
Published as a conference paper at COLM 2025

Evaluating the Diversity and Quality of LLM
Generated Content

Alexander Shypula1 Shuo Li1 Botong Zhang1

Vishakh Padmakumar2 Kayo Yin3 Osbert Bastani1

1University of Pennsylvania, 2New York University, 3UC Berkeley
shypula@seas.upenn.edu

Abstract

Recent work suggests that preference-tuning techniques—such as Rein-
forcement Learning from Human Preferences (RLHF) methods like PPO
and GRPO, as well as alternatives like DPO—reduce diversity, creating
a dilemma given that these models are widely deployed in applications
requiring varied outputs. We argue that diversity without consideration
of quality has limited practical value. To address this issue, we introduce
a framework for measuring effective semantic diversity—diversity among
outputs that meet quality thresholds—which better reflects the practical
utility of large language models (LLMs). Using open-ended tasks that re-
quire no human intervention, we find counterintuitive results: when using
diversity metrics that do not explicitly consider quality, preference-tuned
models—particularly those trained via RL—often produce outputs with
lower diversity; however, these same preference-tuned models generate
greater effective semantic diversity than SFT or base models. Our analy-
sis further shows another trend: while larger models may exhibit greater
effective semantic diversity than smaller models, the smaller models are
consistently more parameter-efficient at producing unique content within
a fixed sampling budget. These findings have practical implications for
applications that require diverse yet high-quality outputs, from creative
assistance to synthetic data generation.

1 Introduction

As large language models (LLMs) increasingly serve as tools for ideation, synthetic data
generation, and creative assistance, their ability to produce diverse yet high-quality outputs
has become critically important. While recent advances have dramatically improved model
performance, relatively little attention has been paid to systematically measuring and
optimizing for the dual objective of quality and diversity.

Consider a user asking an LLM to generate story premises or a researcher using an LLM
to create synthetic training data. In these scenarios, the utility of the model depends not
only on producing a coherent set of responses but also on generating outputs that span
a meaningful range of ideas or examples. This contrasts with traditional LLM evaluation
paradigms, which often optimize for a single correct answer.

The challenge lies in defining what constitutes meaningful diversity. Diversity without
quality is trivial to achieve—random tokens are maximally diverse but utterly useless. What
is needed instead is diversity among outputs that meet a threshold of quality or acceptability.
We refer to this as effective semantic diversity and argue that it is a more accurate measure of
an LLM’s practical utility in open-ended generation tasks.

This distinction is particularly relevant in today’s landscape of post-training LLMs, where
preference-tuned models—trained via methods such as Direct Preference Optimization
(DPO), Proximal Policy Optimization (PPO), and Group Relative Policy Optimization
(GRPO)—are increasingly the standard. These methods have been highly successful at
aligning models with human preferences, yet their impact on output diversity remains

1

Published as a conference paper at COLM 2025

0.00 0.25 0.50 0.75 1.00 1.25
Temperature

0

10

20

30

40

50
Ef

fe
ct

iv
e

Se
m

an
tic

 D
iv

er
sit

y
(O

ur
s)

 V
al

ue

Effective Semantic Diversity
(Ours)

0.00 0.25 0.50 0.75 1.00 1.25
Temperature

0

10

20

30

40

50

60

70

Va
lid

ity
 (Q

ua
lit

y)
 V

al
ue

Validity (Quality)

0.00 0.25 0.50 0.75 1.00 1.25
Temperature

0

10

20

30

40

50

Ne
ur

al
 (C

os
in

e)
 D

iv
er

sit
y

Va
lu

e

Neural (Cosine) Diversity

Comparison of Key Metrics Across Models

Llama 3.1 70B Instruct Llama 3.1 8B Instruct Llama 3.1 8B Base

Figure 1: Diversity and Quality metrics on our open-ended programming dataset when
modulating the Temperature parameter across different models. We use the CODE-
BERTSCORE (Zhou et al., 2023) model for neural cosine diversity.

disputed. The dominant research narrative is that preference tuning harms diversity, and
many open questions persist, including the effect of model size and the ability to generate
unique content.

We introduce a principled framework for measuring high-quality diversity that:

• Requires no human evaluation at inference time
• Accounts for the fundamental quality-diversity interplay
• Enables meaningful comparison across model families and training techniques

In Figure 1 we illustrate our implementation of effective semantic diversity for three LLAMA-
3.1 family models under varying temperature settings. Using neural cosine diversity alone,
the base LLM appears most diverse, despite producing an extremely low proportion of
valid (high-quality) generations. Our effective semantic diversity metric penalizes both
excessively low and excessively high temperatures, as well as models that struggle to
generate coherent content.

With this framework, our experiments reveal insights into preference-tuning and the
diversity-quality trade-off. Using diversity metrics that do not explicitly consider quality,
preference tuning may indeed reduce diversity relative to supervised fine-tuning (SFT).
However, in both code generation and creative writing, we find that preference-tuned
models exhibit greater effective semantic diversity. A deeper analysis in code generation
shows that when restricting to high-quality generations only, preference-tuned models pro-
duce less semantically diverse content within that subset. Nonetheless, preference tuning
increases the proportion of high-quality outputs to such an extent that this gain outweighs
the reduction in diversity per high-quality sample.

In code generation, preference tuning—especially reinforcement learning (RL)—is associated
with reduced lexical and syntactic diversity but no loss in semantic diversity. For open-
ended creative writing, preference tuning is linked to greater diversity in lexical patterns.
Finally, when evaluating parameter efficiency for generating unique programs within a
fixed sampling budget—for example, when creating unique synthetic data—we find that
smaller models, down to around 500 million parameters, are often the most efficient choice.

2 Background and Related Work

LLM Alignment with Preference Tuning. As LMs (Bengio et al., 2000; Radford et al.,
2019) have become more powerful, work has been done to improve their instruction-
following ability and to mitigate the likelihood of generating undesirable content. RLHF
with PPO (Schulman et al., 2017; Ziegler et al., 2019; Ouyang et al., 2022) has emerged as
a highly effective technique for aligning LLMs with human preferences. Subsequently,

2

Published as a conference paper at COLM 2025

numerous alternative methods to PPO have been proposed, such as DPO (Rafailov et al.,
2024), Rejection Sampling (Touvron et al., 2023), and GRPO (Shao et al., 2024). In numerous
works, it has been reported that over-optimizing for the reward model eventually leads to
incoherent or undesirable outputs (Ziegler et al., 2019; Stiennon et al., 2020; Korbak et al.,
2022). It is suggested that an optimization strategy that places all probability on the highest-
reward outcome is optimal for this loss function but will inevitably lead to distribution
collapse (Lanchantin et al., 2025). In preference-tuning LLMs, KL-divergence regularization
has been instrumental in mitigating this effect, as it allows the preference-tuned model to
retain some of the distributional properties of the base LLM (Korbak et al., 2022). Therefore,
in theory, KL-regularized RL should preserve some attributes of diversity present in base
models.

Approaches to Measuring Diversity. Due to the high cost of human evaluation, popular
methods for automatically measuring diversity typically fall into either lexical or neural
approaches. In the earlier days, when LMs often struggled to generate rich content, lexical
metrics were commonly used to assess diversity. These metrics generally involve calculating
summary statistics over n-grams, such as Distinct-N (Li et al., 2016; Du & Black, 2019) and
Self-BLEU (a modified BLEU metric) (Zhu et al., 2018), and remain widely used today (Guo
et al., 2024; Shaib et al., 2024). As early foundation models for language representation, such
as BERT (Devlin et al., 2019), gained popularity and were adopted for modeling sentence
similarity (Zhang et al., 2019; Reimers & Gurevych, 2019) and code similarity (Feng et al.,
2020; Zhou et al., 2023), they were eventually proposed for measuring diversity in natural
language (Lai et al., 2020; Tevet & Berant, 2021; Stasaski & Hearst, 2022). However, they
have not yet been applied to measuring diversity in programming languages.

While lexical and neural diversity metrics have been used to evaluate whether one LLM
is more diverse than another (Kirk et al., 2023; Guo et al., 2024), to our knowledge no
prior work has assessed whether neural diversity metrics truly capture the diversity of
effective semantic content in LLM-generated outputs. Given that LMs range from small
models that often produce incoherent content to large, powerful models with sophisticated
capabilities, varying safety attributes, and distinctive “styles," it remains unclear whether
existing diversity metrics can robustly reflect meaningful semantic content across such
a wide range of distributions. Models used for evaluating diversity, such as Sentence-
BERT (Reimers & Gurevych, 2019), are typically trained and evaluated on human-authored
text; for diversity assessment, however, they are expected to generalize to highly diverse,
potentially off-distribution sets of LLM-generated text. The closest prior attempt to evaluate
lexical and neural diversity metrics is Tevet & Berant (2021), which examined whether neural
diversity metrics can capture variation induced by the sampling temperature parameter
and diversity in human-written content; in the latter case, neural models were found to
underperform human judgment.

Diversity of LLM Content. Given the expense of human evaluation, most insights into
the novelty and diversity of LLM outputs are based on linguistic and neural measures of
diversity. Zhang et al. (2020) introduce the notion of a quality-diversity trade-off in natural
language generation when evaluating sampling algorithms such as nucleus sampling (Holtz-
man et al., 2019) and temperature sampling. McCoy et al. (2023) investigate whether smaller
LMs exhibit linguistic novelty by evaluating combinations of n-grams absent from the
training corpus. With the advent of more chat-based LLMs like CHATGPT (Ouyang et al.,
2022; OpenAI et al., 2023), expectations for these models to serve as creative assistants and
produce diverse responses have risen, but their capabilities have been questioned. For
example, the first release of CHATGPT was reported to be incapable of generating diverse
jokes (Jentzsch & Kersting, 2023). In a more recent study, Kirk et al. (2023) fine-tune 7B
ALPACAFARM (Dubois et al., 2024) models with SFT and PPO for neural text summarization
and find that PPO reduces both lexical and neural diversity in the summaries. Padmakumar
& He (2023) show that human-written essays assisted by an RLHF-tuned model are less
diverse than those assisted by a base model when assessed using neural diversity measures.
Guo et al. (2024) benchmark the lexical, syntactic, and neural diversity of 7B parameter lan-
guage models but do not probe whether preference-tuned models are more or less diverse
than SFT or base alternatives. A separate line of work has examined LLMs from a social
cognition perspective, investigating whether LLMs reflect the opinions and conceptual

3

Published as a conference paper at COLM 2025

associations of macro-level human populations (Santurkar et al., 2023; Murthy et al., 2024).
Recent work has also explored the role of diversity metrics in evaluating and improving
synthetic data quality for LLMs: Yu et al. (2023) investigate LLMs as attributed training
data generators; Divekar & Durrett (2024) propose SYNTHESIZRR, a retrieval-augmented
framework for generating synthetic datasets with greater lexical and semantic diversity;
Chen et al. (2024) study the downstream impact of synthetic data diversity on training
LLMs; and Miranda et al. (2025) introduce a quantitative metric, the diversity coefficient, to
measure variability in natural language datasets. While these works find that LLMs may
not reflect the diversity of entire human populations, it remains unclear how this impacts their
ability to generate effectively diverse content—particularly when faced with competing
constraints of quality and helpfulness.

3 Measuring Effective Semantic Diversity

3.1 Problem Formulation

Let D = {xi}N
i=1 denote a dataset of prompts, where each prompt xi is designed to elicit

a range of possible outputs from a language model. For each prompt xi, we generate K
outputs Pi = {g1

i , g2
i , . . . , gK

i } ∼ f (· | xi), where f denotes the generative distribution of the
language model under evaluation.

To evaluate the overall diversity of a model on the dataset D, we compute the average
diversity score:

AvgDivm =
1
N

N

∑
i=1

Divm(Pi), (1)

where Divm is a diversity metric and m denotes the specific type of metric being used. In
our formulation below, Divm refers to our proposed effective semantic diversity metric.
However, Divm could represent any diversity metric, including lexical metrics like Distinct
n-grams and average cosine distance.

Validity function. To determine diversity at the individual prompt level, we define a
validity function V : G → [0, 1], where G is the space of generations.

Semantic funtion. Crucially, we determine the semantic uniqueness of generations based
on their meaning rather than superficial textual differences. Two outputs may differ signifi-
cantly in their lexical form yet convey identical semantic content—a distinction that purely
lexical or syntactic metrics fail to capture. Our goal is to define a diversity metric over a set
of generations that captures both this semantic distinctiveness and the validity of outputs.

We define a semantic function S : G → S , where S is the semantic space. Two generations
g, g′ ∈ G are said to be semantically equivalent if and only if S(g) = S(g′). The detailed
definition of S on each domain is described in Section 3.2.

We then formalize effective semantic diversity in two complementary ways:

Semantic diversity. We define the effective semantic diversity of a generation set Pi as
the number of semantically unique valid generations, normalized by the total number of
generations in the set:

Divfixed(Pi) =
|Set({S(gk

i) | gk
i ∈ Pi, V(gk

i) = 1})|
K

, (2)

where Set(·) denotes the set of unique elements and | · | denotes cardinality. This measures
the proportion of generations that are both valid/high-quality and semantically unique
within the group of generations.

However, we found that Equation (2) can be confounded by the number of samples under
consideration if analyzing a variable-sized subset of valid-only programs; see Appendix A.2
for more detail. To address these concerns, we adopt the pairwise diversity metric suggested
in Tevet & Berant (2021):

4

Published as a conference paper at COLM 2025

Input Description:
• Multiple datasets.
• Each dataset consists of four real num-

bers: a, b, c, d.
• There are no more than 30 datasets.

Example Input:
35.68 139.77 51.15 359.82
01.37 103.92 41.78 272.25
51.15 359.82 -34.58 301.52

. .
Function Signature:
Write a function f(inputs) that processes the list of tuples where each tuple contains
four real numbers.

from typing import List, Tuple
def f(inputs: List[Tuple[float, float, float, float]]):

'''
inputs: a list of tuples, where each tuple contains four real numbers
'''

Figure 2: An example of an open-ended problem description from our dataset.

Divpair(Pi) =
1

(K
2)

∑
gj

i ,g
k
i ∈Pi ,

1≤j<k≤K

dsem(gj
i , gk

i), (3)

where the effective semantic distance function dsem : G × G → {0, 1} is defined as:

dsem(gj
i , gk

i) =


0 if V(gj

i) = V(gk
i) = 0,

0 if V(gj
i) = V(gk

i) = 1 and S(gj
i) = S(gk

i),
1 otherwise.

(4)

This pairwise approach normalizes by the total number of possible pairs, making it robust
to variations in the number of valid generations across different prompts. However, in
domains such as natural language where strict notions of semantics do not apply, we define
a soft approach to measuring dsem as:

dsem(gj
i , gk

i) = V(gj
i)× V(gk

i)× (1 − Sim(gj
i , gk

i)) (5)

Here Sim : G × G → [0, 1] is a similarity function that does not explicitly consider quality,
for example, assigned by a human or AI judge.

3.2 Dataset, Validity, and Semantic Equivalence Checking for Programs

We chose to instantiate methods of validity and semantic equivalence checking using both
programs and natural language. We found it advantageous to use programs to avoid the
scenario of using LLMs to evaluate LLMs for diversity, especially if we seek to evaluate
increasingly powerful LLMs with weaker LLMs. Furthermore, there has been relatively
little empirical work that studies the robustness of using LLMs to judge the diversity of
LLM-generated content. Lastly, our implementation of effective semantic diversity for pro-
grams avoided the costs of utilizing commercial LLMs as a judge. Research in programming
language semantics has a rich history in the formalization of program correctness, termina-
tion, and semantic equivalence (Hoare, 1969; Plotkin, 1981; Floyd, 1993; Pierce, 2002). Using
program execution on test cases, we can confirm two programs are semantically distinct if
they compute different values over the same suite of input test cases1. Additionally, we can

1N.B. Test cases may fail to test edge cases where two programs may differ. However, instead of
over-reporting correctness, this phenomenon would only penalize diversity when two programs are
equivalent on most test cases and hypothetically differ on some edge-case, which we find tolerable.

5

Published as a conference paper at COLM 2025

impose constraints of validity or quality that are easy to check: such as the program always
returning a value without syntax or other runtime errors.

The key question, however, is to define open-ended programming tasks. Generating pro-
grams as an open-ended task is not necessarily radical: in chat applications, users may desire
to brainstorm programs or code projects. Moreover, generating synthetic programming
tasks is already an important part of improving foundation LLMs for code (Dubey et al.,
2024; Shypula et al., 2024).

We constructed our dataset by adapting competitive programming-style problems into
open-ended abstracted programming tasks. In Figure 2, we show an example problem
description from our dataset. For each problem description in our dataset, we provide an
“Input Description” in natural language specifying the input format, an “Example Input”
demonstrating potential inputs the function would handle, and a “Function Signature”
providing a concrete specification of the function name and typing hints for the inputs. We
manually reviewed, and if necessary, edited all final descriptions, removing any potential
references to the original programming task, standardizing the function name to f (...), and
using highly generic argument names. We used competitive programming problems from
CODENET (Puri et al., 2021) and accompanying test cases from ALPHACODE (Li et al., 2022)
as a starting point for our dataset. In total we have 108 unique programming tasks/prompts
that were adapted from CODENET into this open-ended format. Using each of these, we
can sample an arbitrary number of generations to calculate Divm(Pi). Further details about
the test set, its creation, and our execution environment are provided in Appendix A.3.

3.3 Dataset for Natural Language

For natural language, we created our dataset by taking a subsample of 100 creative writing
prompts from the WRITINGPROMPTS dataset (Fan et al., 2018). We took a random subset
of the test set, prioritized [WP] tagged prompts, and avoided prompts that could generate
sensitive or inappropriate stories.

4 Experimental Setup

Diversity Metrics. We now formalize the diversity metric Divm(Pi) with particular focus
on our proposed notion of effective semantic diversity. As introduced in Section 3.1, this
metric relies on the choice of valid function V and semantic function S.

Let T = {t1, . . . , tL} be a fixed set of test inputs. For any generated program g, let g(tl) de-
notes its execution on test case tl ∈ T , and ol denotes the corresponding output. Specifically,
for code we define the validity function V : G → {0, 1} as follows:

V(g) =
{

1 if g(tl) executes without error and produces non-null output ∀l ∈ {1, . . . , L},
0 otherwise.

In other words, a program g is considered valid if it runs without raising any errors (e.g.,
SyntaxError, ValueError) and produces non-null outputs for all test cases in T .

In the domain of natural language, we prompt a LLM judge with a set of criteria to judge
the quality of the creative generation and then normalize the score to fall between [0, 1].

Next, we define the semantic function S : G → OL, where O denotes the output space. The
function maps a program g to its output trace on the test set:

S(g) = (g(t1), g(t2), . . . , g(tL)) .

Two programs g and g′ are considered semantically equivalent if and only if their outputs
are identical across all test cases:

S(g) = S(g′) ⇐⇒ g(tl) = g′(tl) ∀l ∈ {1, . . . , L}.

For natural language, for Sim, the semantic similarity function that does not explicitly
consider quality, we prompt an LLM judge to evaluate the conceptual and thematic overlap

6

Published as a conference paper at COLM 2025

Model Family Base SFT DPO RL

LLaMA 2 7B Llama-2-7b-hf tulu-2-7b tulu-2-dpo-7b Llama-2-7b-chat-hf
(PPO)

LLaMA 2 70B Llama-2-70b-hf tulu-2-70b tulu-2-dpo-70b Llama-2-70b-chat-hf
(PPO)

LLaMA 3.1 8B Llama-3.1-8B Tulu-3-8B-SFT Tulu-3-8B-DPO
Llama-3.1-8B-Instruct

Tulu-3-8B (PPO)
Tulu-3.1-8B (GRPO)

LLaMA 3.1 70B Llama-3.1-70B Tulu-3-70B-SFT Tulu-3-70B-DPO
Llama-3.1-70B-Instruct Tulu-3-70B (PPO)

Table 1: Model Post-Training Categorization. We organize all models under consideration
by their base model and post-training method. All models to the right of “Base" are post-
trained with the specified method from the base model.

between two generations and normalize the score. For all LLM judge tasks we utilize
gpt-4.1-mini-2025-04-14. Due to the scale of our experiments, we subsampled 32 pairs
with replacement from all possible pairs for each set of generations.

For the remaining diversity metrics, we adopt Equation (3) and utilize the following dis-
tance functions in place of dsem(g, g′). For Lexical diversity, we use Expectation-Adjusted
Distinct n-grams (EAD) with n-grams of length n=4. For syntactic diversity in code, we
adapt the Distinct-N metric to the Abstract Syntax Tree (AST) of each generated program:
to isolate the syntactic structure of a program (e.g., for-loop instead of recursion) from
superficial choices (e.g., variable names), we canonicalize all program identifiers. For two
programs, we calculate the ratio of the number of unique subtrees of height H across both
programs to the total number of subtrees of height H in both programs, where H=4. In
order to measure neural diversity for code, we adapt existing methods of neural diver-
sity metrics (Tevet & Berant, 2021) to our domain using CODEBERTSCORE (Zhou et al.,
2023). We use CODEBERTSCORE because it closely resembles the models used in the NLP
literature to evaluate diversity (Tevet & Berant, 2021) and has been evaluated as effective
in the evaluation of neural codes. We also attempted to use CODELLAMA-7B-INSTRUCT
embeddings and ICESCORE (Zhuo, 2024) to evaluate diversity and found CODELLAMA
similar to CODEBERTSCORE and ICESCORE to correlate strongly with temperature, such
as the lexical diversity metric. See the the additional results in Appendix A.1. For natural
language, we report the average score from the LLM judge D before normalizing it by the
generation’s quality.

Models and Sampling. The main empirical questions we seek to answer in our work
surround the effects of different post-training algorithms and model size on diversity (SFT,
DPO, PPO, GRPO, etc). In order to isolate the effects of different post-training strategies, we
utilize the TULU-2 (Ivison et al., 2023) and LLAMA-2 (Touvron et al., 2023) as well as the
TULU-3 (Lambert et al., 2024) and LLAMA3.1 (Dubey et al., 2024) families of models. TULU-2
consists of post-trained LLAMA-2 models, and TULU-3 consists of post-trained LLAMA3.1
models. In Table 1, we provide a categorization of the post-training methods. Using these
we can compare a SFT-tuned model to a DPO-tuned model from the same family. For
each problem description xi in our dataset, we generate K = 32 programs, yielding 3,456
total programs sampled for each experiment. In cases where models are post-trained with
numerous algorithms, we often categorize the model with the most aggressive algorithm
used, e.g. we would categorize a model adapted with DPO and PPO as PPO.

In addition to our questions regarding the effects of post-training and model size, we also
investigate which sizes and classes of models are most efficient on a per-parameter basis in
generating unique examples. This is an attempt to understand which types of models could
be optimal for large-scale synthetic data generation. We relax the strict necessity to pair
models by the same base model, and use models from QWEN2.5-CODER (Hui et al., 2024),
QWEN2.5 (Yang et al., 2024), and as well as DEEPSEEK-R1-DISTILL (Guo et al., 2025) family.
Our goal was to test a broader set of sizes as well as models tuned specifically for reasoning
tasks (i.e. DEEPSEEK-R1).

7

Published as a conference paper at COLM 2025

Validity Semantic Syntactic Lexical Neural

Comparison W (p) ES (d) W (p) ES (d) W (p) ES (d) W (p) ES (d) W (p) ES (d)

BASE VS. INST (ALL) <0.001 1.33 <0.001 1.34 <0.001 -1.10 0.028 -0.47 <0.001 -1.53
BASE VS. INST-SFT <0.001 1.37 <0.001 1.36 0.266 -0.34 0.339 0.21 0.339 -0.42
BASE VS. INST-DPO 0.006 1.11 0.005 1.10 0.014 -0.84 <0.001 -1.68 <0.001 -2.37
BASE VS. INST-RL <0.001 1.67 <0.001 1.54 0.012 -1.20 0.035 -0.66 <0.001 -2.12
BASE VS. INST-PREF <0.001 1.34 <0.001 1.29 <0.001 -1.45 0.001 -0.77 <0.001 -2.29

SFT VS. DPO 0.151 0.51 0.266 0.39 <0.001 -0.90 0.003 -0.63 <0.001 -1.52
SFT VS. RL 0.004 3.19 0.004 2.49 0.004 -2.43 0.004 -1.20 0.004 -2.29
SFT VS. PREF <0.001 0.97 0.002 0.77 <0.001 -1.30 <0.001 -0.83 <0.001 -1.86
DPO VS. RL 1.0 0.10 0.301 -0.14 0.039 -0.60 0.004 -0.78 1.0 -0.01

SM. VS. LG. 0.030 0.20 0.017 0.26 0.170 0.15 0.485 0.09 0.269 0.12
SM. VS. LG. BASE 0.063 0.57 0.063 0.56 0.063 0.74 0.063 0.69 0.031 0.80
SM. VS. LG. INST 0.111 0.20 0.070 0.27 0.683 0.06 0.539 -0.11 0.759 -0.05
SM. VS. LG. PREF 0.330 0.13 0.277 0.20 0.454 0.10 0.330 -0.19 0.389 0.14

Table 2: Model Comparison Results. Results from Wilcoxon’s Signed-Rank Test p-values:
W (p), and Effect Size measured by Cohen’s D: ES (d). Bold p-values are below 0.05, and
bold d-values have an absolute value greater than 0.8 (large effect size). For effect sizes,
positive values indicate the second model type in the comparison has higher values. "Inst"
= Instruction-tuned (Post-Trained), "Pref" = Preference-tuned and combines RL and DPO
models. The columns correspond to metrics in Section 4 (e.g. “Semantic" corresponds to
effective semantic diversity).

Prompt selection. The choice of prompt can affect the nature of generations. Because of
this, we created three separate prompt templates: a zero-shot prompt, a two-shot prompt,
and a two-shot prompt with chain-of-thought reasoning. This design allows us to probe
generation behavior across a variety of settings. The few-shot examples included in the
prompts were simple, manually written examples shared across all problems in the dataset.
We provide the examples in Appendix A.6.

Statistical tests. We aim to determine if a factor such as post-training algorithm or model
size increases or decreases diversity compared to another. To rigorously summarize these
results, we report the two-tailed Wilcoxon Signed-Rank Test (to measure significance) and
Cohen’s D (to measure effect size) for AvgDivm over the entire dataset for each statistic.
A benefit of the non-parametric Wilcoxon statistical test is that we can make rigorous
conclusions even if only limited samples are available. We always pair models from the
same family and vary whether the model is larger fine-tuned with a different strategy while
fixing all other factors unless otherwise noted. For example, when isolating model size, we
would compare LLAMA3.1-8B-INSTRUCT with Zero-Shot prompting to LLAMA3.1-70B-
INSTRUCT with Zero-Shot prompting, and so on. Because of the differences in post-training
pipelines and to avoid confounding factors, we avoid pairing TULU post-trained models
with LLAMA preference-tuned models.

5 Experimental Results

5.1 Effect of Post-Training and Preference-Tuning on Diversity

Higher effecitve semantic diversity introduced by preference tuning. We summarize
results across all diversity metrics when comparing base models and their instruction-
tuned counterparts, as well as when comparing different post-training techniques, for
programming tasks in Table 2 and natural language tasks in Table 3. Each row compares two
fine-tuning approaches; for each metric, the columns report the statistical significance W
(p) and effect size ES (d). A statistically significant positive effect indicates that the second
post-training strategy outperforms the first for that metric.

8

Published as a conference paper at COLM 2025

Validity Semantic Lexical Neural

Comparison W (p) ES (d) W (p) ES (d) W (p) ES (d) W (p) ES (d)

BASE VS. INST (ALL) <0.001 2.02 <0.001 1.50 <0.001 1.65 <0.001 -3.60
BASE VS. INST-SFT <0.001 2.19 0.001 1.66 <0.001 2.53 <0.001 -2.61
BASE VS. INST-DPO 0.001 1.51 0.014 0.89 <0.001 2.27 <0.001 -4.27
BASE VS. INST-RL <0.001 4.88 <0.001 3.91 0.022 0.73 <0.001 -5.68
BASE VS. INST-PREF <0.001 2.18 <0.001 1.53 <0.001 1.34 <0.001 -4.58

SFT VS. DPO <0.001 1.52 0.001 0.96 <0.001 1.12 <0.001 -1.61
SFT VS. RL 0.004 5.79 0.008 2.76 0.004 3.60 0.004 -4.67
SFT VS. PREF <0.001 2.36 <0.001 1.54 <0.001 1.48 <0.001 -2.39
DPO VS. RL 0.055 0.51 0.025 0.59 0.82 0.28 0.02 -0.40

SM. VS. LG. <0.001 0.41 <0.001 0.53 0.04 -0.21 0.009 -0.20
SM. VS. LG. BASE 0.031 3.04 0.031 3.35 0.844 0.05 0.062 -1.21
SM. VS. LG. INST 0.001 0.40 0.006 0.42 0.003 -0.32 0.055 -0.26

Table 3: Creative Writing (Natural Language) Model Comparison Results. Bold p-values
are below 0.05, and bold d-values have an absolute value greater than 0.8 (large effect size)

Semantic Syntactic Lexical Neural

Comparison W (p) ES (d) W (p) ES (d) W (p) ES (d) W (p) ES (d)

SFT VS. DPO 0.052 -0.71 0.791 -0.35 1.000 -0.12 0.016 -0.89
SFT VS. RL 0.004 -3.12 0.426 -0.28 0.820 0.08 0.004 -2.25
SFT VS. PREF <0.001 -1.31 0.473 -0.32 0.946 -0.05 <0.001 -1.39
DPO VS. RL 0.301 -0.43 0.012 -1.16 0.008 -1.24 0.570 -0.05

Table 4: Validity-Controlled Model Comparison Results for Code. Bold p-values are below
0.05, and bold d-values have an absolute value greater than 0.8 (large effect size)

We observe a clear trend: all post-training techniques increase both effective semantic di-
versity and validity relative to base models. RL methods, in particular, yield substantial
improvements over SFT in effective semantic diversity. We also find an interesting pattern:
preference tuning tends to substantially reduce syntactic and lexical diversity in program-
ming tasks, yet increases these metrics in natural language creative writing. These results
suggest that in domains requiring high-quality and diverse outputs, preference-tuned mod-
els can outperform both SFT and base models. Furthermore, in creative writing—where
diverse word choice and stylistic variety are often desirable—preference-tuned models
may hold an advantage in stylistic capabilities. Additional experiments are provided in
Appendix A.7 and Appendix A.8.

Semantic diversity driven by higher quality. In Table 4, we conduct statistical tests similar
to those in Table 2 for code, but restrict the analysis to only valid generations. We find that
within this subset, preference-tuned models generally have more semantic duplicates than
their SFT-tuned counterparts. This suggests that while preference tuning, particularly RL,
tends to increase semantic duplication within high-quality generations, the overall increase
in the number of high-quality generations more than compensates for this effect.

5.2 Effects of Model Size

Larger models increase semantic diversity. In Table 2 and Table 3, we compare small and
large models within the same family. In both code and natural language, larger models
generally exhibit higher semantic diversity. In code, this increase does not come at the
expense of lexical or syntactic diversity; however, in natural language, we observe a small
but significant decrease in lexical diversity. We attribute the improvements in quality and
effective semantic diversity to the well-documented strengths of larger models in helpfulness
and quality.

9

Published as a conference paper at COLM 2025

0.5B 1.5B 3B 8B 14B 32B 70B
Model Size (Billions of Parameters) - Log Scale

10 1

100

101

Di
ve

rs
ity

 E
ffi

cie
nc

y
- L

og
 S

ca
le

Qwen Coder 1.5B

Qwen 1.5B

DeepSeek R1 1.5B

Tulu 3 70B (PPO)
Llama 3.1 70B Instruct

Tulu 3 70B SFT

Llama 3.1 70B
DeepSeek R1 70B

Qwen Coder 14B

DeepSeek R1 14B

Qwen 14B

DeepSeek R1 32B

Qwen 32B

Qwen Coder 32B

Qwen Coder 0.5B

Qwen 0.5B

Qwen 3B
Qwen Coder 3B

Tulu 3.1 8B (GRPO)
Tulu 3 8B DPO

Tulu 3 8B SFT

DeepSeek R1 8B
Llama 3.1 8B Qwen 72B

Model Diversity Efficiency vs. Model Size

Alignment Method
BASE
SFT
DPO
RL
REASONING

Figure 3: Model efficiency: We plot the parameter efficiency of a model in generating
unique examples vs. model size (log-scale) on our programming dataset.

Smaller models may be more compute-efficient for generating unique examples. While
larger models tend to produce more diverse outputs per generation, we also examine which
models are most efficient given a fixed computational budget. Consider a researcher aiming
to generate a large number of unique synthetic programs: is it better to take fewer samples
from a very large LLM, many samples from a smaller LM, or find a “sweet spot" in between?
In Figure 3, we explore this question by plotting the parameter efficiency for diversity
against model size, where efficiency is measured as the effective semantic diversity (per
Equation (2)) normalized by the number of model parameters. For a fixed sampling budget
of 32 generations per prompt in the programming dataset, smaller models are consistently
more efficient on a per-parameter basis. We believe that further work should be done to
investigate whether this pattern continues to hold as the number of samples increases, to
ensure semantically unique programs do not saturate faster for certain model classes than
others.

6 Discussion and Conclusion

We propose a novel strategy for studying effective semantic diversity by leveraging code
execution to jointly measure and balance quality and diversity. In the natural language
domain, we use LLM judges as a proxy for human evaluation. Using these methodologies,
we conduct an extensive empirical analysis of LLM diversity and find counterintuitive
insights into how factors such as post-training and model size meaningfully influence
diversity. We encourage further work to further broaden the range of empirical questions
explored in this area.

Acknowledgements

We would like to thank Christopher Watson, Cassidy Laidlaw, and other members of Berkely
AI Research for feedback on our draft. This material is partly based on research sponsored in
part by the Air Force Research Laboratory (agreement number FA8750-19-2-0200 and award
W911NF-20-1-0080), an Amazon Research Award Fall 2023, and an Amazon/ASSET Gift
for Research in Trustworthy AI. The U.S. Govt. is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors and should not be inter-
preted as necessarily representing the official policies or endorsements, either expressed or
implied, of the Air Force Research Laboratory or the U.S. Government.

10

Published as a conference paper at COLM 2025

References
Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic language

model. Advances in neural information processing systems, 13, 2000.

Hao Chen, Abdul Waheed, Xiang Li, Yidong Wang, Jindong Wang, Bhiksha Raj, and Marah I.
Abdin. On the diversity of synthetic data and its impact on training large language models,
2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019
conference of the North American chapter of the association for computational linguistics: human
language technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Abhishek Divekar and Greg Durrett. Synthesizrr: Generating diverse datasets with retrieval
augmentation, 2024.

Wenchao Du and Alan W Black. Boosting dialog response generation. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, 2019.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3
herd of models. arXiv preprint arXiv:2407.21783, 2024.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba,
Carlos Guestrin, Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation
framework for methods that learn from human feedback. Advances in Neural Information
Processing Systems, 36, 2024.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. arXiv
preprint arXiv:1805.04833, 2018.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Lin-
jun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for
programming and natural languages. arXiv preprint arXiv:2002.08155, 2020.

Robert W Floyd. Assigning meanings to programs. In Program Verification: Fundamental
Issues in Computer Science, pp. 65–81. Springer, 1993.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Yanzhu Guo, Guokan Shang, and Chloé Clavel. Benchmarking linguistic diversity of large
language models. arXiv preprint arXiv:2412.10271, 2024.

Charles Antony Richard Hoare. An axiomatic basis for computer programming. Communi-
cations of the ACM, 12(10):576–580, 1969.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural
text degeneration. arXiv preprint arXiv:1904.09751, 2019.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint
arXiv:2409.12186, 2024.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin, Nathan Lambert, Matthew Peters,
Pradeep Dasigi, Joel Jang, David Wadden, Noah A Smith, Iz Beltagy, et al. Camels in a
changing climate: Enhancing lm adaptation with tulu 2. arXiv preprint arXiv:2311.10702,
2023.

Sophie Jentzsch and Kristian Kersting. Chatgpt is fun, but it is not funny! humor is still
challenging large language models. In The 61st Annual Meeting Of The Association For
Computational Linguistics, 2023.

11

Published as a conference paper at COLM 2025

Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro,
Edward Grefenstette, and Roberta Raileanu. Understanding the effects of rlhf on llm
generalisation and diversity. arXiv preprint arXiv:2310.06452, 2023.

Tomasz Korbak, Ethan Perez, and Christopher L Buckley. Rl with kl penalties is better
viewed as bayesian inference. arXiv preprint arXiv:2205.11275, 2022.

Yi-An Lai, Xuan Zhu, Yi Zhang, and Mona Diab. Diversity, density, and homogeneity:
Quantitative characteristic metrics for text collections. arXiv preprint arXiv:2003.08529,
2020.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze
Brahman, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. T\" ulu 3:
Pushing frontiers in open language model post-training. arXiv preprint arXiv:2411.15124,
2024.

Jack Lanchantin, Angelica Chen, Shehzaad Dhuliawala, Ping Yu, Jason Weston, Sain-
bayar Sukhbaatar, and Ilia Kulikov. Diverse preference optimization. arXiv preprint
arXiv:2501.18101, 2025.

Mina Lee, Percy Liang, and Qian Yang. Coauthor: Designing a human-ai collaborative
writing dataset for exploring language model capabilities. In CHI Conference on Human
Factors in Computing Systems, CHI ’22, pp. 1–19. ACM, April 2022. doi: 10.1145/3491102.
3502030. URL http://dx.doi.org/10.1145/3491102.3502030.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. A diversity-promoting
objective function for neural conversation models. In Kevin Knight, Ani Nenkova, and
Owen Rambow (eds.), Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pp. 110–
119, San Diego, California, June 2016. Association for Computational Linguistics. doi:
10.18653/v1/N16-1014. URL https://aclanthology.org/N16-1014.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code
generation with alphacode. Science, 378(6624):1092–1097, 2022.

R Thomas McCoy, Paul Smolensky, Tal Linzen, Jianfeng Gao, and Asli Celikyilmaz. How
much do language models copy from their training data? evaluating linguistic novelty in
text generation using raven. Transactions of the Association for Computational Linguistics, 11:
652–670, 2023.

Brando Miranda, Alycia Lee, Sudharsan Sundar, Allison Casasola, Rylan Schaeffer, Elyas
Obbad, and Sanmi Koyejo. Beyond scale: The diversity coefficient as a data quality metric
for variability in natural language data, 2025. URL https://arxiv.org/abs/2306.13840.

Sonia K Murthy, Tomer Ullman, and Jennifer Hu. One fish, two fish, but not the whole sea:
Alignment reduces language models’ conceptual diversity. arXiv preprint arXiv:2411.04427,
2024.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat,
et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language
models to follow instructions with human feedback. Advances in neural information
processing systems, 35:27730–27744, 2022.

Vishakh Padmakumar and He He. Does writing with language models reduce content
diversity? arXiv preprint arXiv:2309.05196, 2023.

Vishakh Padmakumar and He He. Does writing with language models reduce content
diversity?, 2024. URL https://arxiv.org/abs/2309.05196.

12

http://dx.doi.org/10.1145/3491102.3502030
https://aclanthology.org/N16-1014
https://arxiv.org/abs/2306.13840
https://arxiv.org/abs/2309.05196

Published as a conference paper at COLM 2025

Benjamin C Pierce. Types and programming languages. MIT press, 2002.

Gordon D Plotkin. A structural approach to operational semantics. 1981.

Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladimir
Zolotov, Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, et al. Codenet: A
large-scale ai for code dataset for learning a diversity of coding tasks. arXiv preprint
arXiv:2105.12655, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward
model. Advances in Neural Information Processing Systems, 36, 2024.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese
bert-networks. arXiv preprint arXiv:1908.10084, 2019.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation
models for code. arXiv preprint arXiv:2308.12950, 2023.

Shibani Santurkar, Esin Durmus, Faisal Ladhak, Cinoo Lee, Percy Liang, and Tatsunori
Hashimoto. Whose opinions do language models reflect? In International Conference on
Machine Learning, pp. 29971–30004. PMLR, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Chantal Shaib, Joe Barrow, Jiuding Sun, Alexa F Siu, Byron C Wallace, and Ani Nenkova.
Standardizing the measurement of text diversity: A tool and a comparative analysis of
scores. arXiv preprint arXiv:2403.00553, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Alexander G Shypula, Aman Madaan, Yimeng Zeng, Uri Alon, Jacob R. Gardner, Yiming
Yang, Milad Hashemi, Graham Neubig, Parthasarathy Ranganathan, Osbert Bastani,
and Amir Yazdanbakhsh. Learning performance-improving code edits. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=ix7rLVHXyY.

Katherine Stasaski and Marti A Hearst. Semantic diversity in dialogue with natural language
inference. arXiv preprint arXiv:2205.01497, 2022.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human
feedback. Advances in Neural Information Processing Systems, 33:3008–3021, 2020.

Guy Tevet and Jonathan Berant. Evaluating the evaluation of diversity in natural language
generation. In Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty (eds.), Proceedings of the
16th Conference of the European Chapter of the Association for Computational Linguistics: Main
Volume, pp. 326–346, Online, April 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.eacl-main.25. URL https://aclanthology.org/2021.eacl-main.25.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2:
Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

13

https://openreview.net/forum?id=ix7rLVHXyY
https://openreview.net/forum?id=ix7rLVHXyY
https://aclanthology.org/2021.eacl-main.25

Published as a conference paper at COLM 2025

Yue Yu, Yuchen Zhuang, Jieyu Zhang, Yu Meng, Alexander Ratner, Ranjay Krishna, Jiaming
Shen, and Chao Zhang. Large language model as attributed training data generator: A
tale of diversity and bias. In Thirty-Seventh Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2023.

Hugh Zhang, Daniel Duckworth, Daphne Ippolito, and Arvind Neelakantan. Trading off
diversity and quality in natural language generation. arXiv preprint arXiv:2004.10450,
2020.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore:
Evaluating text generation with bert. arXiv preprint arXiv:1904.09675, 2019.

Shuyan Zhou, Uri Alon, Sumit Agarwal, and Graham Neubig. Codebertscore: Evaluating
code generation with pretrained models of code. arXiv preprint arXiv:2302.05527, 2023.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan Zhang, Jun Wang, and Yong Yu.
Texygen: A benchmarking platform for text generation models. In The 41st international
ACM SIGIR conference on research & development in information retrieval, pp. 1097–1100,
2018.

Terry Yue Zhuo. Ice-score: Instructing large language models to evaluate code. In Findings
of the Association for Computational Linguistics: EACL 2024, pp. 2232–2242, 2024.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human prefer-
ences. arXiv preprint arXiv:1909.08593, 2019.

14

Published as a conference paper at COLM 2025

A Appendix

A.1 Additional Neural Diversity Metrics

In addition to using CODEBERTSCORE, we also demonstrate neural diversity with respect to
temperature sweeps similar to those in Figure 1 using CODELLAMA-7B-INSTRUCT (Roziere
et al., 2023) embeddings. We also use an LLM-as-a-judge to calculate pairwise similarity
using ICESCORE (Zhuo, 2024) using gpt-4o-mini as the LLM-judge. We find that ICESCORE
correlates heavily with temperature and does not seem to reflect quality. Similarly with
CODELLAMA embeddings, the LLAMA8B-BASE model’s generations are consistently consid-
ered more diverse than the INSTRUCT variants despite the base model generally producing
far more low-quality and invalid outputs.

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Temperature

0.0

0.2

0.4

0.6

0.8

1.0

IC
E

Sc
or

e
Va

lu
e

ICE Score

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Temperature

0.0

0.2

0.4

0.6

0.8

1.0

Em
be

dd
in

g
(C

os
in

e)
 D

iv
er

sit
y

Va
lu

e

Embedding (Cosine) Diversity

Comparison of Neural Metrics Across Selected Models

Llama 3.1 70B Instruct Llama 3.1 8B Instruct Llama 3.1 8B Base

Figure 4: Neural diversity metrics when modulating the Temperature parameter across
different models. We report neural diversity metrics using the ICESCORE (Zhuo, 2024) and
cosine diversity of CODELLAMA-7B-INSTRUCT embeddings.

A.2 Sample Size Confounding Diversity and Analysis of Pairwise Diversity Metric

In practice, we found that varying the size of the subset under consideration could dramati-
cally affect the calculation of Equation (2): for the same model, as samples tended to get
larger, this metric would decrease. When we use this metric for most of our experiments, it
is sufficient, because we keep the number of samples constant. However, when we analyze
the subset of valid-only programs, the size of this population may vary from model to model
depending on the average quality of generations. Thus it is necessary to use Equation (3).

Analysis of Pairwise Diversity Metric. We provide an analysis of Equation (3). For a
given large language model f , we assume that only a finite number K of distinct semantic
meanings can be generated by f . We first establish that the original semantic diversity
metric converges to zero as the number of sampled responses tends to infinity. Specifically,
the original semantic diversity metric is defined as

N
n

,

where N is the number of distinct semantic clusters, and n is the number of sampled
responses. Since only a finite number of semantic meanings can be generated by f , the
number of semantic clusters N is bounded above, implying the existence of a constant
C1 > 0 such that N ≥ C1. Therefore, we have

N
n

≥ C1

n
for all sufficiently large n.

15

Published as a conference paper at COLM 2025

Now, observe that

lim
n→∞

C1

n
= 0,

so applying the squeeze theorem, we conclude that

lim
n→∞

N
n

= 0.

Next, we show that the new metric defined in Equation (3), converges to a constant as
n → ∞. As before, we assume that there are K distinct semantic meanings in total, and
let πk denote the proportion of responses corresponding to the k-th semantic meaning.
This implies that the number of times each semantic meaning is sampled is πkn, where
∑K

k=1 πk = 1. Thus, we have

∑
pi ,pj∈P,i>j

mdist(pi, pj) = ∑
k ̸=h

(πkn) · (πhn) = ∑
k ̸=h

(πkπh)n2,

where the summation is taken over distinct semantic meanings k and h, and mdist(pi, pj)
measures the semantic distance between generations. Moreover, the number of possible
response pairs is (

|P|
2

)
=

n(n − 1)
2

.

Thus, the new metric becomes

1

(|P|2)
∑

pi ,pj∈P,i>j
mdist(pi, pj) =

2 ∑k ̸=h(πkπh)n2

n(n − 1)
= 2 ∑

k ̸=h
(πkπh) +

2 ∑k ̸=h(πkπh)

n − 1
.

Finally, we have

lim
n→∞

{
2 ∑

k ̸=h
(πkπh) +

2 ∑k ̸=h(πkπh)

n − 1

}
= 2 ∑

k ̸=h
πkπh.

That is, as n → ∞, the value of the new metric converges to the constant value:

2 ∑
k ̸=h

πkπh.

A.3 Dataset Creation and Additional Details

We created our dataset through a multi-step process starting from the CODENET dataset
and testcases from ALPHACODE. The process involved problem standardization, language
model assistance for scaling, and manual validation.

Initial Processing. We began by randomly selecting a single problem description from
IBM CodeNet. We used this to as a seed to construct examples for a 1-shot prompt for a
Language Model to assist us. Specifically we manually wrote one example of the following
outputs that should be generated for each individual problem description from CODENET

1. A canonicalized problem description
2. A wrapper function that would take any generation for that function, parse inputs

for the function, and instrument the generation with the entire suite of test cases
3. A property-based testing function for generating additional test cases when needed

Dataset Expansion. We then wrote prompt templates for both gpt-3.5-turbo-0125 and
gpt-4o-2024-11-20 (depending on the iteration). These templates were designed to take our
1-shot prompt, and then prompt the LLM to repeat the same for the new example we select
from CODENET. We randomly sampled over 300 programs from CodeNet and attempted to
generate the three components for each original problem description from CODENET. We

16

Published as a conference paper at COLM 2025

then saved these into individual files, and also wrote them into an HTML document for
manual review.

Manual Review and Selection. For the over 300 problem ids that were processed, we then
manually inspected the output components checking for the following criteria:

1. The language model correctly formatted inputs into our desired format
2. The problem appeared novel relative to the existing problems we had already added

to our dataset.

We tracked the original CodeNet problem IDs and validation results in a spreadsheet. These
were the 108 examples then used for our dataset.

Manual Editing of Problem Descriptions. After selecting our problems, we then manually
went through each of the three components, and manually edited them to be correct: a large
amount required revisions, as the LLM assistant made mistakes. We saved our manually
edited components to be further processed.

Test Case Integration. For each of the individual problem descriptions, we then merged
test cases from CODENET and ALPHACODE. We required at least 10 test cases per problem.
For the three problems that lacked sufficient test cases, we used our property-based testing
scripts to generate 100 additional cases, such that we would have sufficient coverage. We
then saved the canonicalized problem descriptions, the function to extract and parse input
test cases, and the input test cases into a dataset.

Final Checks. During experimental validation, we found and fixed multiple faulty problem
description argument parsing functions. We then saved these corrected version as our final
dataset.

Additional Dataset Details. In our experiments, we instruct LLMs to return their outputs.
We maintain a wrapper script that executes the function f (...) for each input, obtains the
returned result, and then serializes the object as well as its type (recursively) into a string.
We then utilize these strings as the basis for our semantic comparisons. For each generation,
we execute all test cases and capture the resulting outputs.

Because LLMs often generate natural language to accompany generated programs, extract-
ing programs from the generations is a non-trivial task, especially for pre-trained models.
We developed an extraction utility that extracts not only the target function f (...), but also
any helper functions and imports that may be relevant. To safely execute programs at
scale, we perform all execution inside an isolated DOCKER container to prevent adverse
consequences of blindly executing LLM outputs.

A.4 Raw Experimental Results for All Experiments

In Table 5 and Table 6, we include all our raw results used in our analysis.

A.5 Additional Information on the Syntactic Diversity Metric

We extract and process all Abstract Syntax Trees (ASTs) using Python’s AST library with
Python version 3.12.0, and report metrics for subtrees of height 4. Because syntactically
incorrect programs do not parse, we can only calculate this metric over the subset of
syntactically correct generations.

A.6 Prompts Used in Experiments

In Figure 7, Figure 8, and Figure 9, we show the prompting templates we use across all code
experiments.

17

Published as a conference paper at COLM 2025

Model Prompt Validity Semantic Lexical Neural

Llama-3.1-70B-Instruct Zero-Shot 69.42 11.32 97.72 29.12
Llama-3.1-70B-Instruct Two-Shot 36.28 6.02 98.56 49.98
Llama-3.1-70B-Instruct Two-Shot CoT 33.15 5.24 98.83 52.69

Llama-3.1-Tulu-3-70B Zero-Shot 91.95 15.95 98.92 21.20
Llama-3.1-Tulu-3-70B Two-Shot 90.31 18.63 98.90 26.17
Llama-3.1-Tulu-3-70B Two-Shot CoT 89.71 19.63 99.04 30.73

Llama-3.1-Tulu-3-70B-DPO Zero-Shot 90.18 17.87 99.05 24.92
Llama-3.1-Tulu-3-70B-DPO Two-Shot 90.10 17.65 99.02 24.86
Llama-3.1-Tulu-3-70B-DPO Two-Shot CoT 89.39 20.11 98.95 32.27

Llama-3.1-Tulu-3-70B-SFT Zero-Shot 68.33 22.83 98.42 56.75
Llama-3.1-Tulu-3-70B-SFT Two-Shot 58.09 18.22 98.71 57.09
Llama-3.1-Tulu-3-70B-SFT Two-Shot CoT 59.98 17.17 98.90 51.50

Llama-3.1-70B Zero-Shot 56.12 17.97 96.51 59.86
Llama-3.1-70B Two-Shot 40.72 10.07 98.13 67.81
Llama-3.1-70B Two-Shot CoT 52.35 17.76 98.07 69.17

Llama-3.1-8B-Instruct Zero-Shot 37.28 5.99 98.13 47.89
Llama-3.1-8B-Instruct Two-Shot 24.11 2.81 99.24 51.81
Llama-3.1-8B-Instruct Two-Shot CoT 24.31 3.05 99.14 53.22

Llama-3.1-Tulu-3.1-8B Zero-Shot 90.55 17.83 98.89 24.17
Llama-3.1-Tulu-3.1-8B Two-Shot 87.77 21.40 98.71 34.59
Llama-3.1-Tulu-3.1-8B Two-Shot CoT 92.37 18.56 98.87 21.84

Llama-3.1-Tulu-3-8B Zero-Shot 90.72 18.96 99.05 24.83
Llama-3.1-Tulu-3-8B Two-Shot 85.47 19.08 98.87 33.14
Llama-3.1-Tulu-3-8B Two-Shot CoT 91.11 18.49 98.97 26.63

Llama-3.1-Tulu-3-8B-DPO Zero-Shot 88.84 18.13 98.84 30.67
Llama-3.1-Tulu-3-8B-DPO Two-Shot 86.59 19.84 98.82 34.71
Llama-3.1-Tulu-3-8B-DPO Two-Shot CoT 89.83 19.51 98.94 29.30

Llama-3.1-Tulu-3-8B-SFT Zero-Shot 58.60 19.76 98.47 60.15
Llama-3.1-Tulu-3-8B-SFT Two-Shot 55.41 18.75 98.70 58.21
Llama-3.1-Tulu-3-8B-SFT Two-Shot CoT 57.70 19.55 98.81 57.43

Llama-3.1-8B Zero-Shot 32.20 9.85 96.39 69.74
Llama-3.1-8B Two-Shot 28.69 6.31 98.68 71.12
Llama-3.1-8B Two-Shot CoT 37.89 11.80 98.57 74.33

Llama-2-70b-chat-hf Zero-Shot 30.37 8.05 97.76 64.03
Llama-2-70b-chat-hf Two-Shot 23.02 3.86 99.20 63.88
Llama-2-70b-chat-hf Two-Shot CoT 24.64 4.34 99.24 65.06

tulu-2-70b Zero-Shot 75.60 17.52 98.40 51.31
tulu-2-70b Two-Shot 71.17 14.54 98.74 52.00
tulu-2-70b Two-Shot CoT 73.37 17.88 98.69 54.56

tulu-2-dpo-70b Zero-Shot 78.64 15.52 98.73 44.07
tulu-2-dpo-70b Two-Shot 75.10 16.63 98.86 47.46
tulu-2-dpo-70b Two-Shot CoT 78.60 17.68 98.84 49.00

Llama-2-70b-hf Zero-Shot 22.87 7.11 96.85 75.34
Llama-2-70b-hf Two-Shot 21.30 4.93 98.71 75.63
Llama-2-70b-hf Two-Shot CoT 29.24 8.90 98.59 77.89

Llama-2-7b-chat-hf Zero-Shot 22.39 4.98 98.34 67.20
Llama-2-7b-chat-hf Two-Shot 16.54 2.44 99.48 67.81
Llama-2-7b-chat-hf Two-Shot CoT 17.28 2.77 99.45 69.08

tulu-2-7b Zero-Shot 53.99 12.95 98.07 66.84
tulu-2-7b Two-Shot 49.64 11.01 98.56 67.74
tulu-2-7b Two-Shot CoT 51.51 12.86 98.47 69.61

tulu-2-dpo-7b Zero-Shot 64.67 13.41 98.49 58.75
tulu-2-dpo-7b Two-Shot 59.52 12.74 98.74 60.59
tulu-2-dpo-7b Two-Shot CoT 62.36 14.19 98.67 62.58

Llama-2-7b-hf Zero-Shot 19.71 4.83 97.60 77.03
Llama-2-7b-hf Two-Shot 17.70 3.44 99.08 77.63
Llama-2-7b-hf Two-Shot CoT 23.52 5.98 98.93 79.62

Table 5: Raw Results for All Natural Language Experiments

18

Published as a conference paper at COLM 2025

Model Prompt Validity Semantic Lexical Syntactic Neural

Llama-3.1-70B-Instruct Zero-Shot 37.36 32.96 67.19 71.98 5.60
Llama-3.1-70B-Instruct Two-Shot 11.89 11.40 66.47 65.19 4.51
Llama-3.1-70B-Instruct Two-Shot CoT 14.29 13.48 66.77 67.39 4.97

Llama-3.1-Tulu-3-70B Zero-Shot 39.55 32.41 73.91 78.09 8.88
Llama-3.1-Tulu-3-70B Two-Shot 41.49 33.22 72.76 75.33 4.43
Llama-3.1-Tulu-3-70B Two-Shot CoT 40.88 32.85 73.26 76.69 8.31

Llama-3.1-Tulu-3-70B-DPO Zero-Shot 38.57 32.93 75.37 79.81 9.54
Llama-3.1-Tulu-3-70B-DPO Two-Shot 38.27 32.83 74.45 78.27 6.78
Llama-3.1-Tulu-3-70B-DPO Two-Shot CoT 39.18 33.81 74.89 78.93 9.07

Llama-3.1-Tulu-3-70B-SFT Zero-Shot 37.36 32.96 67.19 71.98 5.60
Llama-3.1-Tulu-3-70B-SFT Two-Shot 35.48 29.37 68.76 71.38 5.23
Llama-3.1-Tulu-3-70B-SFT Two-Shot CoT 36.42 31.12 68.48 72.15 5.40

Llama-3.1-70B Zero-Shot 20.18 24.02 54.05 55.47 3.51
Llama-3.1-70B Two-Shot 13.28 14.70 57.87 57.00 3.46
Llama-3.1-70B Two-Shot CoT 15.17 18.00 57.25 58.00 3.64

Llama-3.1-8B-Instruct Zero-Shot 15.47 18.98 56.40 60.12 3.41
Llama-3.1-8B-Instruct Two-Shot 8.54 10.37 56.09 57.54 3.22
Llama-3.1-8B-Instruct Two-Shot CoT 9.94 12.70 55.63 58.68 3.35

Llama-3.1-Tulu-3.1-8B Zero-Shot 37.67 32.41 73.32 77.66 8.91
Llama-3.1-Tulu-3.1-8B Two-Shot 37.06 32.67 72.45 76.10 6.83
Llama-3.1-Tulu-3.1-8B Two-Shot CoT 38.57 33.70 73.19 77.53 8.73

Llama-3.1-Tulu-3-8B Zero-Shot 38.27 32.93 74.52 78.64 9.22
Llama-3.1-Tulu-3-8B Two-Shot 36.73 31.85 73.19 76.69 6.20
Llama-3.1-Tulu-3-8B Two-Shot CoT 37.97 32.85 73.91 77.83 8.66

Llama-3.1-Tulu-3-8B-DPO Zero-Shot 37.06 32.41 74.06 78.28 8.91
Llama-3.1-Tulu-3-8B-DPO Two-Shot 36.42 31.70 73.19 76.69 6.83
Llama-3.1-Tulu-3-8B-DPO Two-Shot CoT 37.67 32.56 73.75 77.53 8.44

Llama-3.1-Tulu-3-8B-SFT Zero-Shot 35.18 29.37 68.17 71.38 5.23
Llama-3.1-Tulu-3-8B-SFT Two-Shot 34.85 29.67 68.01 71.18 5.40
Llama-3.1-Tulu-3-8B-SFT Two-Shot CoT 35.48 30.11 68.32 71.78 5.57

Llama-3.1-8B Zero-Shot 11.89 15.99 47.23 48.41 2.78
Llama-3.1-8B Two-Shot 9.64 12.41 51.05 51.11 2.73
Llama-3.1-8B Two-Shot CoT 11.28 14.70 50.43 51.51 2.91

Llama-2-70b-chat-hf Zero-Shot 11.28 15.84 52.30 55.87 3.30
Llama-2-70b-chat-hf Two-Shot 6.43 8.52 51.82 53.57 3.11
Llama-2-70b-chat-hf Two-Shot CoT 7.82 10.67 52.14 54.36 3.25

tulu-2-70b Zero-Shot 31.86 29.52 64.74 68.35 5.06
tulu-2-70b Two-Shot 29.27 26.22 64.58 66.62 4.57
tulu-2-70b Two-Shot CoT 30.57 28.52 64.90 67.79 4.95

tulu-2-dpo-70b Zero-Shot 33.26 30.41 67.03 70.28 5.40
tulu-2-dpo-70b Two-Shot 31.25 27.70 66.71 68.35 4.79
tulu-2-dpo-70b Two-Shot CoT 32.56 29.37 66.87 69.52 5.23

Llama-2-70b-hf Zero-Shot 8.24 12.11 44.15 45.33 2.59
Llama-2-70b-hf Two-Shot 6.43 9.96 46.58 47.02 2.54
Llama-2-70b-hf Two-Shot CoT 8.24 11.26 46.27 47.42 2.68

Llama-2-7b-chat-hf Zero-Shot 8.85 12.56 49.21 52.31 3.03
Llama-2-7b-chat-hf Two-Shot 5.82 7.78 48.58 50.18 2.84
Llama-2-7b-chat-hf Two-Shot CoT 7.22 9.67 48.89 51.11 2.97

tulu-2-7b Zero-Shot 24.39 24.46 58.25 61.63 4.13
tulu-2-7b Two-Shot 22.56 21.70 58.09 59.89 3.68
tulu-2-7b Two-Shot CoT 23.78 23.41 58.41 60.89 3.98

tulu-2-dpo-7b Zero-Shot 26.83 26.07 61.08 64.36 4.46
tulu-2-dpo-7b Two-Shot 24.39 23.41 60.61 62.43 3.98
tulu-2-dpo-7b Two-Shot CoT 25.91 25.19 60.92 63.56 4.30

Llama-2-7b-hf Zero-Shot 6.73 10.22 41.72 42.70 2.38
Llama-2-7b-hf Two-Shot 5.52 8.37 43.84 44.33 2.32
Llama-2-7b-hf Two-Shot CoT 6.73 9.52 43.68 44.53 2.46

Table 6: Raw Results for General Code Experiments

A.7 Constrained Generation

We implement a validity oracle that only accepts lists of integers with a maximum length of
1000. The constraints are illustrated in the following code snippet, where output denotes the
LLM generation:

19

Published as a conference paper at COLM 2025

Lla
ma-2

-7b
-hf

tul
u-2

-7b

tul
u-2

-dp
o-7

b

Lla
ma-2

-7b
-ch

at-
hf

Lla
ma-2

-70
b-h

f

tul
u-2

-70
b

tul
u-2

-dp
o-7

0b

Lla
ma-2

-70
b-c

ha
t-h

f

Lla
ma-3

.1-
8B

Lla
ma-3

.1-
Tul

u-3
-8B

-SF
T

Lla
ma-3

.1-
8B

-In
str

uct

Lla
ma-3

.1-
Tul

u-3
-8B

-DPO

Lla
ma-3

.1-
Tul

u-3
-8B

Lla
ma-3

.1-
Tul

u-3
.1-

8B

Lla
ma-3

.1-
70

B

Lla
ma-3

.1-
Tul

u-3
-70

B-SF
T

Lla
ma-3

.1-
70

B-In
str

uct

Lla
ma-3

.1-
Tul

u-3
-70

B-DPO

Lla
ma-3

.1-
Tul

u-3
-70

B
0

10

20

30

40
Ef

fe
ct

iv
e

Se
m

an
tic

 D
iv

er
sit

y

4.72

13.63
10.47

18.75

7.03

25.38

15.42

21.47

11.05

28.30

24.07

41.44
39.18

40.60

17.94

32.52

37.56
39.41

37.27

LLaMA 2 7B LLaMA 2 70B LLaMA 3.1 8B LLaMA 3.1 70B

Effective Semantic Diversity (Max over all prompts)
Training Category

Base
SFT
DPO
RL

Figure 5: Effective semantic diveresity scores for all 19 models evaluated in our experi-
ments, grouped by model family. Each bar is color-coded according to the post-training
method, as categorized in Table 1

Figure 6: An Example of Canonicalizing an Abstract Syntax subtree used in the Distinct-
CAST metric. The expression under consideration is for a simple lambda expression that
negates a given variable. The first two ASTs are not equal because of the usage of the
variables X and Y, respectively, even though they are alpha-equivalent expressions. The
AST on the far right canonicalizes identifier names such as arguments and variables so that
both expressions would be equivalent.

assert isinstance(output, list)
assert all(isinstance(x, int) for x in output)
assert len(output) < 1000

Furthermore, we modify all prompts to instruct LLM to comply with these constraints. We
show results in Table 7. In general, our findings are consistent with our previous results.
The most notable difference is an increase in both statistical significance and effect size
for semantic diversity when comparing DPO-tuned models to RL-tuned models for code
generation. While this difference is of interest, it does not affect our main conclusions.

A.8 Natural Language Experiments

In this section, we extend our experiments to natural language tasks, including creative
writing, argumentative writing, and brainstorming. Specifically, we obtained 10 prompts
each for argumentative writing and creative writing from the CoAuthor dataset (Lee et al.,

20

Published as a conference paper at COLM 2025

{problem_description}

Now please implement the function f; do not return anything, the function f
should print the result of the operation.↪→

It should terminate within 30 seconds.

Figure 7: Zero-Shot Prompt: Our template for our zero-shot prompt, where the problem
description would be input inside the curly braces.

Comparison Validity (Quality) Semantic Diversity

W (p) ES (d) Winner W (p) ES (d) Winner

Base vs. Inst. < 0.001 1.23 Inst. < 0.001 1.27 Inst.
Small vs. Lg. 0.001 0.35 Lg. 0.001 0.35 Lg.
SFT vs. Pref. < 0.001 1.12 Pref. < 0.001 1.04 Pref.
SFT vs. DPO 0.064 0.69 DPO 0.064 0.64 DPO
SFT vs. RL 0.004 3.28 RL 0.004 3.14 RL
DPO vs. RL 0.237 -0.19 DPO 0.039 -0.44 DPO

Comparison Syntactic Diversity Lexical Diversity Raw Neural Diversity

W (p) ES (d) Winner W (p) ES (d) Winner W (p) ES (d) Winner

Base vs. Inst. < 0.001 -0.88 Base 0.701 -0.16 Base 0.010 -1.61 Base
Small vs. Lg. 0.248 0.14 Lg. 0.645 0.02 Lg. 0.036 0.16 Lg.
SFT vs. Pref. < 0.001 -0.95 SFT < 0.001 -0.60 SFT < 0.001 -2.24 SFT
SFT vs. DPO < 0.001 -0.64 SFT 0.007 -0.46 SFT < 0.001 -1.77 SFT
SFT vs. RL 0.004 -2.18 SFT 0.008 -1.04 SFT 0.004 -2.98 SFT
DPO vs. RL 0.426 -0.15 DPO 0.301 -0.37 DPO 1.000 0.05 RL

Table 7: Constrained Generation Model Comparison Results.

2022), which has been previously used in the literature (Padmakumar & He, 2024). We also
manually curated a dataset of 10 brainstorming prompts designed to reasonably reflect
creative assistance tasks for an LLM-based assistant.

We employed GPT-4.1-mini as a judge for both the quality and diversity of generations,
selecting it to balance robustness with our API budget. Separate evaluation prompts were
constructed for each of the three tasks to specify the criteria for quality and diversity
assessment. For example, the criteria for creative writing tasks were as follows:

Creative Quality Criteria Consider the following rubric when evaluating:

1. Overall, holistic, and cohesive readability of the story (not merely a compilation of
elements).

2. Relevance of the story to the provided prompt.

3. Use of key narrative elements—vocabulary choice, imagery, setting, themes, dia-
logue, characterisation, and point of view.

4. Structural elements and presentation demonstrating control over spelling, grammar,
punctuation, paragraphing, and formatting.

5. Overall plot logic, including hook, conflict, initial crisis, rising and falling action,
and denouement/resolution.

6. Creativity, innovation, and originality—credibility, introduction of new knowledge,
and avoidance of clichés and derivative tropes.

Creative Diversity Criteria Consider the following criteria when evaluating similarity:

21

Published as a conference paper at COLM 2025

Input Description:
1. An integer \(N \) (1 \(N \) 10000), representing some quantity or size.
Example Input:
```
1000
```
Function Signature:
Write a function `f(N)` that takes in the input.
```python
def f(N: int):

'''
N: an integer
'''

Now please implement the function f; do not return anything, the function f
should print the result of the operation.↪→

It should terminate within 30 seconds.
def f(N: int):

print(n**2)
### Input Description:
1. A floating point number \( N \) (1 \( N \) 10000), representing some

quantity or size.↪→
### Example Input:
```
143.23
```
### Function Signature:
Write a function `f(N)` that takes in the input.
```python
def f(N: float):

'''
N: a float
'''

Now please implement the function f; do not return anything, the function f
should print the result of the operation.↪→

It should terminate within 30 seconds.
def f(N: float):

i = 0
while N > 1:

N = N / 2
i += 1

print(i)
{problem_description}
Now please implement the function f; do not return anything, the function f

should print the result of the operation.↪→
It should terminate within 30 seconds.

Figure 8: Two-Shot Prompt: Our template for our two-shot prompt, where the problem
description would be input near the end inside the curly braces.

1. Semantic Overlap: Do the responses share similar underlying themes, ideas, narra-
tive elements, or emotional content?

2. Thematic Consistency: Do both responses explore similar themes or motifs?

Our prompts instructed the model to assign a score from 1–10 for each element. Thus, the
first prompt had a maximum possible score of 60, and the second had a maximum possible
score of 20. We used OpenAI’s grammar-constrained decoding to ensure integer outputs,
combined with a chain-of-thought reasoning component to improve robustness. All scores
were normalized by the maximum possible score.

22

Published as a conference paper at COLM 2025

For diversity evaluation, we sub-sampled 32 pairs from all possible pairs with replacement
and asked the LLM judge to score the similarity between the two generations. The diversity
score was computed as:

Diversity Score = 1 − Sim(gj
i , gk

i).

Effective Semantic Diversity Because we could only calculate a pairwise diversity metric
for natural language, we applied Equation (3) from the paper to compute effective semantic
diversity across sub-sampled pairs. For completeness, we used two methods to measure
pairwise effective semantic diversity that we considered reasonable and consistent with our
intended intuition.

The pairwise diversity metric from Equation (3) is defined as:

ESDpair(Pi) =
1

(K
2)

∑
j<k

dsem(gj
i , gk

i),

where dsem : G × G → {0, 1} is given by:

dsem(gj
i , gk

i) =


0 if either generation is invalid,
0 if both are valid and semantically identical,
1 if both are valid and semantically distinct.

For natural language, we adapt this definition using Hard Thresholding:

dsem(gj
i , gk

i) =

{
1 if LLMdiv(gj

i , gk
i) > 0.5 and LLMqual(gj

i) > 0.5,
0 otherwise.

We also adapt it using Soft Weighting:

dsem(gj
i , gk

i) = LLMdiv(gj
i , gk

i)× LLMqual(gj
i)× LLMqual(gk

i).

We present results for the creative writing task in Table 8, the argumentative writing task in
Table 9, and the brainstorming task in Table 10. Overall, our findings for natural language
tasks largely mirror those observed for code. Across all experiments, we consistently observe
that post-training is associated with higher effective semantic diversity relative to base
models. Furthermore, RL-tuned models generally exhibit higher effective semantic diversity
than SFT-tuned models, often more markedly than DPO-tuned models. In argumentative
and creative writing, larger models tend to achieve higher effective semantic diversity
than smaller models, although this trend is less consistent in the creative brainstorming
task. Importantly, in these natural language settings, we find little to no evidence that post-
training strategies induce lexical mode-collapse. Moreover, when quality is not taken into
account, Raw Neural Diversity (as assessed by the LLM-judge) tends to be higher for less
aggressive post-training regimes (e.g., base models outperform instruction-tuned models,
and SFT models outperform RL-tuned models). However, once quality is incorporated
into the evaluation, this effect can be fully reversed, consistent with our findings for code.
Consequently, more aggressive post-training regimes, such as PPO, are ultimately associated
with higher effective semantic diversity.

These experiments also underscore potential advantages of using code to evaluate effective
semantic diversity. For code, our validity criteria (quality threshold) required both syntactic
correctness and successful execution of all test cases without runtime errors; in contrast,
for natural language, LLM-judge scores are less interpretable and may be susceptible
to reward hacking. Additionally, code execution for diversity and quality assessment
completes relatively quickly and incurs minimal cost, whereas LLM-judge evaluation can
be computationally and financially expensive, necessitating careful selection of sample sizes

23

Published as a conference paper at COLM 2025

to control API usage. Finally, in an environment where increasingly powerful models are
being developed, using code to evaluate the diversity–quality trade-off may offer distinct
advantages over relying on weaker models to evaluate potentially stronger models.

Comparison Validity (Quality) Soft Effective Semantic Diversity Hard Effective Semantic Diversity

W (p) ES (d) Winner W (p) ES (d) Winner W (p) ES (d) Winner

Base vs. Inst. < 0.001 1.69 Inst. < 0.001 0.80 Inst. < 0.001 1.67 Inst.
Small vs. Lg. < 0.001 0.37 Lg. 0.004 0.47 Lg. 0.020 0.41 Lg.
SFT vs. Pref. < 0.001 2.13 Pref. 0.010 0.62 Pref. 0.050 0.58 Pref.
SFT vs. DPO < 0.001 1.33 DPO 0.092 0.42 DPO 0.176 0.39 DPO
SFT vs. RL 0.004 5.80 RL 0.074 0.99 RL 0.203 0.83 RL
DPO vs. RL 0.008 0.40 RL 0.129 -0.45 DPO 0.203 -0.29 DPO

Comparison Lexical Diversity Raw Neural Diversity

W (p) ES (d) Winner W (p) ES (d) Winner

Base vs. Inst. < 0.001 1.30 Inst. < 0.001 -3.21 Base
Small vs. Lg. 0.202 -0.13 Lg. 0.010 -0.20 Small
SFT vs. Pref. < 0.001 0.95 Pref. < 0.001 -2.38 SFT
SFT vs. DPO < 0.001 0.90 DPO < 0.001 -1.51 SFT
SFT vs. RL 0.004 1.70 RL 0.004 -5.57 SFT
DPO vs. RL 0.570 -0.15 DPO 0.098 -0.37 DPO

Table 8: Creative Writing Model Comparison Results.

Comparison Validity (Quality) Soft Effective Semantic Diversity Hard Effective Semantic Diversity

W (p) ES (d) Winner W (p) ES (d) Winner W (p) ES (d) Winner

Base vs. Inst. < 0.001 1.93 Inst. < 0.001 0.86 Inst. < 0.001 1.69 Inst.
Small vs. Lg. 0.248 0.12 Lg. 0.026 0.54 Lg. 0.044 0.37 Lg.
SFT vs. Pref. < 0.001 1.55 Pref. 0.033 0.49 Pref. 0.032 0.41 Pref.
SFT vs. DPO < 0.001 1.07 DPO 0.213 0.26 DPO 0.266 0.22 DPO
SFT vs. RL 0.008 2.40 RL 0.129 1.07 RL 0.129 1.14 RL
DPO vs. RL 0.020 0.22 RL 0.263 0.10 RL 0.301 0.12 RL

Comparison Lexical Diversity Raw Neural Diversity

W (p) ES (d) Winner W (p) ES (d) Winner

Base vs. Inst. 0.033 0.16 Inst. < 0.001 -3.07 Base
Small vs. Lg. 0.010 -0.33 Small 0.594 -0.00 Small
SFT vs. Pref. 0.919 -0.21 SFT < 0.001 -1.90 SFT
SFT vs. DPO 0.970 -0.25 SFT < 0.001 -1.43 SFT
SFT vs. RL 0.910 -0.14 SFT 0.004 -3.11 SFT
DPO vs. RL 0.426 0.21 RL 0.359 -0.20 DPO

Table 9: Argumentative Writing Model Comparison Results.

24

Published as a conference paper at COLM 2025

Comparison Validity (Quality) Soft Effective Semantic Diversity Hard Effective Semantic Diversity

W (p) ES (d) Winner W (p) ES (d) Winner W (p) ES (d) Winner

Base vs. Inst. < 0.001 1.27 Inst. < 0.001 1.05 Inst. 0.002 0.86 Inst.
Small vs. Lg. 0.859 -0.32 Small 0.645 -0.34 Small 0.546 -0.23 Small
SFT vs. Pref. 0.013 0.37 Pref. 0.137 0.15 Pref. 0.919 -0.02 SFT
SFT vs. DPO 0.339 0.14 DPO 0.970 0.01 DPO 0.151 -0.10 SFT
SFT vs. RL 0.020 0.72 RL 0.039 0.34 RL 0.426 0.09 RL
DPO vs. RL 0.055 0.24 RL 0.164 0.13 RL 0.203 0.12 RL

Comparison Lexical Diversity Raw Neural Diversity

W (p) ES (d) Winner W (p) ES (d) Winner

Base vs. Inst. < 0.001 1.20 Inst. < 0.001 -3.16 Base
Small vs. Lg. 0.036 -0.58 Small < 0.001 -0.48 Small
SFT vs. Pref. 0.759 -0.13 SFT < 0.001 -1.64 SFT
SFT vs. DPO 0.176 -0.31 SFT < 0.001 -1.32 SFT
SFT vs. RL 0.301 0.16 RL 0.008 -2.19 SFT
DPO vs. RL 0.027 0.45 RL 0.734 0.36 RL

Table 10: Brainstorming / Creative Assistance Model Comparison Results.

25

Published as a conference paper at COLM 2025

Input Description:
1. An integer \(N \) (1 \(N \) 10000), representing some quantity or size.
Example Input:
```
1000
```
Function Signature:
Write a function `f(N)` that takes in the input.
```python
def f(N: int):

'''
N: an integer
'''

Now please implement the function f; do not return anything, the function f
should print the result of the operation.↪→

It should terminate within 30 seconds. First describe the function you would
write, then implement it.↪→

The following function will print out the square of the input number. We will
take the square using the ** operator in Python within the print
statement.

↪→
↪→
def f(N: int):

print(n**2)
### Input Description:
1. A floating point number \( N \) (1 \( N \) 10000), representing some

quantity or size.↪→
### Example Input:
```
143.23
```
### Function Signature:
Write a function `f(N)` that takes in the input.
```python
def f(N: float):

'''
N: a float
'''

Now please implement the function f; do not return anything, the function f
should print the result of the operation.↪→

It should terminate within 30 seconds. First describe the function you would
write, then implement it.↪→

The following function will calculate the number of times the input number can
be divided by 2 before it becomes less than 1. We will increment a counter
variable i each time we divide the number by 2 inside a while loop.

↪→
↪→
def f(N: float):

i = 0
while N > 1:

N = N / 2
i += 1

print(i)
{problem_description}
Now please implement the function f; do not return anything, the function f

should print the result of the operation.↪→
It should terminate within 30 seconds. First describe the function you would

write, then implement it.↪→

Figure 9: Two-Shot Chain-of-Thought Prompt: Our template for our two-shot Chain-of-
Thought prompt, where the problem description would be input near the end inside the
curly braces.

26

	Introduction
	Background and Related Work
	Measuring Effective Semantic Diversity
	Problem Formulation
	Dataset, Validity, and Semantic Equivalence Checking for Programs
	Dataset for Natural Language

	Experimental Setup
	Experimental Results
	Effect of Post-Training and Preference-Tuning on Diversity
	Effects of Model Size

	Discussion and Conclusion
	Appendix
	Additional Neural Diversity Metrics
	Sample Size Confounding Diversity and Analysis of Pairwise Diversity Metric
	Dataset Creation and Additional Details
	Raw Experimental Results for All Experiments
	Additional Information on the Syntactic Diversity Metric
	Prompts Used in Experiments
	Constrained Generation
	Natural Language Experiments

