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Abstract

Graph Neural Networks (GNNs) have been successfully adopted in recommenda-
tion systems by virtue of the message-passing that implicitly captures collaborative
effect. Nevertheless, most of the existing message-passing mechanisms for recom-
mendation are directly inherited from GNNs without scrutinizing whether the cap-
tured collaborative effect would benefit the prediction of user preferences. To quan-
tify the benefit of the captured collaborative effect, we propose a recommendation-
oriented topological metric, Common Interacted Ratio (CIR), which measures
the level of interaction between a specific neighbor of a node with the rest of
its neighbors. Then we propose a recommendation-tailored GNN, Collaboration-
Aware Graph Convolutional Network (CAGCN), that goes beyond 1-WL test in
distinguishing non-bipartite-subgraph-isomorphic graphs. Experiments on six
benchmark datasets show that the best CAGCN variant outperforms the most
representative GNN-based recommendation model, LightGCN, by nearly 10% in
Recall@20 and also achieves more than 80% speedup. Our code is available at
https://github.com/YuWVandy/CAGCN.

1 Introduction

Recommendation aims to alleviate information overload through helping users discover items of
interest [1, 2]. Given historical user-item interactions, the key of recommendation systems is to
leverage the Collaborative Effect [3–5] to predict how likely users will interact with items. A common
paradigm for modeling collaborative effect is to first learn embeddings of users/items capable of
recovering historical user-item interactions and then perform top-k recommendation based on the
pairwise similarity between the learned user/item embeddings.

Since user-item interactions can be naturally represented as a bipartite graph, recent research has
started to leverage GNNs to learn user/item embeddings for the recommendation [5–7]. Two pi-
oneering works NGCF [5] and LightGCN [7] leverage graph convolutions to aggregate messages
from local neighborhoods, which directly injects the collaborative signal into user/item embeddings.
However, weighting messages based on node degrees as LightGCN cannot fully remove the influence
of unreliable interactions. Even though NGCF leverages the affinity score to weigh neighbors,
such affinity score is still calculated based on the dot-product between embeddings that are opti-
mized by the unreliable interactions. Despite the fundamental importance of capturing beneficial
collaborative signals, the related studies are still in their infancy. To fill this crucial gap, we aim
to customize message-passing for recommendations and propose a recommendation-tailored GNN,
namely Collaboration-Aware Graph Convolutional Network, that selectively passes neighborhood
information based on their Common Interacted Ratio (CIR). Our contributions are:
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Figure 1: In (a)-(b), since j1, j2 have more interactions (paths) with (to) i’s neighbors than j3,
leveraging more collaborations from j1, j2 than j3 would increase u’s ranking over i. In (c), we
quantify the CIR between j1 and u via the paths (and associated nodes) between j1 and N̂ 1

u .

• Novel Recommendation-tailored Topological Metric: We propose a recommendation-oriented
topological metric, Common Interacted Ratio (CIR), and demonstrate the capability of CIR to
quantify the benefits of aggregating messages from neighborhoods.

• Novel Recommendation-tailored Graph Convolution: We incorporate CIR into message-passing
and propose a novel Collaboration-Aware Graph Convolutional Network (CAGCN). Then we prove
that it can goes beyond 1-WL test in detecting non-bipartite-subgraph-isomorphic graphs, and
demonstrate its superiority via comprehensive experiments on real-world datasets including two
newly collected datasets and provide an in-depth interpretation on its advantages.

2 Method
In this section, we introduce notations used in this work, a novel recommendation-oriented topological
metric (i.e., Common Interacted Ratio (CIR)) and then propose the collaboration-aware GNN.

Preliminary. Let G = (V, E) be the user-item bipartite graph, where the node set V = U ∪ I
includes the user set U and the item set I. User-item interactions are denoted as edges E where epq
represents the edge between node p and q. The network topology is described by adjacency matrix
A ∈ {0, 1}(|U|+|I|)×(|U|+|I|), where Apq = 1 when epq ∈ E , and Apq = 0 otherwise. Let N l

p and
N̂ l

p denote the set of neighbors that are exactly l-hops away from p in the training and testing set.
Let Sp = (VSp

, ESp
) be the neighborhood subgraph [8] induced in G by Ñ 1

p = N 1
p ∪ {p}. We use

P l
pq to denote the set of shortest paths of length l between node p and q and denote one of such

paths as P l
pq. Note that P l

pq = ∅ if it is impossible to have a path between p and q of length l, e.g.,
P1

11 = ∅ in an acyclic graph. Furthermore, we denote the initial embeddings of users/items in graph
G as E0 ∈ R(n+m)×d0

where e0p = E0
p is the node p’s embedding and let dp be the degree of node p.

2.1 Common Interacted Ratio
Graph-based methods capture collaboration from other users/items by message-passing. However, we
cannot guarantee all of these collaborations benefit the prediction of users’ preferences. For example,
in Figure 1(a)-(b), given a center user u, we expect to leverage more collaborations from u’s observed
neighboring items that have higher level of interactions (e.g., j1, j2 rather than j3) with items that
would be interacted with u (e.g., i). To mathematically quantify such level of interactions, we propose
a graph topological metric, Common Interacted Ratio (CIR):

Definition 2.1. Common Interacted Ratio (CIR): For an observed neighboring item j ∈ N 1
u of user

u, the CIR of j around u considering nodes up to (L+ 1)-hops away from u, i.e., ϕ̂L
u (j), is defined

as the average interacting ratio of j with all neighboring items of u in N̂ 1
u through paths of length

less than or equal to 2L:

ϕ̂L
u (j) =

1

|N̂ 1
u |

∑
i∈N̂ 1

u

L∑
l=1

β2l
∑

P 2l
ji∈P2l

ji

1

f({N 1
k |k ∈ P 2l

ji })
,∀j ∈ N 1

u ,∀u ∈ U , (1)

where {N 1
k |k ∈ P 2l

ji } represents the set of the 1-hop neighborhood of node k along the path P 2l
ji from

node j to i of length 2l. β quantifies the importance/contribution of paths of length 2l connecting i, j.
f is a normalization function to differentiate the importance of different paths in P2l

ji and its value
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depends on the neighborhood of each node on the path P 2l
ji . As shown in Figure 1(c), the CIR of j1

centering around u, ϕ̂L
u (j1) is decided by paths of length between 2 to 2L. By configuring different

L and f ,
∑

P 2l
ji∈P2l

ji

1
f({N 1

k |k∈P 2l
ji })

could express many existing graph similarity metrics [9–13] and

we thoroughly discuss them in Appendix A.2. Calculating ϕ̂L
u (j) is unrealistic since we do not have

access to the testing set N̂ 1
u in advance. Thereby, we propose to approximate ϕ̂u(j) by enumerating i

from the observed training set N 1
u instead of N̂ 1

u and denote this estimated version as ϕL
u (j). Such

approximation assumes that neighboring nodes interacting more with other neighboring nodes in the
training set would also interact more with neighboring nodes in the testing set, which is verified in
Appendix A.3. We further empirically rationalize that edges with higher ϕu(j) are more important to
the recommendation performance in Appendix A.8.3.

2.2 Collaboration-Aware Graph Convolutional Network
In order to pass node messages based on the benefits of their corresponding collaborations, we
develop Collaboration-Aware Graph Convolutional Network. The core idea is to strengthen/weaken
the messages passed from neighbors with higher/lower estimated CIR to center nodes. To achieve
this, we compute the edge weight as: Φij = ϕi(j) when Aij > 0 (and 0 otherwise), where ϕi(j)
is the estimated CIR of neighboring node j centering around i. Note that unlike the symmetric
graph convolution D−0.5AD−0.5 used in LightGCN, here Φ is asymmetrical: the interacting level
of node j with i’s neighborhood is likely to be different from the interacting level of node i with j’s
neighborhood. We further normalize Φ and combine it with the LightGCN convolution:

el+1
i =

∑
j∈N 1

i

g
(
γi

Φij∑
k∈N 1

i
Φik

, d−0.5
i d−0.5

j

)
elj ,∀i ∈ V (2)

where γi is a coefficient that varies the total amount of message flowing to each node i and controls
the embedding magnitude of that node [14]. g is a function combining the edge weights computed
according to CIR and LightGCN. In Appendix A.4, we prove that under certain choice of g and
γi, CAGCN can go beyond 1-WL test in distinguishing non-bipartite-subgraph-isomorphic graphs.
Following the principle of LightGCN that the designed graph convolution should be light and easy
to train, all other components of our architecture except the message-passing is exactly the same as
LightGCN, which is covered in Appendix A.1 and A.5.

3 Experiments
3.1 Experimental Settings
We used six datasets including two newly collected datasets from other domains. MF [15], NGCF [5],
LightGCN [7], UltraGCN [6], and GTN [16] are baselines. More details about datasets, baselines
and experimental setup are provided in Appendix A.7. Following [17, 18], we set the embedding
dimension to be 64 and the negative sample to be 1 for our CAGCN to ensure a fair comparison. For
the first model variant CAGCN, we set g(A,B) = g(A) where we remove B = d−0.5

i d−0.5
j to solely

demonstrate the power of passing messages according to CIR and set γi =
∑

j∈N 1
i
d−0.5
i d−0.5

j to
ensure the same embedding magnitude. For the second model variant CAGCN*, we set g as weighted
sum and γi = γ as a constant controlling the contributions of capturing different collaborations.

3.2 Experimental Results
Here we describe the main experimental result observations with detailed insights in Appendix A.8.

Performance Comparison. Performance of baselines are provided in Table 1. We first compare
the performance of LightGCN and CAGCN-variants. Clearly, CAGCN-jc/sc/lhn achieves higher
performance than LightGCN because we selectively propagate node embeddings by the proposed
CIR metrics (JC, SC, LHN). However, CAGCN-cn mostly performs worse than LightGCN because
nodes having more common neighbors with other nodes are more likely to have higher degrees and
hence aggregate more false-positive neighbors’ information during message-passing. Comparing
CAGCN*-variants with other competing baselines, CAGCN*-jc/sc almost consistently achieves
higher performance than other baselines except UltraGCN on Amazon. This is because UltraGCN
allows multiple negative samples for each positive interaction. Since GTN [16] uses different
embedding size, we exclusively compare our model and GTN in Table 5 in Appendix A.8.
Efficiency Comparison. As recommendation models will be eventually deployed in user-item data
of real-world scale, it is crucial to compare the efficiency of the proposed CAGCN(*) with other
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Table 1: Results on R@20 and N@20 (i.e., Recall and NDCG) with best and runner-up highlighted.

Model Metric MF NGCF LightGCN UltraGCN CAGCN CAGCN*
-jc -sc -cn -lhn -jc -sc -lhn

Gowalla Recall@20 0.1554 0.1563 0.1817 0.1867 0.1825 0.1826 0.1632 0.1821 0.1878 0.1878 0.1857
NDCG@20 0.1301 0.1300 0.1570 0.1580 0.1575 0.1577 0.1381 0.1577 0.1591 0.1588 0.1563

Yelp2018 Recall@20 0.0539 0.0596 0.0659 0.0675 0.0674 0.0671 0.0661 0.0661 0.0708 0.0711 0.0676
NDCG@20 0.0460 0.0489 0.0554 0.0553 0.0564 0.0560 0.0546 0.0555 0.0586 0.0590 0.0554

Amazon Recall@20 0.0337 0.0336 0.0420 0.0682 0.0435 0.0435 0.0403 0.0422 0.0510 0.0506 0.0457
NDCG@20 0.0265 0.0262 0.0331 0.0553 0.0343 0.0342 0.0321 0.0333 0.0403 0.0400 0.0361

Ml-1M Recall@20 0.2604 0.2619 0.2752 0.2783 0.2780 0.2786 0.2730 0.2760 0.2822 0.2827 0.2799
NDCG@20 0.2697 0.2729 0.2820 0.2638 0.2871 0.2881 0.2818 0.2871 0.2775 0.2776 0.2745

Loseit Recall@20 0.0539 0.0574 0.0588 0.0621 0.0622 0.0625 0.0502 0.0592 0.0654 0.0658 0.0658
NDCG@20 0.0420 0.0442 0.0465 0.0446 0.0474 0.0470 0.0379 0.0461 0.0486 0.0484 0.0489

WorldNews22 Recall@20 0.1942 0.1994 0.2035 0.2034 0.2135 0.2132 0.1726 0.2084 0.2182 0.2172 0.2053
NDCG@20 0.1235 0.1291 0.1311 0.1301 0.1385 0.1384 0.1064 0.1327 0.1405 0.1414 0.1311

Avg. Rank Recall@20 9.83 9.17 7.33 4.17 4.67 4.33 8.83 6.17 1.67 1.50 3.33
NDCG@20 9.50 9.17 5.83 6.00 3.67 4.00 8.33 5.00 2.50 2.50 5.17

CAGCN-jc indicates CAGCN equipped with CIR calculated based on jc metric and more details are provided in Appendix A.2-A.7.4.

Figure 2: Efficiency comparison in column (a). Performance of different propagation layers in
column (b). Performance of different models on users with different degrees in (c) where CIR-
sc represents the CIR metric computed based on Salton Cosine Similarity and Count(Log) is the
logarithm of the number of nodes.

baselines. For fair comparison, we use a uniform code framework implemented ourselves for all
models and run them on the same machine. Clearly in Figure 2(a), CAGCN* achieves extremely
higher performance in significant less time. This is because the designed graph convolution could
recognize neighbors whose collaborations are most beneficial to users’ ranking and by passing
stronger messages from these neighbors.

Impact of Propagation Layers. We increase the propagation layer of CAGCN* and LightGCN from
1 to 4 and visualize their corresponding performance in Figure 2(b). The performance first increases
as layer increases from 1 to 3 and then decreases on both datasets, which is consistent with findings
in [7]. Our CAGCN* is always better than LightGCN at all layers.

Interpretation on the advantages of CAGCN(*). Here we visualize the performance of all models
for nodes in different degree groups. Compared to non-graph-based methods (e.g., MF), graph-based
methods (e.g., LightGCN, CAGCN(*)) achieve higher performance for lower degree nodes [0, 300)
while lower performance for higher degree nodes [300, Inf). Because the node degrees follow the
power-law distribution [19], the average performance of graph-based methods would still be higher.
On one hand, graph-based models could leverage neighborhood information to augment the weak
supervision for low-degree nodes. On the other hand, it would introduce many noisy/unreliable
interactions for higher-degree nodes. It is crucial to design an unbiased graph-based recommendation
model that can achieve higher performance on both low and high degree nodes. In addition, the
opposite performance trends between NDCG and Recall indicates that different evaluation metrics
have different levels of sensitivity to node degrees.
4 Conclusion
In this paper, we propose the Common Interacted Ratio (CIR) to determine whether the captured col-
laborative effect would benefit the prediction of user preferences. Then we propose the Collaboration-
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Aware Graph Convolutional Network to aggregate neighboring nodes’ information based on their
CIRs. We further define a new type of isomorphism, bipartite-subgraph-isomorphism, and prove that
our CAGCN* can be more expressive than 1-WL in distinguishing subtree(subgraph)-isomorphic
yet non-bipartite-subgraph-isomorphic graphs. Experimental results demonstrate the advantages
of the proposed CAGCN(*) over other baselines. Specifically, CAGCN* outperforms the most
representative graph-based recommendation model, LightGCN [7], by 9% in Recall@20 but also
achieves more than 79% speedup. In the future, we plan to explore the imbalanced performance
improvement among nodes in different degree groups as observed in Figure 2(c), especially from a
GNN fairness perspective [20].
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A Appendix
A.1 Model Architecture and Training of LightGCN

Since our analysis is performed on the architecture of LightGCN, here we introduce the framework
of LightGCN. Given the initial user and item embeddings E0 ∈ R(n+m)×d0

, LightGCN performs L
layers’ message-passing as:

El = ÃlE0, ∀l ∈ {1, 2, ..., L}, (3)

where Ã = D̃−0.5AD̃−0.5 and D̃ is the degree matrix of A. Then all L layers propagated embed-
dings are aggregated together by mean-pooling:

EL =
1

(L+ 1)

L∑
l=0

El. (4)

In the training stage, for each observed user-item interaction (u, i), LightGCN randomly samples
a negative item i− that u has never interacted with before, and forms the triple (u, i, i−), which
collectively forms the set of observed training triples O. After that, the ranking scores of the user over
these two items are computed as yui = e⊤u ei and yui− = e⊤u ei− , which are finally used in optimizing
the pairwise Bayesian Personalized Ranking (BPR) loss [15] and formalized as:yui = e⊤u ei and
yui− = e⊤u ei−

LBPR =
∑

(u,i,i−)∈O

− lnσ(yui − yui−), (5)

where σ(·) is the Sigmoid function, and here we omit the L2 regularization term since it is mainly for
alleviating overfitting and has no influence on collaborative effect captured by message passing.

A.2 Graph Topological Metrics for CIR

Here we demonstrate that by configuring different f and L, ϕ̂L
u (j) can express many existing graph

similarity metrics.

ϕ̂L
u (j) =

1

|N̂ 1
u |

∑
i∈N̂ 1

u

L∑
l=1

β2l
∑

P 2l
ji∈P2l

ji

1

f({N 1
k |k ∈ P 2l

ji })
,∀j ∈ N 1

u ,∀u ∈ U , (6)

• Jaccard Similarity (JC) [13]: The JC score is a classic measure of similarity between two
neighborhood sets, which is defined as the ratio of the intersection of two neighborhood sets to the
union of these two sets:

JC(i, j) =
|N 1

i ∩N 1
j |

|N 1
i ∪N 1

j |
(7)

Let L = 1 and set f({N 1
k |k ∈ P 2l

ji }) = |N 1
i ∪N 1

j |, then we have:

ϕ̂L
u (j) =

1

|N̂ 1
u |

∑
i∈N̂ 1

u

β2
∑

P 2l
ji∈P2l

ji

1

|N 1
i ∪N 1

j |
=

β2

|N̂ 1
u |

∑
i∈N̂ 1

u

|N 1
i ∩N 1

j |
|N 1

i ∪N 1
j |

=
β2

|N̂ 1
u |

∑
i∈N̂ 1

u

JC(i, j)(8)
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• Salton Cosine Similarity (SC) [12]: The SC score measures the cosine similarity between the
neighborhood sets of two nodes:

SC(i, j) =
|N 1

i ∩N 1
j |√

|N 1
i ∪N 1

j |
(9)

let L = 1 and set f({N 1
k |k ∈ P 2l

ji }) =
√

|N 1
i ∪N 1

j |, then we have:

ϕ̂L
u (j) =

1

|N̂ 1
u |

∑
i∈N̂ 1

u

β2
∑

P 2l
ji∈P2l

ji

1√
|N 1

i ∪N 1
j |

=
β2

|N̂ 1
u |

∑
i∈N̂ 1

u

|N 1
i ∩N 1

j |√
|N 1

i ∪N 1
j |

=
β2

|N̂ 1
u |

∑
i∈N̂ 1

u

SC(i, j)(10)

• Common Neighbors (CN) [11]: The CN score measures the number of common neighbors of two
nodes and is frequently used for measuring the proximity between two nodes:

CN(i, j) = |N 1
i ∩N 1

j | (11)

Let L = 1 and set f({N 1
k |k ∈ P 2l

ji }) = 1, then we have:

ϕ̂L
u (j) =

1

|N̂ 1
u |

∑
i∈N̂ 1

u

β2
∑

P 2l
ji∈P2l

ji

1 =
β2

|N̂ 1
u |

∑
i∈N̂ 1

u

|N 1
i ∩N 1

j | =
β2

|N̂ 1
u |

∑
i∈N̂ 1

u

CN(i, j) (12)

Since CN does not contain any normalization to remove the bias of degree in quantifying proximity
and hence performs worse than other metrics as demonstrated by our recommendation experiments
in Table 1.

• Leicht-Holme-Nerman (LHN) [9]: LHN is very similar to SC. However, it removes the square
root in the denominator and is more sensitive to the degree of node:

LHN(i, j) =
|N 1

i ∩N 1
j |

|N 1
i | · |N 1

j |
(13)

Let L = 1 and set f({N 1
k |k ∈ P 2l

ji }) = |N 1
i | · |N 1

j |, then we have:

ϕ̂L
u (j) =

1

|N̂ 1
u |

∑
i∈N̂ 1

u

β2
∑

P 2l
ji∈P2l

ji

1

|N 1
i | · |N 1

j |
=

β2

|N̂ 1
u |

∑
i∈N̂ 1

u

|N 1
i ∩N 1

j |
|N 1

i | · |N 1
j |

=
β2

|N̂ 1
u |

∑
i∈N̂ 1

u

LHN(i, j)

(14)

• Resource Allocation (RA) [10]: RA is very similar to SC. However, it removes the square root in
the denominator and is more sensitive to the degree of node:

RA(i, j) =
∑

k∈N 1
i ∩N 1

j

1

|N 1
k |

(15)

Let L = 1 and set f({N 1
k |k ∈ P 2l

ji }) =
∏

k∈P 2l
ji /{i,j}

|N 1
k |, then we have:

ϕ̂L
u (j) =

1

|N̂ 1
u |

∑
i∈N̂ 1

u

β2
∑

P 2l
ji∈P2l

ji

1∏
k∈P 2l

ji /{i,j}
|N 1

k |
=

β2

|N̂ 1
u |

∑
i∈N̂ 1

u

∑
k∈N 1

i ∩N 1
j

1

|N 1
k |

=
β2

|N̂ 1
u |

∑
i∈N̂ 1

u

RA(i, j)

(16)
We further emphasize that our proposed CIR is a generalized version of these five existing metrics
and can be delicately designed toward satisfying downstream tasks. We leave such exploration on
the choice of f as one potential future work.
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A.3 Approximation of CIR

Calculating ϕ̂u(j) is unrealistic since we do not have access to the testing set N̂ 1
u in advance. Thereby,

we propose to approximate ϕ̂u(j) by enumerating i from the observed training set N 1
u instead of N̂ 1

u
and denote this estimated version as ϕu(j). Such approximation assumes that neighboring nodes
interacting more with other neighboring nodes in the training set would also interact more with
neighboring nodes in the testing set. We empirically verify such approximation by comparing the
ranking consistency among CIRs calculated from training neighborhoods (i.e., ϕu(j)), from testing
neighborhoods ((i.e., ϕ̂u(j))) and from full neighborhoods (we replace N̂ 1

u with N 1
u∪ N̂ 1

u in (6)).
Here we respectively use four topological metrics (JC, SC, LHN, and CN) to define f and rank the
obtained three lists. Then, we measure the similarity of the ranked lists between Train-Test and
between Train-Full by Rank-Biased Overlap (RBO) [21]. The averaged RBO values over all nodes
v ∈ V on three datasets are shown in Table 2. We can clearly see that the RBO values on all these
datasets using all topological metrics are beyond 0.5, which verifies our approximation. The RBO
value between Train-Full is always higher than the one between Train-Test because most interactions
are in the training set.

Table 2: Average Rank-Biased Overlap (RBO) of the ranked neighbor lists between training (i.e.,
N 1

u ) and testing/full (i.e., N̂ 1
u and N 1

u∪ N̂ 1
u , respectively) dataset over all nodes u ∈ U

.

Metric Gowalla Yelp Ml-1M
Train-Test Train-Full Train-Test Train-Full Train-Test Train-Full

JC 0.604±0.129 0.902±0.084 0.636±0.124 0.897±0.081 0.848±0.092 0.978±0.019
SC 0.611±0.127 0.896±0.084 0.657±0.124 0.900±0.077 0.876±0.077 0.983±0.015
LHN 0.598±0.121 0.974±0.036 0.578±0.100 0.976±0.029 0.845±0.082 0.987±0.009
CN 0.784±0.120 0.979±0.029 0.836±0.100 0.983±0.023 0.957±0.039 0.995±0.006

A.4 Expressiveness of CAGCN

Here we thoroughly prove that when g is set to be MLP, CAGCN can be more expressive than 1-WL.
First, we review the concepts of subtree-isomorphism and subgraph-isomorphism.
Definition A.1. Subtree-isomporphism [8]: Su and Si are subtree-isomorphic, denoted as
Su

∼=subtree Si, if there exists a bijective mapping h : Ñ 1
u → Ñ 1

i such that h(u) = i and
∀v ∈ Ñ 1

u , h(v) = j, elv = elj .
Definition A.2. Subgraph-isomporphism [8]: Su and Si are subgraph-isomorphic, denoted as
Su

∼=subgraph Si, if there exists a bijective mapping h : Ñ 1
u → Ñ 1

i such that h(u) = i and
∀v1, v2 ∈ Ñ 1

u , ev1v2 ∈ ESu
iff eh(v1)h(v2) ∈ ESi

and elv1 = elh(v1), e
l
v2 = elh(v2).

Then we theoretically demonstrate the equivalence between the subtree-isomorphism and the
subgraph-isomorphism in bipartite graphs:
Theorem 1. In bipartite graphs, two subgraphs that are subtree-isomorphic if and only if they are
subgraph-isomorphic.

Proof. We prove this theorem in two directions. Firstly (=⇒), we prove that in a bipartite graph, two
subgraphs that are subtree-isomorphic are also subgraph-isomorphic by contradiction. Assuming
that there exists two subgraphs Su,Si that are subtree-isomorphic yet not subgraph-isomorphic in
a bipartite graph, i.e., Su

∼=subtree Si,Su ̸∼=subgraph Si. By definition of subtree-isomorphism, we
trivially have elv = elh(v),∀v ∈ VSu

. Then to guarantee Su ̸∼=subgraph Si and also since edges are
only allowed to connect u and its neighbors N 1

u in the bipartite graph, there must exist at least an
edge euv between u and one of its neighbors v ∈ N 1

u such that euv ∈ ESu , eh(u)h(v) /∈ ESi , which
contradicts the assumption that Su

∼=subtree Si. Secondly (⇐=), we can prove that in a bipartite
graph, two subgraphs that are subgraph-isomorphic are also subtree-isomorphic, which trivially holds
since in any graph, subgraph-isomorphism leads to subtree-isomorphism [8].

Since 1-WL test can distinguish subtree-isomorphic graphs [8], the equivalence between these two
isomorphisms indicates that in bipartite graphs, both of the subtree-isomorphic graphs and subgraph-
isomorphic graphs can be distinguished by 1-WL test. Therefore, to go beyond 1-WL in bipartite
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graphs, we propose a novel bipartite-subgraph-isomorphism in Definition A.3, which is even harder
to be distinguished than the subgraph-isomorphism by 1-WL test:
Definition A.3. Bipartite-subgraph-isomorphism: Su and Si are bipartite-subgraph-isomorphic,
denoted as Su

∼=bi−subgraph Si, if there exists a bijective mapping h : Ñ 1
u ∪N 2

u → Ñ 1
i ∪N 2

i such
that h(u) = i and ∀v, v′ ∈ Ñ 1

u ∪N 2
u , evv′ ∈ E ⇐⇒ eh(v)h(v′) ∈ E and elv = elh(v), e

l
v′ = elh(v′).

With the bipartite-subgraph-isomorphism defined, we prove the injective property in the following:

Lemma 1. If g is MLP, then g({(γiΦ̃ij , e
l
j)|j ∈ N 1

i }, {(d
−0.5
i d−0.5

j , elj)|j ∈ N 1
i }) is injective.

Proof. If we assume that all node embeddings share the same discretization precision, then em-
beddings of all nodes in a graph can form a countable set H. Similarly, for each edge in a
graph, its CIR-based weight Φ̃ij and degree-based weight d−0.5

i d−0.5
j can also form two differ-

ent countable sets W1,W2 with |W1| = |W2|. Then P1 = {Φ̃ijei|Φ̃ij ∈ W1, ei ∈ H},P2 =

{d−0.5
i d−0.5

j ei|d−0.5
i d−0.5

j ∈ W2, ei ∈ H} are also two countable sets. Let P1, P2 be two multisets
containing elements from P1 and P2, respectively, and |P1| = |P2|. Then by Lemma 1 in [8], there
exists a function f such that π(P1, P2) =

∑
p1∈P1,p2∈P2

f(p1, p2) is unique for any distinct pair of
multisets (P1, P2). Since the MLP-based g is a universal approximator [22] and hence can learn the
function f , we know that g is injective.

Theorem 2. Let M be a GNN with sufficient number of CAGC-based convolution layers defined
by (2). If g is MLP, then M is strictly more expressive than 1-WL in distinguishing subtree-isomorphic
yet non-bipartite-subgraph-isomorphic graphs.

Proof. We prove this theorem in two directions. Firstly (=⇒), following [8], we prove that the
designed CAGCN here can distinguish any two graphs that are distinguishable by 1-WL by contradic-
tion. Assume that there exist two graphs G1 and G2 which can be distinguished by 1-WL but cannot
be distinguished by CAGCN. Further, suppose that 1-WL cannot distinguish these two graphs in the
iterations from 0 to L− 1, but can distinguish them in the Lth iteration. Then, there must exist two
neighborhood subgraphs Su and Si whose neighboring nodes correspond to two different sets of node
labels at the Lth iteration, i.e., {elv|v ∈ N 1

u} ≠ {elj |j ∈ N 1
i }. Since g is injective by Lemma 1, for

Su and Si, g would yield two different feature vectors at the Lth iteration. This means that CAGCN
can also distinguish G1 and G2, which contradicts the assumption.

Secondly (⇐=), we prove that there exist at least two graphs that can be distinguished by CAGCN but
cannot be distinguished by 1-WL. Figure 3 presents two of such graphs Su, S

′
u, which are subgraph

isomorphic but non-bipartite-subgraph-isomorphic. Assuming u and u′ have exactly the same
neighborhood feature vectors e, then directly propagating according to 1-WL or even considering
node degree as the edge weight as GCN [23] can still end up with the same propagated feature for u
and u′. However, if we leverage JC to calculate CIR as introduced in Appendix A.2, then we would
end up with {(dudj1)−0.5e, (dudj2)

−0.5e, (dudj3)
−0.5e} ≠ {(d−0.5

u′ d−0.5
j′1

+ Φ̃u′j′1
)e, (d−0.5

u′ d−0.5
j′2

+

Φ̃u′j′2
)e, (d−0.5

u′ d−0.5
j′3

+ Φ̃u′j′3
)e}. Since g is injective by Lemma 1, CAGCN would yield two

different embeddings for u and u′.

Theorem 2 indicates that GNNs whose aggregation scheme is CAGC can distinguish non-bipartite-
subgraph-isomorphic graphs that are indistinguishable by 1-WL.

A.5 Model Architecture CAGCN

The model architecture of our CAGCN is shown in Figure 4. We take a specific example of computing
the ranking of user u over item i. We first calculate the estimated CIR of each neighbor with respect
to the rest of the corresponding neighborhoods as (2) and then we iteratively propagate neighbors’
embeddings with the awareness of the collaboration benefits by following the calculated CIR. Then
we weighted combine the propagated embeddings at each layer to obtain the aggregated embedding
for u and i as (3). After that, we calculate their ranking based on the dot-product similarity. The
optimization of CAGCN is the same as LightGCN shown in (5).
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Figure 3: An example showing two neighborhood subgraphs Su,Su′ that are subgraph-isomorphic
but not bipartite-subgraph-isomorphic.

Figure 4: Comparing the model architecture of CAGCN and LightGCN.

A.6 Complexity Comparison and Analysis

Let |V|, |E|, |F| be the total number of nodes, edges, and feature dimensions (assuming feature
dimensions stay the same across all feature transformation layers). Let L be the propagation layer for
all graph-based models using message-passing. Let r be the total number of negative samples per
epoch per positive pair and K be the number of 2nd-order neighbors. For r, all baselines use 1 per
epoch per positive pair and hence can be omitted (aside from UltraGCN using a larger number). Then
the complexity of each model is summarized in Table 3. For CAGCN, since we only consider 2-hops
away connections to compute CIR in Eq. (6), the main computational load would be computing the
power of adjacency matrix, which takes O(|V|3). Note that for both of our CAGCN and UltraGCN,
we can apply Strassens’s Algorithm to further reduce the O(|V|3) to O(|V|2.8). In Table 6, we report
the preprocessing time for each dataset. Clearly, compared with the time used for training, the time
for preprocessing is minor, which even demonstrates the superior efficiency of CAGCN since it
significantly speeds up the training process.

Table 3: Complexity of the pre-procession and the forward pass of CAGCN and different baselines.
Model MF NGCF LightGCN

# Extra Hyper-parameters / / 1

Preprocess Space / O(|E| + |V|) O(|E| + |V|)
Time / O(|E| + |V|) O(|E| + |V|)

Training Space O(|V|F ) O(L|V|F + |E| + LF 2) O(L|V|F + |E|)
Time O(|E|F ) O(L(|E|F + |V|F 2)) O(L|E|F + L|V|F )

Model GTN UltraGCN CAGCN
# Extra Hyper-parameters 1 7 2

Preprocess Space O(|E| + |V|) O(|E| + |V|) O(|E| + |V|)
Time O(|E| + |V|) O(|V|3) O(|V|3)

Training Space O(L|V|F + |E|) O(|V|F + |V|K) O(L|V|F + |E|)
Time O(L|E|F + L|V|F ) O(r(|E| + |V |K)F ) O(L|E|F + L|V|F )
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Table 4: Basic dataset statistics.

Dataset # Users # Items # Interactions Density
Gowalla 29, 858 40, 981 1, 027, 370 0.084%
Yelp 31, 668 38, 048 1, 561, 406 0.130%
Amazon 52, 643 91, 599 2, 984, 108 0.062%
Ml-1M 6, 022 3, 043 895, 699 4.888%
Loseit 5, 334 54, 595 230, 866 0.08%
WorldNews22 29, 785 21, 549 766, 874 0.119%

A.7 Experimental Setting

A.7.1 Datasets

Following [5, 7], we validate the proposed approach on four widely used benchmark datasets in
recommender systems, including Gowalla, Yelp, Amazon, and Ml-1M, the details of which are
provided in [5, 7]. Moreover, we collect two extra datasets to further demonstrate the superiority
of our proposed model in even broader user-item interaction domains: (1) Loseit: This dataset is
collected from subreddit loseit - Lose the Fat1 from March 2020 to March 2022 where users discuss
healthy and sustainable methods of losing weight via posts. To ensure the quality of this dataset,
we use the 10-core setting [24], i.e., retaining users and posts with at least ten interactions. (2)
WorldNews22: This dataset includes the interactions from subreddit World WorldNews2 where users
share major WorldNews around the world via posts. Similarly, we use the 10-core setting to ensure
the quality of this dataset. We summarize the statistics of all six datasets in Table 4.

A.7.2 Baselines

We compare our proposed CAGCN with the following baselines:

• MF [15]: This is the most classic collaborative filtering method equipped with the BPR loss [15],
which preserves users’ ranking over interacted items with respect to uninteracted items.

• NGCF [5]: This was the very first GNN-based collaborative filtering model to incorporate high-
order connectivity of user-item interactions for recommendation.

• LightGCN [7]: This is the most popular collaborative filtering model based on GNNs, which
extends NGCF by removing feature transformation and nonlinear activation, and achieves better
trade-off between the performance and efficiency.

• UltraGCN [6]: This model simplifies GCNs for collaborative filtering by omitting infinite layers
of message passing for efficient recommendation, and it constructs the user-user graphs to leverage
higher-order relationships. Thus, it achieves both better performance and shorter running time than
LightGCN.

• GTN [16]: This model leverages a robust and adaptive propagation based on the trend of the
aggregated messages to avoid the unreliable user-item interactions.

Note that here we only focus on baselines leveraging graph convolution (besides the classic MF)
including the state-of-the-art GNN-based recommendation models (i.e., UltraGCN and GTN). There
are some other developing methodology directions (e.g., [25–28]) that can obtain comparable results
to the aforementioned baselines on some of the benchmark datasets. However, these methods are
either not GNN-based [25] or incorporates some other general machine learning techniques rather
than focus on graph convolution, e.g., SGCNs [28] leverages the stochastic binary masks to remove
noisy edges, and GOTNet [27] performs k-Means clustering on nodes’ embeddings to capture long-
range dependencies. Given our main focus is on advancing the frontier of graph-convolution in
recommendation systems, we omit these other comparable baselines. Note that our work could be
further enhanced if incorporating these general techniques but we leave this as one future direction.

1https://www.reddit.com/r/loseit/
2https://www.reddit.com/r/worldWorldNews/
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A.7.3 Evaluation Metrics

Two popular metrics: Recall@K and Normalized Discounted Cumulative Gain (NDCG@K) [5]
are adopted to evaluate all models. We set the default value of K as 20 and report the average of
Recall@20 and NDCG@20 over all users in the test set. In the inference phase, we treat items that
the user has never interacted with in training set as candidate items. All recommendation models
predict the user’s preference scores over these candidate items and rank them based on the computed
scores to further calculate Recall@20 and NDCG@20.

A.7.4 Hyperparameter Settings

We strictly follow the experimental setting used in LightGCN [7] to ensure the fair comparison. For
all other models, we adopt exactly the same hyper-parameters as suggested by the corresponding
papers for all baselines to avoid any biased comparison: the embedding size d0 = 64, learning rate
lr = 0.001, the number of propagating layers L = 3, training batch size 2048. The coefficient
of l2-regularization is searched in {1e−4, 1e−3}. As the user/item embedding is the main network
parameter, it is crucial to ensure the same embedding size for fair comparison between different
models. Therefore, when comparing with GTN [16], we set the embedding size to be 256 to align
with [16]. For CAGCN, we set γi as

∑
j∈N 1

i
d−0.5
i d−0.5

j to ensure the same embedding magnitude
as LightGCN. For g and γi, CAGCN*, we set g as the weighted sum in Eq. (2) for efficiency/less
computation. Although using the weighted sum cannot guarantee the universal approximation of g as
MLP [22], we empirically find it still achieves superior performance over existing work. Furthermore,
we set γi = γ as a constant controlling the contributions of capturing different collaborations. Note
that we search the optimal γ within {1, 1.2, 1.5, 1.7, 2.0}. In addition, we term the model variant as
CAGCN(*)-jc if we use JC to compute ϕ.

A.8 Additional Experimental Results

A.8.1 Performance Comparison between CAGCN and GTN

Here we compare the performance between CAGCN and GTN. We first increase the embedding
size d0 to 256 following [16]3 and observe the consistent superiority of our model over GTN in
Table 5. This is because in GTN [16], the edge weights for message-passing are still computed based
on node embeddings that implicitly encode noisy collaborative signals from unreliable interactions.
Conversely, our CAGCN* directly alleviates the propagation on unreliable interactions based on its
CIR value, which removes noisy interactions from the source.

Table 5: Performance comparison of CAGCN* with GTN.

Model Metric GTN CAGCN*
-jc -sc -lhn

Gowalla R@20 0.1870 0.1901 0.1899 0.1885
N@20 0.1588 0.1604 0.1603 0.1576

Yelp2018 R@20 0.0679 0.0731 0.0729 0.0689
N@20 0.0554 0.0605 0.0601 0.0565

Amazon R@20 0.0450 0.0573 0.0575 0.0520
N@20 0.0346 0.0456 0.0458 0.0409

A.8.2 Efficiency Comparison

As justified in Section 3, the efficiency plays a significant role in evaluating recommendation systems.
As recommendation models will be eventually deployed in user-item data of real-world scale, it
is crucial to compare the efficiency of the proposed CAGCN(*) with other baselines. For fair
comparison, we use a uniform code framework implemented ourselves for all models and run them
on the same machine with Ubuntu 20.04 system, AMD Ryzen 9 5900 12-Core Processor (2200
MHz), 128 GB RAM and GPU NVIDIA GeForce RTX 3090. Following the experimental setting
in Figure 2(a), we present the NDCG@20 with the training time in Figure 5. Clearly, CAGCN*

3As the user/item embedding is the main network parameters, it is crucial to ensure the same embedding size
when comparing different models and hence we use the exactly the same embedding size as GTN.
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achieves extremely higher performance in significant less time because the collaboration-aware graph
convolution leverages more beneficial collaborations from neighborhoods.
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Figure 5: Comparing the training time of CAGCN(*) with other baselines on four datasets. For clear
visualization, we only report the efficiency of the best CAGCN(*) variant based on Table 1 for each
dataset. CAGCN* almost always achieves extremely higher NDCG@20 with significant less time.

Furthermore, we report the first time that our best CAGCN* variant achieving the best performance
of LightGCN on each dataset in Table 6. To ensure the fair comparison, we also include the time for
precomputing CIR matrix as the preprocess time for our CAGCN*. We could see CAGCN* spends
significant less time to achieve the same best performance as LightGCN, which highlights the broad
prospects to deploy CAGCN* in real-world recommendations.

Table 6: Efficiency comparison of CAGCN* with LightGCN.
Model Stage Gowalla Yelp Amazon Ml-1M Loseit WorldNews22
LightGCN Training 16432.0 28788.0 81976.5 18872.3 39031.0 13860.8

CAGCN*
Preprocess 167.4 281.6 1035.8 33.8 31.4 169.0
Training 2963.2 1904.4 1983.9 11304.7 10417.7 1088.4
Total 3130.6 2186.0 3019.7 11338.5 10449.1 1157.4

Improve Training 82.0% 93.4% 97.6% 40.1% 73.3% 92.1%
Total 80.9% 92.4% 96.3% 39.9% 73.2% 91.6%

A.8.3 Empirical Analysis of CIR

To rationalize that edges with higher CIR would be more important to the recommendation perfor-
mance. We leverage the LightGCN model with pre-trained user/item embeddings, remove all edges
among nodes and add edges incrementally. Here we take two strategies: (1) Global Strategy: adding
top-k edges among all edges in the whole graph according to their CIR; (2) Local Strategy: adding
top-k edges among all edges around each node according to their CIR. Specifically for the local one,
we first add the edges with highest CIR around each node and then add the edges with 2nd highest
CIR around each node and so on so forth. For both of these two strategies, we keep adding edges
until the total number of added edges reach the predefined budget. We rank edges according to JC,
SC, LHN and CO respectively and also compare them with randomly addition. We can clearly see
that in most cases, adding edges with higher JC/SC/LHN would lead to better performance than
random one, which demonstrates the importance of edges with higher JC/SC/LHN.
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Figure 6: Performance of recommendation when adding edges randomly and according to different
variants of CIR. (a) Adding edges
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A.9 Related Work

A.9.1 Collaborative Filtering (CF)

As an effective tool for personalized recommendation, CF assumes that people sharing similar interest
on one thing tend to have the same preference on another thing, and it predicts the interest of a user
(filtering) by utilizing the preference from other users who have similar interests (collaborative) [29].
Early CF methods used MF techniques [30], which generally map the IDs of users and items to
a joint latent factor space and take the inner product of the embeddings to estimate the user-item
interactions [15, 31]. Despite the initial success, these methods failed to capture the nonlinear
user-item relationships due to their intrinsic linearity. To address this issue, deep learning was used
to capture the non-linearity (e.g. by replacing the linear inner product operation with the nonlinear
neural networks) [5, 32]. All above methods capture CF effect by optimizing embedding similarity
based on observed user-item interactions. Stepping further, graph-based methods are proposed to
leverage message-passing to directly inject the CF effect into the user/item embeddings [5, 7].

A.9.2 Graph-based Methods for Recommendation

Since user-item interaction can be naturally modeled as a bipartite graph, another line of re-
search [5, 7, 33, 34] infers users’ preferences by exploring the topological patterns of user-item
bipartite graphs. Two pioneering work, ItemRank [33] and BiRank [34], define users’ preferences
based on their observed interacted items and perform label propagation to capture the CF effect.
Although users’ ranking scores are computed based on structural proximity between the observed
items and the target item, the non-trainable user preferences and the lack of recommendation-based
objectives in these methods lead to inferior performance to embedding-based methods such as MF-
BPR [15]. Furthermore, HOP-Rec [35] combines the graph-based methods, which better capture the
collaboration among nodes, and embedding-based methods, which better optimize the recommenda-
tion objective function. Yet, interactions captured by random walks do not fully explore the high-layer
neighbors and multi-hop dependencies [36]. By contrast, GNN-based recommendation methods
are superior at encoding structural proximity (especially higher-order connection) in user/item em-
beddings, which is crucial in capturing the CF effect [5, 7, 16]. For example, SGL [37] further
leverages contrastive learning [38] with graph augmentation to enhance model robustness against
noisy interactions, but it still follows the existing message-passing mechanism of GNNs without any
justification. In fact, all of these GNN-based models directly borrow the traditional graph convolution
operation from node/graph classification and blindly propagate neighboring users/items embeddings
without any recommendation-tailored modification. Actually, our work has demonstrated that the
collaboration captured by message-passing may not always improve users’ ranking over items, which
inspires us to design a new generation of graph convolutions that adaptively pass messages based on
the benefits provided by the captured collaborations.
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