) → Rd. The general mean-field
behavior of interacting particles evolving on Ω is given by

dz

dt
= F(z, µ), z(0) = z0 ∼ µ0, (1)

where z ∈ Ω denotes the state of each particle, µ ∈ P(Ω)
denotes the distribution of the particles, and z0 is the initial
state that is distributed according µ0, the initial distribu-
tion. The inter-particle interactions are modeled through µ;
specifically, the dynamics of each particle are influenced by
the distribution of all other particles.

Corresponding to (1), the continuity equation describes the
evolution of the distribution µ:

∂µ

∂t
+∇z · (F(z, µ)µ) = 0, µ(0) = µ0. (2)

For a finite final time τ > 0, µF : [0, τ ] → P(Ω) denotes
the solution of the continuity equation (2) over the time
interval [0, τ ].

In this paper, we propose to use transformers to approximate
the map in (1) and the system (2). However, transformers
are defined on sequences of vectors in Rd, whereas the map
F is defined on Ω × P(Ω), an infinite-dimensional space.
Therefore, we consider a finite-dimensional approximation
of (1) via a particle-level system. Specifically, consider
a n-particle system where the state of each particle i ∈
{1, . . . , n} is given by zi ∈ Ω. We assume that each zi is
independently sampled from the distribution µ ∈ P(Ω). Let
z = (z1, . . . , zn) ∈ Ωn denote the collection of particle
states. The empirical distribution of the n-particle system is
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then given by

νnz :=
1

n

n∑
i=1

δzi ∈ Dn(Ω). (3)

The particle-level dynamics on Rd according to the map
defined in (1), for a single particle i, can be written as

żi = F(zi, ν
n
z ), zi(0) ∼ µ0 (4)

Note that the collection of random variables (zi) is permu-
tation equivariant because the joint distribution of (zi) is
invariant under any permutation of the indices.

3 Numerical Simulations
In this section, we present experiments demonstrating that
transformers can learn mean-field dynamics and generalize
to cases involving more particles than those seen during
training. We also compare the transformer with Graph Neu-
ral Networks (GNNs) and prior models from Pham & Warin
(2023); Messenger & Bortz (2022).

3.1 Learning the Vector Field

Our first goal focuses on learning the vector field F . To-
wards this, in this experiment, we use two datasets: first, a
synthetic dataset generated from the Cucker-Smale model
(Cucker & Smale, 2007), and second, real data of fish
milling (Katz et al., 2021).

Cucker-Smale Model The first example that we consider
is the well-studied 2d× n-dimensional Cucker-Smale (CS)
equation that models consensus of a n-agent system (Cucker
& Smale, 2007). For d = 2, he vector field F : R4 ×
P(R4) → R4 is given by

F(x, v, µ) =

[
v

−
∫
R4 ϕ(∥x− y∥)(v − u)dµ(y, u)

]
,

ϕ(r) =
H

(s2 + r2)b
.

(5)

Where x ∈ R2 and v ∈ R2 denote the position and velocity
of each agent, respectively. Here, ϕ, a non-negative function,
is the interaction potential that determines the inter-agent
interaction, and H, s, b are parameters (set to 1 here).

Next, we consider the n-dimensional (finite) approximation
of the model above.

dxi

dt
= vi, 0 ≤ i ≤ n

dvi
dt

=
1

n

n∑
j=1

ϕ(∥xi − xj∥)(vj − vi)
(6)

To generate the data, we compute trajectories for 500 ran-
dom initial conditions (xi(0), vi(0)), chosen uniformly at

random from Ω = [0, 1]× [0, 1]. For each initial condition,
we solve the differential equation (6) for n = 20 agents over
a time horizon [0, 100] using SciPy’s solve ivp. Hence,
for each initial condition, we obtain position xi(t) and ve-
locity vi(t), for each time step t.

Fish Milling Model The second example that we consider
is the fish milling model (D’Orsogna et al., 2006) which
is a version of the Cucker-Smale model. In contrast to the
previous example, this example uses an actual experimental
dataset (Katz et al., 2021). The dataset includes the position
x ∈ R2, velocity v ∈ R2, and fish identifier for n = 300
fish over 5000 time steps. While the experiment tracks 300
fish, real-world data is incomplete at certain time points.
Specifically, the positions of all fish are not available at all
times, and as the fish move in a milling pattern, some fish
disappear and reappear. When a fish reappears, it is assigned
a new index, and its previous identity is lost. On average,
only about 220 fish are observed at any given time. As a
result, we have 5000 data points, but the number of particles
varies at each time step.

Data Next, we will describe how we assemble the data
from the Cucker-Smale and fish milling model for the ML
architectures. We note that F maps

[
x v

]T 7→
[
ẋ v̇

]T
.

Let z(t) =
[
x(t) v(t)

]T
and ż(t) =

[
ẋ(t) v̇(t)

]T
.

From the simulations described above, we obtain the col-
lection z(t) = (z1(t), . . . , zn(t)), where each zi(t) =[
xi(t) vi(t)

]T
. To construct ż(t), we use the centered-

difference formula:

żi(t) ≈
zi(t+∆t)− zi(t−∆t)

2∆t
,

where ∆t is the time step. We assume that at each time step
t, we may know z(t) for only a subset of the particles;as
is the case for the fish milling model. Moreover, we do
not know the functional form of F(z, νnz ). Let I(t) :=
{i : zi(t), żi(t) are known}. and we redefine z(t) to mean
a collection of particle states for which we have data, and
similarly for ż(t),

z(t) = {zi(t) : i ∈ I(t)} and ż(t) = {żi(t) : i ∈ I(t)}.

The data so obtained are split into an 80-20-20 split for
training, validation, and testing.

Next, we will describe the ML architectures that we use
to approximate F . In particular, the transformer will be
compared against four additional permutation equivariant
baselines.

Transformer In Appendix D, we define a transformer
network, T : Rn×d → Rn×k (k not necessarily equal to d)
At each time step t, we provide the transformer with input
z(t) and have it predict ż(t). The model is trained using
mean-squared error loss.
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Model Cucker-Smale Fish Milling

Transformer (1.9± 0.3)× 10−6 (2.2± 0.0)× 10−2

Cylindrical NN (1.1± 0.4)× 10−3 (2.7± 0.0)× 10−1

GraphConv m = 3 (2.0± 0.1)× 10−4 (1.2± 0.2)× 10−1

GraphConv m = 20 (4.1± 3.6)× 10−3 > 1
TransformerConv m = 3 (2.8± 0.3)× 10−5 (6.5± 1.7)× 10−2

TransformerConv m = 20 (3.3± 0.1)× 10−6 (1.0± 0.3)× 10−1

FNN (6.7± 0.6)× 10−6 N/A
Kernel (3.0± 0.1)× 10−5 N/A

Table 1. Table showing the mean-squared error in approximating the map Fn (14) for the different data and models.
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Figure 1. Figure comparing training a two-layer neural network using gradient descent to update the weights and using a transformer
to update the weights. The solid line is the median value over 100 trials, while the shaded region is the interquartile range (25th-75th
percentile). Left: evolution of the training error during training. Center: evolution of the test error during training. Right: difference
between the parameters learned by gradient descent and the transformer.

Graph Neural Network (GNN) Given a set of particles
Z(t), let G3(t) and G20(t) represent the graphs based on
the three nearest neighbors and the twenty nearest neighbors,
respectively. We use two graph neural networks (GNNs)
that, at each time step t, take (Gm(t), z(t)) as input, where
m is either 3 or 20, and aim to predict the node labels ż(t).
This forms a graph regression task where the target size
depends on the number of nodes in the graph.

We employ two common GNN architectures: the Graph
Convolutional Network (GraphConv) (Morris et al., 2019)
and TransformerConv (Shi et al., 2020). Note that, similar
to GAT (Veličković et al., 2017), TransformerConv applies
attention only to local neighborhoods.

Other Baselines The final three baselines we consider are:
cylindrical nets from Pham & Warin (2023). Additionally, if
|ż(t)| is constant for all t (i.e., for the CS data), we evaluate
a fully connected feedforward net and kernel regression
with sine, cosine, and polynomial basis. For both of these
methods, we concatenate the vectors in z(t) and ż(t) to
create the training data.

Training Details and Hyperparameter Search For each
model and dataset, we conduct a hyperparameter search to
optimize depth, width, and learning rate. We train the mod-
els using mini-batch Adam and a cosine annealing learning

rate schedule. For kernel regression, we explore different
numbers of basis functions for each type of basis function.
See Appendix E for more training details.1

To account for the randomness introduced by initialization
and training, we conduct five trials for each hyperparameter
setting. The best hyperparameter configuration is selected
based on performance on the validation data.

Results Table 1 presents the mean-squared error for the
different methods, across the two data sets. We observe that
the transformer has the lowest mean-squared error among
all of the models. Therefore, we conclude (empirically) that
transformers can effectively learn the vector field.

3.2 Simulating Mean-Field Dynamics

Our second goal is to approximate the solution to the con-
tinuity equation (2). We use two synthetic datasets: the
Cucker-Smale dataset from Section 3.1, and the training
dynamics for a two-layer neural network (Mei et al., 2019).

Cucker-Smale After obtaining a transformer T that ap-
proximates the vector field F in (5) (as described in Sec-

1Code can be found at: https://anonymous.4open.
science/r/Mean-Field-Transformers-D585/
README.md
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Figure 2. Figure comparing the true dynamics of the Cucker-
Smaler model versus those obtained from a transformer. The
solid line is the median value over 100 trials, while the shaded
region is the interquartile range (25th-75th percentile).

tion 3.1), we solve the differential equation (6) twice, using
SciPy’s solve ivp function, for a new set of initial con-
dition. First, with the true vector field F , and second, using
the transformer T in lieu of F . We note that solving (2)
for Dirac valued initial distributions, δzi(0), is equivalent to
solving (6) for initial condition zi(0).

Training 2-Layer Neural Network Consider a two-layer
network f(x) =

∑n
i=1 aiσ(x

Twi). Let θi = (ai, wi)
be the parameters (the states of this model) and Θ =
(θ1, . . . , θn). In this model, we treat each θi as a parti-
cle, with its distribution evolving according to the following
continuity equation, as derived by Mei et al. (2019),

µ̇ = 2ξ(t)∇θ · (µ∇θΨ(θ, µ)). (7)

Here, ξ(t) depends on the learning rate schedule and

Ψ(θ, µ) := −Ex,y

[
yaσ(xTw)

]
+

∫
Ex,y

[
aâσ(xTw)σ(xT ŵ)

]
dµ(â, ŵ).

Here, the vector field we wish to approximate is F(θ, µ) =
2ξ(t)∇θΨ(θ, µ). To generate the data, let X be a d times
1000 dimensional matrix with i.i.d. Gaussian entries. Let f
be a fixed two-layer teacher network with sigmoid activation
(σ) and let Y = f(X). We then initialize 50 two-layer net-
works with n hidden nodes, and train them for 500 epochs
using the data X,Y . We use the MSE loss and gradient
descent to train the network. This gives us 2500 training
data points (Θ, Θ̇). We set the hidden layer with n = 100
and use an input dimension of d = 10.

Once the transformer is trained, we test it as follows: We
reinitialize a two-layer network, providing its weights as
input to the transformer. The transformer’s outputs are
then treated as gradients, which we use to perform gradient
descent. Finally, we compare the results with the dynamics
obtained from performing true gradient descent.

Results Figure 3 shows the evolution of 30 particles using
the Cucker-Smale equations (6) along with the transformer
approximation. Notably, the dynamics obtained using the

Transformer Dynamics
True Dynamics

0

3

Ti
m

e

Figure 3. Figure showing the trajectories of ten particles computed
for the Cucker-Smale model using the true F versus the trans-
former in lieu of F .

transformer tracks the true dynamics near exactly. Figure 2
plots the 2-norm between the positions coordinates x, y and
velocities u, v. The figure indicates that the error is generally
quite small (< 10−4), although it increases over time. This
increase appears to be linear for the position coordinates,
while the error in the velocity seems to plateau and even
decrease slightly. Additionally, the initial interquartile range
is small, but it grows over time.

Finally, we note that we trained the model with 20 particles
but simulated the model with 30 particles. Hence we see
that the model can generalize to more particles than that
seen during training. This implies that the transformer is
able to learn the interaction kernel between the particles.

Next we simulate training a two-layer neural network us-
ing a Transformer. Figure 1 illustrates the training and test
loss as we train the network. The blue line represents the
model trained using GD, while the orange line corresponds
to the model trained with the transformer. Note that the
transformer model does not compute any gradients. We
trained models with one hundred different random initial-
izations. The solid lines indicate the median and the shaded
regions represent the interquartile range. The right-most
plot in Figure 1 shows the Frobenius norm of the difference
between the parameters learned using GD and the trans-
former. The figure demonstrates that the maximum norm of
the difference is at most 5× 10−5, even after 500 iterations.
Therefore, we observe that the transformer has learned to
approximate the dynamics of GD for a two-layer network.

4 Theoretical Results
Our experiments demonstrate that the transformer can ap-
proximate the finite-dimensional particle dynamics (4). In
this section, we will prove that the infinite-dimensional vec-
tor field F (1) can be approximated by the expected output
of a transformer, which we shall denote Tn(x, µ). Further,
we show that the solutions to the continuity equation (2) can
be approximated by the solutions to the following approxi-
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mate continuity equation, defined using Tn,

∂µ

∂t
+∇z · (Tn(z, µ)µ) = 0, µ(0) = µ0. (8)

4.1 Lifting Transformers to the Space of Measures

Traditionally, transformers are defined on sequences of vec-
tors in Rd. However, the map we wish to approximate, F , is
defined on Ω×P(Ω). Therefore, we lift the standard trans-
former to act on Ω×P(Ω) via an expectation operation. This
will allow us to lift any transformer T : Ωn+1 → R(n+1)×d

to a model Tn : Ω× P(Ω) → Rd.

Definition 4.1 (Expected Transformer). Given a transformer
T : Ωn+1 → R(n+1)×d and a prescribed sequence length n,
define the expected transformer Tn : Ω× P(Ω) → Rd by

Tn(x, µ) := Ez∼µ⊗n [(T ([x; z]))1] , (9)

=

∫
Ωn

(T ([x; z1, . . . , zn]))1 dµ(z1) · · · dµ(zn),

where [x; z] denotes the concatenation of x and z =
(z1, . . . , zn) to form an input sequence of length n + 1,
and (T ([x; z]))1 denotes the first output vector.

Some prior works (Geshkovski et al., 2023; Furuya et al.,
2024) have defined transformers T̂ : Ω × P(Ω) → Rd

through a continuous version of self-attention Γ. For x ∈ Ω
and µ ∈ P(Ω), Γ is defined as

Γ(x, µ) := x+
1

Z(x, µ)

∫
Ω

Att ([x; y]) dµ(y), (10)

where Z(x, µ) is a normalization factor and Att is the at-
tention layer (D.1). Then the transformer T̂ in Geshkovski
et al. (2023); Furuya et al. (2024) is defined as

T̂ (x, µ) := FCξL ◦ΓθL ◦ · · · ◦ FCξ1 ◦Γθ1(x), (11)

where Γθj and FCξj are attention and feed-forward layers
with parameters θj and ξj , respectively.

4.2 Assumptions

To state our result, we require some assumptions on the
map F in (1). The key assumption we make is that F
is Lipschitz continuous with respect to µ, the probability
measure. To formalize this, we require a metric on the space
of probability measures P(Ω). A commonly used metric is
the p-Wasserstein distance.

Definition 4.2 (1-Wasserstein Distance). Given two proba-
bility measures µ, ν ∈ Pp(Ω) on a metric space (Ω, ∥ · ∥2),
where d is the metric on Ω, the 1-Wasserstein distance be-
tween µ and ν is defined as

W1(µ, ν) = inf
γ∈Π(µ,ν)

∫
Ω×Ω

∥x− y∥2dγ(x, y), (12)

where Π(µ, ν) denotes the set of all couplings (transport
plans) γ on Ω× Ω with marginals µ and ν.

We now state the main assumptions required for our analysis:
Assumption 4.3 (Regularity and Growth Conditions). As-
sume that the vector field F : Ω × Pp(Ω) → Rd satisfies
the following conditions:

a) (Lipschitz Continuity) There exists a constant L such
that for all x, y ∈ Ω and µ, ν ∈ Pp(Ω),

∥F(x, µ)−F(y, ν)∥2 ≤ L (∥x− y∥2 +W1(µ, ν)) .

This condition implies the following.
b) (Linear Growth) There exists a constant M > 0 such

that for all x ∈ Ω and µ ∈ Pp(Ω),

∥F(x, µ)∥2 ≤ M (1 + ∥x∥2 +M1(µ)) ,

where M1(µ) :=
∫
Ω
|y|dµ(y) is the first moment of µ.

These assumptions are standard in the analysis of mean-field
models and differential equations in general and are needed
to guarantee the uniqueness of solutions.
Remark 4.4 (Lipschitz Implies Linear Growth). Since Ω
is compact, Assumption 4.3a) implies Assumption 4.3b).
However, in some cases, we only need the weaker assump-
tion of Linear Growth, hence we explicitly state it.
Remark 4.5 (Example Models). These assumptions are sat-
isfied by the Cucker-Smale model as well as the training
2-layer neural network model. Specifically, Theorem 2 of
Piccoli et al. (2009) shows that Cucker-Smale model satis-
fies Assumption 4.3a) and Lemma 2 of Mei et al. (2019)
shows that the training 2-layer neural network model (7)
also satisfies Assumption 4.3a)

To establish our approximation results for functions H :
Ω× P(Ω) → Rd, we define the following norm.

Definition 4.6. Given a function H : Ω× P(Ω) → Rd, we
define its norm by

∥H∥∗ := sup
x∈Ω

sup
µ∈P(Ω)

∥H(x, µ)∥2. (13)

4.3 Approximating the Vector Field F

To approximate the vector field F , we define, for a fixed n,
the finite-dimensional map Fn : Ωn → Rd×n as

Fn(z) :=
[
F(z1, ν

n
z ) . . . F(zn, ν

n
z )
]

(14)

We now state our main result regarding the universal approx-
imation of the mean-field vector field F by the expected
transformer Tn.

Theorem 4.7 (Universal Approximation). Let Ω ⊂ Rd be
a compact set containing 0. Let F : Ω × P(Ω) → Rd

6
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satisfy Assumption 4.3a) for a given p. Given a transformer
T : Ωn+1 → R(n+1)×d let

E := sup
z∈Ωn+1

∥T (z)− Fn+1(z)∥2 (15)

Then, for q > p there exists a constant C(p, q, d), depending
only on p, q, and d, such that for all n ≥ 1, the correspond-
ing continuum version Tn : Ω× P(Ω) → Rd (9) satisfies

∥Tn −F∥∗ ≤ E + L diam(Ω)p
(

1

n+ 1
+ CG(n, p, q)

)
,

G(n, p, q) =


1√
n

p > d/2, q ̸= 2p
1√
n
log(n+ 1) p = d/2, q ̸= 2p

1
d√np

p < d/2, q ̸= d
d−p

(16)

Remark 4.8. In the Theorem 4.7 above, we observe that
the approximation of infinite-dimensional maps F by finite-
dimensional transformers T depends on two key quantities.
First, it depends on how well T approximates the finite-
dimensional map Fn. This corresponds to the E term in
the bound (15). Due to universal approximation results for
transformers, this term can be made arbitrarily small. For
example, see Theorem 4.3 in Alberti et al. (2023).

Second, the approximation depends on the convergence rate
of W1(µ, ν

n
z ), which, by Theorem 1 of Fournier & Guillin

(2015) is tight and depends on n, p, q, and d. Furthermore,
we observe that the stronger the regularity of the map F (i.e.,
larger the constant p), the better the approximation. The best
rates are obtained for p =

⌊
d
2 + 1

⌋
. Consequently, if we use

longer sequences, we obtain an improved approximation of
the vector field F .

We empirically verify Theorem 4.7 using the transformer
trained for the Cucker-Smale model in Section 3.1. We test
five (x, y) ∈ [0.1]2 values and vary (u, v) over an 11× 11
grid. Using Gibbs sampling, we approximate the expected
transformer and compute the error with the true vector field
(5). Figure 4 shows the heat maps, with a maximum error
of 0.025, while the bound from Theorem 4.7 is at least 0.05.

Comparison with Result From (Furuya et al., 2024):
The concurrent work (Furuya et al., 2024) proves the fol-
lowing approximation result for continuous maps F by the
continuum version of the transformer T̂ (11).
Theorem 4.9. Let Ω ⊂ Rd be a compact set and F ∗ :
Ω×P(Rd) → Rd be continuous, where P(Rd) is endowed
with the weak* topology. Then for all ε > 0, there exist l
and parameters (θj , ξj)lj=1 such that

∥T̂ (x, µ)− F ∗(x, µ)∥2 ≤ ε, ∀(x, µ) ∈ Ω× P(Rd)

where the parameters θj , ξj depend on the dimension d.

To compare with Theorem 4.9, we state the following corol-
lary to Theorem 4.7.

Corollary 4.10. Let ε > 0 and n ≥ 1. Let Ω ⊂ Rd be
a compact set containing 0. Let F : Ω × P(Ω) → Rd

satisfy Assumption 4.3a) for a given p. Then there exists
a transformer T with depth Θ(1), one attention layer with
width Θ(d) such that the expected transformer Tn satisfies
(16) with E = ε.

While Corollary 4.10 and Theorem 4.9 are about two differ-
ent models, they share notable similarities while exhibiting
key differences. Both results feature Θ(d) width for the
attention layers, independent of ε and n, and neither pro-
vides bounds for the width of feedforward layers. However,
there are key differences. Our work leverages prior results
to establish a bound on network depth, which Furuya et al.
(2024) does not. Moreover, we note that providing a bound
on the width of the feedforward network, in our case, is
straightforward, owing to recent developments that provide
bounds on both width and depth (Augustine, 2024).

Further, we provide detailed error rates that depend on the
length of the sequence n that the transformer is trained on.
However, we note that Furuya et al. (2024) impose weaker
assumptions for the map F .

4.4 Approximating the Mean Field Dynamics

We build upon our previous approximation results to prove
that the solution µTn(t) to the approximate continuity equa-
tion (8) approximates the solution µF (t) to continuity equa-
tion (2). To formalize this, we first introduce an appropriate
notion of a solution to the continuity equation.
Definition 4.11. Let µ ∈ C([0, τ ];Pp(Rd)) be a measure-
valued function, is called a Lagrangian solution of the con-
tinuity (2) if there exists X : [0, τ ]× Rd → Rd, referred to
as the flow map, satisfies

X(t, x) = x+

∫ t

0

F(X(s, x), µ(s))ds, (17)

for all x ∈ Rd and µ(t) = X(t, ·)#µ0 for all t ∈ [0, τ ].

Existence and Uniqueness of Solutions Under Assump-
tion 4.3a), it is known that there is a unique Lagrangian
solution corresponding to (2), see Proposition 4.8 in Cav-
agnari et al. (2022). As stated in Remark 4.5 the numerical
examples considered in Section 3 satisfy this assumption.
However, to ensure that solutions of (2) can be approxi-
mated, we also need existence of unique solutions for the
approximating continuity equation (8). Unfortunately, the
expected transformer might not be globally Lipschitz as re-
quired in Assumption 4.3a) since T [x, z] in (9) might not be
globally Lipschitz (Kim et al., 2021). Hence, the continuity
equation (8) with the expected transformer as the vector
field may not have a unique Lagrangian solution in general.

The goal of the following theorem is to show that if Assump-
tion 4.3b) holds locally on a sufficiently large set, then we

7



Universal Approximation of Mean-Field Models via Transformers

Figure 4. Figure shows the error ∥Tn −F∥∗ for the CS model. Here (x, y) is held fixed while (u, v) is varied in a 11× 11 grid.

can prove existence of a unique solution to (8), even if the
expected transformer is only locally Lipschitz. This will be
used later to show the ability of the expected transformer to
approximate solutions of the continuity equation (2), using
its universal approximation property.

Theorem 4.12. Suppose µ0 ∈ Pc(Ω) is such that the sup-
port of µ0 is contained within BR(0) ⊂ Ω, for some R > 0.
Additionally, let K satisfy K > (R+2M τ)e3Mτ . Further-
more, assume that

∥Tn(x, µ)∥2 ≤ M (1 + ∥x∥2 +M1(µ)) , (18)

for all x ∈ BK(0) and all µ with support in BK(0). Then,
there exists a unique Lagrangian solution to the approximate
continuity equation (8) such that suppµT (t) ⊆ BCt(0) for
all t ∈ [0, τ ], where Ct = (R+ 2M t)e3M t.

Remark 4.13. In the proof of Theorem 4.14 it will be shown
that the bound (18) on the expected transformer directly
follows from Assumption 4.3a) on F wheneverTn is close
enough to F in the uniform norm.

We are now ready to state our main theorem regarding the
approximation of mean-field dynamics using transformers.

Theorem 4.14 (Mean Field Dynamics Approximation Us-
ing Transformers). Let ε > 0 be small enough and n ≥ 1.
Suppose that F satisfies Assumption 4.3a) for some p. As-
sume that the support of µ0 is contained within BR(0)
⊂ Ω, for some R > 0, and let K ∈ R be such that
K > (R + 2M τ)e3Mτ . If the transformer Tn satisfies
the condition

∥Tn(x, µ)−F(x, µ)∥∗ < ε.

for all z ∈ BK(0) and µ ∈ P(BK(0)). Then we have that

W1(µ
F (t), µTn(t)) ≤ εt exp(2L t) (19)

where µF and µTn are the solutions to (2) and (8), respec-
tively, and the estimate (19) is independent of µ0.

Remark 4.15. In essence, Theorem 4.14 states that by choos-
ing a large enough ball of radius R that covers the support
of µ0, and selecting and appropriate K, as a function of R,
final time τ , and regularity constant M , we can ensure that
if Tn approximates F on the ball of radius K, then Tn can

be used to simulate the dynamics (2) over the time interval
[0, τ ]. We observe that the error bound (19) grows expo-
nentially. Therefore, a small approximation error δ for the
vector field F implies a small approximation error (19) for
the solution of the continuity equation over [0, τ ]. However,
the bound (19) also depends on the regularity of F , namely
p and L . Therefore, the more regular the vector-field F ,
i.e., larger p and smaller L , the better the bound (19).

We can combine Theorem 4.7 and Theorem 4.14 to obtain
the following corollary.

Corollary 4.16. Suppose F satisfies Assumption 4.3a) for
some p. Let the support of µ0 be contained within BR(0) ⊂
Ω, for some R > 0, and let K ∈ R be such that K > (R+
2M τ)e3Mτ . Given a transformer T : Ωn+1 → R(n+1)×d

let E := sup
z∈Ωn+1

∥T (z)− Fn+1(z)∥2. If E is small enough

and n ∈ Z+ is large enough, then

W1(µ
F (t), µTn(t)) < 2(E + δ(n,K))t exp(2pL t)

where δ(n,K) = L (2K)p
(

1

n
q−p
q

G(n, p, q)

)
, where

G(n, p, q) is as per (16).

5 Conclusion
This paper demonstrated the efficacy of transformer archi-
tectures in approximating the mean-field dynamics of inter-
acting particle systems. We showed that finite-dimensional
transformer models can be lifted to approximate the infinite-
dimensional mean-field dynamics. Through theoretical re-
sults and numerical simulations, we established that trans-
formers can be powerful tools for modeling and learning the
collective behavior of particle systems.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A Proof of Theorem 4.7

Theorem 4.7 (Universal Approximation). Let Ω ⊂ Rd be a compact set containing 0. Let F : Ω × P(Ω) → Rd satisfy
Assumption 4.3a) for a given p. Given a transformer T : Ωn+1 → R(n+1)×d let

E := sup
z∈Ωn+1

∥T (z)− Fn+1(z)∥2 (15)

Then, for q > p there exists a constant C(p, q, d), depending only on p, q, and d, such that for all n ≥ 1, the corresponding
continuum version Tn : Ω× P(Ω) → Rd (9) satisfies

∥Tn −F∥∗ ≤ E + L diam(Ω)p
(

1

n+ 1
+ CG(n, p, q)

)
,

G(n, p, q) =


1√
n

p > d/2, q ̸= 2p
1√
n
log(n+ 1) p = d/2, q ̸= 2p

1
d√np

p < d/2, q ̸= d
d−p

(16)

Proof.

∥F − Tn∥∗ =sup
µ

sup
x

∥∥∥∥F(x, µ)−
∫
Ωn

(T (x, z))1 dµ
⊗n(z)

∥∥∥∥
2

≤ sup
µ

sup
x

∫
Ωn

∥F(x, µ)− (T (x, z))1∥2 dµ
⊗n(z)

= sup
µ

sup
x

∫
Ωn

∥F(x, µ)−F(x, νnz ) + F(x, νnz )− (T (x, z))1∥2 dµ
⊗n(z)

≤ sup
µ

sup
x

∫
Ωn

∥F(x, µ)−F(x, νnz )∥2 dµ⊗n(z)

+ sup
µ

sup
x

∫
Ωn

∥F(x, νnz )− (T (x, z))1∥2 dµ
⊗n(z) (∗)

The second inequality follows from the standard triangle inequality. The first integral on the RHS can be bounded from
above as,

sup
µ

sup
x

∫
Ωn

∥F(x, µ)−F(x, νnz )∥2 dµ⊗n(z)

≤ sup
µ

∫
Ωn

sup
x

∥F(x, µ)−F(x, νnz )∥2 dµ⊗n(z)

= sup
µ

∫
Ωn

L ∥µ− νnz ∥Wp
dµ⊗n(z)

=L sup
µ

Ez∼µ⊗n [Wp (µ, ν
n
z )] (∗∗)

Recall that Mq(µ) denotes the q-moment of µ i.e. Mq(µ) :=
∫
Ω
|x|qdµ(x), then as per Theorem 1 of (Fournier & Guillin,

2015) there exists a constant C(p, q, d) (a function of p, q, d) such that, Ez∼µ⊗n [Wp (µ, ν
n
z )] from (∗∗) can be bounded

from above by CM
p/q
q (µ)G(n, p, q). We obtain:

sup
µ

sup
x

∫
Ωn

∥F(x, µ)−F(x, νnz )∥2 dµ⊗n(z) ≤ L sup
µ

CMp/q
q (µ)G(n, p, q)

≤ LC diam(Ω)pG(n, p, q), (20)

where we have used the fact that µ is a probability measure on Ω.

10
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Next, we obtain an upper bound for the second integral in (∗).

sup
µ

sup
x

∫
Ωn

∥F(x, νnz )− (T (x, z))1∥2 dµ
⊗n(z)

≤ sup
µ

∫
Ωn

sup
x

∥F(x, νnz )− (Fn+1(x, z1, . . . , zn))1∥2 dµ
⊗n(z)

+ sup
µ

∫
Ωn

sup
x

∥(Fn+1(x, z1, . . . , zn))1 − (T (x, z))1∥2 dµ⊗n(z) (∗ ∗ ∗)

Consider the first term in the expression above

sup
µ

∫
Ωn

sup
x

∥F(x, νnz )− (Fn+1(x, z1, . . . , zn))1∥2 dµ
⊗n(z)

= sup
µ

∫
Ωn

sup
x

∥∥∥F(x, νnz )−F
(
x, νn+1

(x,z)

)∥∥∥
2
dµ⊗n(z)

≤ sup
µ

∫
Ωn

LW1

(
νnz , ν

n+1
(x,z)

)
dµ⊗n(z)

≤ sup
µ

∫
Ωn

L diam(Ω)p
1

n+ 1
dµ⊗n(z)

= L diam(Ω)p
1

n+ 1
(21)

Since we have assumed (15), the second term in (∗ ∗ ∗) evaluates to

sup
µ

∫
Ωn

sup
x

∥(Fn+1(x, z1, . . . , zn))1 − (T (x, z))1∥2 dµ⊗n(z) = E . (22)

Putting together (20), (21), and (22), we get that

∥Tn −F∥∗ ≤ L diam(Ω)p
(
CG(n, p, q) +

1

n+ 1

)
+ E .

B Proof of Theorem 4.12
Proposition B.1. Suppose µ0 ∈ P(Ω) is such that the support of µ0 lies in BR(0), for some R > 0, and that there exists
a Lagrangian solution µF ∈ C([0, τ ];Pp(Rd)) of (2). Additionally, suppose that F satisfies Assumption 4.3b). Then the
solution satisfies,

supp µF (t) ⊆ BCt(0) (23)

for all t ∈ [0, τ ], where Ct = (R+ 2M t)e3M t.

Proof. By definition of the Lagrangian solution (17),

∥X(t, x)∥2 ≤ ∥x∥2 +
∫ t

0

∥F(X(s, x), µ(s))∥2 ds

≤ ∥x∥2 +
∫ t

0

M (1 + ∥X(s, x)∥2 +M1(µ(s))) ds (24)

Integrating both sides of (24) with respect to µ0 and noting that X(t, ·)#µ0 = µt, we get,

M1(µ(t)) ≤ M1(µ0) + M

∫ t

0

(1 + 2M1(µ(s))) ds

11
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Combining this with (24) itself we get,

∥X(t, x)∥2 +M1(µ(t)) ≤ M1(µ0) + M

∫ t

0

(2 + ∥X(s, x)∥2 + 3M1(µ(s))) ds

This implies

∥X(t, x)∥2 +M1(µ(t)) ≤ (M1(µ0) + 2M t) +

∫ t

0

3M (∥X(s, x)∥2 +M1(µ(s))) ds.

We note that the above equation is in the integral form of Gronwall’s lemma (u(t) ≤ α(t) +

∫ t

a

β(s)u(s) ds) with α(t) =

M1(µ0) + 2M t and β(s) = 3M . Therefore, an application of Gronwall’s lemma gives us,

∥X(t, x)∥2 +M1(µ(t)) ≤ (M1(µ0) + 2M t))e3M t

≤ (R+ 2M t)e3M t

Hence suppµF ⊆ BCt(0).

Theorem 4.12. Suppose µ0 ∈ Pc(Ω) is such that the support of µ0 is contained within BR(0) ⊂ Ω, for some R > 0.
Additionally, let K satisfy K > (R+ 2M τ)e3Mτ . Furthermore, assume that

∥Tn(x, µ)∥2 ≤ M (1 + ∥x∥2 +M1(µ)) , (18)

for all x ∈ BK(0) and all µ with support in BK(0). Then, there exists a unique Lagrangian solution to the approximate
continuity equation (8) such that suppµT (t) ⊆ BCt(0) for all t ∈ [0, τ ], where Ct = (R+ 2M t)e3M t.

Proof. Let ϕ ∈ C∞
c (R(n+1)d) be a compactly support smooth function such that ϕ(x) = 1 for all x ∈ B

(n+1)
R+Cτ (0). We

construct the function T̂ [x, z] = ϕ(x, z)T [x, z]. Let T̂n be the expected transformer corresponding to T̂ . We check that T̂n
satisfies Assumption 4.3a). Towards, this end we compute

∥T̂n(x, µ)− T̂n(y, ν)∥2 =

∥∥∥∥∫
Ωn

(T̂ ([x; z]))1 dµ
⊗n(z)−

∫
Ωn

(T̂ ([y; ẑ]))1 dν(ẑ)

∥∥∥∥
2

Let γ ∈ P(Rd × Rd) be the optimal plan with marginals µ and ν that solves the optimization problem (12). Then

∥T̂ (x, µ)− T̂ (y, ν)∥2 =

∥∥∥∥∫
Ωn×Ωn

(T̂ ([x; z]))1 dγ(z, ẑ)−
∫
Ωn×Ωn

(T̂ ([y; ẑ]))1 dγ(z, ẑ)

∥∥∥∥
2

=

∥∥∥∥∫
Ωn×Ωn

(T̂ ([x; z]))1 − (T̂ ([y; ẑ]))1 dγ(z, ẑ)

∥∥∥∥
2

The function T̂ is globally Lipschitz for some Lipchitz constant L as it is a product of a compactly supported smooth
function ϕ and a locally Lipschitz function T . We can use this to conclude that

∥T̂ (x, µ)− T̂ (y, ν)∥2 ≤ L

∫
Ωn×Ωn

∥x− y∥2 dγ(z, ẑ) + L

n∑
i

∫
Ωn×Ωn

∥zi − ẑi∥2 dγ(zi, ẑi)

= L∥x− y∥2 + L

n∑
i

∫
Ωn×Ωn

∥zi − ẑi∥2 dγ(zi, ẑi)

= L∥x− y∥2 + LnW1(µ, ν)

Therefore, T̂ satisfies Assumption 4.3a). Then, Proposition 4.8 of Cavagnari et al. (2022) guarantees that there exists a
unique Lagrangian solution µT̂ (t) of (8) corresponding to T̂ . Moreover, we know from Proposition B.1 that the support
of the solution µT̂ (t) lies in BCt

(0) for all t ∈ [0, τ ]. However, we note that T̂ (x, µ) = T (x, µ) for all x ∈ BCt
(0) and

all µ ∈ P(Ω) with support in BCt(0). Therefore, µT̂ (t) = µT (t), the unique Lagrangian solution of (8) for the expected
transformer T .

12
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C Proof of Theorem 4.14
Theorem 4.14 (Mean Field Dynamics Approximation Using Transformers). Let ε > 0 be small enough and n ≥ 1. Suppose
that F satisfies Assumption 4.3a) for some p. Assume that the support of µ0 is contained within BR(0) ⊂ Ω, for some
R > 0, and let K ∈ R be such that K > (R+ 2M τ)e3Mτ . If the transformer Tn satisfies the condition

∥Tn(x, µ)−F(x, µ)∥∗ < ε.

for all z ∈ BK(0) and µ ∈ P(BK(0)). Then we have that

W1(µ
F (t), µTn(t)) ≤ εt exp(2L t) (19)

where µF and µTn are the solutions to (2) and (8), respectively, and the estimate (19) is independent of µ0.

Proof. Using the uniform norm approximation ∥Tn(x, µ)−F(x, µ)∥∗ < ε and Assumption 4.3b), we can conclude that

∥Tn(x, µ)∥2 ≤ (M + ε)(1 + ∥x∥2 +M1(µ))

for all x ∈ Rd and µ ∈ P(BK(0)). Since K > (R + 2M τ)e3Mτ , for ε > 0 small enough, and n large enough we can
conclude that, K > (R+ 2(M + ε)τ)e3(M+ε)τ . From Theorem 4.12, there exists a Lagrangian solution for (8) such that

suppµTn(s) ⊆ BK(0)

for all s ∈ [0, τ ]. Due to Assumption 4.3 and Proposition 4.8 of (Cavagnari et al., 2022), there exists a unique Lagrangian
solution for (2). Once again, using Proposition B.1 we can conclude that

suppµF (s) ⊆ BK(0)

for all s ∈ [0, τ ]. Let X,Y be the flow maps associated with with respect the vector fields F and Tn, respectively.

From the definition of Lagrangian solutions we know that,

X(t, x) = x+

∫ t

0

F(X(s, x), µF (s))ds

Y (t, x) = x+

∫ t

0

Tn(Y (s, x), µTn(s))ds

for all t ∈ [0, τ ]. From this we get

∥Y (t, x)−X(t, x)∥2 =

∥∥∥∥∫ t

0

Tn(Y (s, x), µTn(s))ds−
∫ t

0

F(X(s, x), µF (s))ds

∥∥∥∥
2

≤
∥∥∥∥∫ t

0

Tn(Y (s, x), µTn(s))ds−
∫ t

0

F(Y (s, x), µF (s))ds

+

∫ t

0

F(Y (s, x), µF (s))ds−
∫ t

0

F(X(s, x), µF (s))ds

∥∥∥∥
2

13
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By triangle inequality of the ∥ · ∥2 norm,

≤
(∥∥∥∥∫ t

0

Tn(Y (s, x), µTn(s))ds−
∫ t

0

F(Y (s, x), µF (s))ds

∥∥∥∥
2

+

∥∥∥∥∫ t

0

F(Y (s, x), µF (s))ds−
∫ t

0

F(X(s, x), µF (s))ds

∥∥∥∥
2

)
≤

∥∥∥∥∫ t

0

Tn(Y (s, x), µTn(s))ds−
∫ t

0

F(Y (s, x), µF (s))ds

∥∥∥∥
2

+

∥∥∥∥∫ t

0

F(Y (s, x), µF (s))ds−
∫ t

0

F(X(s, x), µF (s))ds

∥∥∥∥
2

≤
∥∥∥∥∫ t

0

Tn(Y (s, x), µTn(s))ds−
∫ t

0

F(Y (s, x), µTn(s))ds

∥∥∥∥
2

+

∥∥∥∥∫ t

0

F(Y (s, x), µTn(s))ds−
∫ t

0

F(Y (s, x), µF (s))ds

∥∥∥∥
2

+

∥∥∥∥∫ t

0

F(Y (s, x), µF (s))ds−
∫ t

0

F(X(s, x), µF (s))ds

∥∥∥∥
2

Using the fact that ∥ · ∥2 is convex, applying Jensen’s inequality yields,

≤
∫ t

0

∥∥∥∥Tn(Y (s, x), µTn(s))ds−
∫ t

0

F(Y (s, x), µTn(s))

∥∥∥∥
2

ds

+

∫ t

0

∥∥∥∥F(Y (s, x), µTn(s))ds−
∫ t

0

F(Y (s, x), µF (s))

∥∥∥∥
2

ds

+

∫ t

0

∥∥∥∥F(Y (s, x), µF (s))ds−
∫ t

0

F(X(s, x), µF (s))

∥∥∥∥
2

ds

Using the fact that
suppµTn(s) ⊆ BK(0)

we get,

∥Y (t, x)−X(t, x)∥2 ≤
∫ t

0

εds

+

∫ t

0

LW1(µ
F (s), µTn(s))ds+

∫ t

0

L ∥Y (s, x)−X(s, x)∥2ds.

Integrating with respect to µ0 and noting that µ0 is a probability measure,

W1(µ
F (t), µTn(t)) ≤ εt

+

∫ t

0

LW1(µ
F (s), µTn(s))ds+

∫ t

0

LW1(µ
F (s), µTn(s))ds

≤ εt+ 2

∫ t

0

LW1(µ
F (s), µTn(s))ds.

Now, applying Gronwall’s inequality, we get,

W1(µ
F (t), µTn(t)) ≤ εt exp(2L t)

14
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D Transformer

Definition D.1 (Multi-Headed Self-Attention). Let X ∈ Rn×d be a matrix whose rows are n data points in Rd. Let
WQ,WK ,WV ∈ Rd×d be learnable weight matrices. Define the query, key, and value matrices by

Q = XWQ, K = XWK , V = XWV .

Let softmax denote the softmax function applied row-wise to a matrix. The self-attention head function AttHead : Rn×d →
Rn×d is defined as

AttHead(X) := softmax

(
QK⊤
√
d

)
V.

Let h ∈ Z+ be the number of attention heads. Let AttHead1, . . . ,AttHeadh be attention heads with their own weight
matrices, and let W0 ∈ Rhd×d be a learnable weight matrix. The multi-head self-attention layer Att : Rn×d → Rn×d is
defined as

Att(X) := [AttHead1(X), . . . ,AttHeadh(X)]W0,

where [·] denotes concatenation along the feature dimension.

Definition D.2 (Transformer Network). A transformer block Block : Rn×d → Rn×d is defined as

Block(X) := X + FC (X +Att(X)) ,

where FC are feed-forward layers (position-wise fully connected layers), and ReLU is the rectified linear unit activation
function. The addition operations represent residual connections. Let L ∈ Z+, and let Block1, . . . ,BlockL be transformer
blocks. A transformer network T : Rn×d → Rn×k is defined as a composition of transformer blocks followed by an output
network:

T (X) := FCout (BlockL ◦BlockL−1 ◦ · · · ◦ Block1(X)) ,

where FCout : Rn×d → Rn×k is a fully connected neural network applied position-wise.

E Training
Here we provide the training details.

E.1 Learning the Vector Field

Hyperparameters We consider depths in {3, 4, 5}, widths in {128, 256, 512}, and learning rates in
{0.0002, 0.0001, 0.001}.

For the kernel method, we use polynomial basis of {1, x, . . . , xd} and sine and cosine basis of
{sin(x), sin(2x), . . . , sin(kx)} and {cos(x), cos(2x), . . . , cos(kx). We search over d ∈ {2, 3, 4} and k ∈ {3, 4, 5}.

Training Details We used Adam with a cosine annealing decay rate for the step size. For the synthetics CS data, we used
a batch size of 500 and trained the model for 1000 epochs. For the fish milling data, we used a batch size of 1, and trained
the model for 10 epochs.

E.2 Simulating dynamics

For the simulating dynamics experiment, we also train a transformer to learning the training dynamics of a two layer neural
network. We fix the transformer to have a hidden dimension of 512 and 5 layers. We train the model for 250 epochs, using a
learning rate 0.0002, batch size of 1000, using Adam with cosine annealing.
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