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Abstract001

Automatic Speech Recognition (ASR) systems002
often process audio in short segments, limit-003
ing their ability to leverage broader context.004
This work systematically explores how increas-005
ing both audio and textual context length af-006
fects ASR performance. We evaluate multiple007
architectures—including Fast Conformer with008
CTC and RNN-T and multimodal models like009
Whisper and Qwen2—Audio across a range of010
context windows from a few seconds up to fif-011
teen minutes. Empirical results on both short012
and long-form English context, as well as a Ko-013
rean lecture dataset, reveal that longer context014
windows can significantly reduce transcription015
errors and improve coherence. However, exces-016
sive context sometimes saturates or even harms017
performance due to computational overhead018
and error propagation. Our findings highlight019
the importance of carefully balancing context020
length to maximize ASR performance while021
mitigating potential drawbacks.022

1 Introduction023

Automatic Speech Recognition systems have be-024

come integral to a wide range of applications, from025

voice assistants to live video transcription services.026

ASR models usually process short audio clips of027

about 30 seconds or less, which makes it hard to028

use broader context effectively (Flynn and Ragni,029

2023). This lack of context can lead to transcription030

errors, such as misinterpreting homophones (e.g.,031

“their” vs. “there”), struggling with pronoun ref-032

erences, or losing coherence in long-form speech.033

Without previous context, ASR systems may also034

fail to recognize speaker intent, misattribute dia-035

logue, or inconsistently transcribe names and tech-036

nical terms. Incorporating context can significantly037

enhance transcription accuracy by allowing the038

model to reference prior words and phrases, lead-039

ing to more coherent and accurate outputs (Tang040

and Tung, 2024).041

This study explores how increasing the length of 042

audio context will affect ASR performance. With 043

the questions of relevance between the length and 044

context (both audio and text), we hypothesize that 045

processing longer speech segments and providing 046

extended context will reduce transcription errors 047

(e.g., WER) and improve recognition quality. How- 048

ever, we also anticipate that beyond a certain thresh- 049

old, there is a point where adding more context no 050

longer benefits accuracy and would even degrade 051

performance. Our experiments measure these ef- 052

fects to determine the optimal context length for dif- 053

ferent ASR applications, balancing accuracy with 054

efficiency. 055

Our study demonstrates that expanding audio 056

context beyond short windows initially enhances 057

ASR performance, reducing WER. However, our 058

experiments reveal a distinct threshold beyond 059

which extending audio context offers minimal fur- 060

ther gains and begins to compromise efficiency due 061

to increased GPU memory demands and inference 062

latency. This highlights the importance of identify- 063

ing an optimal context length. Notably, we observe 064

that including transcribed-textual context degrades 065

the performance of multi-modal models. This sug- 066

gests that current architectures, not having been 067

predominantly trained with such contextual inputs, 068

struggle to integrate them effectively, leading to a 069

cascade of transcription errors. 070

2 Related Work 071

Recent ASR research, demonstrates that broader 072

context improves model performance (Li et al., 073

2022; Fox et al., 2024; Flynn and Ragni, 2023). For 074

instance, Flynn and Ragni (2023) showed the ad- 075

vantages of long-form audio training for transcrip- 076

tion. Complementary work has integrated textual 077

context with audio. Chang et al. (2023) explored 078

fusing acoustic and text information in RNN-T ar- 079

chitectures. Lakomkin et al. (2024); Chen et al. 080
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(2024); Yang et al. (2024); Cheng (2024) investi-081

gated in-context learning for the multi-modal LLM082

decoder, such as adding keywords and video de-083

scriptions. Radford et al. (2023) proposed Whis-084

per, showing the benefit of feeding previously tran-085

scribed text for long-form transcription, though086

specifics 30-second speech input limit were noted.087

While previous research has demonstrated the088

benefits of contextual information in ASR, to the089

best of our knowledge, no study has systematically090

analyzed how the length and modality (textual and091

acoustic) of recursive context affects inference per-092

formance. Our work aims to address these gaps by093

evaluating the impact of recursive context length094

on ASR performance.095

3 Methodology096

In this section, we describe the proposed method-097

ologies for evaluating the performance of the ASR098

task.099

3.1 Research Objectives100

This study investigates the impact of varying audio101

and textual context length on ASR model perfor-102

mance during inference. While prior work indi-103

cates benefits from additional context, the optimal104

amount and potential for diminishing returns re-105

main underexplored.106

To this end, we focus on the following key re-107

search questions: Q1: How does increasing the108

length of preceding audio input affect the transcrip-109

tion accuracy of ASR models? Q2: How does110

incorporating textual context (previous transcrip-111

tions) influence ASR performance? Q3: Do dif-112

ferent types of ASR models (e.g., audio-only vs.113

audio+text multimodal) respond differently to in-114

creasing context? Q4: What are the computational115

trade-offs (e.g., inference latency, memory usage)116

associated with using longer context?117

To answer these questions, experiments utilize118

context window sizes from 1 second to 15 minutes119

of continuous audio, and for multimodal models,120

varying lengths of prior transcribed text is provided121

during inference.122

3.2 Experimental Setup123

Datsets. For data preparation, in each context124

length setting, we build data pairs (audio and125

ground-truth transcription of the audio). We use126

three datasets in the experiments, TED-LIUM (Her-127

nandez et al., 2018), Earnings 22 (Del Rio et al.,128

2022), and AIHub Korean Lectures (Kim et al., 129

2021). The details about the dataset are described 130

in appendix A 131

132

Models. The ASR models employed in this study 133

are categorized based on their input types: 134

Audio-Only Model: For audio-only input models, 135

traditional ASR architectures of NVIDIA Fast Con- 136

former model (Rekesh et al., 2023) are used. We 137

evaluate both both CTC based and RNN-T based 138

Fast Conformer. We abbreviate them as Conformer- 139

CTC and Conformer-RNN-T in figures, respec- 140

tively. 141

Audio + Text Model: For this type of model, Whis- 142

per (Radford et al., 2022) and Qwen2-Audio (Chu 143

et al., 2024) are used in the experiment, which is 144

the LLM-based ASR model. We abbreviate them 145

as Whisper and Qwen2 in figures, respectively. 146

Evaluation Metrics. We use Word Error Rate 147

(WER), Inference Speed and Memory Usage to 148

measure its performance. Inference speed is mea- 149

sured as the time taken to generate each token dur- 150

ing decoding. Memory usage is recorded for each 151

input size to assess the scalability of the models. 152

Implementation Details. We obtained the pre- 153

trained model from Nvidia Nemo1 and Hugging 154

Face Hub2. All the experiments were conducted in 155

NVIDIA A100 80GB GPU. 156

4 Key Findings 157

4.1 Effect of Audio Context Length 158

ASR Performance: We evaluate how varying 159

the duration of the input audio affects ASR perfor- 160

mance across different models on Earnings-22 and 161

TED-LIUM datasets. Figure 1a shows the impact 162

of varying input audio duration on ASR models’ 163

WER using the NVIDIA Fast Conformer CTC and 164

RNN-T models. The figure indicates that perfor- 165

mance begins to saturate after an audio duration 166

of 20 and 90 seconds, accordingly for the Fast 167

Conformer CTC and RNN-T. Similarly, Figure 1b 168

illustrates the effect of varying input audio dura- 169

tion using the Whisper-small and Qwen2-Audio 170

models, where performance saturation is observed 171

after 20 seconds. Unlike Qwen2-Audio, Whisper 172

model was not able to operates over 30 seconds. 173

While the other model handles the 10-second in- 174

put range relatively robustly, Qwen2-Audio shows 175

increased variability in performance. This may be 176

1https://github.com/NVIDIA/NeMo
2https://huggingface.co
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Figure 1: Performance vs context length for TED-LIUM
and Earnings 22 dataset.
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Figure 2: Peak GPU Memory usage and Inference Time
for NVIDIA Fast Conformer CTC and RNN-T with
with varying audio durations.

attributed to differences in model architecture or177

the way it processes the audio segments and bias178

in the training data.179

GPU peak memory usage: Figure 2a indicates180

GPU peak memory usage with varying audio dura-181

tion for NVIDIA Fast Conformer CTC and RNN-T182

models. For both models, the memory usage re-183

mains almost constant for shorter intervals but rises184

sharply beyond 300 seconds, becoming impractical185

for longer audio durations due to excessive memory186

demands.187

Inference time: Figure 2b demonstrates the im-188

pact of different input time-frame lengths on the189

overall processing time for transcribing the com-190

plete audio input. When using shorter time-frame 191

(e.g., 1s), the increased number of segmentation 192

leads to frequent ASR model invocations, caus- 193

ing significant computational overhead. Addition- 194

ally, we observe saturation effects in model perfor- 195

mance (WER) depending on the input time-frame 196

length: for Whisper, performance tends to saturate 197

around 20-second windows, while for Fast Con- 198

former CTC and RNN-T, saturation is observed 199

at approximately 90 seconds. This suggests that 200

longer input durations can improve efficiency up 201

to a certain point, beyond which further increasing 202

the time-frame does not yield meaningful gains, or 203

even worsen. 204

4.2 Effect of Textual Context 205

We investigate whether feeding previous transcrip- 206

tion results improves ASR in the audio. The fig-
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Figure 3: Performance vs context length for Earnings22
dataset using Qwen2-Audio and Whisper-small. ’No
prompts’ indicates feeding only speech data. ’n-step
prompts’ indicate that the transcribed text from n steps
earlier is provided as input for the current prediction
time frame.

207
ure 3 presents WER under different prompt settings. 208

Across all configurations, we observe that feeding 209

prior text prompts does not outperform the base- 210

line where only speech input is provided. However, 211

supplying longer textual context generally leads 212

to a gradual improvement in WER. Notably, at 213

early steps (e.g., 1 or 3 seconds), transcriptions of- 214

ten include short, possibly error-prone segments, 215
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and as the number of steps increases, these early216

transcription errors accumulate, negatively impact-217

ing performance. In the case of Whisper, due to218

the model’s maximum input length constraint, we219

were unable to evaluate prompts with a large num-220

ber of steps (e.g. 3 steps on 20 seconds), as the221

combined input exceeded the allowable time frame.222

For Qwen2-Audio, when prompts ranging from223

1 to 3 seconds were used, the generation process224

took an unusually long time. This was likely due to225

error accumulation during decoding, as the model226

failed to fully capture all words in the audio, lead-227

ing to progressively longer non-meaningful outputs.228

Therefore, we excluded these results from our eval-229

uation.230

4.3 Cross-Language Evaluation231

To evaluate the generalization performance of232

context-aware ASR models beyond English, we233

utilized a Korean lecture dataset from AI Hub (Kim234

et al., 2021). The experimental results (Figure 4)235

revealed an interesting pattern. Injecting preced-236

ing textual context yielded improved WER perfor-237

mance only for extremely short, 1-second target238

segments and shown performance degradation af-239

ter that. We assume that 1-second segments showed240

improved performance due to frequent number pro-241

nunciations, which are often ambiguous in Korean242

because of its dual numeral systems (Native Ko-243

rean and Sino-Korean). This linguistic character-244

istic can make it challenging for the ASR system245

to discern whether a short utterance is a number,246

which numeral system it belongs to, or if it rep-247

resents a different word entirely. Consequently,248

we presume that injecting the short (3-second or249

5-second) preceding context aided in disambiguat-250

ing the meaning of these short, often ambiguous251

numerical utterances found in 1-second segments,252

leading to improved recognition accuracy.253

Figure 4: Performance vs context length for AI-Hub
Korean dataset using Whipser-small. ’n-sec text context’
indicate that the transcribed text from n second earlier is
provided as input for the current prediction time frame.
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Figure 5: Performance of Conformer under various
noise conditions.

Figure 5 illustrates how the WER of a 256

Conformer-based ASR system varies with audio du- 257

ration across different Signal-to-Noise Ratio (SNR) 258

conditions. As noise increases (i.e., as SNR de- 259

creases), WER rises, indicating a decline in recog- 260

nition accuracy. However, increasing the audio 261

duration, thus providing more context, consistently 262

helps reduce WER across all noise levels. This 263

improvement is most pronounced between 5 and 264

60 seconds of audio. Beyond this point, the ben- 265

efits of additional context begin to level off, and 266

WER stabilizes. Notably, even under moderate 267

noise levels, such as 10 dB SNR, the ASR model 268

can approach clean audio performance when given 269

enough context. 270

5 Conclusion 271

In this work, we evaluated how varying audio and 272

textual context lengths affect ASR performance 273

across different models and datasets. Our findings 274

reveal that the actual benefits in terms of ASR per- 275

formance are frequently limited and highly condi- 276

tional on the specific model, dataset, and duration. 277

Performance gains often saturated relatively early 278

in our tests, indicating rapidly diminishing returns 279

beyond moderate context lengths. Moreover, at- 280

tempts to leverage longer context introduced signif- 281

icant drawbacks, notably increased computational 282

demands, particularly memory usage, which be- 283

came prohibitive for models like Fast Conformer 284

at extended durations. Future work could focus 285

on optimizing the use of moderate context lengths 286

or developing models that are inherently more ro- 287

bust to local ambiguities, reducing the need for 288

extensive historical information. 289
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6 Limitations290

Despite offering insights into the effect of audio291

and textual context lengths in ASR systems, our292

study is constrained by several limitations. The293

Whisper model imposes a hard limit of 30 seconds294

on audio input length. As a result, we were un-295

able to evaluate Whisper’s performance on longer296

context windows, which restricted our ability to297

fully compare its behavior with other models un-298

der extended audio conditions. Moreover, while299

our experiments included both English and Korean300

datasets, the majority of the analysis focused on301

English speech from well-structured sources such302

as TED talks and earnings calls. This limited lin-303

guistic and domain diversity may reduce the gener-304

alizability of our findings to more conversational,305

noisy, or code-switched speech data.306

7 Ethics Statement307

We foresee no ethical concerns with our work.308

The datasets employed in our research are pub-309

licly available, and it does not contain any personal310

information.311
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A Additional Details on Datasets411

The primary focus of this work is open-sourced412

English datasets. Large-scale non-English speech413

datasets, such as HKUST (Liu et al., 2006) and414

CSJ (Maekawa et al., 2003), exist; however, these415

datasets are difficult to verify as a non-native416

speaker of these languages. Despite this limitation,417

to facilitate multilingual performance evaluation418

and quantify our model with diverse data, we in-419

corporated a Korean dataset (Kim et al., 2021) into420

our experiments. Table 1 shows overview of the421

dataset we used in the experiments. To be specific422

we used following dataset:423

TED-LIUM: The TED-LIUM dataset (Hernan-424

dez et al., 2018) employed for one of base long-425

form datasets, as it contains extensive speech seg-426

ments reflective of real-world pauses. This dataset427

is created from the TED talks, contains about 118428

hours of speech.429

Earnings-22: The Earnings-22 dataset (Del Rio430

et al., 2022), derived from corporate earnings calls,431

is included in our experiments due to its realistic432

long-form speech content and detailed annotations.433

Our experimental subset of the Earnings-22 dataset434

comprises randomly selected segments, which col-435

lectively span 11 hours of audio.436

AI Hub Korean lecture: A Korean lecture437

dataset from AI Hub (Kim et al., 2021) is incorpo-438

rated to include a non-English corpus. This dataset439

is delivered in sentence- or word-level segments440

and can easily be merged to create fully contex-441

tualized long-form audio or split into very short442

segments, providing flexibility in examining how443

context length impacts ASR across different lan-444

guages.445

B Additional Details on ASR Models446

Table 2 shows the overall details of the model447

used in the evaluation. To be specific, pre-trained448

Fast Conformer-CTC is obtained from the NVIDIA449

Nemo platform. Other models are from the Hug-450

ging Face model hub.451

C More Results452

C.1 Output Token Per Second vs audio length453

Figure 6 shows the output tokens per second for454

Whisper-small and NVIDIA FastConformer mod-455

els with varying audio duration. For Whisper-small,456

the output tokens per second increase with longer457

audio. On the other hand, NVIDIA FastConformer 458

produces significantly more output tokens per sec- 459

ond compared to Whisper-small, it peaks at mid- 460

range audio durations and then decreases for longer 461

audio.
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Figure 6: Output Token generated per second. All ex-
periments were done in NVIDIA A100 80GB GPU.
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Dataset Name Language Source Domain Notes / Purpose

TED-LIUM 1 English TED Talks Realistic pauses, segmented from talks

Earnings-22 English Corporate earnings calls Multiple speakers, segmented by words

AIHub Korean Lectures Korean Academic lectures Used to analyze language-general effects

Table 1: Overview of speech datasets with various languages and domains

Model Name Parameters Architectures Implementation/Source

Fast Conformer-CTC 115M Fast Conformer with CTC decoder nvidia/stt_en_fastconformer_ctc_large

Fast Conformer-RNN-T 1.1B Fast Conformer with RNN-T decoder nvidia/parakeet-rnnt-1.1b

Whisper-small 244M Transformer based encoder-decoder model openai/whisper-small

Qwen2-Audio 7B Audio encoder with Qwen LM Qwen/Qwen2-Audio-7B

Table 2: Overview of models used in the experiments
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