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ABSTRACT

Large-scale vision-language models like CLIP exhibit remarkable zero-shot gen-
eralization but suffer significant performance degradation under real-world distri-
bution shifts. Although recent cache-based test-time adaptation (TTA) methods
mitigate the issues, they are limited by: (i) unreliability in cache construction,
as entropy-based sample selection is insufficient under distribution shifts; and
(ii) incomplete cache information at inference, with both imbalanced category
information caused by sequential online updates and insufficient sample-specific
information for next online instance. To address these limitations, we propose
ROSE-TTA (Reliable Online Structural Enhancement for Test-Time Adaptation), a
unified framework that enhances both cache construction and utilization for more
reliable and stable adaptation. For construction, we introduce a noise-aware uncer-
tainty measure that combines entropy with perturbation-based prediction stability
to robustly select cache entries. To complete the cache information for utiliza-
tion, we develop a graph-based structural completion strategy, which effectively
mitigates class imbalance and completes global information by transferring infor-
mation between text embeddings and cached features. Additionally, we introduce a
sample-specific refinement mechanism to dynamically update cache features and
incorporate local information of each online test sample. Experiments on 15 widely
used datasets demonstrate the effectiveness of our method.

1 INTRODUCTION

The emergence of large-scale vision-language models (VLMs), such as CLIP (Radford et al., 2021),
has profoundly reshaped the landscape of multi-modal learning. By effectively aligning visual and
textual modalities through contrastive pretraining on web-scale datasets, these models demonstrate
remarkable zero-shot transfer capabilities across diverse downstream tasks. However, deploying
CLIP in real world remains challenging, especially on specific data with distribution shifts between
the test and pretrained distributions (Shu et al., 2022; Han et al., 2024; Karmanov et al., 2024).

A common approach to address distribution shift at test time is test-time adaptation (TTA) (Sun
et al., 2020; Wang et al., 2021; Chen et al., 2022), which has also been leveraged to improve CLIP’s
zero-shot capability (Shu et al., 2022; Karmanov et al., 2024). Test-time prompt tuning (TPT)
(Shu et al., 2022; Feng et al., 2023; Karmanov et al., 2023; Yoon et al., 2024) fine-tunes textual
prompts at inference, often guided by entropy minimization. Despite their effectiveness in addressing
distribution shifts, these methods are computationally expensive due to backpropagation. To improve
efficiency, cache-based TTA methods have emerged (Karmanov et al., 2024; Han et al., 2024). These
approaches introduce a dynamic cache to store representative test features online, which are used to
refine predictions without backpropagation, providing a lightweight online adaptation mechanism.

Despite their promising efficiency, existing cache-based TTA methods face two fundamental limi-
tations that undermine their robustness under distribution shifts. First, cache construction is often
unreliable. Selecting cache samples solely by entropy fails to effectively filter out noisy or misclassi-
fied instances (Nguyen et al., 2023a; Han et al., 2024; Shamsi et al., 2024; Zhou et al., 2025), leading
to unreliable cache. Second, the available cache information at inference is inherently incomplete. On
the global level, sequential online updates induce class imbalance in cache features. This imbalance
causes the cache to favor the majority classes and provides insufficient guidance for the minority
classes, ultimately biasing model predictions and even leading to error accumulation during contin-
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uous adaptation (Zhang et al., 2023). Additionally, cached features lack local information of each
incoming sample, providing limited sample-specific guidance for the online instance. These issues
hinder both the stability and generalization of cache-based adaptation.

To systematically address these limitations, we propose ROSE-TTA (Reliable Online Structural
Enhancement for Test-Time Adaptation), a novel and unified framework that enhances the reliability
and the stability in cache update and integrates complementary global (class level) and local (sample-
specific) information for robust cache-based adaptation. In cache construction, we introduce an
improved cache update mechanism to synergistically combines entropy with a noise-enhanced
uncertainty measure, which evaluates the stability of test features under perturbations. This dual-
criterion approach ensures that only the most reliable and consistently stable online instances are
incorporated into the cache, improving the cache reliability. Moreover, to complement global
semantic information in the cache, we propose a novel graph-based structural completion strategy
(Li et al., 2024). The method reconstructs the categorical graph with the class information from text
embeddings and cached features, mitigating class imbalance and strengthening the representation of
underrepresented categories within the cache (Zhang et al., 2024a). We also design a sample-specific
refinement mechanism that updates cached features on-the-fly using the information of each test
sample, incorporating local information and improving alignment between the cache and instance.

We evaluate ROSE-TTA on 15 widely used datasets, covering typical evaluation scenarios such as
domain generalization and cross-dataset. The experimental results demonstrate the effectiveness of
our method on enhancing the reliability and adaptability of cache-based TTA.

2 REVISITING CACHE-BASED TEST-TIME ADAPTATION FOR CLIP

2.1 PRELIMINARY

CLIP (Radford et al., 2021). CLIP is well known for the remarkable ability in vision-language
representations learning through large-scale training in image-text data. The pretrained CLIP model
consists of an image encoder FθI (·) and a text encoder FθT (·), with θI and θT denoting the model
parameters, respectively. Based on a zero-shot C-class classification task, for each class c ∈
{1, . . . , C}, we generate a text prompt tc by instantiating a template such as “a photo of a [class]”,
where “[class]” is replaced with the name corresponding to class c. Each text prompt tc is then
encoded as fc = FθT (tc) and the image x is encoded as fx = FθI (x). Collecting all text
embeddings as the matrix WC = [f1,f2, . . . ,fC ], CLIP seeks to associate the image feature fx

with the most semantically relevant text feature from WC . The probability of x to be classified as
class c is p(ŷ = c | x) = exp(cos(fx,fc)/τ)∑C

k=1 exp(cos(fx,fk)/τ)
, where cos(·,·) denotes cosine similarity and τ is a

temperature parameter. The most relevant class is obtained from CLIP by argmaxc p(ŷ = c | x).
For subsequent analysis, we denote the predicted probabilities p(ŷ = c | x) over all C classes as
Pclip.

Test-time adaption based on key-value cache for CLIP. As a training-free solution that adapts
pre-trained models to test data with distributional shift (Tahir et al., 2022; Zhang et al., 2024b; Gao
et al., 2025), test-time adaptation adjusts model predictions on-the-fly to better align with the test data.
A prominent family of methods leverages a key–value cache that accumulates reliable test samples to
refine CLIP’s predictions (Han et al., 2024; Karmanov et al., 2024).

In the cache-based methods, a memory (F , L̂) is introduced to store N historical features F ∈ RN×d

and their corresponding (pseudo-)labels L̂ ∈ RN×C . The interaction between a new feature ftest

and the cache follows a unified paradigm:

Pcache(ftest) = A
(
ftestF

T
)
L̂, (1)

where ftestF
T denotes the affinity scores (Karmanov et al., 2024) between the new feature and

cached features, and A(·) is an activation function that maps these affinities into weights. Finally, the
complete prediction combines the original CLIP output with the cache contribution:

Pfinal = Pclip + α · Pcache. (2)
where α is a scaling factor to balance the influence of cache information. This formulation provides
a standardized cache-based mechanism for refining the CLIP zero-shot predictions, where the
effectiveness depends on how (F , L̂) are updated during inference.
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(a) Cache accuracy on ImageNet-A at 10% and
100% test stage.
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(b) Cache accuracy on FGVC-Aircraft at 10% and
100% test stage.
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(c) Distribution of cache numbers in ImageNet-A at
10% test stage.
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(d) Distribution of cache numbers in FGVC-Aircraft
at 10% test stage.

Figure 1: Category and accuracy statistics of the entropy-based online cache. The online updated
cache can be unreliable (a and b) and imbalanced (c and d).

2.2 ISSUES OF CACHE-BASED TEST-TIME ADAPTATION

Although the cache-based methods achieve efficient test-time adaptation for zero-shot classification
of CLIP (Wang et al., 2021; Zhang et al., 2024b), the entropy-based cache construction and utilization
are not always stable and reliable (Han et al., 2024; Zhou et al., 2025). Samples with low entropy
can still be misclassified in unseen test data distributions (Lee et al., 2024). In Figures 1a and 1b, we
report the precision of the features stored in the entropy-based online cache (Karmanov et al., 2024)
at the beginning and end of the online test stage on two different datasets. We found that even when
selecting features with minimum entropy, many of them are cached under incorrect labels, especially
for unfamiliar datasets (Figure 1b). The problem is more severe at the earlier test stage (10%). These
findings indicate that entropy alone is an insufficient criterion for cache construction and update.

Moreover, since the online test samples often arrive in random order in practice, the online cache
update strategy naturally introduces class imbalance, especially at the early stage of the process. We
counted the number of per-class features in the online updated cache again for different datasets after
processing 10% of the stream. As shown in Figures 1c and 1d, the number of cache features are
extremely imbalanced among categories in both cases. The class imbalance biases the predictions
toward head classes with larger caches while neglecting classes with few or no entries, yielding
skewed and inaccurate predictions. The inaccuracies can even accumulate during online learning,
leading to progressively worse overall outcomes.

Additionally, the incoming instance in the online test stream is unpredictable, which can be a new
class or a an unseen style. Although the cache is updated online, there remains a lack of local instance
information of such specific test samples, leading to unstable predictions.

Therefore, in this paper, we propose an enhanced cache for online test-time adaptation by uncertainty-
aware cache construction and graph-based information completion.

3 METHODOLOGY

To reduce the issues of unreliable cache construction and biased predictions caused by incomplete
information, we propose ROSE-TTA, a more reliable and stable cache for CLIP test-time adaptation,
consisting of uncertainty-aware cache construction and graph-based information completion with
sample-specific refinement for cache utilization. An illustration of our method is shown in Figure 2.

3
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Figure 2: Illustration of Rose-TTA. We propose uncertainty aware cache construction to store more
reliable test samples in the cache. During utilization, the cache is further enhanced by graph-based
structural completion and sample-specific refinement, which inject the global category information
and local instance information, respectively.

3.1 UNCERTAINTY-AWARE CACHE CONSTRUCTION

To directly combat the unreliability of cache construction, where sole reliance on entropy often
leads to noisy or misclassified samples(Nguyen et al., 2023b; Han et al., 2024; Lee et al., 2024), we
introduce an improved cache update mechanism. This mechanism ensures that only the most reliable
and consistently stable features are incorporated into the cache, improving the quality of the cache
construction features.

Noise-enhanced uncertainty estimation. To improve the reliability of samples stored in the
cache, we propose a noise-enhanced uncertainty estimation mechanism that evaluates the stability of
predictions under controlled perturbations. The mechanism is used to select the stable features for
cache construction and update during online test-time adaption.

Given an input test sample x, we first obtain its CLIP prediction ĉ = argmaxc Pclip to find the
corresponding class-wise cache. To access the stability of this sample, we generate n augmented
features by adding calibrated Gaussian noise on the original feature:

f̃ i
x = fx + ϵi · σ, ϵi ∼ N (0, I), i = 1, . . . , n, (3)

where σ controls the noise magnitude and n is the number of augmentation. With the predictions on
the noise-perturbed features, we obtain the prediction stability for the sample x by:

d(x) =
1

n

n∑
i=1

|p(ŷ = ĉ | f̃ i
x)− p(ŷ = ĉ | fx)|, (4)

where p(ŷ = ĉ | f̃ i
x) and p(ŷ = ĉ | fx) denote the predicted probability on class ĉ given the

noise-perturbed feature f̃ i
x and original feature fx, respectively. The prediction stability metric

measures how confidence changes under noise perturbations. Smaller d(x) indicates that the instance
is more robust to pertubations and therefore more reliable for caching.

Doubly robust cache. To achieve a more reliable cache during online test-time adaptation, we adopt
both entropy and noise-enhanced stability as our overall selection metric to construct a doubly robust
cache C = (F , L̂) = {Cc}Cc=1 = {(Fc, L̂c)}Cc=1. Following TDA (Karmanov et al., 2024), Fc, L̂c

are the raw features of the historical samples and the one-hot labels of class c, respectively. When
the cache Cc for class c has not reached its maximum capacity, the new sample is directly appended
along with its entropy and stability measure. Since the cache size cannot be infinite, when the cache
reaches its capacity nC , the new sample is admitted to the cache Cc only if it surpasses existing
cached samples on both metrics. Specifically, the replacement occurs if and only if both conditions
are satisfied: {

H(p(y|x)) < H(p(y|xj∗)) (lower entropy)
d(x) < d(xj∗) (higher stability),

(5)

where H and d are the entropy and prediction stability of the input sample. j∗ denotes the index of
the weakest cached sample with the highest combined entropy and the lowest stability score. This
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dual-criterion approach ensures that the cache maintains samples that are not only confident(low
entropy) but also robust to input perturbations, avoiding overconfidence under distribution shifts and
improving the reliability of cached features for test-time adaptation.

3.2 GLOBAL AND LOCAL COMPLETION IN CACHE UTILIZATION

Beyond improving cache reliability during construction, our method also strengthens the utilization
of the test-time cache by completing both global and local information.

Graph-based structural completion. As shown in Figure 1, since the test data sequence is random
and unpredictable, the online test-time cache exhibit class imbalance and incomplete global task
information, especially in the early test stage. This biases the predictions towards majority classes
and neglects minority ones. For example, if no sample from class c has appeared, the cache cannot
provide sufficient corresponding categorical information for prediction. Consequently, when a new
sample from c arrives, the cache guidance tends to be noisy or meaningless, and even degrade the
final prediction.

To mitigate class imbalance and complete the global information in online cache at inference, we
propose a novel graph-based structural completion strategy. The method reconstructs the categorical
graph of the task by integrating class information from both text embeddings and cache features.
The graph addresses the class imbalance issue by introducing the global class information from text
embeddings of all categories, while preserving the test distributional information by considering the
cache features. Specifically, we construct three complementary graphs to capture different aspects of
the information:

1) Text-graph Gt ∈ RC×C : Gt = (W T
C WC) encodes the semantic relationships of different classes

at the text level, where WC denotes the matrix of text embeddings for all classes. By considering
all classnames, Gt provides the global category information of the test task, which is leveraged to
complete the insufficient class information and mitigate class imbalance.

2) Cache-graph Gc ∈ RN×N : Gc = (F TF ) models the relationships between cached features,
where F containing all cached features. Gc provides the information of the test data in both class-
level and instance-level, preserving the test specific information stored in the cache. Moreover, since
cached features vary in reliability, we further introduce a reliability-weighted cache graph. First,
we assign each cache sample a reliability weight wj =

√
(1− dj)/Hj , where Hj and dj are the

entropy and stability scores of the j-th cached sample. Samples with lower entropy and higher
stability have a higher wj , indicating higher reliability and thus greater influence in the graph. The
reliability weight matrix is then constructed as Wjk =

√
wj · wk and used to refine the Cache-Graph

by Ĝc = (F TF ⊙W ). Here ⊙ denotes element-wise multiplication.

3) Gate-graph M ∈ {0, 1}C×N is a binary mapping matrix that links cached samples to their
corresponding classes. Mcj is set to 1 if the cached sample xj belongs to class c, else 0.

We reconstruct the categorical graph by integrating the three graphs to incorporate both global class
relations from text embeddings and cache-specific relations from cached samples:

Ĝ = softmax(GtMĜcM
TGT

t ). (6)

With the reconstructed graph Ĝ ∈ RC×C , we derive two graph-enhanced prediction terms from the
textual and visual paths for a test feature fx:

Ptext = fx(ĜW T
C )T , Pimage = fx(ĜMF T )T . (7)

This dual pathway expends the textual prediction to Ptext by injecting test-specific information stored
in cache. Moreover, the cache prediction Pimage is enriched by the global class information from
text embeddings, mitigating the class imbalance problem and strengthening the underrepresented
categories in the cache.

Sample-specific completion. Except for the global class information, the cache can also lack local
instance information since the next online test sample is usually unpredictable in real applications. If
a specific test sample is different from the cached ones during online learning, the cache prediction
can still be unreliable, limiting its adaptability. To incorporate local instance information in cache
utilization, we propose a sample-specific cache refinement mechanism to dynamically update cached
features in utilization based onincoming test samples.

5
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Gradient-based TTA (Shu et al., 2022; Zhang et al., 2022a) usually refines the model parameters
for each test sample by gradient backpropagation of entropy minimization, which, however, is
computationally expensive. To achieve efficient sample-specific cache refinement, we propose a
backpropogation-free method to directly infer the pseudo gradient according to the sample feature
and its entropy value.

The basic refinement of the cached features for the test sample x is the feature fx. To control the
update amount of each cache feature according to the cache prediction, we first obtain the averaged
cache prediction Pn = softmax

(
1
n

∑n
i=1 Pcache(f̃

i
x)
)

based on the noise-augmented features in
Eq. (3). We then introduce two intensity control factors γ = 1−H(Pn) and ζ = Pn − 1/C based
on the averaged cache prediction, where H(Pn) denotes the normalized entropy of Pn.

Based on the text feature and control factors, we perform sample-specific refinement of the cache
features as:

F̂ = F + η · γ · ζ · fx, (8)

where η is a pseudo-learning rate, γ and ζ represent the uncertainty and confidence of the averaged
prediction, controlling the update intensity and direction. Following Eq. (1), The refined cache
prediction is calculated by:

P̂cache = A
(
fxF̂

T
)
L̂, (9)

where A(·) is an activation function and L̂ denotes the one-hot pseudo labels of the cache features.
This sample-specific refinement enables the cache to consider local instance information for adaptation
efficiently, without gradient computation and backpropogation.

Overall, our method integrates multiple complementary sources of information to produce robust
test-time predictions. The final prediction is calculated by:

Prose = Pclip + α · (P̂cache + Ptext + Pimage), (10)

where α is hyperparameter to control the magnitude of logits.

4 RELATED WORK

Vision-language models. The emergence of large-scale vision-language models has fundamentally
transformed the landscape of multi-modal understanding. Early pioneering work CLIP (Radford
et al., 2021) demonstrated that contrastive learning on web-scale image-text pairs enables powerful
zero-shot transfer capabilities across diverse visual recognition tasks. Building upon this foundation,
ALIGN(Jia et al., 2021) demonstrated that scale matters significantly and FILIP(Yao et al., 2022)
introduced fine-grained cross-modal alignment through token-level interactions, moving beyond
global image-text matching. With ongoing research, works such as InternVL3.5 (Wang et al., 2025)
further advance open-source multimodal models in versatility. Concurrently, studies like Qwen-Image
(Wu et al., 2025) focus on image generation and DINOv3 (Siméoni et al., 2025) continues to push
the boundaries of self-supervised learning.

Test-time adaptation for vision-language models. Test-time adaptation (TTA) (Sun et al., 2020;
Nado et al., 2020; Wang et al., 2021) emerged in computer vision to address distribution shift
between training and test environments without requiring labeled target data, and has recently been
extended to vision-language models with their dual-modal structure and rich semantics. Early works
explored gradient-based prompt tuning, such as TPT (Shu et al., 2022),C -TPT (Yoon et al., 2024)
and DynaPrompt(Xiao et al., 2025), which adapt text prompts via entropy minimization, richer
augmentations, or calibration objectives. While effective, these methods incur high computational
overhead and may suffer from instability. To improve efficiency, training-free approaches were
proposed. Cache-based methods (e.g., Tip-Adapter (Zhang et al., 2022b), HisTPT (Tang et al., 2023),
TDA (Karmanov et al., 2024)) leverage stored representative samples or multi-granularity knowledge
to refine predictions without gradient updates, while PromptAlign (Karmanov et al., 2023) instead
mitigates distribution shifts by aligning test and source statistics. Motivated by the limitations of
entropy-based objectives, DOTA (Han et al., 2024) and Bayesian TTA (Zhou et al., 2025) provide
principled alternatives through distribution estimation and uncertainty quantification respectively.
Despite progress, current methods often over-rely on entropy-based selection, suffer from class
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Table 1: Comparisons on the cross-dataset setting. Our method outperforms the alternatives on
five of the ten datasets and achieves best overall performance based on both ResNet-50 and ViT-B/16.
The best and runner-up results are bolded and underlined, respectively.

Method Aircraft Caltech101 Cars DTD EuroSAT Flower102 Food101 Pets SUN397 UCF101 Mean

CLIP-ResNet-50 16.11 87.26 55.89 40.37 25.79 62.77 74.82 82.97 60.85 59.48 56.63

TPT (Shu et al., 2022) 17.58 87.02 58.46 40.84 28.33 62.69 74.88 84.49 61.46 60.82 57.66
C-TPT (Yoon et al., 2024) 17.50 87.40 57.30 43.10 29.40 65.30 76.00 84.00 62.10 60.70 58.28
HisTPT (Tang et al., 2023) 18.10 87.20 61.30 41.30 42.50 67.60 81.30 84.90 63.50 64.10 61.18

TDA (Karmanov et al., 2024) 17.61 89.70 57.78 43.74 42.11 68.74 77.75 86.18 62.53 64.18 61.03
BCA (Zhou et al., 2025) 19.89 89.70 58.13 48.58 42.12 66.30 77.19 85.58 63.38 63.51 61.44

Rose-TDA (Ours) 18.46 89.73 58.05 45.10 49.31 68.17 77.78 86.51 63.41 64.23 62.07

CLIP-ViT-B/16 23.22 93.55 66.11 45.04 50.42 66.99 82.86 86.92 65.63 65.16 64.59

TPT (Shu et al., 2022) 24.78 94.16 66.87 47.75 42.44 68.98 84.67 87.79 65.50 68.04 65.10
C-TPT (Yoon et al., 2024) 23.90 94.10 66.70 46.80 48.70 69.90 84.50 87.40 66.00 66.70 65.47
MTA (Zanella & Ben Ayed, 2024) 25.20 94.21 68.47 45.90 45.36 68.06 85.00 88.24 66.67 68.69 65.58
PromptAlign (Karmanov et al., 2023) 24.80 94.01 68.50 47.24 47.86 72.39 86.65 90.76 67.54 69.47 66.92
HisTPT (Tang et al., 2023) 26.90 94.50 69.20 48.90 49.70 71.20 89.30 89.10 67.20 70.10 67.61

TDA (Karmanov et al., 2024) 23.91 94.24 67.28 47.40 58.00 71.42 86.14 88.63 67.62 70.66 67.53
BCA (Zhou et al., 2025) 28.59 94.69 66.86 53.49 56.63 73.12 85.97 90.43 68.41 67.59 68.58

Rose-TDA (Ours) 25.86 94.76 67.06 48.00 65.64 74.17 86.20 90.95 68.00 71.34 69.20

imbalance where underrepresented classes receive insufficient cache guidance, and employ static
feature representations that fail to adapt to evolving test distributions or fully utilize the semantic
structure in text embeddings.

5 EXPERIMENTS

Datasets. We evaluate on two commonly used benchmarks in TTA on zero-shot CLIP (Shu et al.,
2022; Karmanov et al., 2024; Han et al., 2024). The cross dataset benchmark covers ten heterogeneous
datasets, including Aircraft (Maji et al., 2013), Cars (Krause et al., 2013), Pets (Parkhi et al., 2012),
Flower102 (Nilsback & Zisserman, 2008), Food101 (Bossard et al., 2014), Caltech101 (Fei-Fei,
2004), SUN397 (Xiao et al., 2010), DTD (Cimpoi et al., 2014)), EuroSAT (Helber et al., 2019), and
UCF101 (Soomro et al., 2012). The diverse datasets allows us to assess adaptability across distinct
semantic and visual domains. The out-of-distribution(OOD) benchmark consists of ImageNet(Deng
et al., 2009) and its four variants: ImageNet-A (Hendrycks et al., 2021b), ImageNet-V2 (Recht et al.,
2019), ImageNet-R (Hendrycks et al., 2021a), and ImageNet-Sketch (Wang et al., 2019), which
provide a rigorous test of robustness under different types of distribution shift.

Implementation details. Our experiments are conducted on the pre-trained CLIP model (Radford
et al., 2021), which comprises an image encoder and a text encoder. Following (Karmanov et al.,
2024), we adopt ResNet-50 (He et al., 2016) and ViT-B/16 (Dosovitskiy et al., 2020) as the image
encoder backbones, and a Transformer (Vaswani et al., 2017) as the text encoder. To reflect real-world
online test-time adaptation scenarios, we set the test batch size to 1. For hyperparameters, we fix n / σ
to 10 / 0.5 across all datasets. The cache capacity nC is set to 5 for all dataset–backbone combinations.
The coefficient α is tuned individually for each dataset to adapt to the specific scenario. We adopt
the same hand-crafted prompt templates as in Karmanov et al. (2024). Top-1 accuracy is used as the
evaluation metric. All experiments are performed on a single NVIDIA RTX 4090 GPU.

5.1 COMPARISONS

Baselines. In this section, we compare our method mainly with two kinds of methods: (1) test-time
propmt tuning methods: TPT (Shu et al., 2022), C-TPT (Yoon et al., 2024), HisTPT (Tang et al.,
2023), MTA (Zanella & Ben Ayed, 2024), and PromptAlign (Karmanov et al., 2023). (2) cache-based
efficient test-time adaptation methods: TDA (Karmanov et al., 2024) and BCA (Zhou et al., 2025).

Results on the cross-dataset benchmark. We first compare ROSE-TTA with state-of-the-art
methods on the cross-dataset benchmark (Table 1). For ResNet-50, ROSE-TTA achieves the best
overall performance across the ten datasets compared with other state-of-the-art methods. Compared
with gradient-based prompt tuning methods (Shu et al., 2022; Tang et al., 2023; Yoon et al., 2024),
our method performs better on eight of the ten datasets. Moreover, since ROSE-TTA avoids gradient
computation and backpropagation, it is also more efficient than the prompt tuning methods. Our
method also outperforms recent cache-based efficient adaption methods (Karmanov et al., 2024;
Zhou et al., 2025) on six of the ten datasets. On ViT-B/16, our method again delivers the best overall
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Table 2: Comparisons on the out-of-distribution benchmark. ROSE-TTA achieves best overall
performance and surpasses other alternatives on three of the five datasets. The best and runner-up
results are bolded and underlined, respectively.

Method ImageNet ImageNet-V2 ImageNet-S ImageNet-A ImageNet-R Mean

CLIP-ResNet-50 (Radford et al., 2021) 59.81 52.91 35.48 23.24 60.72 46.43

TPT (Shu et al., 2022) 60.74 54.70 35.09 26.67 59.11 47.62
C-TPT (Yoon et al., 2024) 61.20 54.80 35.70 25.60 59.70 47.40

TDA (Karmanov et al., 2024) 61.35 55.54 38.12 30.29 62.58 49.57
BCA (Zhou et al., 2025) 61.81 56.58 38.08 30.35 62.89 49.94

Rose-TTA(Ours) 62.00 56.45 37.96 30.93 63.01 50.07
CLIP-ViT-B/16 68.34 61.88 48.24 49.89 77.65 61.20

TPT (Shu et al., 2022) 68.98 63.45 47.94 54.77 77.06 62.44
C-TPT (Yoon et al., 2024) 69.30 63.40 48.50 52.90 78.00 62.42
MTA (Zanella & Ben Ayed, 2024) 70.08 64.24 49.61 58.06 78.33 64.06
PromptAlign (Karmanov et al., 2023) - 65.29 50.23 59.37 79.33 63.56

TDA (Karmanov et al., 2024) 69.51 64.67 50.54 60.11 80.24 65.01
BCA (Zhou et al., 2025) 70.22 64.90 50.87 61.14 80.72 65.57

Rose-TDA(Ours) 70.54 65.83 50.82 61.22 81.81 66.04

results, leading on five of the ten datasets. The results demonstrate that our method effectively adapts
across diverse datasets.

Results on the OOD benchmark. We also evaluate ROSE-TTA on the OOD benchmark (Table 2),
with conclusions consistent with the cross-dataset results. Our method surpasses both prompt
tuning approaches and recent cache-based approaches in the overall accuracy, achieving the best
performance on ImageNet, ImageNet-A, ImageNet-V2, and ImageNet-R. The findings demonstrate
the effectiveness of ROSE-TTA for adaptation across different data distributions.

5.2 ABLATION STUDY

Table 3: Ablations on components for computing cache
predictions. Removing d in Eq. (4), Ptext and Pimage in
Eq. (10), or F̂ in Eq. (8) leads to performance degradation.

Method Caltech101 DTD Cars Aircraft Mean

w/o d 93.61 47.10 65.97 24.92 57.90
w/o Pimage & Ptext 93.91 47.87 66.62 25.83 58.56
w/o F̂ 94.08 47.52 66.57 25.47 58.41
Rose-TTA 94.76 48.00 67.06 25.86 58.92

Component analysis. To validate the
effectiveness of each proposed com-
ponent, we perform ablation studies
by systematically removing individual
modules from ROSE-TTA. The exper-
iments are conducted on four datasets
in the cross-dataset benchmark based
on ViT/B-16. As shown in Table 3,
without the noise-based prediction sta-
bility d(x) for cache construction, the cache can only select samples according to the entropy value,
which can be unreliable and lead to performance degradation. When removing Ptext and Pimage from
the final prediction, there is no class information completion for the cache utilization, resulting
performance degradation. Similarly, without the sample-specific refined cache features F̂ , relying
only on static cache prevents adaptation to individual test samples, highlighting the importance of our
dynamic pseudo-gradient updates.

Effect of Cache Capacity nC . To assess the impact of cache capacity, i.e., the number of historical
key-value pairs per class, we conduct experiments by varying it from 1 to 20 on four datasets based
on ViT/B-16. As shown in Figure 3, ROSE-TTA performs best usually with a cache size 5, while it
maintaining relatively stable accuracy on most datasets. This stability suggests that our structural
completion and replacement strategies effectively regulate cache content. However, some datasets like
Flower102 exhibit more pronounced fluctuations, especially with larger capacities. The reason can be
its fine-grained class structure, where categories share highly similar visual patterns. In such cases,
an overly large cache risks accumulating redundant or noisy samples that blur decision boundaries.
Moreover, under online adaptation, large capacities can also amplify the effect of early, less reliable
entries, introducing additional instability.

Impact of Noise Augmentation Number n. We also ablate the number of noise augmentations used
for stability estimation in cache construction. The experiments are also conducted on four datasets
based on ViT/B-16. As shown in Figure 4, performance rises slightly with more augmentations, with
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Figure 3: Analysis on cache capacity nC . Our method performs best with nC as 5 for most datasets.
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Figure 4: Analysis on the number of noise-augmented features n. Our performance is relatively
stable across n, with the best results around 10.

a peak around 10. This indicates that the uncertainty-aware mechanism in ROSE-TTA is robust,
yeilding reliable stability estimation with even small numbers of augmentations (e.g., 3). While
increasing augmentations slightly improves early stability, excessive augmentation tends to yield
diminishing returns and may introduce redundant signals, thereby hindering the model’s ability to
capture genuine data characteristics.
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Figure 5: Progressive adaptation analysis on ImageNet and Eu-
roSAT. Our method consistently outperforms TDA while more
pronounced at the early stages, indicating that the method caches
higher-quality samples and mitigates class imbalance by informa-
tion completion.

Progressive adaptation analy-
sis. To further understand the
dynamic behavior of ROSE-TTA
during online adaptation, we
evaluate the method at multi-
ple test-time checkpoints on Ima-
geNet and EuroSAT. The results
are provided in Figure 5. Com-
pared with TDA, our method con-
sistently achieves higher accu-
racy throughout the entire pro-
cess. Notably, advantage is more
pronounced at the early stage
(e.g., at 10%–30% online data), where TDA suffers from unstable performance while ROSE-TTA
maintains good improvement. The results indicate that our information completion and uncertainty-
aware cache construction provide reliable guidance from the beginning of adaptation, caching
higher-quality samples and alleviating class imbalance. As adaptation progresses, the performance
gap narrows but remains, suggesting that ROSE-TTA not only ensures robustness in the initial phase,
but also preserves long-term effectiveness throughout the evaluation.

6 CONCLUSION

In this work, we propose ROSE-TTA, a reliable, test-time–enhanced caching framework that improves
CLIP’s zero-shot performance across datasets and distribution shifts. ROSE-TTA construct a more
reliable cache by selecting more stable test features via a noise-aware uncertainty strategy that
integrates entropy minimization with noise-based stability. During cache utilization, we enhance its
global class information through a graph-based structural completion strategy that mitigates class
imbalance and strengthens cache representations. The method also injects local instance information
with a sample-specific refinement module to adapt cached features to each incoming test sample.
Extensive experiments on 15 datasets demonstrate the effectiveness of ROSE-TTA, providing a robust
and efficient approach to test-time cache construction and utilization in practice.
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USE OF LARGE LANGUAGE MODELS (LLMS).

We use LLMs (e.g., ChatGPT) only for minor language polishing. They did not contribute to research
ideation, experimental design, or substantive writing.

ETHICS STATEMENT

Our contribution is primarily about the online cache for test-time adaptation in vision-language
models. The method does not introduce ethical risks.

REPRODUCIBILITY STATEMENT

We provide the sufficient datasets and implementation details in Section 5 for reproducibility.
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