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Abstract

Relation Extraction in the biomedical domain001
is a challenging task due to the lack of labeled002
data and the long-tail distribution of the en-003
tity mentions. Recent works propose distant004
supervision as a way to tackle the scarcity of005
annotated data by automatically pairing knowl-006
edge graph relationships with raw textual data.007
In several benchmarks, Distantly Supervised008
Biomedical Relation Extraction (Bio-DSRE)009
models can produce very accurate results. How-010
ever, given the challenging nature of the task,011
we set out to investigate the validity of such012
impressive results. We probed the datasets013
used by Amin et al. (2020) and Hogan et al.014
(2021) and found a significant overlap between015
training and evaluation relationships that, once016
resolved, reduced the accuracy of the models017
by up to 71%. Furthermore, we noticed sev-018
eral inconsistencies along the data construction019
process, such as the creation of negative sam-020
ples and improper handling of redundant rela-021
tionships. To mitigate these issues we present022
MEDDISTANT19, a new benchmark dataset023
obtained by aligning the MEDLINE abstracts024
with the widely used SNOMED-Clinical Terms025
(SNOMED-CT) knowledge base. We exper-026
imented with several state-of-the-art models027
following our methodology, showing that there028
is still plenty of room for improvement for the029
task. We release our code and data for repro-030
ducibility.031

1 Introduction032

Extracting structured knowledge from unstructured033

text is an important task for knowledge discovery034

and management. Biomedical literature and clini-035

cal narratives offer rich interactions between enti-036

ties mentioned in the text (Craven et al., 1999; Xu037

and Wang, 2014), which can be useful for applica-038

tions such as bio-molecular information extraction,039

pharmacogenomics, and identifying drug-drug in-040

teractions (DDIs), among others (Luo et al., 2017).041

Model and Data Original Filtered
AUC F1 AUC F1

Amin et al. (2020) 68.4 64.9 50.8 53.1
Hogan et al. (2021) 82.6 77.6 11.8 19.8

Table 1: Two state-of-the-art Bio-DSRE models eval-
uated on the respective datasets before (Original) and
after (Filtered) removing test relationships also appear-
ing in the training set. Both models were trained and
evaluated at bag-level.

Manually annotating these relations for train- 042

ing supervised learning systems is an expensive 043

and time-consuming process (Segura-Bedmar et al., 044

2011; Kilicoglu et al., 2011; Segura-Bedmar et al., 045

2013; Li et al., 2016), so the task often involves 046

leveraging rule-based (Abacha and Zweigenbaum, 047

2011; Kilicoglu et al., 2020) and weakly supervised 048

approaches (Peng et al., 2016; Dai et al., 2019). 049

More recently, Amin et al. (2020) and Hogan 050

et al. (2021) used domain-specific language mod- 051

els (Gu et al., 2021) that were pre-trained explicitly 052

on biomedical data for Bio-DSRE, producing dis- 053

proportionately more accurate results when com- 054

pared with recent results in the general domain 055

(Gao et al., 2021; Christopoulou et al., 2021; Zhang 056

et al., 2021). 057

In this work, we highlight that these results can 058

be largely attributed to the overlap between the 059

training and the test facts, which allows the model 060

to score higher just by memorizing the training re- 061

lations rather than generalizing to new, previously 062

unknown ones. In Table 1, we show that removing 063

this leakage (51.9%, Table 2) results in a signifi- 064

cant decrease in predictive accuracy. For example, 065

AMIL model with relation type embedding L pro- 066

posed by Hogan et al. (2021) achieves an 82.6 AUC 067

when evaluated on their Bio-DSRE dataset, while 068

producing an 11.8 AUC when evaluated on the sub- 069

set of the test set of relationships that do not overlap 070

with the training set. 071
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Triples Train Valid Test

Textual 92,972 13,555 (51.9%) 33,888 (51.2%)
CUI 211,789 41,993 (26.7%) 89,486 (26.5%)

Table 2: Training-test leakage we identified in the data
constructed and used by Amin et al. (2020) (see their
Appendix A.4 in their k-tag setup). Numbers between
parentheses show the percentage overlap, where the au-
thors considered text-based instead of CUI-based triples.

The training-test overlap in the datasets proposed072

by Hogan et al. (2021) and Amin et al. (2020) is073

due to the same entities appearing with different074

names in multiple relationships, although two en-075

tity names are mapped to the same UMLS concept076

(Bodenreider, 2004), they are still treated as two077

distinct entities. Furthermore, we also identified078

other problems, such as redundant facts, and un-079

clear coverage of UMLS concepts. To mitigate080

these issues, we follow the guidelines outlined by081

Chang et al. (2020) for benchmarking biomedical082

link prediction models, and propose a new Bio-083

DSRE benchmark.084

2 Related Work085

Relation Extraction (RE) is an important task in086

biomedical applications. Traditionally, supervised087

methods require large-scale annotated corpora,088

which is impractical to scale for broad-coverage089

biomedical relation extraction (Kilicoglu et al.,090

2011, 2020). In cases where such supervision is091

available, it is limited to protein-protein interac-092

tions (Peng and Lu, 2017), drug-drug interactions093

(Kavuluru et al., 2017), and chemical-disease inter-094

actions (Peng et al., 2016).095

Distant Supervision (DS) allows for the auto-096

mated collection of noisy training examples (Mintz097

et al., 2009) by aligning a given knowledge base098

(KB) with a collection of text sources. DS was099

used in recent works (Alt et al., 2019) using Multi-100

Instance Learning (MIL) by creating bags of in-101

stances (Riedel et al., 2010) for corpus-level triples102

extraction.1103

Dai et al. (2019) introduced the use of the Uni-104

fied Medical Language System (UMLS) Metathe-105

saurus (Bodenreider, 2004) as a KB with PubMed106

(Canese and Weis, 2013) MEDLINE abstracts as107

text collection, and implemented a knowledge-108

based attention mechanism (Han et al., 2018) for109

1RE is used to refer to two different tasks: sentence-level
detection of relational instances and corpus-level triples ex-
traction, a kind of knowledge completion task (Ji et al., 2021).

Iron deficiency is the most common MND worldwide and leads to microcytic anemia , 
decreased capacity for work , as well as impaired immune and endocrine function .

Iron deficiency anaemia ( IDA ) and beta-thalassaemia are the most common causes of 
microcytic anaemia .

Studies here reported indicated that the anemia is hypochromic and microcytic anemia 
of blood loss and iron deficiency , in spite of the presence of large amounts of iron in 

the pulmonary tissue .

The high proportion of microcytic anaemia and the fact that gender differences were 
only seen after the menarche period in women suggest that iron deficiency was the 

main cause of anaemia .

MCV/RBC and (MCV)2 X MCH separated successfully the subjects with microcytic 
anaemia ( heterozygous thalassaemia and iron deficiency ) from normal controls .

Significantly higher serum homocysteine levels were reported in the iron deficiency 
anemia group compared to normal controls and in subjects with microcytic anemia and 

normal ferritin.

CUI: (C0240066, C0085576)
Semantic Type: (Disease or Syndrome, Disease or Syndrome)

Semantic Group: (Disorders, Disorders) cause_of

✓

✓

✓

Figure 1: An example of a bag instance representing the
UMLS concept pair (C0240066, C0085576) from
the MEDDISTANT19 dataset, expressing the relation
cause_of. In this example, three out of six sentences
express the relation, while others are wrong labels from
distant supervision.

joint learning with knowledge graph completion us- 110

ing SimplE (Kazemi and Poole, 2018) embeddings 111

and entity type classification. Their pipeline was 112

simplified by Amin et al. (2020), who extended 113

R-BERT (Wu and He, 2019) to handle bag-level 114

MIL, and demonstrated that preserving the direc- 115

tion of the relationships improves the accuracy of 116

the model. Lacking benchmark corpora, Amin et al. 117

(2020) also outlined the steps to create the dataset. 118

Similar steps were followed by Hogan et al. (2021), 119

who introduced the concept of abstractified MIL 120

(AMIL), by absorbing different argument pairs be- 121

longing to the same semantic types (see Fig. 2) pair 122

in one bag, boosting performance on rare-triples. 123

They also proposed the use of SCISPACY (Neu- 124

mann et al., 2019) for sentence tokenization, result- 125

ing in improved overall performance. 126

In this work, we investigate some recent results 127

from the Bio-DSRE literature by probing the re- 128

spective benchmarks for overlaps between training 129

and test sets. We found a severe overlap between 130

the training set and the held-out validation and test 131

sets in the dataset constructed by Amin et al. (2020) 132

and Hogan et al. (2021). An issue of entity linking 133

or concept normalization. Where in UMLS, each 134

concept is mapped to a UMLS Concept Unique 135

Identifier (CUI), where a given CUI might have dif- 136

ferent surface forms (Bodenreider, 2004). Table 2 137

shows the leakage statistics. 138

Consider a relationship between a pair of UMLS 139

entities (C0013798, C0429028). These two en- 140

tities can appear in different forms within a text, 141
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Figure 2: Type Hierarchy: each concept in the UMLS is classified under a type taxonomy. The coarse-grained
entity type is called Semantic Group (SG) and the fine-grained entity type is called Semantic Type (STY).

such as (electrocardiography, Q-T interval), (ECG,142

Q-T interval), and (EKG, Q-T interval); each of143

these distinct pairs still refers to the same origi-144

nal pair (C0013798, C0429028). Amin et al.145

(2020) claim no such text-based leakage, but when146

normalized this results in leakage across the splits147

as reported in Table 2.148

Due to these inconsistencies and lack of bench-149

mark and best practices, we introduce the MEDDIS-150

TANT19 dataset. Our work utilizes the SNOMED-151

CT Knowledge Graph (KG) extracted from the152

UMLS that offers a careful selection of the concept153

types, proper handling of the inverse relations, and154

highlights the need for downstream benchmarks155

(Chang et al., 2020). The dataset is particularly156

focused on rare-triples and considers a narrower157

subset of the relations.158

3 Constructing the MedDistant19 Dataset159

Documents We used PubMed MEDLINE ab-160

stracts from 20192 as our text source, contain-161

ing 32,151,899 abstracts. Following Hogan et al.162

(2021), we used SCISPACY (Neumann et al., 2019)163

for sentence tokenization, resulting in 150,173,169164

unique sentences.165

Previous studies used Exact Match for entity166

linking (Amin et al., 2020; Hogan et al., 2021). In167

this work, we further introduce the use of a spe-168

cialized UMLS entity linker from SCISPACY 3,169

since named entity recognition and normalization170

was shown to be the largest source of errors in171

biomedical RE (Kilicoglu et al., 2020). We used172

the default settings in SCISPACY for linking entity173

mentions to their UMLS CUIs, and filtering dis-174

abled concepts from UMLS. This resulted in the175

entity linked mentionsat the sentence level.176

2https://lhncbc.nlm.nih.gov/ii/
information/MBR/Baselines/2019.html

3https://github.com/allenai/scispacy

Knowledge Base We use UMLS2019AB 4 as 177

our main knowledge source. The UMLS Metathe- 178

saurus (Bodenreider, 2004) covers concepts from 179

222 source ontologies, thus being the largest on- 180

tology of biomedical concepts. However, covering 181

all ontologies can be challenging given the inter- 182

changeable nature of the concepts. For example, 183

programmed cell death 1 ligand 1 is an alias of 184

concept C1540292 in the HUGO Gene Nomen- 185

clature Committee ontology (Povey et al., 2001), 186

and it is an alias of concept C3272500 in the 187

National Cancer Institute Thesaurus. This makes 188

entity linking more challenging, since a surface 189

form can be linked to multiple entity identifiers, 190

and makes it easier to have overlaps between train- 191

ing and test set, since the same fact may appear in 192

both with different entity identifiers. 193

Furthermore, benchmark corpora for biomedical 194

Named Entity Recognition (Doğan et al., 2014; Li 195

et al., 2016) and RE (Herrero-Zazo et al., 2013; 196

Krallinger et al., 2017) focuses on specific entity 197

types (e.g. diseases, chemicals, proteins), and are 198

usually normalized to a single ontology (Kilicoglu 199

et al., 2020). Following this trend, we also fo- 200

cus on a single vocabulary for Bio-DSRE. We use 201

SNOMED-CT, which is the most widely used clin- 202

ical terminology in the world for documentation 203

and reporting in healthcare (Chang et al., 2020). 204

UMLS classifies each entity in a type taxonomy 205

as shown in Fig. 2. This allows for narrowing the 206

concepts of interest. Following (Chang et al., 2020), 207

we consider 8 semantic groups in SNOMED-CT: 208

Anatomy (ANAT), Chemicals & Drugs (CHEM), 209

Concepts & Ideas (CONC), Devices (DEVI), Dis- 210

orders (DISO), Phenomena (PHEN), Physiology 211

(PHYS), and Procedures (PROC). For a complete 212

list of semantic types covered in MEDDISTANT19, 213

4https://download.nlm.nih.gov/umls/
kss/2019AB/umls-2019AB-full.zip
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Properties Prior MD19

approximate entity linking ✓

unique NA sentences ✓

inductive ✓

triples leakage ✓

NA-type constraint ✓

NA-argument role constraint ✓

Table 3: MEDDISTANT19 (MD19) properties in com-
parison with the prior works (Amin et al., 2020; Hogan
et al., 2021).

Facts Training Validation Testing

Inductive (I) 345,374 62,116 130,563
Transductive (T) 402,522 41,491 84,414

Table 4: Number of raw inductive and transductive
SNOMED-KG triples used for alignment with text data.

see Appendix A.1. Similarly, each relation is cat-214

egorized into a type and has a reciprocal relation215

in UMLS (Appendix A.2), which can result in an216

overlap between the training and test set if not ad-217

dressed (Dettmers et al., 2018).218

These steps follow Chang et al. (2020), with the219

difference that we only consider relations of type220

has relationship other than synonymous, narrower,221

or broader (RO); this is consistent with prior works222

in Bio-DSRE (Dai et al., 2019; Amin et al., 2020;223

Hogan et al., 2021). We also exclude uninforma-224

tive relations, same_as, possibly_equivalent_to, as-225

sociated_with, temporally_related_to, and ignore226

inverse relations as generally is the case in RE.227

In addition, Chang et al. (2020) ensure that the228

validation and test set do not contain any new enti-229

ties, making it a transductive learning setting where230

we assume all test entities are known beforehand.231

However, in real-world applications of biomedical232

RE, we are expected to extract relations between233

unseen entities. To support this setup, we also con-234

sider an inductive KG split proposed by Daza et al.235

(2021).236

Table A.3 summarizes the statistics of the KGs237

used for alignment with the text. We use split ratios238

of 70%, 10%, and 20%. Relationships are defined239

between CUIs, and have no overlap between train-240

ing, validation, and test set.241

3.1 Knowledge-to-Text Alignment242

We now describe the procedure for searching fact243

triples to match relational instances in text.244

Let E and R respectively denote the set of245

Summary Entities Relations STY SG
25,028 39 65 8

Split Instances Facts Rare (%) Bags NA (%)

Train 251,558 2,366 92.3% 80,668 96.9%
Valid 179,393 806 87.8% 31,805 98.2%
Test 213,602 1,138 91.3% 50,375 98.1%

Table 5: Summary statistics of the MEDDISTANT19
dataset using Inductive SNOMED-KG split (Table A.3).
The number of relations include the unknown relation
type (NA). Rare represents the proportion of the fact
triples which have 8 or fewer instances in a given split
as defined by Hogan et al. (2021). MEDDISTANT19 fo-
cuses on rare triples with high NA proportions, making
it a challenging benchmark.

UMLS CUIs and relation types, and let G ⊆ 246

E × R × E denote the set of relationships con- 247

tained in UMLS. For producing a training-test split, 248

we first create a set G+ ⊆ E × E of related entity 249

pairs, as follows: 250

G+ = {(ei, ej) | ⟨ei, p, ej⟩ ∈ G ∨ ⟨ej , p, ei⟩ ∈ G}. 251

Following the Local-Closed World Assumption 252

(LCWA, Dong et al., 2014; Nickel et al., 2016), 253

we obtain a set of unrelated entity pairs by cor- 254

rupting one of the entities in each pair in G+ and 255

making sure it does not appear in G+, obtaining a 256

new set G− ⊆ E × E of unrelated entities: 257

G− = {(ei, ej) | (ei, ej) ∈ G+ ∧ (ei, ej) ̸∈ G+}
∪ {(ei, ej) | (ei, ej) ∈ G+ ∧ (ei, ej) ̸∈ G+}.

258

During the corruption process, we enforce two con- 259

straints 1) the two entities appearing in each neg- 260

ative pair in G− should belong to the same entity 261

types as the entities in the initial positive pair, and 262

2) that the entities used in the negative pair must 263

have appeared in one or more positive pairs. 264

For each entity linked sentence, we only consider 265

those sentences that have SNOMED-CT entities 266

and have pairs in G+ and G−. Selected positive 267

and negative pairs are mutually exclusive and have 268

no overlap across splits. 269

Since we only consider unique sentences asso- 270

ciated with a pair, this makes for unique negative 271

training instances, in contrast to Amin et al. (2020) 272

who considered generating positive and negative 273

pairs from the same sentence. We define negative 274

examples as relational sentences mentioning argu- 275

ment pairs with unknown relation type (NA), i.e. 276

there might be a relation but the considered set of 277

relations do not cover it. Our design choices are 278

summarized in Table 3. 279
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Figure 3: (Left) Entity distribution based on Semantic
Types. (Right) Relations distribution.

We prune high-frequency positive and nega-280

tive pairs, remove mention-level overlap across281

the splits and apply type-based mention pruning.282

Specifically, we pool mentions by types and remove283

the sentences which have the mention appearing284

more than 1000 times. This step was crucial in285

removing highly non-informative mentions, such286

as increased (STY: Qualitative Concept), men-287

tioned over 449951 times compared to malignant288

tumor (STY: Neoplastic Process) mentioned 473289

times. Table 5 shows the final summary of MED-290

DISTANT19 using inductive split. Fig. 3 shows291

entity and relation plots, following a long-tail.292

4 Experiments293

MEDDISTANT19 is released in a format that is294

compatible with the widely adopted RE frame-295

work OpenNRE (Han et al., 2019). To report296

our results, we use the corpus-level RE metrics297

Area Under the Precision-Recall (PR) curve (AUC),298

Micro-F1, Macro-F1, and Precision-at-k (P@k)299

with k ∈ {100, 200, 300, 1000, 2000}, and the300

sentence-level RE metrics Precision, Recall, and F1.301

Due to imbalanced nature of relational instances302

(Fig. 3), following Gao et al. (2021), we report303

Macro-F1 values, and following Hogan et al. (2021)304

we report sentence-level RE results on relationships305

including frequent and rare triples.306

4.1 Baselines307

Our baseline experiments largely follow the setup308

of Gao et al. (2021). For sentence encoding, we309

use CNN (Liu et al., 2013), PCNN (Zeng et al.,310

2015), and BERT (Devlin et al., 2019). We used311

GloVe (Pennington et al., 2014) and Word2Vec312

(Mikolov et al., 2013)5 for CNN/PCNN models,313

and initialized BERT with BioBERT (Lee et al.,314

2020).315

5DRE baselines using CNN/PCNN models use 50-
dimensional word embeddings from GloVe. Therefore, we
trained 50-dim Word2Vec embeddings on PubMed abstracts.

Figure 4: Precision-Recall (PR) curves for BERT-
based baselines initialized with BioBERT on MEDDIS-
TANT19. The trends largely follow the general-domain
(Gao et al., 2021) with exception of BERT+bag+ONE.

We trained our models both at sentence-level and 316

at bag-level. In contrast, prior works only consid- 317

ered bag-level training for Bio-DSRE (Dai et al., 318

2019; Amin et al., 2020; Hogan et al., 2021). The 319

sentence-level setup is similar to standard RE (Wu 320

and He, 2019), with the difference that the evalu- 321

ation is conducted at bag-level. We also consider 322

different pooling strategies, namely average (AVG), 323

which averages the representations of sentences in 324

a bag, at-least-one (ONE, Zeng et al., 2015), which 325

generates relation scores for each sentence in a bag 326

and then selects the top scoring sentence, and atten- 327

tion (ATT), which learns an attention mechanism 328

over the sentences within a bag. 329

Table 6 presents our main results. In all the 330

cases, BERT sentence encoder performed better 331

than CNN and PCNN. This trend is similar to 332

the general-domain. We also validate the finding 333

that sentence-level training in pre-trained language 334

models (LMs) performs better than the bag-level 335

(Gao et al., 2021; Zhang et al., 2021). We argue 336

that when trained at sentence-level, those sentences 337

that have been correctly labeled by distant supervi- 338

sion (e.g. Fig. 1) provides enough learning signal, 339

given the generalization abilities of LMs. However, 340

in bag-level training, we force the model to jointly 341

learn from clean and noisy samples, thus limiting 342

its overall performance. This raises further ques- 343

tions into using MIL with LMs. But, we do not find 344

this trend to hold for CNN/PCNN, instead the bag- 345

level models performed slightly better. We also find 346

GloVe to be a better initialization for sentence-level 347

training and Word2Vec for bag-level. We further 348

plot PR curves for BERT-based baselines in Fig. 4. 349
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Model Bag Strategy AUC F1-micro F1-macro P@100 P@200 P@300 P@1k P@2k

CNN

- AVG 5.8 10.5 3.2 32.0 28.0 23.3 15.6 10.8
- ONE 6.4 10.7 2.8 33.0 26.5 23.6 15.5 11.2

✓ AVG 10.3 12.8 4.7 48.0 37.0 32.0 19.5 13.6
✓ ONE 8.5 17.9 3.7 39.0 32.5 27.3 18.7 13.3
✓ ATT 6.0 13.5 2.6 31.0 28.5 22.3 15.7 10.7

PCNN

- AVG 6.3 12.8 4.8 37.0 30.0 26.6 16.8 10.6
- ONE 6.6 9.7 2.9 34.0 26.0 22.3 16.3 11.7

✓ AVG 9.5 15.2 5.5 48.0 36.0 31.3 19.1 13.8
✓ ONE 6.8 15.3 2.6 34.0 27.0 26.0 16.3 12.3
✓ ATT 5.7 13.7 2.4 36.0 24.0 23.6 14.9 10.8

BERT

- AVG 55.4 55.1 23.3 97.0 90.0 87.3 58.8 37.8
- ONE 53.0 52.1 23.6 94.0 92.0 87.6 57.5 36.4

✓ AVG 49.8 53.5 20.3 89.0 82.0 80.3 58.1 36.1
✓ ONE 25.2 27.8 12.3 52.0 53.5 50.6 39.3 28.0
✓ ATT 36.9 40.3 12.7 84.0 73.5 66.0 45.3 31.4

JointSimplE_NER+KATT (Dai et al., 2019) - - - - - - - 91.3
BERT+bag+AVG (Amin et al., 2020) 68.4 64.9 - 97.4 98.3 98.6 - 98.3

AMIL (Rel. Type L) (Hogan et al., 2021) 87.2 81.2 - - - - - 100.0
AMIL (Rel. Type L)* 82.6 77.6 - 100.0 100.0 100.0 - 99.7

Table 6: Baselines adopted from Gao et al. (2021) for MEDDISTANT19. CNN and PCNN models at sentence-
level are reported with GloVe, while bag-level models are reported with Word2Vec. BERT-based models are
initialized with BioBERT. We also include previously published results for completeness. The results are not directly
comparable due to differences in the corpora used. All the previously published results were trained at bag-level.
The symbol * marks our re-run of the best model reported by Hogan et al. (2021).

In all cases, AVG proved to be a better pool-350

ing strategy; this finding is consistent with prior351

works. Both Amin et al. (2020) and Gao et al.352

(2021) found ATT to produce less accurate results353

with LMs, however, contrary to general-domain, in354

MEDDISTANT19, BERT+bag+ONE had lower per-355

formance than BERT+bag+ATT. We attribute this356

to the challenging nature of the benchmark, since it357

is focused on long-tail relations and therefore, the358

signal to learn from is insufficient when picking the359

optimal example in the bag for BERT+bag+ONE.360

This results in sparse gradients and longer training361

time.6362

The current state-of-the-art model AMIL (Rel.363

Type L) from Hogan et al. (2021) creates bags of364

instances by abstracting entity pairs belonging to365

the same semantic type pair into a single bag, thus366

producing heterogeneous bags. Due to the nature367

of their methodology, it is not suited for sentence-368

level models, which already produce more accurate369

results than bag models.370

To further study the impact of bag-level and371

sentence-level training on MEDDISTANT19, we372

analyse the relation category-specific results as in373

Chang et al. (2020), and the results on rare and374

6While we trained all BERT-based models for 3 epochs,
BERT+bag+ONE was trained for 50 epochs

frequent triples as in Hogan et al. (2021). Follow- 375

ing Chang et al. (2020), we grouped the relations 376

based on cardinality, where the cardinality is de- 377

fined as: for a given relation type, if the set of head 378

or tail entities belong to only one semantic group, 379

then it has cardinality 1 otherwise M (many). The 380

results are shown in Table 8 for sentence- and bag- 381

level training with average pooling. We note that 382

both training strategies perform comparably on 1-1 383

category but the bag-level training suffers a huge 384

performance drop in M-1 and 1-M settings. We 385

reason that this could be due to the lack of enough 386

training signal to differentiate between heteroge- 387

neous entity types pooled over instances in a bag. 388

Following Hogan et al. (2021), we also perform 389

sentence-level evaluation of BERT-based encoders 390

trained at sentence-level and bag-level. The au- 391

thors divided the triples (including "NA" instances) 392

into two categories, those with 8 or more sentences 393

are defined as common triples and others as rare 394

triples. Table 7 shows these results. We note 395

that both training strategies performed compara- 396

bly on rare-triples with BERT+sent+AVG more 397

precise than BERT+bag+AVG. However, we find 398

noticeable differences on common triples where 399

BERT+bag+AVG had higher recall but still low 400

precision. This could be explained because of over- 401
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Model P R F1

All Triples

BERT+sent+AVG 0.44 0.49 0.46
BERT+bag+AVG 0.36 0.52 0.42

Common Triples

BERT+sent+AVG 0.35 0.47 0.40
BERT+bag+AVG 0.28 0.53 0.37

Rare Triples

BERT+sent+AVG 0.57 0.52 0.55
BERT+bag+AVG 0.52 0.50 0.51

Table 7: Sentence-level RE metrics comparing BERT
baselines trained at bag and sentence-level with AVG
pooling on Rare, Common and All triples. The triples
also include NA relational instances.

Model 1-1 1-M M-1

BERT+sent+AVG 21.3 26.1 30.7
BERT+bag+AVG 19.4 9.4 3.0

Table 8: Averaged F1-micro score on relation specific
category. The categories are defined using the cardinal-
ity of head and tail semantic group types.

fitting to type and mention heuristics at bag-level,402

where sentence-level training allows to have more403

focus on context.404

4.2 Analysis405

Context, Mention, or Type? RE models are406

known to heavily rely on information from entity407

mentions, most of which is type information, and408

existing datasets may leak shallow heuristics via409

entity mentions that can inflate the prediction re-410

sults (Peng et al., 2020). To study the importance411

of mentions, contexts, and entity types in MED-412

DISTANT19, we take inspiration from Peng et al.413

(2020); Han et al. (2020) and conduct an ablation414

of different text encoding methods. We consider415

entity mentions with special entity markers (Wu416

and He, 2019; Amin et al., 2020) as the Context417

+ Mention (CM) setting, which is common in RE418

with LMs. We then remove the context and only419

use mentions, and we refer to this as the Only Men-420

tion (OM) setting. This is similar to KG-BERT421

(Yao et al., 2019) for relation prediction. We then422

only consider the context by replacing subject and423

object entities with special tokens, resulting in the424

Only Context (OC) setting. Lastly, we consider425

two type-based (STY) variations as Only Type (OT)426

OT OC CT OM CM0.0

0.1

0.2

0.3

0.4

0.5 AUC
F1

Figure 5: Ablation showing the effect of different text
encoding methods following the general-domain trends.

and Context + Type (CT). We conduct these experi- 427

ments with BioBERT trained at sentence-level and 428

evaluated at bag-level. The results are shown in 429

Fig. 5. 430

We observe that the CM method had the high- 431

est performance but surprisingly, OM performed 432

quite well. This highlights the ability of LMs to 433

memorize the facts and act as soft KBs (Petroni 434

et al., 2019; Safavi and Koutra, 2021). This trend 435

is also consistent with general-domain (Peng et al., 436

2020). The poor performance in the OC setting 437

shows that the model struggles to understand the 438

context, which is more pronounced in noisy-prone 439

distant RE compared to supervised RE. Our CT 440

setup can be seen as sentence-level extrapolation 441

of the AMIL model (Hogan et al., 2021), which 442

struggles to perform better than the baseline (OM). 443

However, comparing OC with CT, it is clear that 444

the model benefits from type information as it can 445

help constraint the relations space. Using only the 446

type information had the least performance as the 447

model fails to disambiguate between different enti- 448

ties belonging to the same type. 449

Inductive or Transductive? To study the 450

impact of transductive and inductive splits (Ta- 451

ble A.3), we created another Bio-DSRE corpus 452

using transductive train, validation, and test triples. 453

The corpus generated is different than the induc- 454

tive one, but it can offer insights into the model’s 455

ability to handle unseen mentions. As shown in Ta- 456

ble 9, the performance using transductive is slightly 457

better than inductive for corpus-level extractions, 458

in terms of AUC, however, the F1-micro score is 459

slightly better in inductive than transductive. We 460

conclude from this that the model is able to learn 461

patterns that exploit mention and type information 462

to extrapolate to unseen mentions. 463
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Split AUC F1-micro F1-macro

Inductive (I) 55.5 56.5 24.8
Transductive (T) 57.4 53.0 24.1

Table 9: BERT+sent+AVG performance on two corpora,
one created with inductive set of triples and the other
with transductive set of triples.

Does Expert Knowledge Help? We now con-464

sider several pre-trained LMs with different knowl-465

edge capacities, specific to biomedical and clini-466

cal language understanding, with the aim to better467

understand MEDDISTANT19 challenges and gain468

insights into models behavior.469

We consider BERT (Devlin et al., 2019) as a470

baseline model. Next, we consider domain-specific471

models: ClinicalBERT (Alsentzer et al., 2019)472

which is pre-trained on the clinical notes (John-473

son et al., 2016), BlueBERT (Peng et al., 2019) and474

BioBERT (Lee et al., 2020) which are pre-trained475

on PubMed, and SciBERT (Beltagy et al., 2019),476

which is pre-trained on PubMed and Computer477

Science papers. The recently introduced PubMed-478

BERT (Gu et al., 2021) is trained on PubMed from479

scratch, showing state-of-the-art performance on480

several biomedical tasks. We categorize these mod-481

els as non-expert since they are only trained with482

Masked Language Modeling (MLM) objective.483

In the second category, we consider expert mod-484

els which either modify the MLM objective or intro-485

duce new pre-training tasks using external knowl-486

edge, such as UMLS. MedType (Vashishth et al.,487

2021), initialized with BioBERT, is pre-trained to488

predict semantic types. KeBioLM (Yuan et al.,489

2021), initialized with PubMedBERT, uses rela-490

tional knowledge by initializing the entity embed-491

dings with TransE (Bordes et al., 2013), improv-492

ing downstream entity-centric tasks, including RE.493

UmlsBERT (Michalopoulos et al., 2021), initial-494

ized with ClinicalBERT, modifies MLM to mask495

words belonging to the same CUI and further in-496

troduces semantic type embeddings. SapBERT497

(Liu et al., 2021), initialized with PubMedBERT,498

introduces a metric learning task for clustering syn-499

onyms together in an embedding space.500

Table 10 shows the results of these sentence en-501

coders fine-tuned on the MEDDISTANT19 dataset502

at sentence-level with AVG pooling. Without503

any domain-specific knowledge, BERT performs504

slightly worse than the lowest-performing biomed-505

ical model, highlighting the presence of shallow506

Encoder Knowledge AUC
Biomedical Clinical Type Triples Synonyms

BERT 0.42
ClinicalBERT ✓ ✓ 0.47

BlueBERT ✓ 0.55
SciBERT ✓ 0.55
BioBERT ✓ 0.55

PubMedBERT ✓ 0.62

MedType ✓ ✓ 0.54
KeBioLM ✓ ✓ 0.61

UmlsBERT ✓ ✓ ✓ 0.53
SapBERT ✓ ✓ 0.57

Table 10: Fine-tuning different biomedical and clinical
domain LMs on MEDDISTANT19.

heuristics in the data that are common to the general 507

and biomedical domains. While domain-specific 508

pre-training improves the results, similar to Gu et al. 509

(2021), we find clinical LMs underperform on the 510

biomedical RE task. There was no performance 511

gap between BlueBERT, SciBERT and BioBERT. 512

However, PubMedBERT brought significant im- 513

provement which is consistent with Gu et al. (2021). 514

In terms of expert knowledge-based models, we do 515

not notice any improvements instead, all of them 516

had a negative impact. While we would expect 517

type-based models, MedType and UmlsBERT, to 518

bring improvement, their negative effect can be 519

attributed to overfitting certain types and their pat- 520

terns. KeBioLM, which is initialized with PubMed- 521

BERT, slightly degrades the performance despite 522

having seen the triples used in MEDDISTANT19 523

during pre-training, highlighting the difficulty of 524

the MEDDISTANT19 dataset. SapBERT which 525

uses the synonyms knowledge also hurt PubMed- 526

BERT’s performance, suggesting that while syn- 527

onyms can help for entity linking, RE is a much 528

more elusive task in noisy real-world scenarios. 529

5 Conclusion 530

In this work, we highlighted a severe training-test 531

overlap in the corpus used by previous studies 532

in Bio-DSRE, causing inflated performance. We 533

noted other inconsistencies including the KGs used 534

and lack of standard baselines. To mitigate these 535

issues, we introduce a new benchmark MEDDIS- 536

TANT19, which derives its KG from SNOMED-CT 537

(Chang et al., 2020) and is particularly focused on 538

long-tail relations. The benchmark can directly be 539

used with standard RE frameworks, such as Open- 540

NRE (Han et al., 2019). We conducted a thorough 541

set of experiments and provided baselines show- 542

ing both the quality of the dataset and the need for 543

better models. 544
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6 Legal & Ethical Considerations545

Does the dataset contain information that might546

be considered sensitive or confidential? (e.g.,547

personally identifying information) We use548

PubMed MEDLINE abstracts (Canese and Weis,549

2013)7 that are publicly available and is distributed550

by National Library of Medicine (NLM). These551

texts are in the biomedical and clinical domain,552

and are almost entirely in English. It is standard to553

use this corpus as a text source in several biomed-554

ical LMs (Gu et al., 2021). We cannot claim the555

guarantee that it does not contain any confidential556

or sensitive information e.g, it has clinical find-557

ings mentioned throughout the abstracts such as558

A twenty six year old male presented with high559

grade fever, which identifies the age and gender560

of a patient but not the identity. We did not per-561

form thorough analysis to distill such information562

since it is in public domain. For other concerns,563

see Appendix section B and D.564
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A UMLS 933

In this section we present additional details about 934

UMLS, including the final set of relations consid- 935

ered in MEDDISTANT19 (with their inverses ob- 936

tained from the UMLS) and a complete list of se- 937

mantic types (STY). Since in relation extraction 938

(RE), we are not interested in bidirectional extrac- 939

tions, therefore it is sufficient to only model one 940

direction. Previous studies (Dai et al., 2019; Amin 941

et al., 2020; Hogan et al., 2021) fail to take into 942

account these inverse relations and with naive split, 943

can lead to train-test leakages. For more discus- 944

sion on the relations in UMLS, including transitive 945

closures, see Section 3.1 in Chang et al. (2020). 946

A.1 UMLS Files 947

In UMLS (Bodenreider, 2004), a concept is pro- 948

vided with a unique identifier called Concept 949

Unique Identifier (CUI), a term status (TS), and 950

whether or not the term is preferred (TTY) in a 951

given vocabulary e.g., SNOMED-CT. The concepts 952

are stored in a file distributed by UMLS called 953

MRCONSO.RRF.8 Each concept further belongs to 954

one or more semantic types (STY), provided in 955

a file called MRSTY.RRF, with a type identifier 956

TUI. There are 127 STY9 in the UMLS2019AB 957

version, which are mapped to 15 semantic groups 958

(SG).10. The relationships between the concepts 959

are organized in a multi-relational graph distributed 960

in a file called MRREL.RRF11. The final set of rela- 961

tions considered in MEDDISTANT19 is presented 962

in Table A.1. 963

Note that we only consider relations belonging 964

to the RO (has relationship other than synonymous, 965

narrower, or broader) type, which is consistent 966

with prior works. This consideration ignores rela- 967

tions such as isa, which defines hierarchy among 968

relations. 969

A.2 Semantic Groups and Semantic Types 970

As we noted in Fig. 3, entities and relations fol- 971

low a long-tail distribution. This has a major im- 972

pact on the quality of the dataset created. For 973

8https://www.ncbi.nlm.nih.gov/books/
NBK9685/table/ch03.T.concept_names_and_
sources_file_mr/

9https://lhncbc.nlm.nih.gov/ii/tools/
MetaMap/Docs/SemanticTypes_2018AB.txt

10https://lhncbc.nlm.nih.gov/ii/tools/
MetaMap/Docs/SemGroups_2018.txt

11https://www.ncbi.nlm.nih.gov/books/
NBK9685/table/ch03.T.related_concepts_
file_mrrel_rrf/?report=objectonly

12

https://doi.org/10.18653/v1/2021.emnlp-main.81
https://doi.org/10.18653/v1/2021.emnlp-main.81
https://doi.org/10.18653/v1/2021.emnlp-main.81
https://doi.org/10.18653/v1/2021.emnlp-main.81
https://doi.org/10.18653/v1/2021.emnlp-main.81
https://aclanthology.org/S13-2056
https://aclanthology.org/S13-2056
https://aclanthology.org/S13-2056
https://aclanthology.org/S13-2056
https://aclanthology.org/S13-2056
https://doi.org/10.1145/3357384.3358119
https://doi.org/10.1145/3357384.3358119
https://doi.org/10.1145/3357384.3358119
https://doi.org/10.1145/3357384.3358119
https://doi.org/10.1145/3357384.3358119
https://arxiv.org/abs/1909.03193
https://arxiv.org/abs/1909.03193
https://arxiv.org/abs/1909.03193
https://doi.org/10.18653/v1/2021.bionlp-1.20
https://doi.org/10.18653/v1/2021.bionlp-1.20
https://doi.org/10.18653/v1/2021.bionlp-1.20
https://doi.org/10.18653/v1/D15-1203
https://doi.org/10.18653/v1/D15-1203
https://doi.org/10.18653/v1/D15-1203
https://doi.org/10.1145/3404835.3463103
https://doi.org/10.1145/3404835.3463103
https://doi.org/10.1145/3404835.3463103
https://doi.org/10.1145/3404835.3463103
https://doi.org/10.1145/3404835.3463103
https://www.ncbi.nlm.nih.gov/books/NBK9685/table/ch03.T.concept_names_and_sources_file_mr/
https://www.ncbi.nlm.nih.gov/books/NBK9685/table/ch03.T.concept_names_and_sources_file_mr/
https://www.ncbi.nlm.nih.gov/books/NBK9685/table/ch03.T.concept_names_and_sources_file_mr/
https://lhncbc.nlm.nih.gov/ii/tools/MetaMap/Docs/SemanticTypes_2018AB.txt
https://lhncbc.nlm.nih.gov/ii/tools/MetaMap/Docs/SemanticTypes_2018AB.txt
https://lhncbc.nlm.nih.gov/ii/tools/MetaMap/Docs/SemGroups_2018.txt
https://lhncbc.nlm.nih.gov/ii/tools/MetaMap/Docs/SemGroups_2018.txt
https://www.ncbi.nlm.nih.gov/books/NBK9685/table/ch03.T.related_concepts_file_mrrel_rrf/?report=objectonly
https://www.ncbi.nlm.nih.gov/books/NBK9685/table/ch03.T.related_concepts_file_mrrel_rrf/?report=objectonly
https://www.ncbi.nlm.nih.gov/books/NBK9685/table/ch03.T.related_concepts_file_mrrel_rrf/?report=objectonly


Figure A.1: Relative proportions of the entities present
in MEDDISTANT19, based on the semantic groups.

Figure A.2: Relative proportions of the entities present
in MEDDISTANT19, based on the semantic groups.

example in general-domain, the standard bench-974

mark, NYT10 (Riedel et al., 2010), has more than975

half of the positive instances belonging to one rela-976

tion type /location/location/contains.977

Fig. A.1 shows the relative proportions of the se-978

mantic groups in MEDDISTANT19.979

Since MEDDISTANT19 aims to focus on rare980

triples, we prune the mentions by their types, to981

avoid creating and learning a biased data and model982

respectively. Below we provide a list of top-5 men-983

tions for selected semantic types showing the pres-984

ence of highly-frequent mentions, often picked by985

Bio-DSRE corpora. We remove such mentions by986

type-based pruning, setting the minimum mention987

frequency to be 1000.988

• Body Part, Organ, or Organ Component:989

(liver, 67264), (brain, 63234), (eyes, 25927),990

(lung, 25464), (kidney, 20825)991

• Organism Function: (period, 29499), (blood992

pressure, 20868), (death, 12935), (BP, 9789),993

(died, 7905)994

• Body Location or Region: (head, 16458), 995

(neck, 6645), (face, 6480), (chest, 3919), 996

(shoulder, 3338) 997

• Therapeutic or Preventive Procedure: (in- 998

tervention, 59944), (procedure, 54594), (re- 999

moval, 35543), (operation, 30961), (stimula- 1000

tion, 24058) 1001

• Pathologic Function: (sensitivity, 49697), 1002

(sensitive, 25696), (inflammation, 18993), 1003

(blocked, 18138), (bleeding, 15292) 1004

• Qualitative Concept: (increased, 449951), 1005

(effective, 48317), (effect, 44070), (normal, 1006

43133), (reduced, 37787) 1007

• Neoplastic Process: (tumor, 44632), (tumors, 1008

34157), (cancer, 14314), (neck cancer, 8376), 1009

(tumour, 8288) 1010

• Disease or Syndrome: (disease, 90345), (in- 1011

fection, 68763), (condition, 33060), (hyper- 1012

tension, 32197), (diseases, 25850) 1013

• Functional Concept: (changes, 88517), (ab- 1014

sence, 39080), (impaired, 30194), (progres- 1015

sive, 24817), (functions, 24678) 1016

• Laboratory Procedure: (cells, 45314), (test, 1017

12502), (erythrocytes, 11916), (tests, 9907), 1018

(RBC, 7020) 1019

• Diagnostic Procedure: (MRI, 26224), (US, 1020

17279), (biopsy, 14352), (ultrasound, 11663), 1021

(imaging, 9635) 1022

• Finding: (presence, 176771), (positive, 1023

88797), (negative, 42464), (severe, 37334), 1024

(lesions, 31747) 1025

• Hormone: (insulin, 12365), (LH, 5738), (cor- 1026

tisol, 5223), (estradiol, 4144), (TSH, 3319) 1027

• Biologically Active Substance: (protein, 1028

23232), (proteins, 20662), (amino acids, 1029

19187), (glucose, 13968), (ATP, 13228) 1030

This was the most important pruning method 1031

that removed a major portion of noisy sentences 1032

(removed / original): train (3,576,637 / 3,828,374), 1033

validation (561,176 / 740,576), and test (1,616,412 1034

/ 1,830,024). 1035

Fig. A.2 shows the final command that was used 1036

to create MEDDISTANT19 benchmark with the in- 1037

ductive split set at 70, 10 and 20 proportions of 1038

train, validation and test splits. 1039
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Relation Inverse Relation

finding_site_of has_finding_site
associated_morphology_of has_associated_morphology

method_of has_method
interprets is_interpreted_by

direct_procedure_site_of has_direct_procedure_site
causative_agent_of has_causative_agent
active_ingredient_of has_active_ingredient

pathological_process_of has_pathological_process
entire_anatomy_structure_of has_entire_anatomy_structure

interpretation_of has_interpretation
laterality_of has_laterality

component_of has_component
indirect_procedure_site_of has_indirect_procedure_site

direct_morphology_of has_direct_morphology
cause_of due_to
intent_of has_intent

direct_substance_of has_direct_substance
uses_device device_used_by

clinical_course_of has_clinical_course
focus_of has_focus

direct_device_of has_direct_device
finding_method_of has_finding_method
procedure_site_of has_procedure_site

uses_substance substance_used_by
associated_finding_of has_associated_finding

associated_procedure_of has_associated_procedure
occurs_after occurs_before

is_modification_of has_modification
uses_access_device access_device_used_by

specimen_source_topography_of has_specimen_source_topography
plays_role role_played_by

specimen_procedure_of has_specimen_substance
indirect_morphology_of has_indirect_morphology

part_anatomy_structure_of has_part_anatomy_structure
specimen_source_morphology_of has_specimen_source_morphology

specimen_source_identity_of has_specimen_source_identity
during inverse_during

direct_site_of has_direct_site

Table A.1: (Left) 38 relations included in MEDDISTANT19, excluding NA relation. (Right) For completeness, we
also include their inverse relations.
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SG TUI Semantic Type

ANAT

T017 Anatomical Structure
T029 Body Location or Region
T023 Body Part, Organ, or Organ Component
T030 Body Space or Junction
T031 Body Substance
T022 Body System
T021 Fully Formed Anatomical Structure
T024 Tissue

CHEM

T116 Amino Acid, Peptide, or Protein
T195 Antibiotic
T123 Biologically Active Substance
T103 Chemical
T200 Clinical Drug
T196 Element, Ion, or Isotope
T126 Enzyme
T131 Hazardous or Poisonous Substance
T125 Hormone
T129 Immunologic Factor
T130 Indicator, Reagent, or Diagnostic Aid
T197 Inorganic Chemical
T114 Nucleic Acid, Nucleoside, or Nucleotide
T109 Organic Chemical
T121 Pharmacologic Substance
T192 Receptor
T127 Vitamin

CONC

T185 Classification
T169 Functional Concept
T102 Group Attribute
T078 Idea or Concept
T170 Intellectual Product
T080 Qualitative Concept
T081 Quantitative Concept
T082 Spatial Concept
T079 Temporal Concept

DEVI
T074 Medical Device
T075 Research Device

DISO

T020 Acquired Abnormality
T190 Anatomical Abnormality
T049 Cell or Molecular Dysfunction
T019 Congenital Abnormality
T047 Disease or Syndrome
T033 Finding
T037 Injury or Poisoning
T048 Mental or Behavioral Dysfunction
T191 Neoplastic Process
T046 Pathologic Function
T184 Sign or Symptom

PHEN

T038 Biologic Function
T068 Human-caused Phenomenon or Process
T034 Laboratory or Test Result
T070 Natural Phenomenon or Process
T067 Phenomenon or Process

PHYS

T201 Clinical Attribute
T041 Mental Process
T032 Organism Attribute
T040 Organism Function
T042 Organ or Tissue Function
T039 Physiologic Function

PROC

T060 Diagnostic Procedure
T065 Educational Activity
T058 Health Care Activity
T059 Laboratory Procedure
T063 Molecular Biology Research Technique
T062 Research Activity
T061 Therapeutic or Preventive Procedure

Table A.2: 65 semantic types (STY) along with their TUIs and semantic groups (SG) covered in MEDDISTANT19.
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Below is an example instance from MEDDIS-1040

TANT19 in OpenNRE (Han et al., 2019) format:1041
1042

{1043

"text": "In one patient who1044

showed an increase of plasma1045

prolactin level , associated1046

with low testosterone and1047

LH , a microadenoma1048

of the pituitary gland1049

( prolactinoma ) was1050

detected .",1051

"h": {1052

"id": "C0032005",1053

"pos": [130, 145],1054

"name": "pituitary gland"1055

},1056

"t": {1057

"id": "C0033375",1058

"pos": [148, 160],1059

"name": "prolactinoma"1060

},1061

"relation": "finding_site_of"1062

}10631064

B UMLS License Agreement1065

To use this MEDDISTANT19, the user must have1066

signed the UMLS agreement12. The UMLS agree-1067

ment requires those who use the UMLS (Boden-1068

reider, 2004) to file a brief report once a year to1069

summarize their use of the UMLS. It also requires1070

the acknowledgment that the UMLS contains copy-1071

righted material and that those copyright restric-1072

tions be respected. The UMLS agreement requires1073

users to agree to obtain agreements for EACH copy-1074

righted source prior to its use within a commercial1075

or production application.1076

C Limitations1077

We provide several limitations of our work as pre-1078

sented in its current form. MEDDISTANT19 aims1079

to introduce a new benchmark with good practices,1080

however, it is still limited in its scope of ontologies1081

considered. It also has a limited subset of relation1082

types provided by UMLS. For example, the cur-1083

rent benchmark does not include an important rela-1084

tion may_treat, because it is outside SNOMED-CT.1085

Since, MEDDISTANT19 is focused on SNOMED-1086

CT, it lacks coverage of important protein-protein1087

12https://uts.nlm.nih.gov/license.html

interactions, drugs side effects, and relations in- 1088

volving genes as provided by RxNorm, Gene On- 1089

tology etc. It is also smaller in size compared to 1090

the benchmark in general-domain (Riedel et al., 1091

2010). Despite these limitations, MEDDISTANT19 1092

still offers a challenging and focused benchmark 1093

that can help improve the weakly supervised broad- 1094

coverage biomedical RE. 1095

D Risks 1096

While our work does not have direct risk, we do 1097

provide the dataset while asking users to respect 1098

the UMLS license before downloading it. This user 1099

agreement is needed to use our benchmark and to 1100

respect the source ontologies licenses. We provide 1101

this with hope to accelerate reproducible research 1102

in Bio-DSRE by having a ready-to-use corpora, 1103

with only the condition that the license has been 1104

obtained by the user. We provide users with this 1105

note and hope this will be respected. However, 1106

there is a risk that users may download the data and 1107

re-distribute without respecting the UMLS license. 1108

In case of such exploitation, we will add the UMLS 1109

authentication layer to protect data where the user 1110

will be required to provide UMLS api-key, which 1111

will be validated and only then the data will be 1112

allowed to be downloaded. 1113

E Experimental Setup and 1114

Hyperparameters 1115

We followed the experimental setup of Gao et al. 1116

(2021) for BERT-based experiments. Specifically 1117

we used the batch size 64, with learning rate 2e-5, 1118

maximum sequence length 128, bag size 4 where 1119

applicable. We used a single NVIDIA Tesla V100- 1120

32GB for BERT-based experiments. Each experi- 1121

ment took about 1.5 hrs with half an hour per epoch. 1122

We also attempted to perform grid search for BERT 1123

experiments but it was too expensive to continue, 1124

therefore we abandoned those jobs. Since we only 1125

used the base models, they amount to 110 million 1126

parameters. During fine-tuning, we do not freeze 1127

any parts of the model. 1128

For CNN and PCNN, we performed grid 1129

search with optimizers ∈ {Adam (Kingma and 1130

Ba, 2015), SGD (Ruder, 2016)}, learning rate 1131

∈ {0.01, 0.001}, batch size ∈ {64, 160}, bag 1132

size ∈ {4, 8, 12, 16, 32, 64}, embeddings ∈ 1133

{Word2Vec (Mikolov et al., 2013), GloVe (Pen- 1134

nington et al., 2014)}, and with (test-time) pooling 1135

∈ {ONE,AVG} when using sentence-level train- 1136
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Encoder Bag Size Embedding

CNN+sent+AVG 16 GloVe
CNN+sent+ONE 16 GloVe
CNN+bag+AVG 32 Word2Vec
CNN+bag+ONE 4 Word2Vec
CNN+bag+ATT 12 Word2Vec

PCNN+sent+AVG 4 GloVe
PCNN+sent+ONE 4 GloVe
PCNN+bag+AVG 32 Word2Vec
PCNN+bag+ONE 16 GloVe
PCNN+bag+ATT 4 GloVe

Table A.3: Best hyperparameters for CNN and PCNN
sentence encoders.

ing and pooling in {ONE,AVG,ATT} when using1137

bag-level training. We ran this job on a cluster with1138

support for array jobs. These amounted to over1139

700 experiments and took 3 days. We fixed other1140

hyperparameters from literature (Han et al., 2018),1141

with position dimension set to 5, kernel size set to1142

3, and dropout set to 0.5. These are also default in1143

OpenNRE (Han et al., 2019). We found Adam to1144

be the better optimizer in all configurations along1145

with batch size 160 and learning rate 0.001 except1146

in PCNN+sent+AVG, where 0.01 was better learn-1147

ing rate. The hyperparameters that had the most1148

influence were bag size and pre-trained word em-1149

beddings. All the experiments reported in the paper1150

are with a single run.1151

We also needed heavy compute budget for1152

SciSpacy-based sentence tokenization and entity1153

linking jobs. It took 9hrs with 32 CPUs (4GB each)1154

and a batch size of 1024 for spaCy to extract 151M1155

sentences. The entity linking job took about half1156

TB of RAM with 72 CPUs (6GB each) with a batch1157

size 4096. It took 40hrs to link 145M unique sen-1158

tences.1159
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