
Instruct and Extract: Instruction Tuning for On-Demand
Information Extraction

Yizhu Jiao, Ming Zhong, Sha Li, Ruining Zhao, Siru Ouyang, Heng Ji, Jiawei Han
University of Illinois Urbana-Champaign

yizhuj2@illinois.edu

Abstract

Large language models with instruction-
following capabilities open the door to a wider
group of users. However, when it comes to
information extraction – a classic task in natu-
ral language processing – most task-specific
systems cannot align well with long-tail ad
hoc extraction use cases for non-expert users.
To address this, we propose a novel paradigm,
termed On-Demand Information Extraction, to
fulfill the personalized demands of real-world
users. Our task aims to follow the instructions
to extract the desired content from the associ-
ated text and present it in a structured tabular
format. The table headers can either be user-
specified or inferred contextually by the model.
To facilitate research in this emerging area, we
present a benchmark named INSTRUCTIE, in-
clusive of both automatically generated train-
ing data, as well as the human-annotated test
set. Building on INSTRUCTIE, we further de-
velop an On-Demand Information Extractor,
ODIE. Comprehensive evaluations on our
benchmark reveal that ODIE substantially out-
performs the existing open-source models of
similar size. Our code and dataset are released
on https://github.com/yzjiao/On-Demand-IE.

1 Introduction

Information extraction has conventionally been di-
vided into a set of well-defined sub-tasks, includ-
ing named entity recognition (Sang and Meulder,
2003; Levow, 2006; Weischedel et al., 2013), re-
lation extraction (Zhang et al., 2017; Han et al.,
2018; Yao et al., 2019), event extraction (Deng
et al., 2020; Wang et al., 2020; Zhan et al., 2023)
and so on. These components serve as the basis
for building complex systems such as virtual as-
sistants and news monitoring systems. However,
an average user might also have information ex-
traction needs (as shown in Figure 1) that do not
align well with any of the well-defined tasks: the
information elements (shape and taste) might not

Instruction: I personally prefer eating fruits.
Extract some key features of the fruits.

Text:
Strawberries are a popular fruit known for their
vibrant red color and sweet, juicy flavor. …
One of the most widely consumed fruits, apples
come in various colors, including red ...
Bananas are elongated, slightly curved fruits that
have a thick, protective peel and soft, sweet flesh …

NutrientsTasteShapeFruit
Vitamin C,

antioxidants
Sweet,
juicy

Heart-
shapedStrawberries

Dietary fiber,
vitamin C

Crisp,
sweetRoundApples

Potassium,
vitamin B6

Soft,
sweet

Elongated,
curvedBananas

Extracted Table:

Figure 1: Example of on-demand information extraction.
The header of the extracted table can be specified by the
user, or inferred by the model.

be covered by existing ontologies and the format
might not match any existing task (relation extrac-
tion usually involves only two entities and event
extraction requires a trigger). Therefore, there is
an unfulfilled demand for a more flexible paradigm
to extract structured information.

For addressing the shortcomings of conventional
information extraction systems for average users,
the burgeoning field of Large Language Models
(LLMs) offers a promising direction. The latest
generation of LLMs is typically subjected to an
essential step known as instruction tuning to cater
to explicit user commands (Ouyang et al., 2022;
OpenAI, 2023). In this stage, models are trained
using datasets with specific instructions and the
expected responses, which improves LLMs in un-
derstanding and reacting to various human queries
in natural language. Instruction tuning can be seen
as a form of extreme multi-task learning where
each input-output pair is a different task, or meta-
learning where the model learns to adapt using

https://github.com/yzjiao/On-Demand-IE

the instructions. As a result, these models acquire
zero-shot learning ability which emerges as natural
interactions with non-expert users.

Instruction-following models unlock access to
a broader user base, simultaneously uncovering
the diverse requirements in IE scenarios. In light
of this, we propose a novel IE paradigm, termed
On-Demand Information Extraction, in this paper.
Our task is designed to respond to a user’s unique
instruction and the related text by extracting the
sought-after information and presenting it in a user-
friendly, structured table format (see Figure 1). It
goes beyond the constraints of predefined task set-
tings or ontologies, i.e., the header of the output
table can be either personalized by the user or in-
ferred by the model itself from the given text and
the instruction. This provides users the flexibility
to offer instructions with varying levels of speci-
ficity, thereby customizing the output to suit their
individual needs. Moreover, On-Demand Informa-
tion Extraction is not limited to a specific domain,
making it a highly scalable and adaptable solution
for a wide range of applications.

To benchmark this new task, we construct an
instruction-tuning dataset for on-demand informa-
tion extraction, named INSTRUCTIE. It is com-
prised of 14,579 training pairs and 150 manually
curated test samples, serving as a supplement to the
existing open-source instruction-tuning collections.
To compile training data and boost the model’s
capacity to adhere to specific instructions, we em-
ploy an automatic generation process via ChatGPT,
which generates a range of instructions to ensure
wide coverage across diverse domains. We fur-
ther incorporate a Chain-of-Thought prompting ap-
proach (Wei et al., 2022) into our data generation
process, enabling us to investigate the effects of
elaborating the “thought process” before extracting
tables for on-demand IE use cases. More impor-
tantly, we propose multi-faceted validation meth-
ods to filter out low-quality samples, ensuring that
the synthetic data is curated from four perspectives:
validity, informativeness, consistency with the in-
struction, and faithfulness to the text.

Additionally, to evaluate language models em-
pirically, we introduce a set of manually annotated
test data from scratch. This dataset showcases a
wide range of instructions spanning extremely di-
verse domains, providing a clear reflection of real
user requirements. The background text utilized in
this dataset is carefully collected by retrieving from

various online sources or in privacy-sensitive cases,
generated by the best-performing language model,
GPT-4 (OpenAI, 2023). The dataset encompasses
different levels of difficulty - part of the instruc-
tions further demands comprehensive reasoning
and summarization abilities.

On top of INSTRUCTIE, we develop our model,
ODIE (On-Demand Information Extractor), which
is founded on the LLaMA-7B (Touvron et al., 2023)
and LoRA (Hu et al., 2022) techniques. Further-
more, we establish an extensive test bed specifi-
cally for this task. Compared to the performance of
powerful open-source instruction-following mod-
els, ODIE brings substantial improvements in the
accuracy of the extracted headers and contents ac-
cording to automatic metrics and human evalua-
tions. Ablation studies also verify the effectiveness
of our proposed filtering method. These findings
underscore the potential of INSTRUCTIE and ODIE

to facilitate research in on-demand IE scenarios.

2 Related Work

2.1 Information Extraction

Information extraction is conventionally repre-
sented by sub-tasks such as named entity recog-
nition (Lample et al., 2016; Cao et al., 2019; Lin
et al., 2019; Huang et al., 2021; Lin et al., 2020; Yu
and Ji, 2023), relation extraction (Yu et al., 2017;
Sui et al., 2020), event extraction (Ji and Grishman,
2008; Yu et al., 2021; Zhan et al., 2023; Jiao et al.,
2023). However, there is a clear gap between the
task-specific systems in existing studies and the
requirements in open IE scenarios (Li et al., 2023).
To cater to a wider group of average users (Ouyang
et al., 2023), we propose a novel on-demand infor-
mation extraction task in this paper. Although our
output format mirrors the text-to-table setting (Bao
et al., 2018; Wu et al., 2022), our task diverges sig-
nificantly from previous work in two key aspects:
1) our task hinges on user instructions, enabling per-
sonalized extraction, and 2) the headers of the table
are not confined to pre-defined types. Instead, they
can either be defined by the user or independently
inferred by the model based on the context.

2.2 Instruction Tuning

Instruction tuning provides a promising solution
for finetuning LLMs to better understand and re-
spond to human requests that are expressed in nat-
ural language (Ouyang et al., 2022; Sanh et al.,
2022). The success of instruction tuning relies

Seed Examples

Instruction: Extract position
and salary from job postings

Fixed
Instruction: Extract position and salary
from job postings
Input text : We are seeking a highly
organized and creative Marketing
Coordinator to assist with the planning and
execution of our marketing campaigns...

Fixed

Instruction: Extract all key
information from job postings

Open

Instruction: Can you help
me to extract position and
salary from job postings ?

Fixed

Instruction: I want the key
information from job postings

Open

Open

Step 1:
Fixed Instruction Generation

Step 2: Text Generation Step 3:
Open Instruction Generation

Step 4:
Instruction Paraphrase

Instruction: Can you help me to extract position
and salary from job postings ?
Input text : We are seeking a highly organized and
creative Marketing Coordinator to assist ….
Output:

Fixed

Step 5: Table GenerationStep 6: Instance Filtering

Dataset

Figure 2: Overall framework of training data generation.

on diverse and representative instruction datasets,
which help prepare language models for potential
downstream usage (Wang et al., 2023). Existing
instruction-tuning datasets are often collected via
crowdsourcing (Mishra et al., 2022; Wang et al.,
2022b; Databricks, 2023) or via distillation from
LLMs (Wang et al., 2022a; Honovich et al., 2022;
Taori et al., 2023; Peng et al., 2023). As outlined in
Wang et al. (2023), the current landscape of open-
source datasets for instruction tuning is predomi-
nantly composed of open-ended conversations, rea-
soning, and coding tasks. Consequently, they fail
to adequately prepare the model to follow instruc-
tions related to information extraction. Hence, it is
imperative to develop a benchmark that is represen-
tative of instruction-based information extraction
in order to advance the exploration in this field.

3 INSTRUCTIE Dataset

In this section, we first formulate the on-demand in-
formation extraction task. Following this, we delve
into the details of automatically generating training
data for INSTRUCTIE, as well as the process of
human annotations for the test set.

3.1 Task Formulation

Formally, given a user instruction I and associated
background text X , the model M is designed to
extract pertinent information and organize it into a
structured table T . In the table, the first row repre-
sents the table header and the rest is the extracted
content. To better align with real user needs, note
that the input instructions are not required to ex-
plicitly specify the header to be extracted. With
this criterion, instructions are categorized into two

types: fixed instruction and open instruction. For
fixed instruction, the desired headers for the output
table are clearly defined, and the model’s task is
to pull out the relevant content from the text. In
contrast, open instruction presents a more demand-
ing scenario where the model needs to first infer
table headers based on the context, and then extract
corresponding information.

3.2 Automatic Generation of Training Data

To enhance the instruction-following capability of
LLMs in on-demand IE, high-quality training data
is of paramount importance. As shown in Figure
2, we devise an automatic pipeline via ChatGPT,
encompassing six steps as follows. All the used
prompts are listed in Appendix .

Fixed Instruction Generation. As instruction is
the determining factor in the on-demand use case,
we start with fixed instruction collection. Con-
cretely, we provide five manually labeled demon-
strations and harness the power of in-context learn-
ing (Brown et al., 2020) to guide the model in dis-
cerning what constitutes a fixed instruction. In
principle, the fixed instruction should specify the
header to be extracted, and the type of the text,
e.g., “Extract position and salary from job
postings”. To promote diversity, we require Chat-
GPT to generate 10 different instructions along
with distinct domains for each iteration.

Background Text Generation. With a given
fixed instruction and domain, the subsequent step
involves generating the related background text.
We also provide demonstrations and specify in the
prompt that the generated text should cover the des-

ignated header and conform to the given text type
and domain. For instance, for the fixed instruction
in the previous paragraph, ChatGPT is supposed to
generate multiple job postings containing different
positions and salaries.

Open Instruction Generation. After creating
the background text, our goal is to produce corre-
sponding open instructions that stand apart from
the fixed instruction. An open instruction does not
specify the type of header, i.e., “position” and
“salary”, but rather employs relatively vague re-
quirements, such as “key information”, mirror-
ing part of real-world usage. We find that open
instructions directly converted from fixed instruc-
tions bear strong similarity. Hence, we discard
fixed instructions as input, allowing ChatGPT to
generate distinct open instructions using only text.

Instruction Paraphrasing. To equip the model
with the ability to better comprehend user instruc-
tions across a diversity of styles, we incorporate
an additional paraphrasing step. We delineate four
styles: comprehensive query, casual interaction,
direct command, and professional request. Each
instruction is randomly assigned a style, and Chat-
GPT is tasked with paraphrasing it accordingly. It’s
also emphasized in the prompt that the paraphrased
instruction must retain its key elements, specifically
the header and the type of text.

Table Generation. Given a pair of instruction
and background text, the model takes these as in-
put and extracts the corresponding information into
a tabular format. Considering the different cate-
gories of instructions, we set distinct expectations
for the table headers. For fixed instructions, we
anticipate that the model adheres strictly to the in-
struction, extracting only the headers specifically
mentioned. Conversely, for open instructions, we
aim for an output inclusive of all relevant details.
Therefore, the model is tasked with generating as
many columns as possible to ensure comprehensive
instruction execution. For each input, we generate
two versions of the output: 1) Direct, which rep-
resents the direct output of the table without any
accompanying text; and 2) CoT, which denotes the
introduction of a Chain-of-Thought method (Wei
et al., 2022), allowing the model to articulate its
thought process prior to table extraction.

Verification and Filtering. To uphold the high
quality of generated instances, meticulous verifi-

cation and filtering methods are crucial. Since the
final output of the entire pipeline is the generated
table, it serves as a comprehensive reflection of the
quality of each preceding step. As a result, we cen-
ter our attention on the generated table to carefully
craft a filtering mechanism across four dimensions.

(1) Validity. This checks the validity of the
pipeline output, determining whether it conforms
to the tabular format. Any instances that don’t meet
this format are filtered out.

(2) Informativeness. We necessitate that the gen-
erated table comprises an adequate number of rows
and columns, without containing excessive empty
cells, to ensure it offers sufficient information.

(3) Consistency with instruction. For each fixed
instruction, the header extracted by the model
should strictly align with the provided instruction.
To check for consistency with instruction, we for-
mulate it as a Natural Language Inference (NLI)
problem. Essentially, Given each header H , we
construct a sentence such as “extract H from the
text” as the hypothesis while the instruction serves
as the premise. Taking these two as the input, we
adopt a neural evaluator (Zhong et al., 2022) to cal-
culate the factual consistency score. If the average
consistency score is below a predefined threshold,
the table will be dropped.

(4) Faithfulness to text. For every extracted table,
each cell’s content should correspond faithfully to
the provided background text. We still take this
as an NLI task, i.e., given a cell C, we utilize its
header H to build a hypothesis such as “The H is
C”. Meanwhile, the background text is regarded as
the premise. The same neural evaluator calculates
the scores, and a threshold is established to select
instances that demonstrate high faithfulness.

3.3 Manual Annotation for Test Data

We create test set by hand to evaluate how well
LLMs perform in the on-demand information ex-
traction task. In the annotation process, GPT-4
(OpenAI, 2023) is employed to assist human an-
notators, ensuring a wide-ranging collection. The
specific process and details are as follows.

Candidate Domain Creation. To achieve diver-
sity in test data, we incorporate the vast knowledge
base of GPT-4 to enable human annotators to think
beyond conventional domains and consider more
specialized fields. Specifically, we prompt GPT-4
to generate 1,000 instructions across diverse do-
mains as a candidate pool. Then we hand-pick

150 samples that are not only representative but
also align with the genuine needs of different user
groups Notably, these generated instructions are
not part of the test set but are used as cues to kick
off the data-gathering phase.

Background Text Collection. Based on candi-
date instructions, the human annotators proceed
to collect the relevant text. The principle is to re-
trieve real text from the web that meets the require-
ments. However, for several candidate instructions
involving privacy issues (e.g., medical records),
we use GPT-4 to generate synthetic data instead.
The length of the text is specified to be between
100 and 1,000 words and should contain structured
information suitable for extraction.

Instruction Annotation. Given the collected
text, annotators are required to write correspond-
ing instructions. Standard instructions should be
in line with the user input, and diverse in descrip-
tion style. The information required for extraction
should be found in the original text. Each instruc-
tion is limited to 200 words, and the annotator can
determine whether it is an open or fixed instruc-
tion before annotating based on the content of the
text. In addition, the need for appropriate reason-
ing or summarization abilities when extracting is
permitted, if it is consistent with real-world usage
(Concrete examples in Appendix E).

Table Annotation. To improve the efficiency of
table annotation, we utilize GPT-4 to generate three
tables by setting temperature to 1.0 to serve as ref-
erences for annotators for each input. Annotators
can modify or integrate these reference tables into
the final result. The content presented in the table
should be exhaustive, aligned with the user instruc-
tion, and accurately reflect the given background
text. For information that is not specified in the
original text, “N/A” is uniformly used in the table.

More Annotation Details. For the entire pro-
cess, we invite 3 graduates and 1 undergraduate
student with research experience in the field of IE
for data annotation. Each instance is annotated
by an annotator and then reviewed by a reviewer.
The annotator and reviewer discuss together and
make necessary modifications until they reach an
agreement. After finalizing the annotation, all an-
notators are gathered to categorize each instance
into three difficulty levels, including easy, medium,
and hard. We take the following criteria for this

Data
Train

TestDirect CoT Overall

Instruction 7,483 7,096 14,579 150
- # Open Instruction 3,773 3,676 7,449 36
- # Fixed Instruction 3,710 3,420 7,130 114

Text 4,507 4,380 4,751 150
- # Retrieved Text 0 0 0 119
- # Generated Text 4,507 4,380 4,751 31

Domain 82 82 83 61

Ave. Instr. Len. 20.4 20.3 20.4 26.8
Ave. Text Len. 281.2 277.8 279.6 310.8
Ave. Table Cell 20.8 23.2 22.0 17.1
Ave. Table Row 3.6 3.7 3.6 4.7
Ave. Table Column 6.2 6.7 6.5 4.1

Easy Level - - - 56
Medium Level - - - 55
Hard Level - - - 38

Table 1: Statistics of our dataset, InstructIE. # denotes
the number. Ave. denotes the average value. Len.
denotes the length in words.

categorization: typically, easy-level instances have
fixed instructions and small- or moderately-sized
groundtruth tables. Those labeled as medium often
include the fixed instructions to extract large-sized
and complex tables or a small portion of open in-
structions. Instances classified as hard generally
necessitate the reasoning or summarization abilities
and incorporate most of the open instructions.

Regarding the final data format, beyond the in-
struction, text, and table, we also provide the sub-
sequent human-annotated information:

(1) “Domain” represents the area or field that the
data instance pertains to.

(2) “Category” denotes whether the instruction
is classified as open or fixed.

(3) “Source type” characterizes the source of
background text, classifying it as either “retrieve”
- sourced from a real-world text, or “generate” -
produced by GPT-4.

(4) “Difficulty level” indicates the complexity
of the extraction for the current sample from the
human perspective, and is divided into three levels:
“easy”, “medium”, and “hard”.

3.4 Dataset Analysis

INSTRUCTIE dataset consists of 14,579 samples
for training and 150 for testing, with the statistics
displayed in Table 1. Notably, the scale of our test
set aligns with existing instruction-tuning bench-
marks. For instance, AlpacaFarm (Dubois et al.,
2023), a collection of existing instruction-tuning
test sets, encompasses 90 instructions from the Vi-
cuna evaluation (Chiang et al., 2023), 129 from

Figure 3: Representative domains of testing data.

Anthropic (Bai et al., 2022), 156 from the Koala
evaluation (Geng et al., 2023), 188 from Open As-
sistant (Köpf et al., 2023), and 252 from the evalua-
tion of self-instruct (Wang et al., 2022a). However,
these benchmarks primarily focus on open-ended
dialogues, reasoning, and coding tasks, and hence,
INSTRUCTIE can supplement these sources by fo-
cusing on the aspect of information extraction.

In particular, our training set comprises 7,483
direct instances and 7,096 CoT instances. The
dataset, entirely composed of model-generated in-
structions and texts, extensively spans 84 domains
(listed in Appendix A). Our analysis reveals that
the tables have an average of 22 cells after filter-
ing. Interestingly, on comparing the direct and CoT
methods, we observe that the tables produced via
CoT approach contain an average of 3 more cells
than those generated directly.

As for the testing data, the instructions are cate-
gorized into two types - 36 open instructions and
114 fixed instructions. We retrieve 119 real texts,
alongside 31 generated texts in areas that are sen-
sitive to privacy. As illustrated in Figure 3, 150
testing cases span a broad range of 61 domains.
The manually annotated tables contain 17 cells on
average. Figure 4 compares the distribution in text
length, instruction length, and the average number
of cells in tables between the training and testing
data. Moreover, the test set of INSTRUCTIE has
exhibits a well-balanced distribution across three
levels of difficulty, comprising 56, 55, and 39 in-
stances respectively.

4 Experiment

In this section, we first introduce our instruction-
tuned model, thendescribe the experimental setup

5 10 15 20 25 30 35 40 45 50 55 60

Instruction Length

100 200 300 400 500 600 700 800 900 1000 1100 1200

Text Length

5 10 15 20 25 30 35 40 45 50 55 60

Table Cell

Testing Training

Figure 4: Distribution of training and testing data.

and finally present the detailed results.

4.1 Model Training - ODIE

To establish a model with instruction-following
capability on IE, we finetune LLaMA-7B (Tou-
vron et al., 2023) with LoRA (Hu et al., 2022), a
parameter-efficient fine-tuning technique, on the
training set of INSTRUCTIE to obtain ODIE. We
format the datasets to follow a chatbot-style schema
to allow interactions between the user and the lan-
guage model (a.k.a. “assistant”) into one input
sequence. Concretely, each instance begins with
the “<|system|>” token, accompanied by distinct
system prompts for both Direct and CoT methods1.
This is succeeded by the “<|user|>” token and the
input instruction, after which the model’s response
follows the “<|assistant|>” token. During train-
ing, we compute the cross entropy loss only on
tokens after <|assistant|>.

For a fair comparison, we adopt identical train-
ing paradigms, hyperparameters, and backbone
models for training ODIE and all other baseline
models. The only exception is the number of
epochs, as the optimal number of training steps
required to achieve peak performance varies de-
pending on the size of the training data. More
details about training can be found in Appendix D.

1System prompt for the CoT method is “You are a helpful
assistant. Follow the user instruction to output a paragraph
as the explanation and extract information from the given
text into a concise markdown table.” For the direct method,
“output a paragraph as the explanation” is removed.

4.2 Evaluation Metrics
Since the on-demand information extraction task
is formulated as the text-to-table generation, we
divide the evaluation into two parts: evaluating the
table headers and table contents. Table headers
reflect how well the model understands user in-
structions. We adopt a soft matching strategy (Jiao
et al., 2022) by using SentenceBERT (Reimers and
Gurevych, 2019) to calculate the cosine similarity
as the semantic similarity score. The table con-
tents reflect the quality of extraction. We use the
ROUGE-L F1 score (Lin, 2004) to evaluate the gen-
erated output. We also conduct human evaluations
to provide a comprehensive assessment.

4.3 Evaluated Models
We compare three categories of models: open-
source instruction-following models, proprietary
models, and models trained on INSTRUCTIE.

Public Instruction-Following Models. ALPACA

and TÜLU are state-of-the-art instruction-following
models, with instruction tuning on 52K and 512K
data collections (Databricks, 2023; Longpre et al.,
2023; Köpf et al., 2023; Peng et al., 2023; Chaud-
hary, 2023), respectively. TÜLU, in particular,
stands out as the best-performing model at the 7B
size (Wang et al., 2023). We acquire these two
baseline models by training on publicly accessible
datasets using LoRA technique.

Proprietary Models. We select the two best
LLMs, CHATGPT and GPT-4 (OpenAI, 2023) for
comparison. Since their training data is not dis-
closed and the model size is much larger than ours,
we mainly use their performance as the reference.

Our Models. Depending on whether the CoT
method is added during training, we include two
versions of our model ODIE-DIRECT and ODIE-
COT. Additionally, we report two variants obtained
by removing the filtering process of training data.

4.4 Table Header Evaluation
We report the soft matching scores for both fixed
and open instructions in Table 2. Our model
showcases highly competitive performance: ODIE-
DIRECT outperforms the best open-source baseline
by 4%, and nearly matches the performance of
GPT models despite the significant difference in
model sizes. This outcome verifies that our mod-
els effectively develop the instruction-following
capability for on-demand IE. Notably, ODIE-COT

Models
Category

OverallFixed Open

Open-Source Models
ALPACA 65.89 45.69 59.80
TÜLU 77.78 49.26 69.44

Our Models
ODIE-DIRECT 83.59 51.67 73.82

- Filtering 83.54 51.37 73.61
ODIE-COT 72.32 54.17 66.81

- Filtering 68.97 53.01 64.11

Proprietary Models
CHATGPT 81.69 57.86 74.49
GPT-4 82.06 57.78 74.47

Table 2: Experimental results for header evaluation. The
metric is F1 (%) of the soft matching score.

demonstrates an even better performance in the con-
text of open instructions, surpassing ODIE-DIRECT

by 2.5% while it shows a weaker performance on
fixed instructions. Based on careful observation,
we speculate that this is because the CoT stim-
ulates the model to think more dynamically and
adaptable, which is particularly beneficial for open
instructions that can have different formulations
and contexts. However, when it comes to fixed
instructions, CoT might grant the model excessive
flexibility, exacerbating the issue of violating the in-
struction and generating additional headers (Figure
8 in the Appendix shows case study on comparing
ODIE-DIRECT and ODIE-COT).

4.5 Table Content Evaluation

Table 3 presents evaluation results for table content
analysis, showing that our ODIE models outper-
form open-source baselines substantially. Notably,
ODIE-DIRECT performs 5.4% better than the best
baseline model, TÜLU. Among our ODIE mod-
els, those with multi-facet filtering bring at least
2.6% higher performance than versions without fil-
tering, validating the effectiveness of our proposed
method. However, despite these improvements, all
open-source models, including ours, are not on par
with state-of-the-art proprietary models in the table
content evaluation.

We further conduct an in-depth analysis examin-
ing various models across three aspects: instruction
categories, text sources, and difficulty levels.

Instruction category: All models perform con-
siderably better on fixed instructions as opposed to
open instructions. This is expected since open in-
structions demand more sophisticated text analysis
and extraction abilities.

Text source: Models find the retrieved context

Models
Difficulty Category Source

Overall # DataEasy Medium Hard Fixed Open Generate Retrieve

Open-Source Models
ALPACA 26.27 20.08 22.72 25.29 16.07 30.37 21.18 23.08 52K
TÜLU 43.69 39.15 38.68 42.55 34.94 45.08 39.59 40.72 512K

Our Models
ODIE-DIRECT 48.01 45.38 43.71 47.19 41.92 49.49 45.00 45.93 7.5K

- Filtering 46.31 39.85 42.44 44.42 38.23 46.71 41.95 42.93 7.5K
ODIE-COT 44.47 39.99 41.73 43.02 39.25 49.01 40.32 42.12 7.1K

- Filtering 41.26 36.59 41.20 40.08 38.93 45.92 37.87 39.53 7.1K

Proprietary Models
CHATGPT 52.45 50.56 51.07 53.21 45.66 55.97 50.21 51.40 -
GPT-4 60.78 55.76 61.24 61.51 51.29 65.89 57.28 59.06 -

Table 3: Experimental results for table content evaluation. The metric is F1 score of ROUGE-L (%).

more challenging, as the generated text usually
follows a more structured format, which makes it
easier to identify the key information.

Difficulty level: Most models tend to perform
best on easy instances, yet intriguingly, part of the
models exhibit better performance in hard-level
samples compared to medium-level ones. After
manual analysis, we attribute this to the fact that
medium-level instances usually require extracting
complex and large-size tables, where models often
fail to capture all essential elements in the text, re-
sulting in lower scores. Conversely, hard-level sam-
ples demand reasoning or summarization ability
for specific rows, columns, or cells. For instance,
when extracting the information from recipes, mod-
els may struggle with calculating the cooking time
of all the steps, but still produce a reasonable ta-
ble. It would not cause significant impacts on the
score. This discrepancy between human judgment
and model performance calls for effort on the more
fine-grained evaluation metrics.

4.6 Human Evaluation

For human evaluation, we ask three annotators of
the instructions to evaluate model outputs. The
evaluators are asked to rate the output of four
instruction-following models based on whether the
extracted information is accurate. In line with au-
tomatic evaluations, we evaluate the header and
content of the table separately. The details and the
annotation platform are presented in Appendix C.

For the table headers, we design a three-level rat-
ing system for the models’ outputs: (1) Rating-A:
correct, (2) Rating-B: partly correct, or (3) Rating-
C: completely wrong. Figure 5(a) illustrates the
performance of four models, with ODIE showing
comparable results to GPT-4, both receiving only
9 votes in Rating C. ODIE also outperforms TÜLU

142

31 17 6

101

116
82

47

44

99

118

98

13
54 83

149

0%

20%

40%

60%

80%

100%

Alpaca TÜlU ODIE GPT4

Table Content

Correct and satisfying
Acceptable content with minor imperfection
Relavant content but has significant errors
Irrelevant or Invalid

139

41 9 9

87

96
85 70

74
163

206 221

0%

20%

40%

60%

80%

100%

Alpaca TÜlU ODIE GPT4

Table Header

Wrong Partly Correct Correct

(a) Evaluation on table headers

(b) Evaluation for table headers

Figure 5: Human evaluations on headers and contents.

in terms of correct and partly-correct scores. Con-
versely, ALPACA struggles to follow instructions,
frequently producing invalid results.

For the table contents, we set up four-level rating
standards, including (1) Rating-A: valid and satisfy-
ing, (2) Rating-B: acceptable but has minor errors
or imperfections, (3) Rating-C: relevant to the in-
struction with significant errors, and (4) Rating-D:
irrelevant or completely invalid. As shown in Fig-
ure 5(b), GPT-4’s much larger model size allows
it to excel beyond the other models, while ODIE

continues to display clear benefits over ALPACA

and TÜLU, particularly in Rating A and B.

Metrics Pearson Spearman Kendall

[Header] Exact Match. 0.640 0.609 0.494
[Header] Semantic Sim. 0.817 0.769 0.637
[Content] Exact Match. 0.338 0.375 0.272
[Content] Semantic Sim. 0.764 0.705 0.558
[Content] RougeL 0.713 0.704 0.554

Table 4: Correlation Analysis. To further study different
metrics on our proposed task, we analyze the correlation
between these automatic metrics and human evaluations.
Here Exact Match. means exact matching and Semantic
Sim. means semantic similarity. The analysis results in-
cludes the Pearson, Spearman, and Kendall coefficients.

4.7 Evaluation Metric Analysis

To make our evaluation comprehensive, we study
two automatic evaluation metrics on table head-
ers (Exact Match and Semantic Similarity) and
three ones on table content (Exact Match, Seman-
tic Similarity, and ROUGEL). The experiments
results can be found in Tables 7-10 in the appendix,
which show a similar trend. On these different met-
rics, our methods can still obviously outperform
the open-source baselines while being comparable
with GPT4 on table header generation.

To discover the suitable automatic evaluation
metric for our proposed task, we further analyze
the correlation between these automatic metrics
and human evaluations. Table 4 lists the analy-
sis results, including the Pearson, Spearman, and
Kendall coefficients. The results indicate that, for
table header, two studied metrics are highly cor-
related with human evaluation. But for table con-
tent, RougeL and semantic similarity can indeed be
more reliable metrics for this task compared with
exact matching due to significantly high correlation.
In this paper, we show RougeL for its wide use in
prior instruction-tuning work (Wang et al., 2023).

5 Conclusion

This paper introduces a new task, On-Demand In-
formation Extraction to fulfill users’ personalized
needs by extracting content based on instructions
and organizing it in a table with user-specified or
model-inferred headers. To benchmark this new
task, we construct a comprehensive dataset IN-
STRUCTIE including synthesized training data and
human-annotated test data. Our developed model
ODIE outperforms existing open-source models in
extensive experiments.

Limitations

While this paper contributes to the research field by
introducing the On-Demand Information Extrac-
tion task and constructing the INSTRUCTIE dataset,
it still has the following limitations:

1. Model Size and Data Constraints: The ex-
periments presented in this paper primarily
focus on the utilization of the 7B model. Due
to the limited computing resources, an ex-
ploration into the impact of varying model
sizes and the potential benefits of using larger
datasets could not be conducted. It remains
an open question how scalability in terms of
model size and data volume would affect the
performance and efficiency of the On-Demand
Information Extraction task.

2. Combination of Direct and CoT Methods:
In our experimental analysis, the Direct and
CoT method are discussed and evaluated sep-
arately in the On-Demand Information Extrac-
tion task. However, the potential synergistic
effects of combining both methods have not
been investigated. It could possibly yield in-
sights into different dimensions of the task or
further improve the model performance.

3. Evaluation Metrics: The evaluation metrics
used in the current experiments are primarily
detecting the overall similarity between the
model outputs and the groundtruth. However,
given the flexible nature of table structures, it
is imperative to have evaluation metrics that
can assess the accuracy and quality of table
construction and information organization in
a more fine-grained manner. Developing more
effective and precise evaluation metrics is nec-
essary to robustly evaluate different aspects of
our On-Demand Information Extraction task.

4. Contextual Inference and Complex Instruc-
tions: As highlighted in the conclusion, the
current model has room for improvement in
contextually inferring table structures and pro-
cessing complex instructions. This limitation
can affect the utility and user experience, par-
ticularly for users who are not domain experts
and may not know how to frame their queries
optimally. Enhancing the model’s capabilities
in these areas is essential for ensuring that the
On-Demand IE task is accessible and friendly
for a wide range of users.

In light of these limitations, future work should
focus on exploring the impact of model size and
data scale, investigating the combination of differ-
ent data types, developing more nuanced evaluation
metrics, and improving the model’s ability to infer
context and handle complex instructions. These
efforts are crucial in advancing the On-Demand
Information Extraction systems and making them
more accurate and widely applicable.

Ethics Statement

In conducting the research presented in this pa-
per, we adhere to ethical standards and principles
to ensure the integrity and validity of our work.
Specifically, the dataset INSTRUCTIE constructed
for this research is developed with utmost care to
ensure that no personal or sensitive information is
included. The human-annotated test data is col-
lected and used in compliance with relevant ethical
guidelines. Additionally, during the data collection
process, we verify the licenses of the data source
websites to ensure that our use of the data sticks
to the terms and conditions stipulated by the data
providers. Moreover, during the development of
the dataset, we mitigate any biases that may arise,
ensuring that the data is representative and does not
favor any particular group or perspective.

Acknowledgements

Research was supported in part by US DARPA
KAIROS Program No. FA8750-19-2-1004 and
INCAS Program No. HR001121C0165, National
Science Foundation IIS-19-56151, IIS-17-41317,
and IIS 17-04532, and the Molecule Maker Lab
Institute: An AI Research Institutes program sup-
ported by NSF under Award No. 2019897, and the
Institute for Geospatial Understanding through an
Integrative Discovery Environment (I-GUIDE) by
NSF under Award No. 2118329. Any opinions,
findings, and conclusions or recommendations ex-
pressed herein are those of the authors and do not
necessarily represent the views, either expressed or
implied, of DARPA or the U.S. Government.

References
Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda

Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan,
Nicholas Joseph, Saurav Kadavath, Jackson Kernion,
Tom Conerly, Sheer El Showk, Nelson Elhage, Zac
Hatfield-Dodds, Danny Hernandez, Tristan Hume,

Scott Johnston, Shauna Kravec, Liane Lovitt, Neel
Nanda, Catherine Olsson, Dario Amodei, Tom B.
Brown, Jack Clark, Sam McCandlish, Chris Olah,
Benjamin Mann, and Jared Kaplan. 2022. Training
a helpful and harmless assistant with reinforcement
learning from human feedback.

Junwei Bao, Duyu Tang, Nan Duan, Zhao Yan, Yuanhua
Lv, Ming Zhou, and Tiejun Zhao. 2018. Table-to-
text: Describing table region with natural language.
In Proceedings of the AAAI conference on artificial
intelligence, volume 32.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Yixin Cao, Zikun Hu, Tat-Seng Chua, Zhiyuan Liu,
and Heng Ji. 2019. Low-resource name tagging
learned with weakly labeled data. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing, EMNLP-IJCNLP 2019, Hong Kong, China,
November 3-7, 2019, pages 261–270. Association for
Computational Linguistics.

Sahil Chaudhary. 2023. Code alpaca: An instruction-
following llama model for code generation. https:
//github.com/sahil280114/codealpaca.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality. Blog post.

Databricks. 2023. Databricks’ dolly, a large
language model trained on the databricks ma-
chine learning platform. https://github.com/
databrickslabs/dolly.

Shumin Deng, Ningyu Zhang, Jiaojian Kang, Yichi
Zhang, Wei Zhang, and Huajun Chen. 2020. Meta-
learning with dynamic-memory-based prototypical
network for few-shot event detection. In WSDM ’20:
The Thirteenth ACM International Conference on
Web Search and Data Mining, Houston, TX, USA,
February 3-7, 2020, pages 151–159. ACM.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang,
Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy

https://doi.org/10.48550/arXiv.2204.05862
https://doi.org/10.48550/arXiv.2204.05862
https://doi.org/10.48550/arXiv.2204.05862
https://ojs.aaai.org/index.php/AAAI/article/view/11944
https://ojs.aaai.org/index.php/AAAI/article/view/11944
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/D19-1025
https://doi.org/10.18653/v1/D19-1025
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://github.com/databrickslabs/dolly
https://github.com/databrickslabs/dolly
https://doi.org/10.1145/3336191.3371796
https://doi.org/10.1145/3336191.3371796
https://doi.org/10.1145/3336191.3371796

Liang, and Tatsunori B. Hashimoto. 2023. Alpaca-
farm: A simulation framework for methods that learn
from human feedback. CoRR, abs/2305.14387.

Xinyang Geng, Arnav Gudibande, Hao Liu, Eric Wal-
lace, Pieter Abbeel, Sergey Levine, and Dawn Song.
2023. Koala: A dialogue model for academic re-
search. Blog post.

Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao,
Zhiyuan Liu, and Maosong Sun. 2018. Fewrel: A
large-scale supervised few-shot relation classification
dataset with state-of-the-art evaluation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, Brussels, Belgium,
October 31 - November 4, 2018, pages 4803–4809.
Association for Computational Linguistics.

Or Honovich, Thomas Scialom, Omer Levy, and Timo
Schick. 2022. Unnatural instructions: Tuning lan-
guage models with (almost) no human labor. CoRR,
abs/2212.09689.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Jiaxin Huang, Chunyuan Li, Krishan Subudhi, Damien
Jose, Shobana Balakrishnan, Weizhu Chen, Baolin
Peng, Jianfeng Gao, and Jiawei Han. 2021. Few-
shot named entity recognition: An empirical baseline
study. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event / Punta Cana, Domini-
can Republic, 7-11 November, 2021, pages 10408–
10423. Association for Computational Linguistics.

Heng Ji and Ralph Grishman. 2008. Refining event
extraction through cross-document inference. In ACL
2008, Proceedings of the 46th Annual Meeting of the
Association for Computational Linguistics, June 15-
20, 2008, Columbus, Ohio, USA, pages 254–262. The
Association for Computer Linguistics.

Yizhu Jiao, Sha Li, Yiqing Xie, Ming Zhong, Heng Ji,
and Jiawei Han. 2022. Open-vocabulary argument
role prediction for event extraction. In Findings of the
Association for Computational Linguistics: EMNLP
2022, pages 5404–5418, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Yizhu Jiao, Ming Zhong, Jiaming Shen, Yunyi Zhang,
Chao Zhang, and Jiawei Han. 2023. Unsupervised
event chain mining from multiple documents. In Pro-
ceedings of the ACM Web Conference 2023, WWW
2023, Austin, TX, USA, 30 April 2023 - 4 May 2023,
pages 1948–1959. ACM.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte,
Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens,
Abdullah Barhoum, Nguyen Minh Duc, Oliver
Stanley, Richárd Nagyfi, Shahul ES, Sameer Suri,

David Glushkov, Arnav Dantuluri, Andrew Maguire,
Christoph Schuhmann, Huu Nguyen, and Alexander
Mattick. 2023. Openassistant conversations - de-
mocratizing large language model alignment. CoRR,
abs/2304.07327.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition. In
NAACL HLT 2016, The 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
San Diego California, USA, June 12-17, 2016, pages
260–270. The Association for Computational Lin-
guistics.

Gina-Anne Levow. 2006. The third international chi-
nese language processing bakeoff: Word segmenta-
tion and named entity recognition. In Proceedings of
the Fifth Workshop on Chinese Language Processing,
SIGHAN@COLING/ACL 2006, Sydney, Australia,
July 22-23, 2006, pages 108–117. Association for
Computational Linguistics.

Bo Li, Gexiang Fang, Yang Yang, Quansen Wang, Wei
Ye, Wen Zhao, and Shikun Zhang. 2023. Evaluating
chatgpt’s information extraction capabilities: An as-
sessment of performance, explainability, calibration,
and faithfulness. CoRR, abs/2304.11633.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
A joint neural model for information extraction with
global features. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2020, Online, July 5-10, 2020, pages
7999–8009. Association for Computational Linguis-
tics.

Ying Lin, Liyuan Liu, Heng Ji, Dong Yu, and Jiawei
Han. 2019. Reliability-aware dynamic feature com-
position for name tagging. In Proceedings of the 57th
Conference of the Association for Computational Lin-
guistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers, pages 165–174.
Association for Computational Linguistics.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le,
Barret Zoph, Jason Wei, and Adam Roberts. 2023.
The flan collection: Designing data and methods for
effective instruction tuning. CoRR, abs/2301.13688.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2022. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), ACL 2022, Dublin, Ireland, May
22-27, 2022, pages 3470–3487. Association for Com-
putational Linguistics.

https://doi.org/10.48550/arXiv.2305.14387
https://doi.org/10.48550/arXiv.2305.14387
https://doi.org/10.48550/arXiv.2305.14387
https://bair.berkeley.edu/blog/2023/04/03/koala/
https://bair.berkeley.edu/blog/2023/04/03/koala/
https://doi.org/10.18653/v1/d18-1514
https://doi.org/10.18653/v1/d18-1514
https://doi.org/10.18653/v1/d18-1514
https://doi.org/10.48550/arXiv.2212.09689
https://doi.org/10.48550/arXiv.2212.09689
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2021.emnlp-main.813
https://doi.org/10.18653/v1/2021.emnlp-main.813
https://doi.org/10.18653/v1/2021.emnlp-main.813
https://aclanthology.org/P08-1030/
https://aclanthology.org/P08-1030/
https://aclanthology.org/2022.findings-emnlp.395
https://aclanthology.org/2022.findings-emnlp.395
https://doi.org/10.1145/3543507.3583295
https://doi.org/10.1145/3543507.3583295
https://doi.org/10.48550/arXiv.2304.07327
https://doi.org/10.48550/arXiv.2304.07327
https://doi.org/10.18653/v1/n16-1030
https://aclanthology.org/W06-0115/
https://aclanthology.org/W06-0115/
https://aclanthology.org/W06-0115/
https://doi.org/10.48550/arXiv.2304.11633
https://doi.org/10.48550/arXiv.2304.11633
https://doi.org/10.48550/arXiv.2304.11633
https://doi.org/10.48550/arXiv.2304.11633
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/v1/p19-1016
https://doi.org/10.18653/v1/p19-1016
https://doi.org/10.48550/arXiv.2301.13688
https://doi.org/10.48550/arXiv.2301.13688
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.acl-long.244

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In NeurIPS.

Siru Ouyang, Shuohang Wang, Yang Liu, Ming Zhong,
Yizhu Jiao, Dan Iter, Reid Pryzant, Chenguang Zhu,
Heng Ji, and Jiawei Han. 2023. The shifted and the
overlooked:
a task-oriented investigation of user-gpt interactions.
In the Association for Computational Linguistics:
EMNLP 2023. Association for Computational Lin-
guistics.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
GPT-4. CoRR, abs/2304.03277.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, pages 3980–3990.
Association for Computational Linguistics.

Erik F. Tjong Kim Sang and Fien De Meulder. 2003.
Introduction to the conll-2003 shared task: Language-
independent named entity recognition. In Proceed-
ings of the Seventh Conference on Natural Language
Learning, CoNLL 2003, Held in cooperation with
HLT-NAACL 2003, Edmonton, Canada, May 31 -
June 1, 2003, pages 142–147. ACL.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon
Kim, Gunjan Chhablani, Nihal V. Nayak, Debajyoti
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-
ishala Neeraj, Jos Rozen, Abheesht Sharma, An-
drea Santilli, Thibault Févry, Jason Alan Fries, Ryan
Teehan, Teven Le Scao, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M. Rush. 2022. Multi-
task prompted training enables zero-shot task gener-
alization. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net.

Dianbo Sui, Yubo Chen, Kang Liu, Jun Zhao, Xian-
grong Zeng, and Shengping Liu. 2020. Joint entity
and relation extraction with set prediction networks.
CoRR, abs/2011.01675.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Xiaozhi Wang, Ziqi Wang, Xu Han, Wangyi Jiang, Rong
Han, Zhiyuan Liu, Juanzi Li, Peng Li, Yankai Lin,
and Jie Zhou. 2020. MAVEN: A massive general do-
main event detection dataset. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2020, Online, Novem-
ber 16-20, 2020, pages 1652–1671. Association for
Computational Linguistics.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack
Hessel, Tushar Khot, Khyathi Raghavi Chandu,
David Wadden, Kelsey MacMillan, Noah A. Smith,
Iz Beltagy, and Hannaneh Hajishirzi. 2023. How
far can camels go? exploring the state of instruction
tuning on open resources. CoRR, abs/2306.04751.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A. Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022a. Self-instruct: Aligning lan-
guage model with self generated instructions. CoRR,
abs/2212.10560.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran, An-
jana Arunkumar, David Stap, Eshaan Pathak, Gi-
annis Karamanolakis, Haizhi Gary Lai, Ishan Puro-
hit, Ishani Mondal, Jacob Anderson, Kirby Kuz-
nia, Krima Doshi, Kuntal Kumar Pal, Maitreya Pa-
tel, Mehrad Moradshahi, Mihir Parmar, Mirali Puro-
hit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit
Verma, Ravsehaj Singh Puri, Rushang Karia, Savan
Doshi, Shailaja Keyur Sampat, Siddhartha Mishra,
Sujan Reddy A, Sumanta Patro, Tanay Dixit, and
Xudong Shen. 2022b. Super-naturalinstructions:
Generalization via declarative instructions on 1600+
NLP tasks. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2022, Abu Dhabi, United Arab Emirates,
December 7-11, 2022, pages 5085–5109. Association
for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurIPS.

Ralph Weischedel, Martha Palmer, Mitchell Marcus, Ed-
uard Hovy, Sameer Pradhan, Lance Ramshaw, Nian-
wen Xue, Ann Taylor, Jeff Kaufman, Michelle Fran-

https://arxiv.org/abs/2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2304.03277
https://doi.org/10.48550/arXiv.2304.03277
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://aclanthology.org/W03-0419/
https://aclanthology.org/W03-0419/
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
http://arxiv.org/abs/2011.01675
http://arxiv.org/abs/2011.01675
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.18653/v1/2020.emnlp-main.129
https://doi.org/10.18653/v1/2020.emnlp-main.129
https://doi.org/10.48550/arXiv.2306.04751
https://doi.org/10.48550/arXiv.2306.04751
https://doi.org/10.48550/arXiv.2306.04751
https://doi.org/10.48550/arXiv.2212.10560
https://doi.org/10.48550/arXiv.2212.10560
https://aclanthology.org/2022.emnlp-main.340
https://aclanthology.org/2022.emnlp-main.340
https://aclanthology.org/2022.emnlp-main.340
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html

chini, et al. 2013. Ontonotes release 5.0 ldc2013t19.
Linguistic Data Consortium, Philadelphia, PA, 23.

Xueqing Wu, Jiacheng Zhang, and Hang Li. 2022. Text-
to-table: A new way of information extraction. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2022, Dublin, Ireland, May 22-27,
2022, pages 2518–2533. Association for Computa-
tional Linguistics.

Yuan Yao, Deming Ye, Peng Li, Xu Han, Yankai Lin,
Zhenghao Liu, Zhiyuan Liu, Lixin Huang, Jie Zhou,
and Maosong Sun. 2019. Docred: A large-scale
document-level relation extraction dataset. In Pro-
ceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence,
Italy, July 28- August 2, 2019, Volume 1: Long Pa-
pers, pages 764–777. Association for Computational
Linguistics.

Dian Yu, Lifu Huang, and Heng Ji. 2017. Open rela-
tion extraction and grounding. In Proceedings of
the Eighth International Joint Conference on Natural
Language Processing, IJCNLP 2017, Taipei, Taiwan,
November 27 - December 1, 2017 - Volume 1: Long
Papers, pages 854–864. Asian Federation of Natural
Language Processing.

Pengfei Yu and Heng Ji. 2023. Shorten the long tail for
rare entity and event extraction. In Proceedings of
the 17th Conference of the European Chapter of the
Association for Computational Linguistics, EACL
2023, Dubrovnik, Croatia, May 2-6, 2023, pages
1331–1342. Association for Computational Linguis-
tics.

Pengfei Yu, Heng Ji, and Prem Natarajan. 2021. Life-
long event detection with knowledge transfer. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2021, Virtual Event / Punta Cana, Dominican Repub-
lic, 7-11 November, 2021, pages 5278–5290. Associ-
ation for Computational Linguistics.

Qiusi Zhan, Sha Li, Kathryn Conger, Martha Palmer,
Heng Ji, and Jiawei Han. 2023. GLEN: general-
purpose event detection for thousands of types.
CoRR, abs/2303.09093.

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli,
and Christopher D. Manning. 2017. Position-aware
attention and supervised data improve slot filling. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2017, Copenhagen, Denmark, September 9-11, 2017,
pages 35–45. Association for Computational Linguis-
tics.

Ming Zhong, Yang Liu, Da Yin, Yuning Mao, Yizhu
Jiao, Pengfei Liu, Chenguang Zhu, Heng Ji, and
Jiawei Han. 2022. Towards a unified multi-
dimensional evaluator for text generation. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2022,

Figure 6: Representative domains of training data.

Abu Dhabi, United Arab Emirates, December 7-11,
2022, pages 2023–2038. Association for Computa-
tional Linguistics.

A Domain of Training Data

In our INSTRUCTIE dataset, all the instructions,
and texts in this dataset are model-generated and
extensively involve 84 domains (see Figure 6), such
as management, ecology, marketing, health, astron-
omy, meteorology, beauty, design, linguistics, and
hospitality.

B Prompting Templates for Data
Generation

The INSTRUCTIE dataset relies on a number of
prompting templates in order to elicit the genera-
tion from language models for training data. Here
we provide our five templates for 1) fixed instruc-
tion generation, 2) background text generation, 3)
open instruction generation, 4) instruction para-
phrasing, and 5) table generation (Table 5 and Table
6). Note that during the stage of test data annota-
tion, we use the same prompts to generate instruc-
tion hints for Candidate Domain Creation, generate
texts for Background Text Collection, and generate
reference tables for Table Annotation.

C Human Evaluation Details

C.1 Human Evaluation Setup

Here we provide more details for the human eval-
uation described in the experiment for rating the
models’ responses to the 150 user-oriented informa-
tion extraction instructions. Human evaluation in
done using a open source annotation tool, doccano2.
To ensure faithful and reliable evaluation, we asked

2https://github.com/doccano/doccano

https://catalog.ldc.upenn.edu/LDC2013T19
https://doi.org/10.18653/v1/2022.acl-long.180
https://doi.org/10.18653/v1/2022.acl-long.180
https://doi.org/10.18653/v1/p19-1074
https://doi.org/10.18653/v1/p19-1074
https://aclanthology.org/I17-1086/
https://aclanthology.org/I17-1086/
https://aclanthology.org/2023.eacl-main.97
https://aclanthology.org/2023.eacl-main.97
https://doi.org/10.18653/v1/2021.emnlp-main.428
https://doi.org/10.18653/v1/2021.emnlp-main.428
https://doi.org/10.48550/arXiv.2303.09093
https://doi.org/10.48550/arXiv.2303.09093
https://doi.org/10.18653/v1/d17-1004
https://doi.org/10.18653/v1/d17-1004
https://aclanthology.org/2022.emnlp-main.131
https://aclanthology.org/2022.emnlp-main.131

Figure 7: Annotation interface for human evaluation. The predictions from different models present in random order
and the model information being anonymized. Our expert evaluators are required to read the instruction and input,
refer to the target, and then select the rating for the model’s outputs from three options for the table headers and
fours options for the table contents

three authors of these instructions (and of this pa-
per) to judge model predictions. These three evalua-
tors coordinated the standards for the rating system
before starting annotation and then each of them
rated all the instances independently. They were
presented with the instruction, the background text,
the target output (as a reference), and the model
outputs. Model responses are listed in random or-
der, with all the model information anonymized.
Figure 7 provides a screenshot of the annotation
interface. The reported performance in this paper
is based on the results from all evaluators.

C.2 Human Evaluation Agreement

To measure how reliable our human evaluation is,
we calculate the inner-rater agreement among our
three evaluators. We first report the Fleiss’s kappa
value3, which is commonly used to measure inter-
rater agreement for categorical items. When calcu-
lating this, we separately handle the table headers
and contents. For the table headers, we treat the
3-level rating as a categorical variable, leading to
a kappa value of 0.55, which is a moderate agree-
ment according to common practice. Furthermore,
we also calculate the agreement of our evaluators
on 4-level rating for table contents, 0.49, which

3https://en.wikipedia.org/wiki/Fleiss%27_kappa

also indicates moderate agreement.

D Implementation Details

D.1 Training Data Generation

In this part, we introduce the parameters and details
involved in the phase of generating training data.
In our pipeline, for the first step, Fixed Instruction
Generation, we prompt ChatGPT to generate 10
different fixed instructions in each iteration, doing
this a total of 500 times, resulting in 5000 instruc-
tions along with their corresponding domains. Each
domain here is represented by a single word. In
the second step, Background Text Generation, we
generate a piece of text corresponding to each in-
struction, resulting in 5000 pieces of text. In the
third step, Open Instruction Generation, we gener-
ate an open instruction for each piece of text. By
combining the two types of instructions, we ob-
tain a total of 10,000 training pairs. In the fourth
step, Instruction Paraphrasing, we sample ten in-
structions each time, regardless of whether they are
fixed or open, and pass them together to ChatGPT
for paraphrasing. ChatGPT is required to output
the same number of instructions. If the number
of outputs from GPT does not match, the results
of that round will be discarded. This means that
we query ChatGPT more than 1000 times in total.

In the fifth step, Table Generation, we generate a
table for each of the 10,000 training pairs. After the
above steps, we obtain 10,000 raw direct and CoT
instances. In the sixth step, Verification and Filter-
ing, considering Validity, 438 direct data instances
are filtered out. To ensure Informativeness, we re-
quire the sum of the number of rows and columns
in the table to be greater than 3, and the number
of columns to be more than 1. Additionally, the
number of “N/A” in the table should be less than
4. Tables that do not meet these requirements, to-
taling 653, are discarded. To ensure Consistency
and Faithfulness, we set a threshold equal to 0.5.
Only the tables with average scores greater than
the threshold are retained. These two steps filtered
out 552 and 874 direct data instances respectively.
As for CoT, these four filtering strategies remove
961, 250, 696, and 997 instances respectively.

D.2 Model Training

We use LLaMA-7B (Touvron et al., 2023) as the
backbone model and finetune it with the LoRA
approach (Hu et al., 2022) for all the models. Dur-
ing training, we configure the batch size to 64 and
the maximum learning rate to 3e-4 with a 0.03
warmup ratio. For all the experiments, the LoRA
r is set to 16, and we apply a dropout rate of 0.05.
We keep these hyperparameters the same for a fair
comparison. Therefore, the only differences among
ALPACA, TÜLU, and ODIE lie in the instruction-
tuning data utilized for training and the number of
training epochs. Considering the different amounts
of training data, we train ALPACA 5 epochs (52K
data), TÜLU 2 epochs (512K data), and ODIE 20
epochs (7K data) respectively to achieve the best
performance on INSTRUCTIE.

During the inference process, we also adhere
to the same set of parameters: a temperature of
0.1, top_p of 0.75, top_k of 40, 4 beams, and a
maximum generation length of 2,048.

E Case Study

Our case study is conducted from two perspectives,
the type of the model and the difficulty level of
the dataset. Figure 8 shows the output of our two
models, ODIE-DIRECT and ODIE-COT, for the
same instruction. The instruction is fixed, so we
expect the model to follow the instruction and ex-
tract the information specified by the instruction,
which are patterns and indicators. According to
the observation of model outputs, we can find that

ODIE-DIRECT can extract a decent table while
ODIE-COT violates the instruction and generates
five irrelevant headers, including the type of inci-
dent, affected company, data, location, and other
details. We speculate that this is because the CoT
stimulates the model to think more dynamically
and adaptably, which is particularly beneficial for
open instructions that can have different formula-
tions and contexts.

Figure 9, 10, and 11 respectively show three
examples of different difficulty levels. The first
example is at the easy level, which involves fixed
instruction and small-sized groundtruth tables. Ac-
cording to the model outputs, we can see that most
of the four models can extract the mostly-correct in-
formation. The second medium example is a fixed
instruction to extract a relatively large-sized and
complex table. In this case, we find that the two
open-source baselines miss some rows or columns.
In contrast, our model can extract more useful in-
formation. But even for GPT4, there is a pattern in
its output that does not match the groundtruth. The
third example is the hard case, whose instruction
requires commonsense reasoning, which requires
the model to understand the color of food and find
out the orange ones. According to the experimen-
tal results, all models fail to exclude non-orange
Strawberry Applause. But in general, they were
able to extract the recipe’s name, the ingredients,
and the approximate cooking time.

Instruction: Please conduct an analysis of the logs and security incident reports. Our objective is to identify patterns and
indicators that suggest the presence of cyber threats..

Text:
Rapid7 analyzed a sample webshell payload associated with successful exploitation. The webshell code would first
determine if the inbound request contained a header named X-siLock-Comment, and would return a 404 'Not
Found' error if the header was not populated with a specific password-like value. As of June 1, 2023, all instances
of Rapid7-observed MOVEit Transfer exploitation involve the presence of the file human2.aspx in the wwwroot
folder of the MOVEit install directory (human.aspx is the native aspx file used by MOVEit for the web
interface).Successful exploitation allows attackers to download and steal sensitive information such as list of stored
files, usernames who uploaded the files, file paths, configured Azure Blob Storage accounts, data from Azure Blob
Storage containers, data from servers, and so on. The attackers can also insert and delete a new random named
MOVEit Transfer user with the login name 'Health Check Service' and create new MySQL sessions. Progress
Software is advising MOVEit customers to check for indicators of unauthorized access over “at least the past 30
days”, as well as other remediation recommendations.

Model Output of ODIE-Direct:
Indicator Pattern

Determines if X-siLock-Comment header is populated with specific password-like value before
returning 404 'Not Found' errorWebshell payload

Presence of human2.aspx file in wwwroot folder of MOVEit install directory, allows attackers to
download and steal sensitive information, insert and delete new random named MOVEit Transfer

user, and create new MySQL sessions

MOVEit Transfer
exploitation

Check for indicators of unauthorized access over "at least the past 30 days", as well as other
remediation recommendations

Advice from Progress
Software

Model Output of CoT:

To identify patterns and indicators of cyber threats from the logs and security incident reports, we need to
extract information related to cyber attacks, data breaches, malware infections, and other types of security
incidents. We will structure this information in a tabular format that clearly shows the type of incident, the
affected company or organization, the date and time of the incident, the location of the incident, and any other
relevant details that may suggest the presence of a cyber threat.

Other DetailsLocation
Date
and

Time

Affected
Company/O
rganization

Type of
Incident

Successful exploitation allows attackers to download and steal sensitive
information such as list of stored files, usernames who uploaded the files, file

paths, configured Azure Blob Storage accounts, data from Azure Blob
Storage containers, data from servers, and so on. The attackers can also insert
and delete a new random named MOVEit Transfer user with the login name

'Health Check Service' and create new MySQL sessions.

N/AN/AProgress
Software

Cyber
Attack

Figure 8: Case study on comparing ODIE-DIRECT and ODIE-COT. For the fixed setting, ODIE-DIRECT is better at
following instructions, which aims to extract the pattern and indicator. But ODIE-COT is facing the exacerbating
issue of violating the instruction and generating five irrelevant headers, including the type of incident, affected
company, data, location, and other details.

Instruction: Retrieve product information such as product name, target audience, key feature, material, and price
from e-commerce websites. We need this data organized for categorization and comparison purposes.
Text:
Gildan Cotton Crew Neck T-Shirts are anything but basic. Crafted with soft, breathable cotton and moisture
wicking technology to keep you cool and comfortable no matter what's on the agenda. Perfect for layering or
lounging - you can thank us later. Price:$18.99.
C4 Energy Drink now available in a delicious and sugar-free carbonated form. This drink features 200mg of
caffeine, CarnoSyn beta-alanine and citrulline malate in every serving. Carbonated C4 Original On the Go packs
the legendary energy, endurance and pumps that you know and love from C4. Available in a 18 pack with two
flavors, Frozen bombsicle and Strawberry Watermelon.Price:$33.59

PriceMaterialKey FeatureTarget AudienceProduct Name

$18.99CottonMoisture wicking technologyN/AGildan Cotton Crew Neck T-Shirts

$33.59Carbonated drinks200mg of caffeine, beta-alanineN/AC4 Energy Drink

Groundtruth:

Model Output of Alpaca:

Model Output of TÜlu:

Model Output of ODIE:

Model Output of GPT4:

PriceMaterialKey FeatureTarget AudienceProduct Name

$18.99Moisture wickingSoft, breathable cottonEveryoneGildan Cotton Crew Neck T-Shirts

$33.59CarbonatedSugar-freeEveryoneC4 Energy Drink

$33.59CarbonatedSugar-freeEveryoneC4 Energy Drink

PriceMaterialKey FeatureTarget AudienceProduct Name

$18.99CottonSoft, breathable cottonClothingGildan Cotton Crew Neck T-Shirts

$33.59Carbonated drinks200mg caffeine, CarnoSyn beta-
alanine, citrulline malateEnergy drinkC4 Energy Drink

PriceMaterialKey FeatureTarget AudienceProduct Name

$18.99Cotton
Soft, breathable cotton,

moisture wicking
technology

Anyone looking for
comfortable layering or

lounging

Gildan Cotton
Crew Neck T-Shirts

$33.59
Carbonated water, sugar-free

carbonated water, maltodextrin, citric
acid, natural and artificial flavors

200mg of caffeine,
CarnoSyn beta-alanine
and citrulline malate

Anyone looking for a
sugar-free carbonated

energy drink
C4 Energy Drink

PriceMaterialKey FeatureTarget AudienceProduct Name

$18.99CottonMoisture wicking technologyAllGildan Cotton Crew Neck T-Shirts

$33.59Carbonated drinks200mg of caffeine, beta-alanineAllC4 Energy Drink

Figure 9: Case study on easy-level instruction.

Instruction: Please conduct an analysis of the logs and security incident reports. Our objective is to identify patterns and
indicators that suggest the presence of cyber threats..

Text:
Rapid7 analyzed a sample webshell payload associated with successful exploitation. The webshell code would first
determine if the inbound request contained a header named X-siLock-Comment, and would return a 404 'Not
Found' error if the header was not populated with a specific password-like value. As of June 1, 2023, all instances
of Rapid7-observed MOVEit Transfer exploitation involve the presence of the file human2.aspx in the wwwroot
folder of the MOVEit install directory (human.aspx is the native aspx file used by MOVEit for the web
interface).Successful exploitation allows attackers to download and steal sensitive information such as list of stored
files, usernames who uploaded the files, file paths, configured Azure Blob Storage accounts, data from Azure Blob
Storage containers, data from servers, and so on. The attackers can also insert and delete a new random named
MOVEit Transfer user with the login name 'Health Check Service' and create new MySQL sessions. Progress
Software is advising MOVEit customers to check for indicators of unauthorized access over “at least the past 30
days”, as well as other remediation recommendations.

Model Output of ODIE:
Indicator Pattern

Determines if X-siLock-Comment header is populated with specific password-like value before
returning 404 'Not Found' errorWebshell payload

Presence of human2.aspx file in wwwroot folder of MOVEit install directory, allows attackers to
download and steal sensitive information, insert and delete new random named MOVEit Transfer

user, and create new MySQL sessions

MOVEit Transfer
exploitation

Check for indicators of unauthorized access over "at least the past 30 days", as well as other
remediation recommendations

Advice from Progress
Software

Groundtruth:

Model Output of Alpaca:
Threat Patterns

Presence of X-siLock-Comment header\n- 404 Not Found error

File human2.aspx in wwwroot folder\n- Successful exploitation

Attackers can download and steal sensitive information

Attackers can insert and delete a new random MOVEit Transfer user\n- Advisory to check for indicators of unauthorized
access over “at least the past 30 days

Model Output of TÜLU:
Indicator Cyber Threat

X-siLock-Comment header with specific password-like valueWebshell Payload

Presence of human2.aspx file in wwwroot folder of MOVEit install directoryMOVEit Transfer
Exploitation

Model Output of GPT4:

Indicator Pattern
Inbound request containing a header named X-siLock-Comment, returns a 404 'Not Found'

error if not populated with a specific password-like valueWebshell payload

Instances of Rapid7-observed MOVEit Transfer exploitation involve the presence of the file
human2.aspx in the wwwroot folder of the MOVEit install directoryFile Presence

Successful exploitation allows attackers to download and steal sensitive information such as
list of stored files, usernames who uploaded the files, file paths, configured Azure Blob Storage

accounts, data from Azure Blob Storage containers, data from servers, etc.
Stolen Information

Attackers can insert and delete a new random named MOVEit Transfer user with the login
name 'Health Check Service' and create new MySQL sessionsUnauthorized access

Progress Software advises MOVEit customers to check for indicators of unauthorized access
over at least the past 30 days

Remediation
Recommendations

Indicator Pattern

Presence of X-siLock-Comment header with password-like valueWebshell payload

File human2.aspx in wwwroot folder of MOVEit install directoryMOVEit Transfer exploitation

List of stored files, usernames, file paths, etc.Stealing sensitive information

Health Check Service as a random named MOVEit Transfer userUnauthorized access

Creation of new MySQL sessions by attackersNew MySQL sessions

Figure 10: Case study on medium-level instruction.

Instruction:What are the recipes I can make for my picky toddler who only eat food with orange color? Provide
the recipe, ingredients, and cooking time.
Text:
PUMPKIN BREAD: Preheat oven to 325 degrees Fahrenheit (165 degrees Celsius) and grease a 9×5-inch loaf pan.
In a large bowl, beat the oil and honey together together with a whisk. Add the eggs and whisk until blended. (If
your coconut oil solidifies on contact with cold ingredients, simply let the bowl rest in a warm place for a few
minutes, like on top of your stove, or warm it for about 10 seconds in the microwave.) Add the pumpkin purée,
milk, pumpkin spice, baking soda, vanilla and salt, and whisk to blend. Lastly, switch to a big spoon and stir in the
flour, just until combined. Some lumps are ok! If you’re adding any additional mix-ins, gently fold them in now.
Pour the batter into your greased loaf pan and sprinkle lightly with cinnamon. If you’d like a pretty swirled effect,
run the tip of a knife across the batter in a zig-zag pattern. Bake for 55 to 60 minutes, or until a toothpick inserted
into the center comes out clean (typically, if I haven’t added any mix-ins, my bread is done at 55 minutes; if I have
added mix-ins, it needs closer to 60 minutes). Let the bread cool in the loaf pan for 10 minutes, then carefully
transfer the bread to a cooling rack to cool for 20 minutes before slicing.

TURKEY + CARROT ROLL-UP: Place the tortilla on a cutting board. Spread the hummus over the entire surface
of the tortilla. On the bottom 2/3 of the tortilla, sprinkle the carrots. Pat down to make them stick in the hummus.
Lay the turkey lunch meat over the carrots, but avoid the top 1/3 of the tortilla. Starting with the bottom of the
tortilla, with the carrots and turkey, tightly roll the tortilla all the way to the top. The top 1/3 section of hummus
will act like glue to help the tortilla stay in place. Cut into 1-inch sections. The whole process needs 10 min.

Strawberry Applause: In a large stockpot, bring the cherries, water, cinnamon, and vanilla to a boil. Reduce to a
simmer over medium-low heat, cover, and cook for 15 minutes, stirring occasionally. Add in the strawberries and
stir. Cover and then cook for another 15 minutes. Let cool slightly. For a chunky sauce, mash the cherries and
strawberries with the back of a wooden spoon. For a smoother sauce, transfer all ingredients into a blender or food
processor and puree for 30-60 seconds or until you achieve your desired consistency. I pureed mine for 45 seconds.
If pureeing for baby, puree for 1-2 minutes or until very smooth. Transfer to an air-tight container and serve.

Cooking TimeIngredientsRecipe Name

80 minoil, honey, pure milk, pumpkin spice, baking soda, vanilla, salt, flourPUMPKIN BREAD

10 minTortilla, hummus, shredded carrots, turkey lunch meatTURKEY + CARROT ROLL-UP

Groundtruth:

Cooking TimeIngredientsRecipe Name

55-60 minutes1 cup pumpkin puréePumpkin Bread

20 minTortillaTurkey + Carrot Roll-Up

15 minutesCherries, water, cinnamon, vanillaStrawberry Applause

Model Output of Alpaca:

Cooking TimeIngredientsRecipe Name

55-60 minutesOil, honey, eggs, pumpkin purée, milk, pumpkin spice, baking soda, vanilla, saltPumpkin Bread

10 minTortilla, hummus, carrots, turkey lunch meatTurkey + Carrot Roll-Up

15 minutesCherries, water, cinnamon, vanillaStrawberry Applause

Model Output of TÜlu:

Cooking TimeIngredientsRecipe Name

55-60 minutesOil, honey, eggs, pumpkin purée, milk, pumpkin spice,
baking soda, vanilla, salt, flourPumpkin Bread

10 minTortilla, hummus, carrots, turkey lunch meatTurkey + Carrot Roll-Up

15 minutes +
mashing/pureeing time Cherries, water, cinnamon, vanilla, strawberriesStrawberry Applause

Model Output of ODIE:

Cooking TimeIngredientsRecipe Name

55-60 minutesOil, honey, eggs, pumpkin purée, milk, pumpkin spice,
baking soda, vanilla, salt, flour, cinnamonPumpkin Bread

No cooking requiredTortilla, hummus, carrots, turkey lunch meatTurkey + Carrot Roll-Up

30 minutesCherries, water, cinnamon, vanilla, strawberriesStrawberry Applause

Model Output of GPT4:

Figure 11: Case study on hard-level instruction with reasoning.

Step Prompt

Fixed
Instruction
Generation

I want to generate some real-world examples of information extraction that users would let the AI help with.
Specifically, an example should contain the following two items:
1. Instruction: [User input, usually refers to extracting some desired information from a given text.]
2. Domain: [The domain to which the user query belongs.]

The following are several examples:
Example 1:
- Instruction: ...
- Domain: ...
Example 2:
- Instruction: ...
- Domain: ...

Following the format of the examples above, I would like you to help me generate ten more new
examples that meet the following requirements:
1. These examples should be in various domains.
2. These examples should be described in different styles.
3. The generated domains do not overlap with the above example.

Background
Text

Generation

Give an information extraction instruction, we aim to generate some real-world example text from which the
information can be extracted.
Specifically, each instruction includes the domain of background text and the type of extracted information.
So I would like the generated text to follow the domain targeted by the instruction and explicitly
include the information that needs to be extracted.

The following are several examples:
Example 1:
- Instruction: ...
- Text: ...
Example 2:
- Instruction: ...
- Text: ...

Following the format of the examples above, I would like you to help me generate the text for the
following instruction:
- Instruction: ...

Open
Instruction
Generation

Give a background text, generate an instruction which mentions extracting the information from it.
But don’t point out what kind of information should be extracted.

The following are several examples:
Example 1:
- Text: ...
- Instruction: ...
Example 2:
- Text: ...
- Instruction: ...

Following the format of the examples above, I would like you to help me generate the instruction
for the following text:
- Text: ...

Instruction
Paraphrasing

Given ten instructions, paraphrase them one by one in different descriptive ways and make them like
professional request but keep the key elements. So the outputs should ten paraphrased instructions.
Remember not to output extra index or newline.
Sentence 1: ...
Sentence 2: ...
Sentence 3: ...
Sentence 4: ...
...

Table 5: Prompts used for training data generation.

Step Prompt

Table
Generation

(Direct)

Given an information extraction instruction and the background text, extract the information as a
markdown table. If the instruction specifies the type of information to be extracted, ensure to follow
the instruction. Otherwise, let this table include as many columns as possible. And keep the content
brief.

The following are several examples:
Example 1:
- Instruction: ...
- Text: ...
- Table: ...
Example 2:
- Instruction: ...
- Text: ...
- Table: ...

Following the format of the examples above, I would like you to help me extract the table for the
following instruction and text:
- Instruction: ...
- Text: ...

Table
Generation

(CoT)

Given an information extraction instruction and the background text, extract the information as a markdown
table and produce a paragraph as the explanation. If the instruction specifies the type of information to be
extracted, ensure to follow the instruction. Otherwise, let this table include as many columns as possible. And
keep the content brief.

The following are several examples:
Example 1:
- Instruction: ...
- Text: ...
- Explanation: ...
- Table: ...
Example 2:
- Instruction: ...
- Text: ...
- Explanation: ...
- Table: ...

Following the format of the examples above, I would like you to help me extract the table for the below
instruction and text. Please adopt a step-by-step approach: generate a comprehensive explanation as the
first step, followed by table extraction as the second step:
- Instruction: ...
- Text: ...

Table 6: Prompts for two methods of table generation: Direct and CoT.

Models
Difficulty Category Source

Overall # DataEasy Medium Hard Fixed Open Generate Retrieve

Open-Source Models
ALPACA 27.42 27.61 25.19 30.90 15.29 26.80 27.16 27.11 52K
TÜLU 29.45 29.80 30.90 33.20 18.62 27.98 30.65 30.07 512K

Our Models
ODIE-DIRECT 34.06 32.98 31.20 37.54 18.98 31.79 33.02 32.76 7.5K
ODIE-COT 28.70 26.09 27.99 29.81 21.13 25.24 28.33 27.60 7.1K

Proprietary Models
CHATGPT 35.03 28.98 32.71 35.04 23.29 29.22 33.11 32.21 -
GPT-4 33.41 30.63 33.80 35.63 24.27 30.25 33.03 32.50 -

Table 7: Full results of table header evaluation. The metric is F1 (%) of the exact matching score.

Models
Difficulty Category Source

Overall # DataEasy Medium Hard Fixed Open Generate Retrieve

Open-Source Models
ALPACA 64.66 59.31 54.53 65.89 45.69 59.57 59.90 59.80 52K
TÜLU 74.18 66.73 67.02 77.78 49.26 69.39 69.47 69.44 512K

Our Models
ODIE-DIRECT 78.26 74.21 67.97 83.59 51.67 72.41 74.22 73.82 7.5K

- Filtering 80.08 72.72 67.02 83.54 51.37 72.82 73.83 73.61 7.5K
ODIE-COT 72.54 63.19 64.45 72.32 54.17 64.70 67.54 66.81 7.1K

- Filtering 69.35 58.88 64.81 68.97 53.01 61.50 65.12 64.11 7.1K

Proprietary Models
CHATGPT 80.41 70.53 72.45 81.69 57.86 75.02 74.41 74.49 -
GPT-4 77.77 70.58 75.51 82.06 57.78 78.36 73.29 74.47 -

Table 8: Full results of table header evaluation. The metric is F1 (%) of the soft matching score.

Models
Difficulty Category Source

Overall # DataEasy Medium Hard Fixed Open Generate Retrieve

Open-Source Models
ALPACA 10.13 7.35 11.50 10.15 7.13 10.03 9.11 9.33 52K
TÜLU 7.75 6.62 11.56 7.10 12.83 9.17 7.68 7.96 512K

Our Models
ODIE-DIRECT 17.74 15.35 14.28 15.59 16.19 13.83 16.42 15.80 7.5K
ODIE-COT 14.22 10.98 10.73 11.41 13.39 11.64 11.96 11.90 7.1K

Proprietary Models
CHATGPT 16.11 16.38 12.96 15.34 14.76 12.47 16.13 15.23 -
GPT-4 15.21 12.52 11.88 12.97 13.89 12.04 13.57 13.22 -

Table 9: Full results of table content evaluation. The metric is F1 (%) of the exact matching score.

Models
Difficulty Category Source

Overall # DataEasy Medium Hard Fixed Open Generate Retrieve

Open-Source Models
ALPACA 52.09 40.00 49.57 48.32 41.73 48.08 46.45 46.86 52K
TÜLU 66.77 60.05 63.50 64.57 57.83 65.41 62.34 63.14 512K

Our Models
ODIE-DIRECT 67.28 68.18 64.23 69.94 56.52 65.49 67.05 66.68 7.5K
ODIE-COT 63.67 60.76 65.83 63.97 60.59 67.79 61.78 63.21 7.1K

Proprietary Models
CHATGPT 71.71 69.48 70.65 72.61 64.50 70.20 70.72 70.59 -
GPT-4 75.70 73.09 75.99 76.67 69.13 76.08 74.45 74.83 -

Table 10: Full results of table content evaluation. The metric is F1 (%) of the semantic similarity score.

