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Abstract

Automatic Speech Recognition (ASR) systems
often process audio in short segments, limit-
ing their ability to leverage broader context.
This work systematically explores how increas-
ing both audio and textual context length af-
fects ASR performance. We evaluate multiple
architectures—including Fast Conformer with
CTC and RNN-T and multimodal models like
Whisper and Qwen2—Audio across a range of
context windows from a few seconds up to fif-
teen minutes. Empirical results on both short
and long-form English context, as well as a Ko-
rean lecture dataset, reveal that longer context
windows can significantly reduce transcription
errors and improve coherence. However, exces-
sive context sometimes saturates or even harms
performance due to computational overhead
and error propagation. Our findings highlight
the importance of carefully balancing context
length to maximize ASR performance while
mitigating potential drawbacks.

1 Introduction

Automatic Speech Recognition systems have be-
come integral to a wide range of applications, from
voice assistants to live video transcription services.
ASR models usually process short audio clips of
about 30 seconds or less, which makes it hard to
use broader context effectively (Flynn and Ragni,
2023). This lack of context can lead to transcription
errors, such as misinterpreting homophones (e.g.,
“their” vs. “there”), struggling with pronoun ref-
erences, or losing coherence in long-form speech.
Without previous context, ASR systems may also
fail to recognize speaker intent, misattribute dia-
logue, or inconsistently transcribe names and tech-
nical terms. Incorporating context can significantly
enhance transcription accuracy by allowing the
model to reference prior words and phrases, lead-
ing to more coherent and accurate outputs (Tang
and Tung, 2024).

This study explores how increasing the length of
audio context will affect ASR performance. With
the questions of relevance between the length and
context (both audio and text), we hypothesize that
processing longer speech segments and providing
extended context will reduce transcription errors
(e.g., WER) and improve recognition quality. How-
ever, we also anticipate that beyond a certain thresh-
old, there is a point where adding more context no
longer benefits accuracy and would even degrade
performance. Our experiments measure these ef-
fects to determine the optimal context length for dif-
ferent ASR applications, balancing accuracy with
efficiency.

Our study demonstrates that expanding audio
context beyond short windows initially enhances
ASR performance, reducing WER. However, our
experiments reveal a distinct threshold beyond
which extending audio context offers minimal fur-
ther gains and begins to compromise efficiency due
to increased GPU memory demands and inference
latency. This highlights the importance of identify-
ing an optimal context length. Notably, we observe
that including transcribed-textual context degrades
the performance of multi-modal models. This sug-
gests that current architectures, not having been
predominantly trained with such contextual inputs,
struggle to integrate them effectively, leading to a
cascade of transcription errors.

2 Related Work

Recent ASR research, demonstrates that broader
context improves model performance (Li et al.,
2022; Fox et al., 2024; Flynn and Ragni, 2023). For
instance, Flynn and Ragni (2023) showed the ad-
vantages of long-form audio training for transcrip-
tion. Complementary work has integrated textual
context with audio. Chang et al. (2023) explored
fusing acoustic and text information in RNN-T ar-
chitectures. Lakomkin et al. (2024); Chen et al.



(2024); Yang et al. (2024); Cheng (2024) investi-
gated in-context learning for the multi-modal LLM
decoder, such as adding keywords and video de-
scriptions. Radford et al. (2023) proposed Whis-
per, showing the benefit of feeding previously tran-
scribed text for long-form transcription, though
specifics 30-second speech input limit were noted.

While previous research has demonstrated the
benefits of contextual information in ASR, to the
best of our knowledge, no study has systematically
analyzed how the length and modality (textual and
acoustic) of recursive context affects inference per-
formance. Our work aims to address these gaps by
evaluating the impact of recursive context length
on ASR performance.

3 Methodology

In this section, we describe the proposed method-
ologies for evaluating the performance of the ASR
task.

3.1 Research Objectives

This study investigates the impact of varying audio
and textual context length on ASR model perfor-
mance during inference. While prior work indi-
cates benefits from additional context, the optimal
amount and potential for diminishing returns re-
main underexplored.

To this end, we focus on the following key re-
search questions: Q1: How does increasing the
length of preceding audio input affect the transcrip-
tion accuracy of ASR models? Q2: How does
incorporating textual context (previous transcrip-
tions) influence ASR performance? Q3: Do dif-
ferent types of ASR models (e.g., audio-only vs.
audio+text multimodal) respond differently to in-
creasing context? Q4: What are the computational
trade-offs (e.g., inference latency, memory usage)
associated with using longer context?

To answer these questions, experiments utilize
context window sizes from 1 second to 15 minutes
of continuous audio, and for multimodal models,
varying lengths of prior transcribed text is provided
during inference.

3.2 Experimental Setup

Datsets. For data preparation, in each context
length setting, we build data pairs (audio and
ground-truth transcription of the audio). We use
three datasets in the experiments, TED-LIUM (Her-
nandez et al., 2018), Earnings 22 (Del Rio et al.,

2022), and AIHub Korean Lectures (Kim et al.,
2021). The details about the dataset are described
in appendix A

Models. The ASR models employed in this study
are categorized based on their input types:
Audio-Only Model: For audio-only input models,
traditional ASR architectures of NVIDIA Fast Con-
former model (Rekesh et al., 2023) are used. We
evaluate both both CTC based and RNN-T based
Fast Conformer. We abbreviate them as Conformer-
CTC and Conformer-RNN-T in figures, respec-
tively.

Audio + Text Model: For this type of model, Whis-
per (Radford et al., 2022) and Qwen2-Audio (Chu
et al., 2024) are used in the experiment, which is
the LLM-based ASR model. We abbreviate them
as Whisper and Qwen?2 in figures, respectively.
Evaluation Metrics. We use Word Error Rate
(WER), Inference Speed and Memory Usage to
measure its performance. Inference speed is mea-
sured as the time taken to generate each token dur-
ing decoding. Memory usage is recorded for each
input size to assess the scalability of the models.
Implementation Details. We obtained the pre-
trained model from Nvidia Nemo' and Hugging
Face Hub?. All the experiments were conducted in
NVIDIA A100 80GB GPU.

4 Key Findings
4.1 Effect of Audio Context Length

ASR Performance: We evaluate how varying
the duration of the input audio affects ASR perfor-
mance across different models on Earnings-22 and
TED-LIUM datasets. Figure 1a shows the impact
of varying input audio duration on ASR models’
WER using the NVIDIA Fast Conformer CTC and
RNN-T models. The figure indicates that perfor-
mance begins to saturate after an audio duration
of 20 and 90 seconds, accordingly for the Fast
Conformer CTC and RNN-T. Similarly, Figure 1b
illustrates the effect of varying input audio dura-
tion using the Whisper-small and Qwen2-Audio
models, where performance saturation is observed
after 20 seconds. Unlike Qwen2-Audio, Whisper
model was not able to operates over 30 seconds.
While the other model handles the 10-second in-
put range relatively robustly, Qwen2-Audio shows
increased variability in performance. This may be
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Figure 1: Performance vs context length for TED-LIUM
and Earnings 22 dataset.
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Figure 2: Peak GPU Memory usage and Inference Time
for NVIDIA Fast Conformer CTC and RNN-T with
with varying audio durations.

attributed to differences in model architecture or
the way it processes the audio segments and bias
in the training data.

GPU peak memory usage: Figure 2a indicates
GPU peak memory usage with varying audio dura-
tion for NVIDIA Fast Conformer CTC and RNN-T
models. For both models, the memory usage re-
mains almost constant for shorter intervals but rises
sharply beyond 300 seconds, becoming impractical
for longer audio durations due to excessive memory
demands.

Inference time: Figure 2b demonstrates the im-
pact of different input time-frame lengths on the
overall processing time for transcribing the com-

plete audio input. When using shorter time-frame
(e.g., 1s), the increased number of segmentation
leads to frequent ASR model invocations, caus-
ing significant computational overhead. Addition-
ally, we observe saturation effects in model perfor-
mance (WER) depending on the input time-frame
length: for Whisper, performance tends to saturate
around 20-second windows, while for Fast Con-
former CTC and RNN-T, saturation is observed
at approximately 90 seconds. This suggests that
longer input durations can improve efficiency up
to a certain point, beyond which further increasing
the time-frame does not yield meaningful gains, or
even worsen.

4.2 Effect of Textual Context

We investigate whether feeding previous transcrip-
tion results improves ASR in the audio. The fig-

75 —e—Whisper (No Prompt)
65 —e—Whisper (1 Step Prompt)
—e—Whisper (2 Step Prompt)

~=o~Whisper (3 Step Prompt)

Word Error Rate (WER)
w©
o

Duration (s)

(a) Whisper

—=e—Quen2 (No Prompt)

6.5 —=e—Quen2 (1 Step Prompt)

55 «=o==Qwen2 (2 Step Prompt)

== Qwen2 (3 Step Prompt)
4.5

3.5

Word Error Rate (WER)

15
05 ——— " —

-0.5 1 3 5 10 20 25 30 45 60
Duration (s)

(b) Qwen2

Figure 3: Performance vs context length for Earnings22
dataset using Qwen2-Audio and Whisper-small. 'No
prompts’ indicates feeding only speech data. ’n-step
prompts’ indicate that the transcribed text from n steps
earlier is provided as input for the current prediction
time frame.

ure 3 presents WER under different prompt settings.
Across all configurations, we observe that feeding
prior text prompts does not outperform the base-
line where only speech input is provided. However,
supplying longer textual context generally leads
to a gradual improvement in WER. Notably, at
early steps (e.g., 1 or 3 seconds), transcriptions of-
ten include short, possibly error-prone segments,



and as the number of steps increases, these early
transcription errors accumulate, negatively impact-
ing performance. In the case of Whisper, due to
the model’s maximum input length constraint, we
were unable to evaluate prompts with a large num-
ber of steps (e.g. 3 steps on 20 seconds), as the
combined input exceeded the allowable time frame.
For Qwen2-Audio, when prompts ranging from
1 to 3 seconds were used, the generation process
took an unusually long time. This was likely due to
error accumulation during decoding, as the model
failed to fully capture all words in the audio, lead-
ing to progressively longer non-meaningful outputs.
Therefore, we excluded these results from our eval-
uation.

4.3 Cross-Language Evaluation

To evaluate the generalization performance of
context-aware ASR models beyond English, we
utilized a Korean lecture dataset from Al Hub (Kim
et al., 2021). The experimental results (Figure 4)
revealed an interesting pattern. Injecting preced-
ing textual context yielded improved WER perfor-
mance only for extremely short, 1-second target
segments and shown performance degradation af-
ter that. We assume that 1-second segments showed
improved performance due to frequent number pro-
nunciations, which are often ambiguous in Korean
because of its dual numeral systems (Native Ko-
rean and Sino-Korean). This linguistic character-
istic can make it challenging for the ASR system
to discern whether a short utterance is a number,
which numeral system it belongs to, or if it rep-
resents a different word entirely. Consequently,
we presume that injecting the short (3-second or
5-second) preceding context aided in disambiguat-
ing the meaning of these short, often ambiguous
numerical utterances found in 1-second segments,
leading to improved recognition accuracy.
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Figure 4: Performance vs context length for AI-Hub
Korean dataset using Whipser-small. ’n-sec text context’
indicate that the transcribed text from n second earlier is
provided as input for the current prediction time frame.

4.4 TImpact of Noise Levels on ASR
Performance
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Figure 5: Performance of Conformer under various
noise conditions.

Figure 5 illustrates how the WER of a
Conformer-based ASR system varies with audio du-
ration across different Signal-to-Noise Ratio (SNR)
conditions. As noise increases (i.e., as SNR de-
creases), WER rises, indicating a decline in recog-
nition accuracy. However, increasing the audio
duration, thus providing more context, consistently
helps reduce WER across all noise levels. This
improvement is most pronounced between 5 and
60 seconds of audio. Beyond this point, the ben-
efits of additional context begin to level off, and
WER stabilizes. Notably, even under moderate
noise levels, such as 10 dB SNR, the ASR model
can approach clean audio performance when given
enough context.

5 Conclusion

In this work, we evaluated how varying audio and
textual context lengths affect ASR performance
across different models and datasets. Our findings
reveal that the actual benefits in terms of ASR per-
formance are frequently limited and highly condi-
tional on the specific model, dataset, and duration.
Performance gains often saturated relatively early
in our tests, indicating rapidly diminishing returns
beyond moderate context lengths. Moreover, at-
tempts to leverage longer context introduced signif-
icant drawbacks, notably increased computational
demands, particularly memory usage, which be-
came prohibitive for models like Fast Conformer
at extended durations. Future work could focus
on optimizing the use of moderate context lengths
or developing models that are inherently more ro-
bust to local ambiguities, reducing the need for
extensive historical information.



6 Limitations

Despite offering insights into the effect of audio
and textual context lengths in ASR systems, our
study is constrained by several limitations. The
Whisper model imposes a hard limit of 30 seconds
on audio input length. As a result, we were un-
able to evaluate Whisper’s performance on longer
context windows, which restricted our ability to
fully compare its behavior with other models un-
der extended audio conditions. Moreover, while
our experiments included both English and Korean
datasets, the majority of the analysis focused on
English speech from well-structured sources such
as TED talks and earnings calls. This limited lin-
guistic and domain diversity may reduce the gener-
alizability of our findings to more conversational,
noisy, or code-switched speech data.

7 Ethics Statement

We foresee no ethical concerns with our work.
The datasets employed in our research are pub-
licly available, and it does not contain any personal
information.
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A Additional Details on Datasets

The primary focus of this work is open-sourced
English datasets. Large-scale non-English speech
datasets, such as HKUST (Liu et al., 2006) and
CSJ (Maekawa et al., 2003), exist; however, these
datasets are difficult to verify as a non-native
speaker of these languages. Despite this limitation,
to facilitate multilingual performance evaluation
and quantify our model with diverse data, we in-
corporated a Korean dataset (Kim et al., 2021) into
our experiments. Table 1 shows overview of the
dataset we used in the experiments. To be specific
we used following dataset:

TED-LIUM: The TED-LIUM dataset (Hernan-
dez et al., 2018) employed for one of base long-
form datasets, as it contains extensive speech seg-
ments reflective of real-world pauses. This dataset
is created from the TED talks, contains about 118
hours of speech.

Earnings-22: The Earnings-22 dataset (Del Rio
et al., 2022), derived from corporate earnings calls,
is included in our experiments due to its realistic
long-form speech content and detailed annotations.
Our experimental subset of the Earnings-22 dataset
comprises randomly selected segments, which col-
lectively span 11 hours of audio.

Al Hub Korean lecture: A Korean lecture
dataset from Al Hub (Kim et al., 2021) is incorpo-
rated to include a non-English corpus. This dataset
is delivered in sentence- or word-level segments
and can easily be merged to create fully contex-
tualized long-form audio or split into very short
segments, providing flexibility in examining how
context length impacts ASR across different lan-
guages.

B Additional Details on ASR Models

Table 2 shows the overall details of the model
used in the evaluation. To be specific, pre-trained
Fast Conformer-CTC is obtained from the NVIDIA
Nemo platform. Other models are from the Hug-
ging Face model hub.

C More Results
C.1 Output Token Per Second vs audio length

Figure 6 shows the output tokens per second for
Whisper-small and NVIDIA FastConformer mod-
els with varying audio duration. For Whisper-small,
the output tokens per second increase with longer

audio. On the other hand, NVIDIA FastConformer
produces significantly more output tokens per sec-
ond compared to Whisper-small, it peaks at mid-
range audio durations and then decreases for longer
audio.
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Figure 6: Output Token generated per second. All ex-
periments were done in NVIDIA A100 80GB GPU.



Dataset Name Language | Source Domain Notes / Purpose

TED-LIUM 1 English TED Talks Realistic pauses, segmented from talks
Earnings-22 English Corporate earnings calls | Multiple speakers, segmented by words
AIHub Korean Lectures | Korean Academic lectures Used to analyze language-general effects

Table 1: Overview of speech datasets with various languages and domains

Model Name Parameters | Architectures Implementation/Source

Fast Conformer-CTC 115M Fast Conformer with CTC decoder nvidia/stt_en_fastconformer_ctc_large
Fast Conformer-RNN-T | 1.1B Fast Conformer with RNN-T decoder nvidia/parakeet-rnnt-1.1b
‘Whisper-small 244M Transformer based encoder-decoder model | openai/whisper-small

Qwen2-Audio 7B Audio encoder with Qwen LM Qwen/Qwen2-Audio-7B

Table 2: Overview of models used in the experiments
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