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ABSTRACT

This work focuses on estimating how well a model performs on out-of-distribution
(OOD) datasets without using labels. While recent methods study the prediction
confidence, this work newly reports prediction dispersity is another informative
cue. Confidence reflects whether the individual prediction is certain; dispersity
indicates how the overall predictions are distributed across all categories. Our key
insight is that a well-performing model should give predictions with high confi-
dence and high dispersity. Specifically, we need to consider the two properties so
as to make more accurate estimates. To this end, we use the nuclear norm which
has been shown to characterize both properties. In our experiments, we exten-
sively validate the effectiveness of nuclear norm for various models (e.g., ViT and
ConvNeXt), different datasets (e.g., ImageNet and CUB-200), and diverse types
of distribution shifts (e.g., style shift and reproduction shift). We show that nuclear
norm is more accurate and robust in predicting OOD accuracy than existing meth-
ods. Furthermore, we validate the feasibility of other measurements (e.g., mutual
information maximization) for characterizing dispersity and confidence. Lastly,
we study the limitation of the nuclear norm and discuss potential directions.

1 INTRODUCTION

Model evaluation is critical in both machine learning research and practice. The standard evaluation
protocol is to evaluate a model on a held-out test set that is 1) fully labeled and 2) drawn from the
same distribution as the training set. However, this way of evaluation is often infeasible for real-
world deployment, where the test environments undergo distribution shifts and ground truths are not
provided. In presence of a distribution shift, in-distribution accuracy may only be a weak predictor
of model performance (Deng & Zheng, 2021; Garg et al., 2022). Moreover, annotating data itself is a
laborious task, let alone it is impractical to label every new test distribution. Hence, a way to predict
a classifier accuracy using unlabelled test data only has recently received much attention (Chuang
et al., 2020; Deng & Zheng, 2021; Guillory et al., 2021; Garg et al., 2022).

In the task of accuracy estimation, existing methods typically derive model-based distribution statis-
tics of test sets (Deng & Zheng, 2021; Guillory et al., 2021; Deng et al., 2021; Garg et al., 2022;
Baek et al., 2022). Recent works develop methods based on prediction matrix on unlabeled data
(Guillory et al., 2021; Garg et al., 2022). They focus on the overall confidence of the prediction ma-
trix. Confidence refers to whether the model gives a confident prediction on an individual test data.
It can be measured by entropy or maximum softmax probability. Guillory et al. (2021) show that
the average of maximum softmax scores on a test set is useful for accuracy estimation. Garg et al.
(2022) predict accuracy as the fraction of test data with maximum softmax scores above a threshold.

In this work, we newly consider another property of prediction matrix: dispersity. It measures how
spread out the predictions are across classes. When testing a source-trained classifier on a target
(out-of-distribution) dataset, target features may exhibit degenerate structures due to the distribution
shift, where many target features are distributed in a few clusters . As a result, their corresponding
class predictions would also be degenerate rather than diverse: the classifier predicts test features into
specific classes and few into others. There are existing works that encourages the cluster sizes in the
target data to be balanced (Shi & Sha, 2012; Liang et al., 2020; Yang et al., 2021; Tang et al., 2020),
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thereby increasing the prediction dispersity. In contrast, this work does not aim to improve cluster
structures and instead studies the prediction dispersity to predict model performance on various test
sets without ground truths.

To illustrate that dispersity is useful for accuracy estimation, we report our empirical observation in
Fig. 1. We compute the predicted dispersity score by measuring whether the frequency of predicted
class is uniform. Specifically, we use entropy to quantify the frequency distribution, with higher
scores indicating that the overall predictions are well-balanced. We show that the dispersity score
exhibits a very strong correlation (Spearman’s rank correlation ρ > 0.950) with classifier perfor-
mance when testing on various test sets. This implies that when the classifier does not generalize
well on the test set, it tends to give degenerate predictions (i.e., low prediction dispersity), where the
test samples are mainly assigned to some specific classes.

Based on the above observation, we propose to use nuclear norm, known to be effective in measur-
ing both prediction dispersity and confidence (Cui et al., 2020; 2021), towards accurate estimation.
Other measurements can also be used, such as mutual information maximizing (Bridle et al., 1991;
Krause et al., 2010; Shi & Sha, 2012). Across various model architectures on a range of datasets,
we show that the nuclear norm is more effective than state-of-the-art methods (e.g., ATC (Garg
et al., 2022) and DoC (Guillory et al., 2021)) in predicting OOD performance. Using uncontrollable
and severe synthetic corruptions, we show that nuclear norm is again superior. Finally, we demon-
strate that the nuclear norm still makes reasonably accurate estimations for test sets with moderate
imbalances of classes. We additionally discuss potential solutions under strong label shifts.

2 RELATED WORK

Unsupervised accuracy estimation is proposed to evaluate a model on unlabeled datasets. Recent
methods typically consider the characteristics of unlabeled test sets (Deng & Zheng, 2021; Guillory
et al., 2021; Deng et al., 2021; Garg et al., 2022; Baek et al., 2022; Yu et al., 2022; Chen et al.,
2021b;a). For example, Deng & Zheng (2021); Yu et al. (2022); Chuang et al. (2020) consider the
distribution discrepancy for accuracy estimation. Chen et al. (2021b) achieve more accurate esti-
mation by using specified slicing functions in the importance weighting. Chuang et al. (2020) learn
a domain-invariant classifiers on unlabeled test set to estimate the target accuracy. Guillory et al.
(2021); Garg et al. (2022) propose to predict accuracy based the softmax scores on unlabeled data.
In addition, agreement score of multiple models’ predictions on test data is investigated in (Madani
et al., 2004; Platanios et al., 2016; 2017; Donmez et al., 2010; Chen et al., 2021a). This work also
focuses on estimating a model’s OOD accuracy on various datasets and proposes to achieve robust
estimations by considering the both prediction confidence and dispersity.

Predicting ID generalization gap. To predict the performance gap between a certain pair of
training-testing set, several works explore develop complexity measurements on trained models and
training data (Eilertsen et al., 2020; Unterthiner et al., 2020; Arora et al., 2018; Corneanu et al.,
2020; Jiang et al., 2019a; Neyshabur et al., 2017; Jiang et al., 2019b; Schiff et al., 2021). For ex-
ample, Corneanu et al. (2020) predict the generalization gap by using persistent topology measures.
Jiang et al. (2019a) develop a measurement of layer-wise margin distributions for the generalization
prediction. Neyshabur et al. (2017) use the product of norms of the weights across multiple layers.
Baldock et al. (2021) introduce a measure of example difficulty (i.e., prediction depth) to study the
learning of deep models. Chuang et al. (2021) develop margin-based generalization bounds with
optimal transport. The above works assume that the training and test sets are from the same distri-
bution and they do not consider the characteristics of the test distribution. In comparison, we focus
on predicting a model’s accuracy on various OOD datasets.

Calibration aims to make the probability obtained by the model reflect the true correctness like-
lihood (Guo et al., 2017; Minderer et al., 2021). To achieve this, several methods have been de-
veloped to improve the calibration of their predictive uncertainty, both during training (Karandikar
et al., 2021; Krishnan & Tickoo, 2020) and after (Guo et al., 2017; Gupta et al., 2021) training. For
a perfectly calibrated model, the average confidence over a distribution corresponds to its accuracy
over this distribution. However, calibration methods seldom exhibit desired calibration performance
under distribution shifts (Ovadia et al., 2019; Gong et al., 2021). To estimate OOD accuracy, this
work does not focus on calibrating confidence. Instead, we use the dispersity and confidence of
prediction matrix to predict model performance on unlabeled data.
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Figure 1: Strong correlation between prediction dispersity and classifier accuracy. Each point
corresponds to one test set of ImageNet-C. The straight lines are calculated by linear regression.
We study four ImageNet models (ViT, DenseNet, BeiT, and ResNet152-BiT). We compute the pre-
dicted dispersity score by measuring how uniform the frequency of predicted class is. We observe
that prediction dispersity exhibits a strong correlation (Spearman’s rank correlation ρ > 0.950) with
classification accuracy for various test datasets. This indicates that if a classier gives class predic-
tions with high dispersity, it likely achieves high accuracy, and not otherwise.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

Notations. Consider a classification task with input space X ⊆ Rd and label space Y = {1, . . . , k}.
Let pS and pT denote source and target distributions over X × Y , respectively. Given a source
training dataset DS

train drawn from pS , we train a probabilistic predictor f : Rd → ∆k, where ∆k

denotes the k − 1 dimensional unit simplex. We assume a held-out test set DS
test = {(xs

i , y
s
i )}

ns
i=1

contains ns data i.i.d sampled from pS . When queried at source data (xs, ys) of DS
test, f returns

ŷ =: argmaxj∈Y fj(x
s) as the predicted label and p̂ =: maxj∈Y fj(x

s) as the associated soft-
max confidence score. With label, we can easily compute the classification error on that data by
E(f(xs), ys) := 1condition(y

s ̸= ŷ). By calculating the errors on all data of DS
test, we evaluate the

accuracy f on the source (in-distribution) pS .

Unsupervised Accuracy Estimation. Due to distribution shift (pS ̸= pT ), the accuracy on
in-distribution DS

test is usually a weak estimate of how well f performs on the target (out-of-
distribution) pT . This work aims to assess the generalization of f on target (out-of-distribution)
pT without access to labels. Concretely, given a source-trained f and an unlabeled dataset
DT

u = {(xt
i)}

nt
i=1 with nt samples drawn i.i.d. from pT , we aim to develop a quantity that strongly

correlates with the accuracy of f on DT
u . Note that, the target distribution pT has the same K classes

as the source distribution pS in this work (known as the closed-set setting). Unlike domain adapta-
tion, which aims to adapt the model to the target data, unsupervised accuracy estimation focuses on
predicting model accuracy on various unlabeled test sets.

3.2 PREDICTION CONFIDENCE AND DISPERSITY

Let P ∈ Rnt×k denote the prediction matrix of f on DT
u , and its each row Pi,: is the softmax vector

of i-th target data. The values of P are in the interval [0, 1]. Based on the predicted class of each
softmax vector, we divide P into k class groups (k is the number of classes). Then, we analyze the
following two properties of P .

Confidence. It measures whether a softmax vector (each row of P ) is certain. Common ways to
measure the confidence include entropy and maximum softmax score. If the overall confidence of P
is high, then it implies that the classifier f is certain on the given test set. Prediction confidence has
been reported to be useful in predicting classifier performance on various test sets (Guillory et al.,
2021; Garg et al., 2022). For example, the overall confidence of P measured by the average of
maximum softmax score is predictive of classifier accuracy (Guillory et al., 2021). Other measures
such as entropy (Guillory et al., 2021; Garg et al., 2022) also give similar observation.

Dispersity. It is another property of P that measures whether the predicted classes are diverse
and well-distributed. High dispersity means that predictions on test samples are well-distributed
among k classes. When testing source-train classifier f on a target dataset DT

u , the target features
may exhibit degenerate structures due to distribution shift. A commonly seen pattern is that many
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target features are distributed in few clusters . This likely leads to degenerate predictions: the clas-
sifier tends to predict test features into some particular classes (and neglects other classes). Recent
methods (Tang et al., 2020; Liang et al., 2020; Yang et al., 2022) report that regularizing prediction
dispersity by encouraging cluster size to be balanced is beneficial when training domain adaptive
models. Here, we study whether prediction dispersity is useful for the problem of accuracy estima-
tion, instead of adapting models to the target domain.

To verify the usefulness of dispersity in accuracy prediction, we conduct preliminary correlation
study using ImageNet-C in Fig. 1. Here, the prediction dispersity score is simply computed by
measuring whether the number of softmax vectors in each class is similar: we first calculate the
histogram of the sizes of predicted class, and then use entropy to measure the degree of balance. With
four ImageNet models, we observe that prediction dispersity has a consistently strong correlation
(rank correlation ρ > 0.950) with model accuracy on various test sets (ImageNet-C). This shows
that when classifier does not generalize well on test data, it tends to give degenerate predictions (low
prediction dispersity), where the test samples are mainly assigned to some specific categories.

3.3 CHARACTERIZING DISPERSITY AND CONFIDENCE WITH NUCLEAR NORM

Based on the above observation, we aim to quantify dispersity and confidence of prediction matrix P
to estimate classification accuracy. For this purpose, we resort to the nuclear norm which is known
to be effective in measuring both prediction dispersity and confidence (Cui et al., 2020; 2021).

Nuclear norm ||P ||∗ is defined as the sum of singular values of P . It is the tightest convex envelop
of rank function within the unit ball (Fazel, 2002). A larger nuclear norm implies more classes
are predicted and involved, indicating higher prediction dispersity. In addition, the nuclear-norm
||P ||∗ is an upperbound of the Frobenius-norm that ||P ||F reflects prediction confidence Cui et al.
(2020). In Section A of the appendix, we briefly introduce how nuclear norm reflects the predic-
tion confidence and dispersity. Since test sets can contain any numbers of data points, we normal-
ize the nuclear norm of prediction matrix by its upper bound derived from matrix size and obtain
|̂|P ||∗ = ||P ||∗/

√
min(nt, k) · nt. We mainly use |̂|P ||∗ to measure the confidence and dispersity

of prediction matrix P in this work. In the experiment, we also show that another measure mutual
information maximization (Bridle et al., 1991; Krause et al., 2010; Shi & Sha, 2012; Yang et al.,
2022) is also feasible for the task of accuracy estimation.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUPS

ImageNet-1K. (i) Model. We use 6 representative neural networks provided by (Wightman, 2019).
First, we include three vision transformers: ViT-Base-P16 (ViT) (Dosovitskiy et al., 2020), BEiT-
Base-P16 (BEiT) (Liu et al., 2022), and Swin-Small-P16 (Swin) (Liu et al., 2021). Second,
we include three convolution neural networks: DenseNet-121 (DenseNet), ResNetv2-152-BiT-M
(Res152-BiT) (Kolesnikov et al., 2020), ConvNeXt-Base (Liu et al., 2022). They are either trained
or fine-tuned on ImageNet training set (Deng et al., 2009).
(ii) Synthetic Shift. We use ImageNet-C benchmark (Hendrycks & Dietterich, 2019) to study the
synthetic distribution shift. ImageNet-C is controllable in terms of both type and intensity of cor-
ruption. It contains 95 datasets that are generated by applying 19 types of corruptions (e.g., blur and
contrast) to ImageNet validation set. Each type has 5 intensity levels.
(iii) Real-world Shift. We consider four natural dataset shifts, including 1) dataset reproduction shift
in ImageNet-V2-A/B/C (Recht et al., 2019), 2) sketch shift in ImageNet-S(ketch) (Wang et al.,
2019), 3) style shift in ImageNet-R(endition) (Hendrycks et al., 2021), and 4) bias-controlled dataset
shift in ObjectNet (Barbu et al., 2019). Note that, ImageNet-R and ObjectNet only shares common
113 and 200 classes with ImageNet, respectively. Following (Hendrycks et al., 2021), we sub-select
the model logits for the common classes of both test sets.

CIFAR-10 (i) Model. We use ResNet-20 (He et al., 2016), RepVGG-A0 (Ding et al., 2021),
and VGG-11 (Simonyan & Zisserman, 2014). They are trained on CIFAR-10 training set.
(ii) Synthetic Shift. Similar to ImageNet-C, we use CIFAR-10-C (Hendrycks & Dietterich, 2019)
to study the synthetic shift. It contains 19 types of corruptions where there are 5 intensity levels for
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each type. (iii) Real-world Shift. We include three test sets: 1) CIFAR-10.1 with reproduction shift
(Recht et al., 2018), 2) CIFAR-10.2 with reproduction shift (Recht et al., 2018), and 3) CINIC-10
test set that is sampled from a different database ImageNet.

CUB-200. We also consider fine-grained categorization with large intra-class variations and small
inter-class variations (Wei et al., 2021). We build up a setup based on CUB-200-2011 (Wah et al.,
2011) that contains 200 birds categories. (i) Model. We use 3 classifiers: ResNet-50, ResNet-101,
and PMG (Du et al., 2020). They are pretrained on ImageNet and finetuned on CUB-200-2011 train-
ing set. We use the publicly available codes provided by (Du et al., 2020). (ii) Synthetic Shift. Fol-
lowing the protocol in ImageNet-C, we create CUB-200-C by applying 19 types of corruptions with
5 intensity levels to CUB-200-2011 test set. (iii) Real-world Shift. We use CUB-200-P(aintings)
with style shift (Wang et al., 2020). It contains bird paintings with various rendition (e.g., watercol-
ors, oil paintings, pencil drawings, stamps, and cartoons) collected from web.

4.2 COMPARED METHODS AND EVALUATION METRICS

We use four existing measures for comparison. They are all developed based on the softmax output
of classifier. 1) Average Confidence (AC) (Hendrycks & Gimpel, 2017). The average of maximum
softmax scores on the target dataset; 2) Average Negative Entropy (ANE) (Guillory et al., 2021).
The average of negative entropy scores on the target dataset; 3) Average Thresholded Confidence
(ATC) (Garg et al., 2022). This method first identifies a threshold on source validation set. Then,
ATC is defined as the expected number of target images that obtain a softmax confidence score than
the threshold; 4) Difference of Confidence (DOC) (Guillory et al., 2021). It is defined as the source
validation accuracy minus the difference of AC on the target dataset and source validation set. The
difference of AC is regarded as a surrogate of distribution shift.

Evaluation Procedure. Given a trained classifier, we test it on 95 synthesized test sets under each
setup. For each test set, we calculate the ground-truth accuracy and the estimated OOD quantity.
Then, we evaluate the correlation strength between the estimated OOD quantity and accuracy. We
also show scatter plots and mark real-world datasets to compare different approaches.

Evaluation Metrics. To measure the quality of estimations, we use Pearson Correlation coeffi-
cient (r) (Benesty et al., 2009) and Spearman’s Rank Correlation coefficient (ρ) (Kendall, 1948)
to quantify the linearity and monotonicity. They range from [−1, 1]. A value closer to 1 (or −1)
indicates strong positive (or negative) correlation, and 0 implies no correlation Benesty et al. (2009).
To precisely show the correlation, we use prob axis scaling that maps the range of both accuracy
and estimated OOD quantity from [0, 1] to [−∞,+∞], following Taori et al. (2020); Miller et al.
(2021). We also report the coefficient of determination (R2) (Nagelkerke et al., 1991) of the linear
fit between estimated OOD quantity and accuracy following (Yu et al., 2022). The coefficient R2

ranges from 0 to 1. An R2 of 1 indicates that regression predictions perfectly fit OOD accuracy.

4.3 MAIN RESULTS

Nuclear norm is an effective indicator to OOD accuracy. In Table 1, we report the correlation
results of nuclear norm under three setups: ImageNet-1k, CIFAR-10, and CUB-200. We consis-
tently observe a very strong correlation (R2 > 0.945 and ρ > 0.960) between the nuclear norm and
ODD accuracy under the three setups. The strong correlation still exists when using different model
architectures under each setup. For example, the average coefficients of determination R2 achieved
by nuclear norm are 0.979, 0.990, and 0.989 on ImageNet-1k, CIAFR-10, and CUB-200, respec-
tively. It demonstrates that nuclear norm well captures the distribution shift and makes excellent
OOD accuracy estimations for different classifiers.

Nuclear norm is generally more robust and accurate than existing methods. Compared with
existing methods, nuclear norm achieves the strongest correlation with classifier performance across
all the three setups by considering prediction dispersity as well as the confidence. With different
models on ImageNet, nuclear norm achieves an average R2 of 0.979, while the second best method
(ATC) only obtains 0.924. Moreover, nuclear norm outperforms ATC by 0.262 and in average
R2 under CUB-200 setup. Moreover, the prediction performance of nuclear norm is overall more
robust than other methods. Specifically, we observe that the competing methods are less effective in
predicting the accuracy of certain classifiers such as Swin under the ImageNet setup and ResNet-101
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Table 1: Method comparison under ImageNet, CIFAR-10, and CUB-200 setups. We compare
nuclear norm with four existing methods. To quantify the effectiveness in assessing OOD gener-
alization, we report coefficients of determination (R2) and Spearman’s rank correlation (ρ). The
highest score in each row is highlighted in bold. We show that nuclear norm exhibits the highest
correlation strength (R2 and ρ) with OOD accuracy across three setups.

Setup Model AC ANE ATC DoC Nuclear Norm

R2 ρ R2 ρ R2 ρ R2 ρ R2 ρ

ImageNet

ViT 0.970 0.990 0.964 0.988 0.978 0.990 0.961 0.990 0.991 0.995
BeiT 0.977 0.994 0.964 0.989 0.985 0.995 0.979 0.994 0.988 0.996
Swin 0.794 0.929 0.732 0.909 0.815 0.935 0.791 0.929 0.949 0.961

DenseNet 0.938 0.984 0.929 0.979 0.961 0.989 0.937 0.984 0.995 0.997
Res152-BiT 0.891 0.981 0.877 0.979 0.916 0.982 0.908 0.981 0.981 0.991
ConvNeXt 0.894 0.971 0.866 0.960 0.888 0.967 0.899 0.971 0.967 0.982

Average 0.911 0.975 0.889 0.968 0.924 0.976 0.911 0.975 0.979 0.989

CIFAR-10

ResNet-20 0.916 0.991 0.916 0.991 0.934 0.992 0.937 0.991 0.989 0.995
RepVGG-A0 0.811 0.982 0.806 0.981 0.841 0.985 0.824 0.982 0.992 0.996

VGG-11 0.973 0.994 0.973 0.995 0.984 0.996 0.964 0.994 0.988 0.996

Average 0.900 0.989 0.900 0.988 0.920 0.991 0.908 0.989 0.990 0.995

CUB-200

ResNet-50 0.836 0.942 0.839 0.939 0.855 0.957 0.818 0.942 0.989 0.997
ResNet-101 0.303 0.734 0.319 0.739 0.351 0.775 0.308 0.734 0.987 0.998

PMG 0.892 0.979 0.893 0.977 0.977 0.991 0.903 0.979 0.990 0.998

Average 0.677 0.885 0.684 0.885 0.727 0.908 0.677 0.885 0.989 0.997
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Figure 2: Correlation study under the ImageNet setup. We plot the actual accuracy of ConvNeXt
and five measures including nuclear norm and four competing methods. Different shapes in each
sub-figure represents different test sets. The straight lines are calculated by linear regression fit on
synthetic datasets of ImageNet-C. We list the 19 types of corruptions in ImageNet-C using different
shapes and colors in the bottom right figure. We also mark the 6 real-world datasets in each sub-
figure with arrows. We observe nuclear norm exhibits stronger correlation with accuracy. Moreover,
with nuclear norm, real-world test sets are closely around the linearly fit line.

under the CUB-200 setup. For these difficult cases, nuclear norm remains useful with R2 > 0.945,
which further validates its effectiveness.

Nuclear norm can estimate accuracy of real-world datasets. To further validate the effectiveness
of nuclear norm, we show its accuracy prediction on real-world datasets as the scatter plots under
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Figure 3: Correlation study under the CIFAR-10 setup. We plot the actual accuracy of ResNet-
20 and the estimated OOD quantity. We show the results of nuclear norm, AC and ATC. The lines
are calculated by linear regression fit on CIFAR-C. We mark the 3 real-world test sets in each sub-
figure. We show that AC and ATC fail to estimate generalization on datasets with lower ground-truth
accuracy. In comparison, nuclear norm is more robust and accurate.
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Figure 4: Correlation study under the CUB-200 setup. We plot the actual accuracy of ResNet-50
and the estimated OOD quantity. We compare nuclear norm with AC and ATC. The straight lines
are calculated by the linear regression fit on CUB-200-C. We mark the real-world test set CUB-P
in each sub-figure. We show that AT and ATC cannot give accurate estimates for some datasets.
In contrast, nuclear norm is more robust and accurate in predicting generalization: all test sets are
closely around the linear line, yielding higher correlation strength.

the three setups (Fig. 2, Fig. 3, and Fig. 4, respectively). We observe that nuclear norm can produce
reasonably accurate estimation on real-world test sets. Under the ImageNet setup (Fig. 2), the six
test sets (e.g., ImageNet-V2/A/B/C and ImageNet-R) are very close to the linear regression line.
It demonstrates that nuclear norm well captures these real-world shifts and thus estimates OOD
performance very well. Under CIFAR-10 and CUB-200 setups, we have similar observations.

Although existing methods (e.g., ATC) are effective on most real-world datasets, nuclear norm still
shows its advantage over them. Other methods fail to capture the shifts of ImageNet-S and ObjectNet
under the ImageNet setup: they are far away from linear lines. In comparison, nuclear norm captures
them well and both datasets are very close to linear lines. Furthermore, the scatter plots under the
CIFAR-10 (Fig. 3) and CUB-200 (Fig. 4) show that the competing methods often give accuracy
numbers lower than the ground truth when the test set is difficult, while nuclear norm is still effective.

4.4 DISCUSSION AND ANALYSIS

(I) Beyond controllable synthetic shifts. The synthetic datasets (e.g., ImageNet-C) are algorithmi-
cally generated in a controllable manner. Here, we investigate whether a measure is robust in pre-
dicting OOD accuracy on random synthetic datasets. To this end, we randomly synthesize datasets
for the CIFAR-10 setup. Specifically, we use 10 new corruptions of ImageNet-C̄ (Mintun et al.,
2021) that are perceptually dissimilar to ImageNet-C. The dissimilar corruptions include warps,
blurs, color distortions, noise additions, and obscuring effects. When synthesizing each test set, we
randomly choose 3 corruptions and make corruption strength random. By doing so, we create 200
random synthetic datasets denoted CIFAR-C̄-Rand.

In Fig. 5, we report the correlation results using ResNet-20 under the CIFAR-10 setup. We also show
the linear regression lines that are fit on datasets of CIFAR-10-C. We report results of four methods
including nuclear norm, AC, ATC, and DoC. We have two observations. First, for each method,
CIFAR-C̄-Rand datasets (marked with “+”) are generally distributed around the linear lines. This
indicates that all methods can make reasonable accuracy estimations on CIFAR-C̄-Rand. Second,
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Figure 5: Correlation study on randomly synthesized datasets under the CIFAR-10 setup. We
report results with ResNet-20. Randomly synthesized datasets (CIFAR-10-C̄-Rand) are marked
with orange “+”, and the solid lines are fit with robust linear regression on controllable CIFAR-
10-C. Overall, CIFAR-10-C̄-Rand datasets are distributed around the linear line for every method.
Looking more closely at low-accuracy region (bottom left in each subfigure), nuclear norm gives
more accurate estimations than other methods, indicating its effectiveness.

for the low-accuracy region (bottom left in each subfigure), nuclear norm gives more accurate and
robust predictions than other methods (e.g., ATC and DoC).

Method ImageNet CIFAR CUB

ANE 0.968 0.988 0.885

MI 0.982 0.994 0.995
Nuclear Norm 0.989 0.995 0.997

Table 2: Correlation results using mutual
information maximizing (MI). We report the
average correlation strength (Spearman’s rank
correlation ρ) under each setup. We observe
MI and nuclear norm have similar correlation
strength. Compared with average negative en-
tropy (ANE), MI exhibits stronger correlation
with accuracy across three setups.

(II) Other measures to consider prediction con-
fidence and dispersity. Here, we discuss the us-
age of other measures. We study mutual infor-
mation maximizing (MI) which is commonly used
in discriminative clustering (Bridle et al., 1991;
Krause et al., 2010). Recent methods use it as
a regularization to make model predictions confi-
dent and diverse (Liang et al., 2020; Yang et al.,
2021; Tang et al., 2020). Given a prediction matrix
P ∈ Rnt×k, IM is defined as H( 1

nt

∑nt

i=1 Pi,:) −
1
nt

∑nt

i=1 H(Pi,:). Its first term encourages the pre-
dictions to be globally balanced. The second term
is standard entropy that makes the prediction confi-
dent. In Table 2, we report the correlation results
using MI. We observe that MI and nuclear norm
achieve similar average correlation strength. Compared with average negative entropy (ANE), MI
exhibits stronger correlation across three setups. For example, MI yields a 0.110 higher ρ than ANE
on CUB. This further validates that prediction dispersity is informative for accuracy estimation.

III. Effect of test set size. As illustrated in Section 3.3, nuclear norm without scaling is related
to the size of the prediction matrix. Since test sets can contain any numbers of data points, we
normalize nuclear norm by its upper bound. Here, we change the size of each dataset of ImageNet-
C by randomly selecting 20–90% of all test samples. As shown in Fig. 6, scaled nuclear norm is
well correlated with accuracy under different test set sizes.

Res152-BiTViT

Nuclear Norm Nuclear Norm Nuclear Norm

To
p-

1 
ac

cu
ra

cy
 (%

)

BeiTDenseNet

Nuclear Norm

Figure 6: Analysis of the influence of test set size on nuclear norm. We conduct correlation study
on randomly sub-sampled ImageNet-C. Specifically, we vary the size of each dataset by randomly
selecting 20–90% of test samples. We test three classifiers and observe the correlation strength
remains very high (R2 > 0.960 and ρ > 0.970).

(IV) Discussion on label shift (class imbalance). In our work, we consider the common covari-
ate shift (Sugiyama & Kawanabe, 2012) where pS(x) ̸= pT (x) and pS(y|x) = pT (y|x) (i.e., the
class label of the input data is independent of distribution). Nuclear norm measures the predic-
tion dispersity and thus implicitly assumes that the test set does not contain strong label shift (i.e.,
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Figure 7: Comparison of various methods on imbalanced test sets. Using ViT under ImageNet
setup, we study the robustness of existing methods to several imbalance ratio m when test sets are
long-tailed. A smaller m indicates a higher imbalance intensity. The linear lines are fit on standard
test sets (m = 1). We observe that both mutual information maximization (MI) and nuclear norm
are less effective than other methods under strong-imbalanced datasets (m < 0.4). Furthermore, we
show that MI and nuclear norm are robust under mild-imbalanced test sets (m ≥ 0.4).

class imbalance). As for the label shift (Garg et al., 2020), the assumption about the distribution is
pS(y) ̸= pT (y) and pS(x|y) = pT (x|y) (i.e., the class-conditional distribution does not change).

Here, we discuss the robustness of nuclear norm to label shift. We first note that real-world test
sets such as ImageNet-R, ObjectNet, and CUB-200-P are already imbalanced. We show that nuclear
norm robustly captures them: they are very close to the linear lines (as shown in Fig. 2 and Fig. 4) To
further study the effect of label shift, we create long-tailed imbalance test sets. We use an exponential
decay to make the proportion of each class different between source and target datasets following
Cao et al. (2019). We use imbalance ratio m to denote the ratio between sample sizes of the least
frequent and most frequent class. We test several imbalanced ratios: {0.1, 0.2, 0.4, 0.6, 0.8}. We
conduct the experiment on ImageNet-C and use 19 types of corruption datasets with the second
intensity level. As shown in Fig. 7, we observe that both nuclear norm and MI are influenced by
label shift when the imbalance is strong (m < 0.4). For example, when the test set is of extreme class
imbalance (m = 0.1), the prediction of nuclear norm is not accurate. We also observe that under the
strong imbalance (m < 0.4), exiting methods (e.g., ATC) is more stable than nuclear norm and MI.
We further note that nuclear norm and MI are robust to the mild imbalance (m ≥ 0.4).

The above analysis indicates that nuclear norm is robust in the presence of moderate label shift. To
deal with strong label shift, using extra techniques such as label shift estimation (Lipton et al., 2018;
Tian et al., 2020) and prior knowledge (Chen et al., 2021b; Sun et al., 2022) would be helpful. It
would be interesting to further study this idea in future work.

5 CONCLUSION

This work studies OOD accuracy estimation where the goal is to predict classifier accuracy on
unlabeled test sets. While existing methods study the confidence of prediction matrix on unlabelled
data, this work newly considers the prediction dispersity. It measures whether the overall predictions
are well-balanced across classes. We report that prediction dispersity is a useful property which
correlates strongly with classifier accuracy on various test sets. Driven by this new observation, we
consider both prediction confidence and dispersity to achieve more accurate estimation. To this end,
we use the nuclear norm of prediction matrix to characterize both properties. Across three setups,
we consistently observe that nuclear norm is more effective and robust in assessing classifier OOD
performance than existing methods. We further conduct experiment on imbalanced test sets and
show that nuclear norm is still effective under moderate class imbalances.
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Mandoline: Model evaluation under distribution shift. In International Conference on Machine
Learning, pp. 1617–1629, 2021b.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as an
alternative to the cifar datasets. arXiv preprint arXiv:1707.08819, 2017.

Ching-Yao Chuang, Antonio Torralba, and Stefanie Jegelka. Estimating generalization under dis-
tribution shifts via domain-invariant representations. In International Conference on Machine
Learning, 2020.

Ching-Yao Chuang, Youssef Mroueh, Kristjan Greenewald, Antonio Torralba, and Stefanie Jegelka.
Measuring generalization with optimal transport. In Advances in Neural Information Processing
Systems, volume 34, pp. 8294–8306, 2021.

Ciprian A Corneanu, Sergio Escalera, and Aleix M Martinez. Computing the testing error without
a testing set. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 2677–2685, 2020.

Shuhao Cui, Shuhui Wang, Junbao Zhuo, Liang Li, Qingming Huang, and Qi Tian. Towards dis-
criminability and diversity: Batch nuclear-norm maximization under label insufficient situations.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
3941–3950, 2020.

Shuhao Cui, Shuhui Wang, Junbao Zhuo, Liang Li, Qingming Huang, and Qi Tian. Fast batch
nuclear-norm maximization and minimization for robust domain adaptation. arXiv preprint
arXiv:2107.06154, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255, 2009.

Weijian Deng and Liang Zheng. Are labels always necessary for classifier accuracy evaluation?
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15069–15078, 2021.

10



Under review as a conference paper at ICLR 2023

Weijian Deng, Stephen Gould, and Liang Zheng. What does rotation prediction tell us about clas-
sifier accuracy under varying testing environments? In International conference on machine
learning, 2021.

Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han, Guiguang Ding, and Jian Sun. Repvgg:
Making vgg-style convnets great again. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 13733–13742, 2021.

Pinar Donmez, Guy Lebanon, and Krishnakumar Balasubramanian. Unsupervised supervised learn-
ing i: Estimating classification and regression errors without labels. Journal of Machine Learning
Research, 11(4), 2010.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Ruoyi Du, Dongliang Chang, Ayan Kumar Bhunia, Jiyang Xie, Zhanyu Ma, Yi-Zhe Song, and
Jun Guo. Fine-grained visual classification via progressive multi-granularity training of jigsaw
patches. In European Conference on Computer Vision, pp. 153–168, 2020.

Gabriel Eilertsen, Daniel Jönsson, Timo Ropinski, Jonas Unger, and Anders Ynnerman. Classifying
the classifier: dissecting the weight space of neural networks. arXiv preprint arXiv:2002.05688,
2020.

Maryam Fazel. Matrix rank minimization with applications. PhD thesis, PhD thesis, Stanford
University, 2002.

Saurabh Garg, Yifan Wu, Sivaraman Balakrishnan, and Zachary Lipton. A unified view of label
shift estimation. In Advances in Neural Information Processing Systems, pp. 3290–3300, 2020.

Saurabh Garg, Sivaraman Balakrishnan, Zachary C Lipton, Behnam Neyshabur, and Hanie Sedghi.
Leveraging unlabeled data to predict out-of-distribution performance. In International Conference
on Learning Representations, 2022.

Yunye Gong, Xiao Lin, Yi Yao, Thomas G Dietterich, Ajay Divakaran, and Melinda Gervasio.
Confidence calibration for domain generalization under covariate shift. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 8958–8967, 2021.

Devin Guillory, Vaishaal Shankar, Sayna Ebrahimi, Trevor Darrell, and Ludwig Schmidt. Predicting
with confidence on unseen distributions. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 1134–1144, 2021.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In Proc. ICML, pp. 1321–1330, 2017.

Kartik Gupta, Amir Rahimi, Thalaiyasingam Ajanthan, Thomas Mensink, Cristian Sminchisescu,
and Richard Hartley. Calibration of neural networks using splines. In International Conference
on Learning Representations, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations. In International Conference on Learning Representations, 2019.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. In International Conference on Learning Representations, 2017.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 8340–8349, 2021.

11



Under review as a conference paper at ICLR 2023

Yiding Jiang, Dilip Krishnan, Hossein Mobahi, and Samy Bengio. Predicting the generalization gap
in deep networks with margin distributions. In International Conference on Learning Represen-
tations, 2019a.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantas-
tic generalization measures and where to find them. In International Conference on Learning
Representations, 2019b.

Archit Karandikar, Nicholas Cain, Dustin Tran, Balaji Lakshminarayanan, Jonathon Shlens,
Michael C Mozer, and Becca Roelofs. Soft calibration objectives for neural networks. In Ad-
vances in Neural Information Processing Systems, pp. 29768–29779, 2021.

Maurice George Kendall. Rank correlation methods. 1948.

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly,
and Neil Houlsby. Big transfer (bit): General visual representation learning. In European confer-
ence on computer vision, pp. 491–507, 2020.

Andreas Krause, Pietro Perona, and Ryan Gomes. Discriminative clustering by regularized infor-
mation maximization. Advances in neural information processing systems, 23, 2010.

Ranganath Krishnan and Omesh Tickoo. Improving model calibration with accuracy versus un-
certainty optimization. In Advances in Neural Information Processing Systems, volume 33, pp.
18237–18248, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation. In International Conference on Machine
Learning, pp. 6028–6039. PMLR, 2020.

Zachary Lipton, Yu-Xiang Wang, and Alexander Smola. Detecting and correcting for label shift with
black box predictors. In International conference on machine learning, pp. 3122–3130, 2018.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 10012–10022, 2021.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2022.

Omid Madani, David Pennock, and Gary Flake. Co-validation: Using model disagreement on un-
labeled data to validate classification algorithms. In Advances in neural information processing
systems, pp. 873–880, 2004.

John P Miller, Rohan Taori, Aditi Raghunathan, Shiori Sagawa, Pang Wei Koh, Vaishaal Shankar,
Percy Liang, Yair Carmon, and Ludwig Schmidt. Accuracy on the line: on the strong correlation
between out-of-distribution and in-distribution generalization. In International Conference on
Machine Learning, pp. 7721–7735, 2021.

Matthias Minderer, Josip Djolonga, Rob Romijnders, Frances Hubis, Xiaohua Zhai, Neil Houlsby,
Dustin Tran, and Mario Lucic. Revisiting the calibration of modern neural networks. In Advances
in Neural Information Processing Systems, pp. 15682–15694, 2021.

Eric Mintun, Alexander Kirillov, and Saining Xie. On interaction between augmentations and cor-
ruptions in natural corruption robustness. In Advances in Neural Information Processing Systems,
2021.

Nico JD Nagelkerke et al. A note on a general definition of the coefficient of determination.
Biometrika, 78(3):691–692, 1991.

12



Under review as a conference paper at ICLR 2023

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring general-
ization in deep learning. In Advances in neural information processing systems, pp. 5947–5956,
2017.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua
Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty?
evaluating predictive uncertainty under dataset shift. In Advances in Neural Information Process-
ing Systems, 2019.

Emmanouil Platanios, Hoifung Poon, Tom M Mitchell, and Eric J Horvitz. Estimating accuracy from
unlabeled data: A probabilistic logic approach. In Advances in Neural Information Processing
Systems, pp. 4361–4370, 2017.

Emmanouil Antonios Platanios, Avinava Dubey, and Tom Mitchell. Estimating accuracy from unla-
beled data: A bayesian approach. In International Conference on Machine Learning, pp. 1416–
1425, 2016.

Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization. SIAM review, 52(3):471–501, 2010.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do cifar-10 classifiers
generalize to cifar-10? arXiv preprint arXiv:1806.00451, 2018.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International Conference on Machine Learning, pp. 5389–5400.
PMLR, 2019.

Yair Schiff, Brian Quanz, Payel Das, and Pin-Yu Chen. Predicting deep neural network generaliza-
tion with perturbation response curves. In Advances in Neural Information Processing Systems,
2021.

Yuan Shi and Fei Sha. Information-theoretical learning of discriminative clusters for unsupervised
domain adaptation. arXiv preprint arXiv:1206.6438, 2012.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Masashi Sugiyama and Motoaki Kawanabe. Machine learning in non-stationary environments:
Introduction to covariate shift adaptation. MIT press, 2012.

Tao Sun, Cheng Lu, and Haibin Ling. Prior knowledge guided unsupervised domain adaptation. In
European Conference on Computer Vision, 2022.

Hui Tang, Ke Chen, and Kui Jia. Unsupervised domain adaptation via structurally regularized
deep clustering. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 8725–8735, 2020.

Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, and Ludwig
Schmidt. Measuring robustness to natural distribution shifts in image classification. Advances
in Neural Information Processing Systems, 33:18583–18599, 2020.

Junjiao Tian, Yen-Cheng Liu, Nathaniel Glaser, Yen-Chang Hsu, and Zsolt Kira. Posterior re-
calibration for imbalanced datasets. Advances in Neural Information Processing Systems, 33:
8101–8113, 2020.

Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier Bousquet, and Ilya Tolstikhin. Predict-
ing neural network accuracy from weights. In International Conference on Learning Representa-
tions, 2020.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representa-
tions by penalizing local predictive power. In Advances in Neural Information Processing Sys-
tems, pp. 10506–10518, 2019.

13



Under review as a conference paper at ICLR 2023

Sinan Wang, Xinyang Chen, Yunbo Wang, Mingsheng Long, and Jianmin Wang. Progressive adver-
sarial networks for fine-grained domain adaptation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 9213–9222, 2020.

Xiu-Shen Wei, Yi-Zhe Song, Oisin Mac Aodha, Jianxin Wu, Yuxin Peng, Jinhui Tang, Jian Yang,
and Serge Belongie. Fine-grained image analysis with deep learning: A survey. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 2021.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Shiqi Yang, Joost van de Weijer, Luis Herranz, Shangling Jui, et al. Exploiting the intrinsic neighbor-
hood structure for source-free domain adaptation. In Advances in Neural Information Processing
Systems, pp. 29393–29405, 2021.

Shiqi Yang, Yaxing Wang, Kai Wang, Shangling Jui, and Joost van de Weijer. Attracting and dispers-
ing: A simple approach for source-free domain adaptation. In Advances in Neural Information
Processing Systems, 2022.

Yaodong Yu, Zitong Yang, Alexander Wei, Yi Ma, and Jacob Steinhardt. Predicting out-of-
distribution error with the projection norm. In Advances in Neural Information Processing Sys-
tems, 2022.

14

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models


Under review as a conference paper at ICLR 2023

A NUCLEAR NORM

Let P ∈ Rnt×k denote the prediction matrix of f on DT
u , nuclear norm ||P ||∗ is the sum of singular

values of P . Nuclear norm is the tightest convex envelop of rank function within the unit ball (Fazel,
2002). A larger nuclear norm implies more classes are predicted and involved, indicating higher pre-
diction dispersity. In addition, nuclear norm ||P ||∗ and Frobenius norm ||P ||F =

√
Trace(P ⊺P )

can bound each other (Recht et al., 2010; Fazel, 2002). More specifically, they have the following
relationship: 1/

√
d||P ||∗ ≤ ||P ||F ≤ ||P ||∗ ≤

√
d||P ||F , where d = min(nt, k). In our work,

because P is consists of softmax vectors, its Frobenius norm is bound by ||P ||F ≤ √
nt.

Frobenius norm ||P ||F reflects prediction confidence Cui et al. (2020). Based on the above rela-
tionship, a larger nuclear norm ||P ||∗ implies a larger Frobenius norm ||P ||F , indicating a higher
prediction confidence. Therefore, nuclear norm ||P ||∗ can be use to characterize both confidence
and dispersity of P . Moreover, nuclear norm ||P ||∗ is related to the shape of P , so we normalized
it by its upper bound

√
d · nt and obtain |̂|P ||∗ = ||P ||∗/

√
d · nt. In our work, we use |̂|P ||∗ to

measure the confidence and dispersity of prediction matrix.

B EXPERIMENTAL SETUP

B.1 MODELS

ImageNet. Models are provided by PyTorch Image Models (timm-1.5) Wightman (2019). They are
either trained or fine-tuned on the ImageNet-1k training set Deng et al. (2009).

CIFAR-10. We train models using the implementations from https://github.com/chenyaofo/pytorch-
cifar-models. CIFAR-C̄-Rand is generated with the 10 new corruptions of ImageNet-C̄ (Mintun
et al., 2021) that are perceptually dissimilar to ImageNet-C. We apply random corruptions based on
the codes from https://github.com/facebookresearch/augmentation-corruption.

CUB-200. We train CIFAR models using the implementations from https://github.com/PRIS-
CV/PMG-Progressive-Multi-Granularity-Training. CUB-200-C is generated based on the imple-
mentations from https://github.com/hendrycks/robustness.

B.2 DATASETS

The datasets we use are standard benchmarks, which are publicly available. We have double-checked
their license. We list their open-source as follows.

CIFAR-10 Krizhevsky et al. (2009) (https://www.cs.toronto.edu/ kriz/cifar.html);
CIFAR-10-C Hendrycks & Dietterich (2019) (https://github.com/hendrycks/robustness);
CIFAR-10.1 Recht et al. (2018) (https://github.com/modestyachts/CIFAR-10.1);
CINIC Chrabaszcz et al. (2017) (https://github.com/BayesWatch/cinic-10).

ImageNet-Validation Deng et al. (2009) (https://www.image-net.org);
ImageNet-V2-A/B/C Recht et al. (2019) (https://github.com/modestyachts/ImageNetV2);
ImageNet-Corruption Hendrycks & Dietterich (2019) (https://github.com/hendrycks/robustness);
ImageNet-Sketch Wang et al. (2019) (https://github.com/HaohanWang/ImageNet-Sketch);
ImageNet-Rendition Hendrycks et al. (2021) (https://github.com/hendrycks/imagenet-r);
ObjectNet Barbu et al. (2019) (https://objectnet.dev).

CUB-200-2011 Wah et al. (2011) (https://www.vision.caltech.edu/datasets/cub 200 2011). CUB-
Paintings Wang et al. (2020) (https://github.com/thuml/PAN).

B.3 COMPUTATION RESOURCES

We run all experiment on one 3090Ti with PyTorch (1.11.0+cu113). CPU is AMD Ryzen 9 5900X
12-Core Processor.
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B.4 EXPERIMENTAL DETAIL

(I) Effect of temperature. We empirically find that using a small temperature for softmax is helpful
for all methods. Therefore, we use temperature of 0.4 for all methods in the experiment. We show the
effect of temperature in term of correlation strength (R2 and ρ) in Fig. 8. We have two observations.
First, using a small temperature (e.g., 0.4) helps for all methods including nuclear norm, ATC and
DoC. The correlation results are stable when temperature ranges from 0.2 to 0.45. Second, when
using various temperature values, nuclear norm consistently achieve stronger correlation.
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Figure 8: Effect of temperature for all methods. We report the correlation results (both R2 and ρ)
using various temperature of softmax. We show that a small temperature (0.2 to 0.45) helps for all
methods. Moreover, when using different temperature values, nuclear norm consistently exhibits a
stronger correlation than other methods.
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Figure 9: Effect of rectified nuclear norm. Under imbalanced test sets, we relax the regularization
of nuclear norm on “tail” classes (rectified nuclear norm). We conduct correlation study on imbal-
anced ImageNet-C using ViT. We observe that rectified nuclear norm can improve the nuclear norm
under imbalanced test sets.

Correlation ProjNorm ALine-D Nuclear Norm

ρ 0.980 0.995 0.997
R2 0.973 0.974 0.990

Table 3: Method comparison under
CIFAR-10 setup. We report the average cor-
relation strength (Spearman’s rank correlation
ρ and coefficients of determination R2).

(III) Comparison with ALine-D (Baek et al.,
2022) and ProjNorm (Yu et al., 2022). For a fair
comparison, we follow the same setting as (Baek
et al., 2022) and report the results using ResNet18
on CIFAR-10-C. As shown in Table 3, we ob-
serve that nuclear norm gains stronger correlation
strength than the two methods. It achieves 0.997
and 0.990 in rank correlation (ρ) and coefficients of
determination (R2), respectively. Furthermore, we
would like to mention that ALine-D (Baek et al.,
2022) requires a set of models for accuracy estima-
tion. ProjNorm (Yu et al., 2022) requires fine-tuning a pre-trained network on each OOD test set
with pseudo-labels. In contrast, nuclear Norm is more efficient: it is computed on a classifier’s
prediction matrix on each unlabeled test set.

(II) Rectified nuclear norm for imbalanced test sets. We tried to relax the regularization of nuclear
norm under imbalanced test sets. Nuclear Norm encourages the predictions to be well-distributed
across all classes. For imbalanced test sets, we can relax this regularization on the tail classes. That
is, we mainly consider the prediction dispersity of head classes.
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To achieve this, we explored one intuitive way to rectify the nuclear norm: we modify the nor-
malization (i.e., upper bound) of the nuclear norm. Specifically, we revise the normalization from√
min(nt, k) ∗ nt to

√
min(nt, khead) ∗ nt, where khead is the number of major classes regularised

by nuclear norm. We conducted experiment under ImageNet setup (k=1000) and empirically set
khead based on the imbalanced intensity rm (the ratio between the number of last 10 “tail” classes
and the number of top 10 “head” classes): khead = k − (1 − rm) ∗ 80. To estimate imbalanced
intensity, we use BBSE (Lipton et al., 2018) to estimate the class distribution.

In Figure 9, we show that our attempt (rectified nuclear norm) can improve nuclear norm. We would
like to view the above experiment as a starting point that inspires more research on the rectification
of nuclear norm for strong imbalanced test sets.

(IV) Additional observations. First, ObjectNet of ImageNet setup is built in a bias-controlled
manner (with controls for rotation, background, and viewpoint). We observe that its images are of-
ten confidently misclassified, which makes predictions with the high nuclear norm. We believe this
is why ObjectNet is always off the linear line. Second, for all accuracy estimation methods, they
can well capture the model performance is high (top-right region of each figure). However, when
model accuracy is low (bottom-left), existing methods cannot make reasonable estimations, espe-
cially under CIFAR-10 and CUB-200. In contrast, nuclear norm can well handle the low-accuracy
region by additionally considering the prediction dispersity. To improve the accuracy estimation,
it would be helpful to further consider the characteristics of predictions when the model performs
poorly. Third, in Figures 2, 3, and 4, we observe that the real-world test sets (e.g., ImageNet-R,
CINIC, and CUB-P) scatter around the linear lines fit on synthetic datasets. This indicates that both
real-world and synthetic datasets follow a similar linear trend. This gives an interesting hint: we can
use synthetic datasets to simulate and capture the distributions of real-world test sets.

B.5 MORE CORRELATION RESULTS

B.5.1 IMAGENET SETUP

To
p-

1 
ac

cu
ra

cy
 (%

)

Average Negative Entropy Average Confidence

Img-R

Img-V2-B

ObjectNet

To
p-

1 
ac

cu
ra

cy
 (%

)

Difference of Confidence Average Thresholded Confidence

Img-V2-C

Img-V2-A

Img-S

Img-R

Img-V2-B

ObjectNet

Img-V2-C

Img-V2-A

Img-S

Img-R

Img-V2-B

ObjectNet

Img-V2-C

Img-V2-A

Img-S

Img-R

Img-V2-B

ObjectNet

Img-V2-C

Img-V2-A

Img-S

Img-R

Img-V2-B

ObjectNet

Img-V2-C

Img-V2-A

Img-S

Nuclear Norm

Figure 10: Correlation study under the ImageNet setup. We plot the actual accuracy of ViT
and five measures including nuclear norm and four competing methods. Different shapes in each
sub-figure represents different test sets. The straight lines are calculated by linear regression fit on
synthetic datasets of ImageNet-C. We list the 19 types of corruptions in ImageNet-C using different
shapes and colors in the bottom right figure. We also mark the 6 real-world datasets in each sub-
figure with arrows. Compared with other methods, nuclear norm exhibits stronger correlation with
accuracy. Moreover, with nuclear norm, real-world test sets are closely around the linearly fit line.
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Figure 11: Correlation study under the ImageNet setup. We plot the actual accuracy of BeiT and
five measures including nuclear norm and four competing methods.

To
p-

1 
ac

cu
ra

cy
 (%

)

Average Confidence

To
p-

1 
ac

cu
ra

cy
 (%

)

Difference of Confidence Average Thresholded Confidence

Nuclear Norm Average Negative EntropyNuclear Norm Average Negative Entropy Average Confidence

Img-R

Img-V2-B

ObjectNet

Img-V2-C

Img-V2-A

Img-S

Img-R

Img-V2-B

ObjectNet

Img-V2-C

Img-V2-A

Img-S

Img-R

Img-V2-B

ObjectNet

Img-V2-C

Img-V2-A

Img-S

Img-R

Img-V2-B
Img-V2-C

Img-V2-A

Img-S

Img-R

Img-V2-B

ObjectNet

Img-V2-C

Img-V2-A

Img-S

ObjectNet

Figure 12: Correlation study under the ImageNet setup. We plot the actual accuracy of Res152-
BiT and five measures including nuclear norm and four competing methods.
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B.5.2 CIFAR-10 AND CUB-200 SETUPS
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Figure 13: Correlation study under the CIFAR-10 setup. We plot the actual accuracy of
RepVGG-A0 and five measures including nuclear norm and four competing methods. The straight
lines are calculated by linear regression fit on synthetic datasets of CIFAR-10-C. We list the 19 types
of corruptions in CIFAR-10-C using different shapes and colors in the bottom right figure. We also
mark the 3 real-world datasets in each sub-figure with arrows. Compared with other methods, nu-
clear norm exhibits stronger correlation with accuracy.
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Figure 14: Correlation study under the CUB-200 setup. We plot the actual accuracy of PMG and
five measures including nuclear norm and four competing methods. The straight lines are calculated
by linear regression fit on synthetic datasets of CUB-200-C. We list the 19 types of corruptions in
CUB-200-C using different shapes and colors in the bottom right figure. We also mark the real-
world CUB-200-P in each sub-figure with arrows. Compared with other methods, nuclear norm
exhibits stronger correlation with accuracy.
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