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Abstract

Relation Extraction in the biomedical domain
is a challenging task due to the lack of labeled
data and the long-tail distribution of the en-
tity mentions. Recent works propose distant
supervision as a way to tackle the scarcity of
annotated data by automatically pairing knowl-
edge graph relationships with raw textual data.
In several benchmarks, Distantly Supervised
Biomedical Relation Extraction (Bio-DSRE)
models can produce very accurate results. How-
ever, given the challenging nature of the task,
we set out to investigate the validity of such
impressive results. We probed the datasets
used by Amin et al. (2020) and Hogan et al.
(2021) and found a significant overlap between
training and evaluation relationships that, once
resolved, reduced the accuracy of the models
by up to 71%. Furthermore, we noticed sev-
eral inconsistencies along the data construction
process, such as the creation of negative sam-
ples and improper handling of redundant rela-
tionships. To mitigate these issues we present
MEDDISTANT19, a new benchmark dataset
obtained by aligning the MEDLINE abstracts
with the widely used SNOMED-Clinical Terms
(SNOMED-CT) knowledge base. We exper-
imented with several state-of-the-art models
following our methodology, showing that there
is still plenty of room for improvement for the
task. We release our code and data for repro-
ducibility.

1 Introduction

Extracting structured knowledge from unstructured
text is an important task for knowledge discovery
and management. Biomedical literature and clini-
cal narratives offer rich interactions between enti-
ties mentioned in the text (Craven et al., 1999; Xu
and Wang, 2014), which can be useful for applica-
tions such as bio-molecular information extraction,
pharmacogenomics, and identifying drug-drug in-
teractions (DDIs), among others (Luo et al., 2017).

Original Filtered
Model and Data AUC Fl1 AUC F1
Amin et al. (2020) 684 649 50.8 53.1
Hogan et al. (2021) 82.6 77.6 11.8 19.8

Table 1: Two state-of-the-art Bio-DSRE models eval-
uated on the respective datasets before (Original) and
after (Filtered) removing test relationships also appear-
ing in the training set. Both models were trained and
evaluated at bag-level.

Manually annotating these relations for train-
ing supervised learning systems is an expensive
and time-consuming process (Segura-Bedmar et al.,
2011; Kilicoglu et al., 2011; Segura-Bedmar et al.,
2013; Li et al., 2016), so the task often involves
leveraging rule-based (Abacha and Zweigenbaum,
2011; Kilicoglu et al., 2020) and weakly supervised
approaches (Peng et al., 2016; Dai et al., 2019).

More recently, Amin et al. (2020) and Hogan
et al. (2021) used domain-specific language mod-
els (Gu et al., 2021) that were pre-trained explicitly
on biomedical data for Bio-DSRE, producing dis-
proportionately more accurate results when com-
pared with recent results in the general domain
(Gao et al., 2021; Christopoulou et al., 2021; Zhang
et al., 2021).

In this work, we highlight that these results can
be largely attributed to the overlap between the
training and the test facts, which allows the model
to score higher just by memorizing the training re-
lations rather than generalizing to new, previously
unknown ones. In Table 1, we show that removing
this leakage (51.9%, Table 2) results in a signifi-
cant decrease in predictive accuracy. For example,
AMIL model with relation type embedding L pro-
posed by Hogan et al. (2021) achieves an 82.6 AUC
when evaluated on their Bio-DSRE dataset, while
producing an 11.8 AUC when evaluated on the sub-
set of the test set of relationships that do not overlap
with the training set.



Triples  Train Valid Test
Textual 92,972 13,555 (51.9%) 33,888 (51.2%)
CUI 211,789 41,993 (26.7%) 89,486 (26.5%)

Table 2: Training-test leakage we identified in the data
constructed and used by Amin et al. (2020) (see their
Appendix A.4 in their k-fag setup). Numbers between
parentheses show the percentage overlap, where the au-
thors considered text-based instead of CUI-based triples.

The training-test overlap in the datasets proposed
by Hogan et al. (2021) and Amin et al. (2020) is
due to the same entities appearing with different
names in multiple relationships, although two en-
tity names are mapped to the same UMLS concept
(Bodenreider, 2004), they are still treated as two
distinct entities. Furthermore, we also identified
other problems, such as redundant facts, and un-
clear coverage of UMLS concepts. To mitigate
these issues, we follow the guidelines outlined by
Chang et al. (2020) for benchmarking biomedical
link prediction models, and propose a new Bio-
DSRE benchmark.

2 Related Work

Relation Extraction (RE) is an important task in
biomedical applications. Traditionally, supervised
methods require large-scale annotated corpora,
which is impractical to scale for broad-coverage
biomedical relation extraction (Kilicoglu et al.,
2011, 2020). In cases where such supervision is
available, it is limited to protein-protein interac-
tions (Peng and Lu, 2017), drug-drug interactions
(Kavuluru et al., 2017), and chemical-disease inter-
actions (Peng et al., 2016).

Distant Supervision (DS) allows for the auto-
mated collection of noisy training examples (Mintz
et al., 2009) by aligning a given knowledge base
(KB) with a collection of text sources. DS was
used in recent works (Alt et al., 2019) using Multi-
Instance Learning (MIL) by creating bags of in-
stances (Riedel et al., 2010) for corpus-level triples
extraction.!

Dai et al. (2019) introduced the use of the Uni-
fied Medical Language System (UMLS) Metathe-
saurus (Bodenreider, 2004) as a KB with PubMed
(Canese and Weis, 2013) MEDLINE abstracts as
text collection, and implemented a knowledge-
based attention mechanism (Han et al., 2018) for

'RE is used to refer to two different tasks: sentence-level

detection of relational instances and corpus-level triples ex-
traction, a kind of knowledge completion task (Ji et al., 2021).

CUI: (C0240066, C0085576)
Semantic Type: (Disease or Syndrome, Disease or Syndrome)
Semantic Group: (Disorders, Disorders)

cause_of

Iron deficiency is the most common MND worldwide and leads to microcytic anemia ,
decreased capacity for work , as well as impaired immune and endocrine function .

Iron deficiency anaemia ( IDA ) and beta-thalassaemia are the most common causes of
microcytic anaemia .

Studies here reported indicated that the anemia is hypochromic and microcytic anemia
of blood loss and iron deficiency , in spite of the presence of large amounts of iron in
the pulmonary tissue .

The high proportion of microcytic anaemia and the fact that gender differences were
only seen after the menarche period in women suggest that iron deficiency was the
main cause of anaemia .

MCV/RBC and (MCV)2 X MCH separated successfully the subjects with microcytic
anaemia ( h ia and iron i ) from normal controls .

Significantly higher serum homocysteine levels were reported in the iron deficiency
anemia group compared to normal controls and in subjects with microcytic anemia and
normal ferritin.

Figure 1: An example of a bag instance representing the
UMLS concept pair (C0240066, C0085576) from
the MEDDISTANT19 dataset, expressing the relation
cause_of. In this example, three out of six sentences
express the relation, while others are wrong labels from
distant supervision.

joint learning with knowledge graph completion us-
ing SimplE (Kazemi and Poole, 2018) embeddings
and entity type classification. Their pipeline was
simplified by Amin et al. (2020), who extended
R-BERT (Wu and He, 2019) to handle bag-level
MIL, and demonstrated that preserving the direc-
tion of the relationships improves the accuracy of
the model. Lacking benchmark corpora, Amin et al.
(2020) also outlined the steps to create the dataset.
Similar steps were followed by Hogan et al. (2021),
who introduced the concept of abstractified MIL
(AMIL), by absorbing different argument pairs be-
longing to the same semantic types (see Fig. 2) pair
in one bag, boosting performance on rare-triples.
They also proposed the use of SCISPACY (Neu-
mann et al., 2019) for sentence tokenization, result-
ing in improved overall performance.

In this work, we investigate some recent results
from the Bio-DSRE literature by probing the re-
spective benchmarks for overlaps between training
and test sets. We found a severe overlap between
the training set and the held-out validation and test
sets in the dataset constructed by Amin et al. (2020)
and Hogan et al. (2021). An issue of entity linking
or concept normalization. Where in UMLS, each
concept is mapped to a UMLS Concept Unique
Identifier (CUI), where a given CUI might have dif-
ferent surface forms (Bodenreider, 2004). Table 2
shows the leakage statistics.

Consider a relationship between a pair of UMLS
entities (C0013798,C0429028). These two en-
tities can appear in different forms within a text,
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Figure 2: Type Hierarchy: each concept in the UMLS is classified under a type taxonomy. The coarse-grained
entity type is called Semantic Group (SG) and the fine-grained entity type is called Semantic Type (STY).

such as (electrocardiography, Q-T interval), (ECG,
O-T interval), and (EKG, QO-T interval); each of
these distinct pairs still refers to the same origi-
nal pair (C0013798, C0429028). Amin et al.
(2020) claim no such text-based leakage, but when
normalized this results in leakage across the splits
as reported in Table 2.

Due to these inconsistencies and lack of bench-
mark and best practices, we introduce the MEDDIS-
TANT19 dataset. Our work utilizes the SNOMED-
CT Knowledge Graph (KG) extracted from the
UMLS that offers a careful selection of the concept
types, proper handling of the inverse relations, and
highlights the need for downstream benchmarks
(Chang et al., 2020). The dataset is particularly
focused on rare-triples and considers a narrower
subset of the relations.

3 Constructing the MedDistant19 Dataset

Documents We used PubMed MEDLINE ab-
stracts from 20192 as our text source, contain-
ing 32,151,899 abstracts. Following Hogan et al.
(2021), we used SCISPACY (Neumann et al., 2019)
for sentence tokenization, resulting in 150,173,169
unique sentences.

Previous studies used Exact Match for entity
linking (Amin et al., 2020; Hogan et al., 2021). In
this work, we further introduce the use of a spe-
cialized UMLS entity linker from SCISPACY 3
since named entity recognition and normalization
was shown to be the largest source of errors in
biomedical RE (Kilicoglu et al., 2020). We used
the default settings in SCISPACY for linking entity
mentions to their UMLS CUIs, and filtering dis-
abled concepts from UMLS. This resulted in the
entity linked mentionsat the sentence level.

https://lhncbc.nlm.nih.gov/ii/

information/MBR/Baselines/2019.html
*https://github.com/allenai/scispacy

Knowledge Base We use UMLS2019AB # as
our main knowledge source. The UMLS Metathe-
saurus (Bodenreider, 2004) covers concepts from
222 source ontologies, thus being the largest on-
tology of biomedical concepts. However, covering
all ontologies can be challenging given the inter-
changeable nature of the concepts. For example,
programmed cell death 1 ligand 1 is an alias of
concept C1540292 in the HUGO Gene Nomen-
clature Committee ontology (Povey et al., 2001),
and it is an alias of concept C3272500 in the
National Cancer Institute Thesaurus. This makes
entity linking more challenging, since a surface
form can be linked to multiple entity identifiers,
and makes it easier to have overlaps between train-
ing and test set, since the same fact may appear in
both with different entity identifiers.

Furthermore, benchmark corpora for biomedical
Named Entity Recognition (Dogan et al., 2014; Li
et al., 2016) and RE (Herrero-Zazo et al., 2013;
Krallinger et al., 2017) focuses on specific entity
types (e.g. diseases, chemicals, proteins), and are
usually normalized to a single ontology (Kilicoglu
et al., 2020). Following this trend, we also fo-
cus on a single vocabulary for Bio-DSRE. We use
SNOMED-CT, which is the most widely used clin-
ical terminology in the world for documentation
and reporting in healthcare (Chang et al., 2020).

UMLS classifies each entity in a type taxonomy
as shown in Fig. 2. This allows for narrowing the
concepts of interest. Following (Chang et al., 2020),
we consider 8 semantic groups in SNOMED-CT:
Anatomy (ANAT), Chemicals & Drugs (CHEM),
Concepts & Ideas (CONC), Devices (DEVI), Dis-
orders (DISO), Phenomena (PHEN), Physiology
(PHYS), and Procedures (PROC). For a complete
list of semantic types covered in MEDDISTANT19,

*https://download.nlm.nih.gov/umls/
kss/2019AB/umls-2019AB-full.zip
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Properties Prior MD19
approximate entity linking v
unique NA sentences v
inductive v
triples leakage v
NA-type constraint v
NA-argument role constraint v

Table 3: MEDDISTANT19 (MD19) properties in com-
parison with the prior works (Amin et al., 2020; Hogan
etal., 2021).

Facts Training Validation Testing
Inductive (I) 345,374 62,116 130,563
Transductive (T) 402,522 41,491 84,414

Table 4: Number of raw inductive and transductive
SNOMED-KG triples used for alignment with text data.

see Appendix A.1l. Similarly, each relation is cat-
egorized into a type and has a reciprocal relation
in UMLS (Appendix A.2), which can result in an
overlap between the training and test set if not ad-
dressed (Dettmers et al., 2018).

These steps follow Chang et al. (2020), with the
difference that we only consider relations of type
has relationship other than synonymous, narrower,
or broader (RO); this is consistent with prior works
in Bio-DSRE (Dai et al., 2019; Amin et al., 2020;
Hogan et al., 2021). We also exclude uninforma-
tive relations, same_as, possibly_equivalent _to, as-
sociated_with, temporally_related_to, and ignore
inverse relations as generally is the case in RE.

In addition, Chang et al. (2020) ensure that the
validation and test set do not contain any new enti-
ties, making it a transductive learning setting where
we assume all test entities are known beforehand.
However, in real-world applications of biomedical
RE, we are expected to extract relations between
unseen entities. To support this setup, we also con-
sider an inductive KG split proposed by Daza et al.
(2021).

Table A.3 summarizes the statistics of the KGs
used for alignment with the text. We use split ratios
of 70%, 10%, and 20%. Relationships are defined
between CUIs, and have no overlap between train-
ing, validation, and test set.

3.1 Knowledge-to-Text Alignment

We now describe the procedure for searching fact
triples to match relational instances in text.
Let £ and R respectively denote the set of

Summar Entities Relations STY SG
v ¥ 25,028 39 65 8
Split Instances Facts Rare (%) Bags NA (%)
Train 251,558 2,366 92.3% 80,668  96.9%
Valid 179,393 806 87.8% 31,805 98.2%
Test 213,602 1,138 91.3% 50,375  98.1%

Table 5: Summary statistics of the MEDDISTANT19
dataset using Inductive SNOMED-KG split (Table A.3).
The number of relations include the unknown relation
type (NA). Rare represents the proportion of the fact
triples which have 8 or fewer instances in a given split
as defined by Hogan et al. (2021). MEDDISTANT19 fo-
cuses on rare triples with high NA proportions, making
it a challenging benchmark.

UMLS CUIs and relation types, and let G C
€ X R x & denote the set of relationships con-
tained in UMLS. For producing a training-test split,
we first create a set G+ C € x & of related entity
pairs, as follows:

g+ - {(62‘,6]‘) ‘ <€iap7 e]> S g\/ <ej7p7 ei) € g}

Following the Local-Closed World Assumption
(LCWA, Dong et al., 2014; Nickel et al., 2016),
we obtain a set of unrelated entity pairs by cor-
rupting one of the entities in each pair in G and
making sure it does not appear in G, obtaining a
new set G~ C & x & of unrelated entities:

G~ ={(ei,e;) | (esrej) € G A(ei,e;) €G7}
U{(ei &) | (eirej) € GT A (es,85) € G}

During the corruption process, we enforce two con-
straints 1) the two entities appearing in each neg-
ative pair in G~ should belong to the same entity
types as the entities in the initial positive pair, and
2) that the entities used in the negative pair must
have appeared in one or more positive pairs.

For each entity linked sentence, we only consider
those sentences that have SNOMED-CT entities
and have pairs in Gt and G~. Selected positive
and negative pairs are mutually exclusive and have
no overlap across splits.

Since we only consider unique sentences asso-
ciated with a pair, this makes for unique negative
training instances, in contrast to Amin et al. (2020)
who considered generating positive and negative
pairs from the same sentence. We define negative
examples as relational sentences mentioning argu-
ment pairs with unknown relation type (NA), i.e.
there might be a relation but the considered set of
relations do not cover it. Our design choices are
summarized in Table 3.
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Figure 3: (Left) Entity distribution based on Semantic
Types. (Right) Relations distribution.

We prune high-frequency positive and nega-
tive pairs, remove mention-level overlap across
the splits and apply type-based mention pruning.
Specifically, we pool mentions by types and remove
the sentences which have the mention appearing
more than 1000 times. This step was crucial in
removing highly non-informative mentions, such
as increased (STY: Qualitative Concept), men-
tioned over 449951 times compared to malignant
tumor (STY: Neoplastic Process) mentioned 473
times. Table 5 shows the final summary of MED-
DISTANTI19 using inductive split. Fig. 3 shows
entity and relation plots, following a long-tail.

4 Experiments

MEDDISTANT19 is released in a format that is
compatible with the widely adopted RE frame-
work OpenNRE (Han et al., 2019). To report
our results, we use the corpus-level RE metrics
Area Under the Precision-Recall (PR) curve (AUC),
Micro-F1, Macro-F1, and Precision-at-k (P@k)
with k& € {100,200, 300, 1000,2000}, and the
sentence-level RE metrics Precision, Recall, and F1.
Due to imbalanced nature of relational instances
(Fig. 3), following Gao et al. (2021), we report
Macro-F1 values, and following Hogan et al. (2021)
we report sentence-level RE results on relationships
including frequent and rare triples.

4.1 Baselines

Our baseline experiments largely follow the setup
of Gao et al. (2021). For sentence encoding, we
use CNN (Liu et al., 2013), PCNN (Zeng et al.,
2015), and BERT (Devlin et al., 2019). We used
GloVe (Pennington et al., 2014) and Word2Vec
(Mikolov et al., 2013) for CNN/PCNN models,
and initialized BERT with BioBERT (Lee et al.,
2020).

SDRE baselines using CNN/PCNN models use 50-
dimensional word embeddings from GloVe. Therefore, we
trained 50-dim Word2Vec embeddings on PubMed abstracts.
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Figure 4: Precision-Recall (PR) curves for BERT-
based baselines initialized with BioBERT on MEDDIS-
TANT19. The trends largely follow the general-domain
(Gao et al., 2021) with exception of BERT+bag+ONE.

We trained our models both at sentence-level and
at bag-level. In contrast, prior works only consid-
ered bag-level training for Bio-DSRE (Dai et al.,
2019; Amin et al., 2020; Hogan et al., 2021). The
sentence-level setup is similar to standard RE (Wu
and He, 2019), with the difference that the evalu-
ation is conducted at bag-level. We also consider
different pooling strategies, namely average (AVG),
which averages the representations of sentences in
a bag, at-least-one (ONE, Zeng et al., 2015), which
generates relation scores for each sentence in a bag
and then selects the top scoring sentence, and atten-
tion (ATT), which learns an attention mechanism
over the sentences within a bag.

Table 6 presents our main results. In all the
cases, BERT sentence encoder performed better
than CNN and PCNN. This trend is similar to
the general-domain. We also validate the finding
that sentence-level training in pre-trained language
models (LMs) performs better than the bag-level
(Gao et al., 2021; Zhang et al., 2021). We argue
that when trained at sentence-level, those sentences
that have been correctly labeled by distant supervi-
sion (e.g. Fig. 1) provides enough learning signal,
given the generalization abilities of LMs. However,
in bag-level training, we force the model to jointly
learn from clean and noisy samples, thus limiting
its overall performance. This raises further ques-
tions into using MIL with LMs. But, we do not find
this trend to hold for CNN/PCNN, instead the bag-
level models performed slightly better. We also find
GloVe to be a better initialization for sentence-level
training and Word2Vec for bag-level. We further
plot PR curves for BERT-based baselines in Fig. 4.



Model Bag Strategy AUC Fl-micro Fl-macro P@100 P@200 P@300 P@lk P@2k
; AVG 5.8 105 32 320 280 233 156 108
: ONE 6.4 107 28 330 265 236 155 112
CNN- AVG 103 128 47 480 370 320 195 136
v ONE 8.5 17.9 37 300 325 273 187 133
v ATT 6.0 135 2.6 310 285 223 157 107
; AVG 63 12.8 438 370 300 266 168 106
; ONE 6.6 9.7 2.9 340 260 23 163 117
PCNN AVG 9.5 152 55 480 360 313 191 138
v ONE 6.8 153 26 340 270 260 163 123
v ATT 5.7 13.7 2.4 360 240 236 149 108
- AVG 554 551 233 970 900 873 588 378
- ONE 530 521 23.6 940 920 876 575 364
BERT AVG 498 535 203 800 80 803 581 361
v ONE 252 278 123 520 535 506 393 280
v ATT 369 403 12.7 840 735 660 453 314
JointSimplE_NER+KATT (Dai et al., 2019) - - - - - - - 91.3
BERT+bag+AVG (Amin etal, 2020) 684  64.9 ; 974 983 986 ; 98.3
AMIL (Rel. Type L) (Hogan et al., 2021) 87.2 81.2 - - - - - 100.0
AMIL (Rel. Type L)* 8.6 716 - 1000 1000 100.0 - 99.7

Table 6: Baselines adopted from Gao et al. (2021) for MEDDISTANT19. CNN and PCNN models at sentence-
level are reported with GloVe, while bag-level models are reported with Word2Vec. BERT-based models are
initialized with BioBERT. We also include previously published results for completeness. The results are not directly
comparable due to differences in the corpora used. All the previously published results were trained at bag-level.
The symbol * marks our re-run of the best model reported by Hogan et al. (2021).

In all cases, AVG proved to be a better pool-
ing strategy; this finding is consistent with prior
works. Both Amin et al. (2020) and Gao et al.
(2021) found ATT to produce less accurate results
with LMs, however, contrary to general-domain, in
MEDDISTANT19, BERT+bag+ONE had lower per-
formance than BERT+bag+ATT. We attribute this
to the challenging nature of the benchmark, since it
is focused on long-tail relations and therefore, the
signal to learn from is insufficient when picking the
optimal example in the bag for BERT+bag+ONE.
This results in sparse gradients and longer training
time.®

The current state-of-the-art model AMIL (Rel.
Type L) from Hogan et al. (2021) creates bags of
instances by abstracting entity pairs belonging to
the same semantic type pair into a single bag, thus
producing heterogeneous bags. Due to the nature
of their methodology, it is not suited for sentence-
level models, which already produce more accurate
results than bag models.

To further study the impact of bag-level and
sentence-level training on MEDDISTANT19, we
analyse the relation category-specific results as in
Chang et al. (2020), and the results on rare and

®While we trained all BERT-based models for 3 epochs,
BERT+bag+ONE was trained for 50 epochs

frequent triples as in Hogan et al. (2021). Follow-
ing Chang et al. (2020), we grouped the relations
based on cardinality, where the cardinality is de-
fined as: for a given relation type, if the set of head
or tail entities belong to only one semantic group,
then it has cardinality 1 otherwise M (many). The
results are shown in Table 8 for sentence- and bag-
level training with average pooling. We note that
both training strategies perform comparably on 1-1
category but the bag-level training suffers a huge
performance drop in M-1 and 1-M settings. We
reason that this could be due to the lack of enough
training signal to differentiate between heteroge-
neous entity types pooled over instances in a bag.

Following Hogan et al. (2021), we also perform
sentence-level evaluation of BERT-based encoders
trained at sentence-level and bag-level. The au-
thors divided the triples (including "NA" instances)
into two categories, those with 8 or more sentences
are defined as common triples and others as rare
triples. Table 7 shows these results. We note
that both training strategies performed compara-
bly on rare-triples with BERT+sent+AVG more
precise than BERT+bag+AVG. However, we find
noticeable differences on common triples where
BERT+bag+AVG had higher recall but still low
precision. This could be explained because of over-



Model P R F1

All Triples
BERT+sent+AVG 0.44 0.49 0.46
BERT+bag+AVG  0.36 0.52 0.42
Common Triples
BERT+sent+AVG  0.35 0.47 0.40
BERT+bag+AVG  0.28 0.53 0.37
Rare Triples
BERT+sent+AVG 0.57 0.52 0.55
BERT+bag+AVG  0.52 0.50 0.51

Table 7: Sentence-level RE metrics comparing BERT
baselines trained at bag and sentence-level with AVG
pooling on Rare, Common and All triples. The triples
also include NA relational instances.

Model 1-1 1-M M-1
BERT+sent+AVG  21.3 26.1 30.7
BERT+bag+AVG 19.4 9.4 3.0

Table 8: Averaged F1-micro score on relation specific
category. The categories are defined using the cardinal-
ity of head and tail semantic group types.

fitting to type and mention heuristics at bag-level,
where sentence-level training allows to have more
focus on context.

4.2 Analysis

Context, Mention, or Type? RE models are
known to heavily rely on information from entity
mentions, most of which is type information, and
existing datasets may leak shallow heuristics via
entity mentions that can inflate the prediction re-
sults (Peng et al., 2020). To study the importance
of mentions, contexts, and entity types in MED-
DISTANTI19, we take inspiration from Peng et al.
(2020); Han et al. (2020) and conduct an ablation
of different text encoding methods. We consider
entity mentions with special entity markers (Wu
and He, 2019; Amin et al., 2020) as the Context
+ Mention (CM) setting, which is common in RE
with LMs. We then remove the context and only
use mentions, and we refer to this as the Only Men-
tion (OM) setting. This is similar to KG-BERT
(Yao et al., 2019) for relation prediction. We then
only consider the context by replacing subject and
object entities with special tokens, resulting in the
Only Context (OC) setting. Lastly, we consider
two type-based (STY) variations as Only Type (OT)

AUC
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Figure 5: Ablation showing the effect of different text
encoding methods following the general-domain trends.

and Context + Type (CT). We conduct these experi-
ments with BioBERT trained at sentence-level and
evaluated at bag-level. The results are shown in
Fig. 5.

We observe that the CM method had the high-
est performance but surprisingly, OM performed
quite well. This highlights the ability of LMs to
memorize the facts and act as soft KBs (Petroni
et al., 2019; Safavi and Koutra, 2021). This trend
is also consistent with general-domain (Peng et al.,
2020). The poor performance in the OC setting
shows that the model struggles to understand the
context, which is more pronounced in noisy-prone
distant RE compared to supervised RE. Our CT
setup can be seen as sentence-level extrapolation
of the AMIL model (Hogan et al., 2021), which
struggles to perform better than the baseline (OM).
However, comparing OC with CT, it is clear that
the model benefits from type information as it can
help constraint the relations space. Using only the
type information had the least performance as the
model fails to disambiguate between different enti-
ties belonging to the same type.

Inductive or Transductive? To study the
impact of transductive and inductive splits (Ta-
ble A.3), we created another Bio-DSRE corpus
using transductive train, validation, and test triples.
The corpus generated is different than the induc-
tive one, but it can offer insights into the model’s
ability to handle unseen mentions. As shown in Ta-
ble 9, the performance using transductive is slightly
better than inductive for corpus-level extractions,
in terms of AUC, however, the F1-micro score is
slightly better in inductive than transductive. We
conclude from this that the model is able to learn
patterns that exploit mention and type information
to extrapolate to unseen mentions.



Split AUC Fl-micro Fl-macro
Inductive (I) 55.5 56.5 24.8
Transductive (T) 57.4 53.0 24.1

Table 9: BERT+sent+AVG performance on two corpora,
one created with inductive set of triples and the other
with transductive set of triples.

Does Expert Knowledge Help? We now con-
sider several pre-trained LMs with different knowl-
edge capacities, specific to biomedical and clini-
cal language understanding, with the aim to better
understand MEDDISTANT19 challenges and gain
insights into models behavior.

We consider BERT (Devlin et al., 2019) as a
baseline model. Next, we consider domain-specific
models: ClinicalBERT (Alsentzer et al., 2019)
which is pre-trained on the clinical notes (John-
son et al., 2016), BlueBERT (Peng et al., 2019) and
BioBERT (Lee et al., 2020) which are pre-trained
on PubMed, and SciBERT (Beltagy et al., 2019),
which is pre-trained on PubMed and Computer
Science papers. The recently introduced PubMed-
BERT (Gu et al., 2021) is trained on PubMed from
scratch, showing state-of-the-art performance on
several biomedical tasks. We categorize these mod-
els as non-expert since they are only trained with
Masked Language Modeling (MLM) objective.

In the second category, we consider expert mod-
els which either modify the MLLM objective or intro-
duce new pre-training tasks using external knowl-
edge, such as UMLS. MedType (Vashishth et al.,
2021), initialized with BioBERT, is pre-trained to
predict semantic types. KeBioLM (Yuan et al.,
2021), initialized with PubMedBERT, uses rela-
tional knowledge by initializing the entity embed-
dings with TransE (Bordes et al., 2013), improv-
ing downstream entity-centric tasks, including RE.
UmlsBERT (Michalopoulos et al., 2021), initial-
ized with Clinical BERT, modifies MLM to mask
words belonging to the same CUI and further in-
troduces semantic type embeddings. SapBERT
(Liu et al., 2021), initialized with PubMedBERT,
introduces a metric learning task for clustering syn-
onyms together in an embedding space.

Table 10 shows the results of these sentence en-
coders fine-tuned on the MEDDISTANT19 dataset
at sentence-level with AVG pooling. Without
any domain-specific knowledge, BERT performs
slightly worse than the lowest-performing biomed-
ical model, highlighting the presence of shallow

Knowledge

Encoder Biomedical Clinical Type Triples Synonyms AUC
BERT 0.42
ClinicalBERT v v 0.47
BlueBERT v 0.55
SciBERT v 0.55
BioBERT v 0.55
PubMedBERT v 0.62
MedType v v 0.54
KeBioLM v v 0.61
UmlsBERT v v v 0.53
SapBERT v v 0.57

Table 10: Fine-tuning different biomedical and clinical
domain LMs on MEDDISTANT19.

heuristics in the data that are common to the general
and biomedical domains. While domain-specific
pre-training improves the results, similar to Gu et al.
(2021), we find clinical LMs underperform on the
biomedical RE task. There was no performance
gap between BlueBERT, SciBERT and BioBERT.
However, PubMedBERT brought significant im-
provement which is consistent with Gu et al. (2021).
In terms of expert knowledge-based models, we do
not notice any improvements instead, all of them
had a negative impact. While we would expect
type-based models, MedType and UmlIsBERT, to
bring improvement, their negative effect can be
attributed to overfitting certain types and their pat-
terns. KeBioLM, which is initialized with PubMed-
BERT, slightly degrades the performance despite
having seen the triples used in MEDDISTANT19
during pre-training, highlighting the difficulty of
the MEDDISTANT19 dataset. SapBERT which
uses the synonyms knowledge also hurt PubMed-
BERT’s performance, suggesting that while syn-
onyms can help for entity linking, RE is a much
more elusive task in noisy real-world scenarios.

5 Conclusion

In this work, we highlighted a severe training-test
overlap in the corpus used by previous studies
in Bio-DSRE, causing inflated performance. We
noted other inconsistencies including the KGs used
and lack of standard baselines. To mitigate these
issues, we introduce a new benchmark MEDDIS-
TANT19, which derives its KG from SNOMED-CT
(Chang et al., 2020) and is particularly focused on
long-tail relations. The benchmark can directly be
used with standard RE frameworks, such as Open-
NRE (Han et al., 2019). We conducted a thorough
set of experiments and provided baselines show-
ing both the quality of the dataset and the need for
better models.



6 Legal & Ethical Considerations

Does the dataset contain information that might
be considered sensitive or confidential? (e.g.,
personally identifying information) We use
PubMed MEDLINE abstracts (Canese and Weis,
2013)’ that are publicly available and is distributed
by National Library of Medicine (NLM). These
texts are in the biomedical and clinical domain,
and are almost entirely in English. It is standard to
use this corpus as a text source in several biomed-
ical LMs (Gu et al., 2021). We cannot claim the
guarantee that it does not contain any confidential
or sensitive information e.g, it has clinical find-
ings mentioned throughout the abstracts such as
A twenty six year old male presented with high
grade fever, which identifies the age and gender
of a patient but not the identity. We did not per-
form thorough analysis to distill such information
since it is in public domain. For other concerns,
see Appendix section B and D.
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A UMLS

In this section we present additional details about
UMLS, including the final set of relations consid-
ered in MEDDISTANT19 (with their inverses ob-
tained from the UMLS) and a complete list of se-
mantic types (STY). Since in relation extraction
(RE), we are not interested in bidirectional extrac-
tions, therefore it is sufficient to only model one
direction. Previous studies (Dai et al., 2019; Amin
et al., 2020; Hogan et al., 2021) fail to take into
account these inverse relations and with naive split,
can lead to train-test leakages. For more discus-
sion on the relations in UMLS, including transitive
closures, see Section 3.1 in Chang et al. (2020).

A.1 UMLS Files

In UMLS (Bodenreider, 2004), a concept is pro-
vided with a unique identifier called Concept
Unique Identifier (CUI), a term status (TS), and
whether or not the term is preferred (TTY) in a
given vocabulary e.g., SNOMED-CT. The concepts
are stored in a file distributed by UMLS called
MRCONSO . RRF.® Each concept further belongs to
one or more semantic types (STY), provided in
a file called MRSTY .RRF, with a type identifier
TUL There are 127 STY? in the UMLS2019AB
version, which are mapped to 15 semantic groups
(SG).'0. The relationships between the concepts
are organized in a multi-relational graph distributed
in a file called MRREL . RRF!!. The final set of rela-
tions considered in MEDDISTANT19 is presented
in Table A.1.

Note that we only consider relations belonging
to the RO (has relationship other than synonymous,
narrower, or broader) type, which is consistent
with prior works. This consideration ignores rela-
tions such as isa, which defines hierarchy among
relations.

A.2 Semantic Groups and Semantic Types

As we noted in Fig. 3, entities and relations fol-
low a long-tail distribution. This has a major im-
pact on the quality of the dataset created. For

$https://www.ncbi.nlm.nih.gov/books/
NBK9685/table/ch03.T.concept_names_and_
sources_file_mr/
‘https://lhncbc.nlm.nih.gov/ii/tools/
MetaMap/Docs/SemanticTypes_2018AB.txt
Yhttps://lhncbc.nlm.nih.gov/ii/tools/
MetaMap/Docs/SemGroups_2018.txt
"https://www.ncbi.nlm.nih.gov/books/
NBK9685/table/ch03.T.related_concepts_
file_mrrel_rrf/?report=objectonly
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Figure A.1: Relative proportions of the entities present
in MEDDISTANT19, based on the semantic groups.

python create_kb aligned text corpora.py
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Figure A.2: Relative proportions of the entities present
in MEDDISTANT19, based on the semantic groups.

example in general-domain, the standard bench-
mark, NYT10 (Riedel et al., 2010), has more than
half of the positive instances belonging to one rela-
tion type /location/location/contains.
Fig. A.1 shows the relative proportions of the se-
mantic groups in MEDDISTANT19.

Since MEDDISTANT19 aims to focus on rare
triples, we prune the mentions by their types, to
avoid creating and learning a biased data and model
respectively. Below we provide a list of top-5 men-
tions for selected semantic types showing the pres-
ence of highly-frequent mentions, often picked by
Bio-DSRE corpora. We remove such mentions by
type-based pruning, setting the minimum mention
frequency to be 1000.

¢ Body Part, Organ, or Organ Component:
(liver, 67264), (brain, 63234), (eyes, 25927),
(lung, 25464), (kidney, 20825)

* Organism Function: (period, 29499), (blood
pressure, 20868), (death, 12935), (BP, 9789),
(died, 7905)
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* Body Location or Region: (head, 16458),
(neck, 6645), (face, 6480), (chest, 3919),
(shoulder, 3338)

* Therapeutic or Preventive Procedure: (in-
tervention, 59944), (procedure, 54594), (re-
moval, 35543), (operation, 30961), (stimula-
tion, 24058)

* Pathologic Function: (sensitivity, 49697),
(sensitive, 25696), (inflammation, 18993),
(blocked, 18138), (bleeding, 15292)

* Qualitative Concept: (increased, 449951),
(effective, 48317), (effect, 44070), (normal,
43133), (reduced, 37787)

* Neoplastic Process: (tumor, 44632), (tumors,
34157), (cancer, 14314), (neck cancer, 8376),
(tumour, 8288)

* Disease or Syndrome: (disease, 90345), (in-
fection, 68763), (condition, 33060), (hyper-
tension, 32197), (diseases, 25850)

* Functional Concept: (changes, 88517), (ab-
sence, 39080), (impaired, 30194), (progres-
sive, 24817), (functions, 24678)

* Laboratory Procedure: (cells, 45314), (test,
12502), (erythrocytes, 11916), (tests, 9907),
(RBC, 7020)

* Diagnostic Procedure: (MRI, 26224), (US,
17279), (biopsy, 14352), (ultrasound, 11663),
(imaging, 9635)

* Finding: (presence, 176771), (positive,
88797), (negative, 42464), (severe, 37334),
(lesions, 31747)

e Hormone: (insulin, 12365), (LH, 5738), (cor-
tisol, 5223), (estradiol, 4144), (TSH, 3319)

* Biologically Active Substance: (protein,
23232), (proteins, 20662), (amino acids,
19187), (glucose, 13968), (ATP, 13228)

This was the most important pruning method
that removed a major portion of noisy sentences
(removed / original): train (3,576,637 / 3,828,374),
validation (561,176 / 740,576), and test (1,616,412
/1,830,024).

Fig. A.2 shows the final command that was used
to create MEDDISTANT19 benchmark with the in-
ductive split set at 70, 10 and 20 proportions of
train, validation and test splits.



Relation

Inverse Relation

finding_site_of
associated_morphology_of
method_of
interprets
direct_procedure_site_of
causative_agent_of
active_ingredient_of
pathological_process_of
entire_anatomy_structure_of
interpretation_of
laterality_of
component_of
indirect_procedure_site_of
direct_morphology_of
cause_of
intent_of
direct_substance_of
uses_device
clinical_course_of
focus_of
direct_device_of
finding_method_of
procedure_site_of
uses_substance
associated_finding_of
associated_procedure_of
occurs_after
is_modification_of
uses_access_device
specimen_source_topography_of
plays_role
specimen_procedure_of
indirect_morphology_of
part_anatomy_structure_of
specimen_source_morphology_of
specimen_source_identity_of
during
direct_site_of

has_finding_site
has_associated_morphology
has_method
is_interpreted_by
has_direct_procedure_site
has_causative_agent
has_active_ingredient
has_pathological_process
has_entire_anatomy_structure
has_interpretation
has_laterality
has_component
has_indirect_procedure_site
has_direct_morphology
due_to
has_intent
has_direct_substance
device_used_by
has_clinical_course
has_focus
has_direct_device
has_finding_method
has_procedure_site
substance_used_by
has_associated_finding
has_associated_procedure
occurs_before
has_modification
access_device_used_by
has_specimen_source_topography
role_played_by
has_specimen_substance
has_indirect_morphology
has_part_anatomy_structure
has_specimen_source_morphology
has_specimen_source_identity
inverse_during
has_direct_site

Table A.1: (Left) 38 relations included in MEDDISTANT19, excluding NA relation. (Right) For completeness, we

also include their inverse relations.



SG TUI Semantic Type
TO17 Anatomical Structure
T029 Body Location or Region
T023  Body Part, Organ, or Organ Component
T030 Body Space or Junction
ANAT TO31 Body Substance
T022 Body System
T021 Fully Formed Anatomical Structure
T024 Tissue
T116 Amino Acid, Peptide, or Protein
T195 Antibiotic
T123 Biologically Active Substance
T103 Chemical
T200 Clinical Drug
T196 Element, Ion, or Isotope
T126 Enzyme
T131 Hazardous or Poisonous Substance
CHEM TI125 Hormone
T129 Immunologic Factor
T130  Indicator, Reagent, or Diagnostic Aid
T197 Inorganic Chemical
T114 Nucleic Acid, Nucleoside, or Nucleotide
T109 Organic Chemical
Ti121 Pharmacologic Substance
T192 Receptor
T127 Vitamin
T185 Classification
T169 Functional Concept
T102 Group Attribute
TO078 Idea or Concept
CONC TI170 Intellectual Product
TO80 Qualitative Concept
TO81 Quantitative Concept
TO082 Spatial Concept
TO79 Temporal Concept
TO074 Medical Device
DEVI TO75 Research Device
T020 Acquired Abnormality
T190 Anatomical Abnormality
T049 Cell or Molecular Dysfunction
TO19 Congenital Abnormality
T047 Disease or Syndrome
DISO  T033 Finding
TO037 Injury or Poisoning
T048 Mental or Behavioral Dysfunction
T191 Neoplastic Process
T046 Pathologic Function
T184 Sign or Symptom
T038 Biologic Function
T068 Human-caused Phenomenon or Process
PHEN TO034 Laboratory or Test Result
T070 Natural Phenomenon or Process
T067 Phenomenon or Process
T201 Clinical Attribute
T041 Mental Process
T032 Organism Attribute
PHYS T040 Organism Function
T042 Organ or Tissue Function
T039 Physiologic Function
T060 Diagnostic Procedure
T065 Educational Activity
TOS8 Health Care Activity
PROC TO059 Laboratory Procedure
T063  Molecular Biology Research Technique
T062 Research Activity
TO61 Therapeutic or Preventive Procedure

Table A.2: 65 semantic types (STY) along with their TUIs and semantic groups (SG) covered in MEDDISTANT19.
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Below is an example instance from MEDDIS-
TANT19 in OpenNRE (Han et al., 2019) format:

{
"text": "In one patient who
showed an increase of plasma
prolactin level , associated

with low testosterone and

LH ,

of the pituitary gland

a microadenoma

( prolactinoma ) was
detected .",
"h": {
"id": "C0032005™",
"pos": [130, 1457,
"name": "pituitary gland"
by
"t |
"id": "C0033375™",
"pos": [148, 1607,
"name": "prolactinoma"
b
"relation": "finding_site_of"

B UMLS License Agreement

To use this MEDDISTANT19, the user must have
signed the UMLS agreement'?. The UMLS agree-
ment requires those who use the UMLS (Boden-
reider, 2004) to file a brief report once a year to
summarize their use of the UMLS. It also requires
the acknowledgment that the UMLS contains copy-
righted material and that those copyright restric-
tions be respected. The UMLS agreement requires
users to agree to obtain agreements for EACH copy-
righted source prior to its use within a commercial
or production application.

C Limitations

We provide several limitations of our work as pre-
sented in its current form. MEDDISTANT19 aims
to introduce a new benchmark with good practices,
however, it is still limited in its scope of ontologies
considered. It also has a limited subset of relation
types provided by UMLS. For example, the cur-
rent benchmark does not include an important rela-
tion may_treat, because it is outside SNOMED-CT.
Since, MEDDISTANT19 is focused on SNOMED-
CT, it lacks coverage of important protein-protein

Phttps://uts.nlm.nih.gov/license.html
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interactions, drugs side effects, and relations in-
volving genes as provided by RxNorm, Gene On-
tology etc. It is also smaller in size compared to
the benchmark in general-domain (Riedel et al.,
2010). Despite these limitations, MEDDISTANT19
still offers a challenging and focused benchmark
that can help improve the weakly supervised broad-
coverage biomedical RE.

D Risks

While our work does not have direct risk, we do
provide the dataset while asking users to respect
the UMLS license before downloading it. This user
agreement is needed to use our benchmark and to
respect the source ontologies licenses. We provide
this with hope to accelerate reproducible research
in Bio-DSRE by having a ready-to-use corpora,
with only the condition that the license has been
obtained by the user. We provide users with this
note and hope this will be respected. However,
there is a risk that users may download the data and
re-distribute without respecting the UMLS license.
In case of such exploitation, we will add the UMLS
authentication layer to protect data where the user
will be required to provide UMLS api-key, which
will be validated and only then the data will be
allowed to be downloaded.

E Experimental Setup and
Hyperparameters

We followed the experimental setup of Gao et al.
(2021) for BERT-based experiments. Specifically
we used the batch size 64, with learning rate 2e-5,
maximum sequence length 128, bag size 4 where
applicable. We used a single NVIDIA Tesla V100-
32GB for BERT-based experiments. Each experi-
ment took about 1.5 hrs with half an hour per epoch.
We also attempted to perform grid search for BERT
experiments but it was too expensive to continue,
therefore we abandoned those jobs. Since we only
used the base models, they amount to 110 million
parameters. During fine-tuning, we do not freeze
any parts of the model.

For CNN and PCNN, we performed grid
search with optimizers € {Adam (Kingma and
Ba, 2015), SGD (Ruder, 2016)}, learning rate
€ {0.01,0.001}, batch size € {64,160}, bag
size € {4,8,12,16,32,64}, embeddings €
{Word2Vec (Mikolov et al., 2013), GloVe (Pen-
nington et al., 2014)}, and with (test-time) pooling
€ {ONE, AVG} when using sentence-level train-


https://uts.nlm.nih.gov/license.html

Encoder Bag Size Embedding

CNN+sent+AVG 16 GloVe
CNN+sent+ONE 16 GloVe
CNN-+bag+AVG 32 Word2Vec
CNN+bag+ONE 4 Word2Vec
CNN+bag+ATT 12 Word2Vec
PCNN+sent+AVG 4 GloVe
PCNN-+sent+ONE 4 GloVe
PCNN+bag+AVG 32 Word2Vec
PCNN+bag+ONE 16 GloVe
PCNN+bag+ATT 4 GloVe

Table A.3: Best hyperparameters for CNN and PCNN
sentence encoders.

ing and pooling in {ONE, AVG, ATT} when using
bag-level training. We ran this job on a cluster with
support for array jobs. These amounted to over
700 experiments and took 3 days. We fixed other
hyperparameters from literature (Han et al., 2018),
with position dimension set to 5, kernel size set to
3, and dropout set to 0.5. These are also default in
OpenNRE (Han et al., 2019). We found Adam to
be the better optimizer in all configurations along
with batch size 160 and learning rate 0.001 except
in PCNN+sent+AVG, where 0.01 was better learn-
ing rate. The hyperparameters that had the most
influence were bag size and pre-trained word em-
beddings. All the experiments reported in the paper
are with a single run.

We also needed heavy compute budget for
SciSpacy-based sentence tokenization and entity
linking jobs. It took Shrs with 32 CPUs (4GB each)
and a batch size of 1024 for spaCy to extract 151M
sentences. The entity linking job took about half
TB of RAM with 72 CPUs (6GB each) with a batch
size 4096. It took 40hrs to link 145M unique sen-
tences.
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