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Abstract

The evaluation of large language models (LLMs) has predominantly relied on
static datasets, which offer limited scalability and fail to capture the evolving
reasoning capabilities of recent models. To overcome these limitations, we propose
an agent-centric benchmarking paradigm that moves beyond static datasets by
introducing a dynamic protocol in which autonomous agents iteratively gener-
ate, validate, and solve problems. Within this protocol, a teacher agent generates
candidate problems, an orchestrator agent rigorously verifies their validity and
guards against adversarial attacks, and a student agent attempts to solve the vali-
dated problems. An invalid problem is revised by the teacher agent until it passes
validation. If the student correctly solves the problem, the orchestrator prompts
the teacher to generate more challenging variants. Consequently, the benchmark
scales in difficulty automatically as more capable agents are substituted into any
role, enabling progressive evaluation of large language models without manually
curated datasets. Adopting text anomaly detection as our primary evaluation for-
mat, which demands cross-sentence logical inference and resists pattern-matching
shortcuts, we demonstrate that this protocol systematically exposes corner-case
reasoning errors that conventional benchmarks fail to reveal. We further advo-
cate evaluating systems along several complementary axes including cross-model
pairwise performance and progress between the initial and orchestrator-finalized
problems. By shifting the focus from fixed datasets to dynamic protocols, our ap-
proach offers a sustainable direction for evaluating ever-evolving language models
and introduces a research agenda centered on the co-evolution of agent-centric
benchmarks. We release our benchmark protocol, including code and data, at
https://huggingface.co/datasets/LGAI-DILab/ATAD.

1 Introduction

Static benchmarks, such as MMLU [1]], GSMS8K [2]] and Big-Bench [3], once served as reliable
indicators of language model progress. However, frontier large language models (LLMs) now
approach—or even surpass—human-level accuracy on many of these tasks [4, |5, 16]]. Because these
benchmark suites are finite, publicly accessible, and often included in pretraining corpora, models
may inadvertently memorize substantial portions of the test data [7]. This can lead to inflated
leaderboard results that do not reflect genuine improvements in reasoning ability. Unfortunately, it
has become increasingly difficult to draw meaningful distinctions from these overused datasets. First,
data contamination is now common: large-scale data collection often includes benchmark questions
in pretraining datasets, and efforts to remove them afterward are usually incomplete [8]. Second,
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diagnostic accuracy. Healthcare providers now use Al models to optimi diagnostic accuracy. Healthcare providers now use Al models to optimize
treatment plans. Global food prices are rising due to supply problems. treatment plans. New wearable devices monitor patient vitals in real time.

Figure 1: Comparison of text anomaly samples. Left: Existing benchmarks include obvious
anomalies (e.g., complete off-topic from sports news to economy news) that are clear but too trivial.
Right: ATAD examples introduce subtle shifts within context (e.g., benefits to ethics in healthcare
Al), preserving clarity while presenting reasoning-intensive challenges. Our collaborative agents
resolve the clarity-difficulty trade-off through iterative task refinement.

because static benchmarks contain a limited number of items, model developers may—sometimes
without realizing it—tune their systems to match the details of these benchmarks. This creates
feedback loops that improve scores without real gains in general reasoning ability [9]. Third, once a
benchmark is considered “solved", the research community must quickly create a new one. This leads
to a cycle of rapid creation and decline, which uses up valuable time and provides only short-term
insight into model performance [[LO]. These limitations highlight the inherent shortcomings of static
benchmarks in evaluating real reasoning capabilities.

To overcome these shortcomings, dynamic benchmarks for LLMs are essential as they continuously
evolve, mitigating data contamination and preventing models from overfitting to finite test sets. In
particular, text anomaly detection serves as a powerful task to reveal subtle reasoning flaws, providing
clearer insight into the true capabilities and limitations of LLMs [11]. However, constructing
high-quality text anomaly detection problems remains challenging: increasing the difficulty often
sacrifices clarity, while ensuring clarity typically results in overly simple tasks. Figure [T]illustrates
this trade-off and motivates our protocol’s design. We introduce the Agent-centric Text Anomaly
Detection (ATAD), a benchmark protocol that replaces the static-dataset paradigm with a three-agent
system. In this protocol, as illustrated in Figure[2] a teacher agent generates candidate problems, an
orchestrator agent validates them and filters out defective items, and a student agent attempts to solve
the qualified problems. As a problem format, reasoning-centric anomaly detection tasks are well
suited for evaluating LLMs: they require cross-sentence logical inference, resist pattern-matching
shortcuts and training data leakage, and support objective, fine-grained scoring. Asking a model to
identify and explain the single sentence that disrupts a passage’s coherence offers a precise and robust
measure of reasoning ability—one that is less prone to exploitation than many existing benchmarks.
By shifting the focus from fixed datasets to dynamic protocols, we offer a sustainable direction for
evaluating ever-evolving language models and invite the community to explore a research agenda in
which models and the benchmarks that probe them co-evolve. We release an open-source reference
implementation with empirical results showing that ATAD surfaces reasoning weaknesses invisible
to static benchmarks. A comprehensive discussion of related work on dynamic benchmarking and
text anomaly detection is provided in Appendix.

2 ATAD: Benchmark Protocol Design and Operation

We introduce a novel agent-centric dynamic benchmarking protocol, Agent-Centric Text Anomaly
Detection (ATAD), illustrated in Figure 2] ATAD is designed to construct an adaptive benchmark for
text anomaly detection by leveraging a teacher-student competitive loop and an orchestrator-regulated
validation mechanism. Unlike static datasets, our protocol dynamically evolves problem difficulty
based on student model performance while ensuring clarity and fairness through rigorous validation.
This design enables the benchmark to scale with the capabilities of emerging language models,
supporting sustainable and progressively challenging evaluation over time.

2.1 Agent Roles

Teacher Agent: Generates problems and increases their difficulty when the Student solves them
correctly, forming a competitive loop that adapts to the Student’s capabilities.

Orchestrator Agent: Validates the generated problem to ensure it is well-formed, unambiguous,
aligned with the expected task type, and free from adversarial design. It also checks whether the
problem is logically coherent and appropriately matches the intended difficulty level.

Student Agent: Attempts to solve the validated problem. If it succeeds, the problem is made harder;
if it fails, the problem is accepted into the benchmark.
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Figure 2: Illustration of the overall ATAD protocol. Three agents iteratively interact to generate
progressively challenging benchmarks designed to uncover subtle reasoning weaknesses in LLMs.

The naming of Teacher and Student refers to agent roles in the protocol and is unrelated to model
training paradigms such as knowledge distillation. In our framework, the competitive interaction
between the Teacher and Student agents is leveraged to drive difficulty escalation in benchmark
construction. This dynamic, however, can risk generating ambiguous or adversarial problems in the
pursuit of harder samples. To mitigate this, the Orchestrator agent plays a crucial role in ensuring
quality and fairness at each iteration. This validation process is particularly important for tasks
like text anomaly detection, where subtle shifts in coherence, semantics, or phrasing can easily
compromise problem clarity.

2.2 Protocol Phases

Our proposed benchmark construction protocol operates through a multi-agent system involving a
Teacher, an Orchestrator, and a Student agent. These agents interact through two core phases: the
Initialization Phase and the Adaptive Difficulty Scaling Phase. Each phase features automatic iteration
control mediated by the Orchestrator. A visual summary of the protocol workflow is provided in
Figure[2] with steps annotated from a to g.

2.2.1 Initialization Phase (Base Problem Generation)

The protocol begins with the Teacher agent generating a base-level problem for a designated text
anomaly detection task (e.g., semantic deviation, sentence order inconsistency), corresponding to the
label a in Figure [2] These base problems are intended to be of low difficulty and serve as the starting
point for the benchmark construction.

Each generated problem is submitted to the Orchestrator for a multi-criteria validation process. The
Orchestrator evaluates the sample for well-formedness, clarity, logical coherence, task type adherence,
and fairness, while guarding against adversarial design or unanswerable ambiguity.

If the problem is invalid, the Orchestrator returns detailed feedback to the Teacher, prompting
regeneration. This loop is governed by the Orchestrator’s validation decisions and continues until a
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valid problem is produced or a maximum number of attempts (max_init_loops) is reached. Once
the problem passes validation, it is stored as a valid base problem and passed on to the Adaptive
Difficulty Scaling Phase.

2.2.2 Adaptive Difficulty Scaling Phase

This phase begins with the Student’s first attempt at the validated base problem and corresponds to
the b through f labels in Figure[2] The Student attempts to solve the base problem (label b). If the
Student fails, the problem is finalized as a benchmark item (label d), as it exposes a limitation in the
Student’s current reasoning capacity.

If the Student succeeds, the Orchestrator prompts the Teacher to generate a more challenging variant
of the problem (label ¢). The Teacher, informed by the Student’s prior success, creates a harder
version aimed at pushing the Student’s capabilities further. This new problem undergoes the same
validation process by the Orchestrator to ensure that difficulty has increased meaningfully without
compromising task clarity or fairness (label e).

Once validated, the harder problem replaces the previous one and is presented to the Student for
another attempt (label f). This cycle—solving, regenerating, validating—continues iteratively until
the Student fails or the iteration cap (max_student_loops) is reached. If the Teacher’s harder
problem is rejected by the Orchestrator, it may be prompted to slightly reduce the difficulty and
regenerate, preserving the same task structure while avoiding ambiguity or excessive complexity.
Although this does not constitute a formal decrease in the difficulty level, it allows for iterative
refinement within the same hardness tier. If multiple regeneration attempts fail to produce a valid
harder problem, the process terminates with the last previously validated problem—typically the one
that the Student successfully solved—being finalized as the benchmark item.

The most difficult validated problem that causes the Student to fail is adopted as the finalized
benchmark item. This structure allows the benchmark to automatically calibrate difficulty per
instance, producing finely tuned evaluation samples based on actual model behavior.

2.2.3 Evaluation Phase

This phase corresponds to the label g in Figure[2] After benchmark samples are finalized through the
above process, LLMs can be evaluated using the curated benchmark. Each problem is associated with
its final difficulty level and validation metadata, supporting both overall performance comparisons
and fine-grained reasoning diagnostics.

2.3 Key Features

Our benchmarking framework is grounded in two complementary principles: a competitive protocol
in which the Teacher challenges the Student with progressively harder problems, and an adaptive
validation mechanism where the Orchestrator ensures that difficulty scaling remains fair, coherent,
and well-formed. Together, these two dynamics enable ATAD to produce reliable, high-quality
benchmarks tailored to a model’s actual reasoning capacity.

Difficulty Scaling via Teacher-Student Competition. The Teacher agent is implicitly incentivized
to analyze the Student’s prior successes and failures. This allows it to generate novel problems that
directly target the Student’s weaknesses or extend beyond its current competence, yielding more
sophisticated samples than mere perturbations of existing items. Difficulty is adjusted dynamically
based on the Student’s performance, forming a competitive loop that drives benchmark depth.
Orchestrator-Regulated Difficulty Control. To prevent uncontrolled or adversarial difficulty escala-
tion, the Orchestrator agent validates each problem before it is presented to the Student. It checks
logical coherence, task adherence, clarity, and difficulty appropriateness, and autonomously decides
whether the Teacher should regenerate a sample. This ensures that problem progression remains both
challenging and fair, balancing the Teacher’s incentives with principled quality control.
Autonomous Iteration Control. Unlike benchmarks with fixed iteration schedules, ATAD relies on
the Orchestrator to dynamically determine when the Teacher should regenerate a problem or proceed
to evaluation. This mechanism replaces manual tuning with agent-driven adaptability, ensuring
high-quality, context-appropriate problems at every step.

Failure-Driven Sample Finalization. Problems are finalized not at creation, but at the point of
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Student failure. This empirical approach anchors benchmark difficulty in actual model limitations
rather than manual labels, surfacing failure cases that are often missed in static datasets.

Dynamic Difficulty Localization. Unlike benchmarks that assign difficulty globally, ATAD adjusts
difficulty at the instance level based on Student feedback. This enables precise, localized probing of
reasoning weaknesses and model-specific blind spots.

Cross-Agent Instantiability. ATAD is modular by design and supports different model pairings (e.g.,

ATAD:E;?;z_ﬂash), enabling comparative evaluation and tracking of model evolution over time.
Broad Task Coverage. Our benchmark spans seven types of text anomaly detection tasks (see
Section[3.2)), capturing a wide range of reasoning capabilities including discourse coherence, contra-

diction detection, referential clarity, and stylistic consistency.

3 Task Design for Text Anomaly Detection

This section presents our design of text anomaly detection tasks as a probe of LLM reasoning
(Section [3.1)) and introduces a taxonomy of seven anomaly types (Section [3.2).

3.1 Task Overview and Motivation

We identify text anomaly detection as a particularly suitable domain for evaluating the reasoning
capabilities of LLMs. These tasks target subtle inconsistencies in logic, coherence, or semantics,
requiring genuine cross-sentence inference and resisting shortcuts based on surface-level patterns.
However, creating high-quality text anomaly problems remains challenging: increasing task difficulty
often introduces ambiguity, while prioritizing clarity can lead to trivial or shallow problems. This
trade-off is especially pronounced in language-based tasks, where, unlike math or science, answers
lack grounding in formal rules. Yet standardized exams like the GRE, GMAT, and LSAT show that
natural language questions can still demand structured reasoning with clear answer standards. Inspired
by these formats, our benchmark emphasizes deep reasoning while maintaining clarity and objectivity.
Still, generating such problems at scale—especially in text anomaly detection—remains difficult, as
it requires balancing subtlety and unambiguity. Our adaptive benchmarking protocol addresses this
via a teacher-student competition regulated by an orchestrator, forming a self-calibrating system that
reliably surfaces nuanced reasoning failures in LLMs.

3.2 Task Taxonomy: Seven Types of Text Anomalies and Reasoning Skills Targeted

Each task in our taxonomy is designed to assess a distinct aspect of LLM reasoning, such as coherence,
logical consistency, or ambiguity resolution—areas often underrepresented in existing benchmarks.
Together, the seven task types provide a broad and fine-grained evaluation of language understanding.
While each task targets a core reasoning capability, we further diversify the benchmark by selectively
incorporating anomaly factors known to challenge LLMs, including subtle semantic shifts or structural
inconsistencies. These additions are applied to a subset of examples to enhance difficulty without
sacrificing clarity or task diversity.

T1. Sentence Context Anomaly targets contextual reasoning, requiring the model to detect semantic
inconsistencies between individual sentences and the paragraph’s main theme. Challenge factors
include minor topic shifts and semantic deviations that appear grammatically well-formed but subtly
disrupt thematic coherence.

T2. Paragraph Order Consistency assesses discourse coherence by determining the correct order
of sentences based on topic flow, causal and temporal dependencies. Challenge factors involve
sentence reordering that appears locally coherent but requires comprehensive understanding of global
document structure to detect.

T3. Blank-based Choice Anomaly requires both lexical and pragmatic reasoning to identify an
inappropriate word or phrase within context. Challenge factors focus on lexical fit and collocation,
requiring the detection of choices that are grammatically correct but contextually inappropriate. This
demands both common sense and sensitivity to subtle nuances.

T4. Bridge Sentence Evaluation focuses on logical bridging and topic shift detection, requiring the
model to judge whether a candidate sentence logically connects two related paragraphs. Challenge
factors include weak logical connections and abrupt topic shifts, where the sentence itself may seem
plausible but fails to maintain coherent discourse flow.

TS. Referential Ambiguity tests coreference resolution to identify sentences where pronouns or
referring expressions are ambiguous or misleading, disrupting clarity in discourse interpretation.
Challenge factors involve ambiguous pronouns and unclear references that disrupt sentence clarity.
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Figure 3: Examples of the seven task types of text anomalies.

T6. Logical Contradiction measures causal and contradiction reasoning. The model detects
inconsistencies such as violated cause—effect relationships or misinterpreted correlations as causation.
Challenge factors include contradictory claims and causal reversals.
T7. Tone/Style Violation evaluates stylistic reasoning by assessing whether all sentences maintain a
consistent tone and register (e.g., formal vs. informal). The model must identify any sentence that
deviates from the overall style. Challenge factors include tone shifts and register mismatches that
subtly undermine stylistic coherence.

While each task focuses on a primary reasoning skill, practical cases often demand the integration of
multiple capabilities—such as critical thinking and fine-grained semantic analysis. For example, T4
not only requires assessing logical coherence but also detailed semantic understanding. Building on
this, we enhance task diversity by incorporating them within six academic domains frequently found
in standardized reasoning exams (e.g., GRE, LSAT), including science, philosophy, politics/society,
psychology, economics, and literature. Rather than assigning domains randomly, we systematically
align them to the tasks where the domain’s inherent characteristics amplify reasoning challenges.
This principled topic-to-task mapping is detailed in Appendix, with additional examples and domain-
specific motivations. Figure [3outlines representative task formats, with full design details available

in Appendix as well.

4 Experiments and Results

This section presents our experimental evaluation of the benchmark generated through our protocol,
highlighting its utility for assessing LLM reasoning. We evaluate overall performance, examine the
Teacher-Student competition protocol for difficulty scaling, and assess the contribution of Orchestrator
validation. Additionally, we explore its use in forecasting future LLM capabilities and test its
consistency across multiple runs.
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Table 1: Overall Performance of LLMs on our Text Anomaly Detection Benchmark. Average
accuracy of each LLM, across the four datasets generated by four agent families (GPT, Gemini,
Claude, LLaMA), is shown for each anomaly type (T1-T7) and overall.

Evaluation Model T1 T2 T3 T4 TS T6 T7 Avg.
GPT-3.5-Turbo [16] 59.00 16.00 66.75 4850 5575 51.75 81.50 54.18
GPT-40-mini [17] 5725 17.00 62.50 54.00 5250 58.75 83.00 55.00
GPT-40 [12] 62.00 2125 68.25 5325 4925 56.75 81.00 5596
GPT-04-mini [18] 6325 3025 68.50 53.00 4725 57.25 80.00 57.07
Gemini-1.5-Flash [19] 6.00 11.25 62.00 4875 17.50 10.75 21.00 25.32
Gemini-2.0-Flash-Lite [14] 64.00 10.75 63.50 5225 62.75 62.00 86.25 57.36
Gemini-2.0-Flash [14] 6525 2500 63.00 5825 51.00 62.00 88.00 58.93
Claude-3-Haiku [20] 63.75 12.00 61.00 51.75 53.50 60.00 72.75 53.54
Claude-3.5-Haiku [13] 19.75 55.00 7.25 5.00  5.50 850 3550 19.50
Claude-3.5-Sonnet [[13] 65.75 3175 65.00 59.50 53.50 57.50 86.75 59.96
LLaMA-3.1-8B [135] 39.50 1275 3550 2450 53.00 38.75 6875 38.96
LLaMA-3.3-70B [15] 60.75 2775 6325 60.00 5225 5775 8425 58.00

4.1 Evaluation Setup
To evaluate LLM performance on our text anomaly benchmark, we established the following setup:

Benchmark dataset. The benchmark dataset comprises 700 samples per generation model, with 100
instances for each of the seven task types.

Generation models. We used the following LL.Ms as Teacher, Student, and Orchestrator agents to
generate the benchmark datasets: GPT-4o [12], Claude-3.5-Sonnet [13]], Gemini-2.0-Flash [14], and
LLaMA-3.3-70B [[15]]. (When not explicitly stated, the Teacher, Student, and Orchestrator agents
within a generation process use the same LLM.)

Evaluation models. We evaluated the generated datasets using a diverse set of LLMs: GPT-3.5-turbo,
GPT-40-mini, GPT-40, GPT-04-mini, Claude-3.0-Haiku, Claude-3.5-Haiku, Claude-3.5-Sonnet,
Gemini-1.5-Flash, Gemini-2.0-Flash-Lite, and Gemini-2.0-Flash. These models serve as our baseline
for assessing the difficulty and effectiveness of the benchmark.

4.2 Overall Performance Evaluation

Table [T] presents the overall performance of various LLMs on our text anomaly detection benchmark.
We report accuracy as the primary evaluation metric, calculated as the proportion of correctly
identified anomalies. Table[I|showcases the average accuracy achieved by each evaluation model
across the four distinct benchmark datasets, each generated by a different agent family: GPT, Gemini,
Claude, and LLaMA. For the benchmark generation process, the Teacher, Student, and Orchestrator
agents were configured to be the same LLM for simplicity (e.g., GPT-4o for all three roles within the
GPT-generated benchmark).

The results reveal a varied landscape of performance across different anomaly types (T1-T7). Notably,
no single evaluation model consistently outperformed others across all categories, suggesting that
the nature of the anomaly significantly influences detection accuracy. Claude-3.5-Sonnet achieved
the highest overall average accuracy (59.96%), indicating strong general capability. However, other
models surpassed Claude on specific types: GPT-40-mini outperformed Claude on T3 by 3.5%,
and Gemini-2.0-Flash exceeded Claude on T6 by 4.5%. Interestingly, certain evaluation models
showed remarkable proficiency in specific anomaly types. Claude-3.5-Haiku, despite its relatively
lower overall average (53.54%), achieved the highest accuracy in detecting anomalies of type
T2 (55.00%). This highlights the potential for certain models to possess specialized strengths in
identifying particular kinds of textual irregularities. While the overall average accuracy across all
models and anomaly types indicates the inherent difficulty of the task, the varying performance
across different anomaly types underscores the benchmark’s ability to probe diverse aspects of LLM
understanding and reasoning regarding text anomalies.

4.3 Valid Difficulty Scaling via Competitive Agents

To assess whether our competitive protocol effectively scales problem difficulty, we compare evalua-
tion model performance on the initial base problems and the finalized benchmark versions. Table 2]
presents the average accuracy of each evaluation model, computed across the seven anomaly types
(T1-T7), on four benchmark datasets generated by different agent families. The Base datasets
represent the initial set of generated problems before difficulty scaling, while the Final datasets are the
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Table 2: Comparison of the LLMs’ performance on the initial (base) datasets, consisting of the base
problems, and the final versions of the benchmark datasets. Each column represents a different dataset,
generated by GPT-40, Claude-3.5-Sonnet, Gemini-2.0-Flash, and LLaMA-3.3-70B, respectively. The
observed performance drop from base to final problems highlights the effectiveness of ATAD in
exposing the weaknesses of LLM reasoning.

GPT-40 Gemini-2.0-Flash ~ Claude-3.5-Sonnet LLaMA-3.3-70B

Evaluation Model

Base  Final Base Final Base Final Base Final
GPT-3.5-turbo 91.00 67.71 80.00 42.00 83.71 61.43 86.00 45.57
GPT-40-mini 93.00 68.29 80.43 42.71 84.14 57.86 87.43 51.14
GPT-40 9429 7243 83.29 44.71 87.29 62.71 89.29 44.00
GPT-04-mini 91.86 7243 83.57 47.14 87.29 61.86 87.71 46.86
Gemini-1.5-Flash 50.57 3029 40.14 17.00 40.43 28.29 41.43 25.71
Gemini-2.0-Flash-lite  92.43 69.14 81.57 45.43 83.86 58.86 85.14 56.00
Gemini-2.0-Flash 9229 71.86 82.43 44.29 85.43 61.86 88.00 57.71
Claude-3-Haiku 91.57 67.86 79.43 42.86 82.71 54.57 83.43 48.86
Claude-3.5-Haiku 36.86 18.86 39.86 24.71 39.71 18.57 45.86 15.86
Claude-3.5-Sonnet 91.71 72.86 83.86 47.43 88.86 63.29 88.29 56.29
LLaMA-3.1-8B 6729 47.00 59.57 28.57 63.57 33.57 64.14 46.71
LLaMA-3.3-70B 93.43 7243 8271 43.57 89.29 64.57 92.43 51.43

Table 3: Comparison of LLMs’ Performance and Problem Quality on the benchmark generated
by GPT-40 agents. Problem quality is evaluated by each model acting as a reviewer, comparing
benchmarks generated with and without the use of an Orchestrator.

Performance (%) Problem Quality
Evaluation Model i ;
wlo Orch.  w/ Orch. Validity (1-5) Coherence (1-5) Fairness (1-5) Approval Rate (%)
w/o Orch. w/Orch. w/o Orch. w/Orch. w/o Orch. w/Orch. w/o Orch. w/ Orch.
GPT-40 68.29 7243 4.30 4.85 3.71 4.74 3.20 4.65 38.14 87.14
Gemini-2.0-Flash 65.00 71.86 5.00 5.00 4.97 5.00 4.93 4.94 99.00 100.00
Claude-3.5-Sonnet ~ 65.00 72.86 4.61 4.92 4.11 4.69 341 4.42 55.57 90.43
LLaMA-3.3-70B 65.71 7243 4.66 4.87 4.37 4.76 4.34 4.80 66.00 88.29

result of the subsequent Teacher-Student competition and Orchestrator validation processes, designed
to increase the benchmark’s difficulty.

Across all agent families and evaluation models, we observe a consistent drop in accuracy from the
base to final benchmarks. This indicates that our protocol successfully increases task difficulty in a
controlled manner. On average, evaluation accuracy drops by approximately 37.3 percentage points
after the adaptive scaling phase, highlighting the non-trivial nature of the final problems. Importantly,
despite the increased difficulty, the final problems maintain high quality, as validated separately (see
Section4.4). This substantial reduction in accuracy confirms that the competitive interaction between
the Teacher and Student agents, coupled with the Orchestrator’s validation, successfully led to the
creation of more challenging anomaly detection instances.

4.4 Orchestrator Validation

This section underscores the crucial role of the Orchestrator agent in ensuring the quality and validity
of our text anomaly detection benchmark. To demonstrate this, we compared the performance of
several LLMs on two versions of a benchmark generated by GPT-40 agents: one created solely through
the Teacher-Student competition protocol (without an Orchestrator) and the other generated using our
full framework, including Orchestrator validation. Table |3| presents this comparison, showing the
evaluation performance of GPT-40, Gemini-2.0-Flash, Claude-3.5-Sonnet, and LLaMA-3.3-70B on
both benchmark versions.

At first glance, the benchmark generated without an Orchestrator appears more challeng-
ing—evaluation accuracy is consistently lower across all models. However, when we analyze problem
quality along dimensions such as validity, coherence (logical consistency and type adherence), and
fairness, we observe a notable degradation in quality. This suggests that the lower performance is not
due to truly challenging reasoning tasks but rather to flawed or ambiguous question design. In other
words, the competitive protocol without validation tends to inflate difficulty artificially by generating
problems that are confusing or ill-posed.
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By contrast, our Orchestrator-guided pipeline maintains higher quality across all metrics while still
increasing difficulty. The Orchestrator filters out problems that are ill-formed, inconsistent, or lack a
clear solution, ensuring that performance drops are reflective of genuine reasoning challenges—not
annotation noise or design failures. These findings emphasize the critical role of the Orchestrator in
producing challenging yet fair benchmarks, where performance gaps more accurately reflect model
capability rather than dataset artifacts.

4.5 Scenario: Evaluating Future LLLM Capabilities

To examine the sustainability of our benchmark Table 4: Simulated future scenario with GPT-

under the rapid pace of LLM advancements, We  3/04_mini (future) vs. GPT-40/40-mini (current),
simulate a future scenario where newer mod- showing sustained relative evaluation.

els outperform the current generation. Specif-
ically, we assume GPT-40 as the generation GPT-40

model—serving as Teacher, Student, and Or- Evaluation Model -

chestrator—and evaluate the resulting bench- Base  Final
mark using GPT-03-mini and GPT-04-mini, hy- GPT-03-mini 9371 72.14
pothetical successors representing future LLM:s. GPT-04-mini 91.86 7243
As shown in Tabled] all models—including the GPT-40 94.29  72.43
current GPT-40—achieve near-ceiling accuracy GPT-40-mini 93.00 6829

on the base problems, highlighting the limitation

of static benchmark design. However, when evaluated on the final benchmark constructed through
our difficulty-scaling protocol, performance drops substantially for all models. Notably, GPT-03-mini
and GPT-04-mini score lower than GPT-40, despite being assumed as future improvements.

This demonstrates that our benchmark not only scales difficulty in response to the generator’s
capability but also maintains long-term relevance. Unlike static benchmarks that saturate over time,
our framework supports relative evaluation, where difficulty dynamically adapts to each generation
model, allowing performance gaps between models to remain meaningful. Even as LLMs grow more
powerful, our protocol preserves discriminative power—enabling robust comparison across models,
regardless of when they are developed.

4.6 Consistency and Stability in Benchmark Generation

To ensure that our benchmark protocol supports not
only adaptability but also reliable reproducibility, we :
evaluate the consistency of benchmark quality across 55 kot Bmsaje Deviaion
repeated generations. In this experiment, we repeat-
edly generate benchmark datasets using the same agent
configuration—Gemini-2.0-Flash as the Teacher, Student,
and Orchestrator—and measure the performance of GPT-
4o0-mini, a representative model from a different family
(GPT series), on these benchmarks. We generate 50 sam-
ples per task (350 in total) in the first round, then incremen- *
tally add 50 samples per task in each subsequent round, 55— S5

up to 1000 samples per task. For each round (50 to 1000 Sample Size

samples), we evaluate GPT-4o0-mini on the corresponding Figure 4: Consistency in Benchmark
benchmark and track its average accuracy across the seven Generation.

anomaly detection tasks. Figure ] plots model accuracy

per task as a function of the number of generated samples. We observe that performance remains
largely stable across sample sizes, with only minor fluctuations. This result shows that our benchmark
generation protocol is not only adaptive and dynamic, but also statistically stable across runs.

Average Performance across Tasks by Sample Size

45

Accuracy (%)

40

5 Conclusion

We present ATAD, an agent-centric benchmark protocol that adaptively generates and validates
reasoning-focused anomaly detection tasks. By shifting from static datasets to dynamic protocols,
ATAD enables sustainable, scalable, and stable evaluation of ever-evolving LLMs. Our results
demonstrate that ATAD surfaces reasoning failures missed by conventional benchmarks and enables
model-benchmark co-evolution, offering actionable insights into model-specific reasoning gaps.
Future work includes extending ATAD to track evolving LLMs and advancing text anomaly detection
as a reasoning benchmark.
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NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state our main contributions: (i) a
dynamic agent-centric benchmark protocol, and (ii) implementing this approach specifically
for text anomaly detection tasks. These claims are supported throughout the paper, with
detailed descriptions and experiments in Sections 3-5.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations of our protocol design includes challenges in Appendix.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our work is empirical and does not include theoretical results or formal proofs.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Sectiond]and Appendix provide all necessary details for reproducing bench-
mark results.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We release all proposed scripts and sample datasets via GitHub link.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Sectiond]and Appendix detail all experimental settings.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include standard deviation information in Figure 4 to show the variability
across runs. Additionally, statistical details such as the number of runs and error bars (where
applicable) are reported in the Appendix.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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10.

11.

12.

13.

14.

15.

Answer: [Yes]

Justification: Appendix provides full details on resources usage.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our work adheres to the NeurIPS Code of Ethics.
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Section[5]outlines potential positive impacts and broader impact of our pro-
posed protocol. Due to space constraints, we provide a dedicated discussion of broader
societal impacts in the appendix.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Our benchmark only contains automatically generated problems using publicly
available language models, and we do not release any sensitive or human-authored data. To
mitigate potential misuse, we include metadata that clearly identifies the source model and
generation parameters for each problem, ensuring traceability and transparency.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All base LLMs used (e.g., GPT, Claude, Gemini, Llamma) are cited with their
respective usage terms, and dataset references.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our dynamic protocol and agent configuration scripts are documented and
released with instructions in the github repository.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve human subjects or crowd-based data collection.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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16.

Justification: No research involving human participants was conducted.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: Large language models such as GPT-40, Claude 3.5, and Gemini Flash were
used as autonomous agents (teacher, student, orchestrator) as part of the benchmark protocol.
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