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1 INTRODUCTION

Deep learning-based molecular generation holds great promise for various applications in physics,
chemistry, drug discovery, materials design, and more. While 1D and 2D molecular generation
have been successful, molecules exist in 3D physical space and possess geometric symmetries such
as translation, rotation, and reflection. The 3D shape of a molecule is particularly important for
real-world applications like structure-based drug design. Recent advancements in geometric deep
learning have sparked research on representing molecules in 3D geometry, leading to progress in
molecular design within 3D space.

Recently, diffusion-based generation models have been applied to the molecular generation prob-
lem with impressive performance. These approaches employ a strategy of corrupting data with
diffuse noise and training a neural diffusion model to reverse the corruption process and generate
meaningful data from the noise. Denoised diffusion-diffusion probability models (DDPMs) have
shown state-of-the-art results in various tasks, including image generation from text and structure-
based protein design, in domains such as computer vision and computational biology. Within
the DDPM framework, methods have been proposed, such as the equivariable graph neural net-
work(GNN) Hoogeboom et al. (2022), for generating 3D molecules.

EDMs generate molecular structures that exhibit equivariance, meaning their properties remain un-
changed regardless of the molecule’s orientation or position in 3D space. To achieve this, the model
learns to denoise the diffusion process, considering both the continuous coordinates(spatial location
of atoms) and the categorical atom types(carbon, hydrogen, oxygen, etc.). While diffusion methods
have been proposed for datasets with these characteristics, there is a lack of evaluation on more
complex datasets and a comparative analysis of different diffusion methods specifically applied to
categorical data. In addition, using the EDM model for large and complex molecules requires a lot
of computational resources. The EDM employs a one-hot vector to represent different atom types.
As the molecule size increases, the length of the one-hot vector also grows. This can be one of
the reasons for the increased computational cost. To improve this situation, it would be helpful to
consider introducing another discrete diffusion method.

Therefore, in this project, we extend the Equivariant Diffusion for Molecule Generation and
Conditional Generation in 3D(EDMs). Our main contributions are:

1. Apply an alternative diffusion method for categorical data in conjunction with the existing
model.

2. Assess their generalizability using a larger dataset of three-dimensional small molecules.

3. Extend our models to other types of datasets, such as dimers, dipeptides, solvated amino
acids, and further broadening the scope of our research.

In this paper, we aimed to check the performance of EDM by applying it to a dataset containing
larger molecules and various atoms in addition to the existing qm9 dataset, which had a small number
of atoms (e.g., 1 to 9) and molecules (e.g., 1.3 million). Details of the applied datasets can be found
in Table 1. In addition, considering that the diffusion model takes a lot of time in the model training
process because it has a diffusion step, we tried to apply bit-diffusion to reduce the time and cost.
In three molecule datasets (e.g., QM9, SPICE, and Molecule3D), the validity was over 79.9% and

1



Generative Model and Unsupervised Learning(AI618) 2023

(a) (b) (c)

Figure 1: Overall Equivariant Diffusion Model Framework (a) Pre-generation stage involves
sampling the desired number of atoms. (b) The Equivariant Diffusion Model then generates both
the atom types and their corresponding coordinates. (c) Post-generation, bond types are predicted
by analyzing the distances between atoms.

the uniqueness was over 98.5%. Our experiment code is available at https://github.com/
zoomin-lee/EDM_with_bit_diffusion.

2 RELATED WORK

2.1 DIFFUSION FOR CATEGORICAL DATA

Diffusion models have been extensively studied in the context of continuous data. However, they
often face challenges when handling discrete data, such as text and segmentation maps, due to the
inherent discreteness that cannot be fully captured by continuous representations. To overcome this
issue, researchers have developed discrete diffusion models Austin et al. (2021); Hoogeboom et al.
(2021). These models update variable values at each time step using transition matrices that specify
the probability of transitioning between different values.

More recently, there has been a shift towards studying continuous diffusion for discrete data, moving
away from the use of transition matrices. This is because discrete diffusion models approximate the
continuous situation using transition matrices, which can make accurate modeling difficult. There-
fore, in the Enhanced Diffusion Models(EDM) Hoogeboom et al. (2022), discrete data is converted
into a one-hot representation. Another approach, known as bit diffusion Chen et al. (2022), converts
discrete data into a bit representation. These continuous representations of discrete data are then
used to model the distribution using continuous diffusion methods, as they are treated as continuous
values. In this project, we employ both one-hot and bit representations to model different diffusion
processes for categorical data.

2.2 3D MOLECULE GENERATION

E-NF Satorras et al. (2021) and G-SchNet Gebauer et al. (2019). E-NF uses an equivariant EGNN-
based regularization flow to transform arbitrary initial atomic positions into realistic molecular ge-
ometries. However, this model has only been validated for relatively small molecules, is very ex-
pensive to train, and produces molecules with low chemical validity rates. G-SchNet is an equiv-
ariate model that autoregressively generates 3D molecules, and has recently been extended to con-
ditionally generate molecules with desired electronic properties and molecular fingerprints Gebauer
et al. (2022). However, G-SchNet only generates atomic positions and does not generate molecular
graphs, which provide chemical bonding information needed for many downstream applications.

3 METHOD

EDMs Hoogeboom et al. (2022) takes into account the equivariance principles concerning atom
coordinates, encompassing rotation, translation, and reflection. Graph Neural Networks find exten-
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Figure 2: Training Process of the Bit-EDM. The following steps are undertaken for preprocessing:
(a) The discrete atom types, represented by vector h, are converted into analog bit embeddings. (b)
The continuous coordinate values, denoted as x, are normalized with respect to the origin. After
completing the preprocessing stage, the equivariant noise process is applied to generate the t-step
noised embedding. This perturbed embedding serves as the input for the continuous diffusion model.

sive employment in the representation of molecular structures, characterized by nodes and edges.
Accordingly, GNN serves as the architectural backbone for the diffusion model within the context
of EDM. EDM not only determines the coordinates but also incorporates the consideration of the
molecular type within the diffusion process.

Consequently, the comprehensive generation framework can be outlined as in 1. Initially, the count
of atoms to be encompassed within the molecule is established, paving the way for the diffusion
model to undergo iterations over a predefined number of timesteps. These iterations facilitate the
determination of both the molecular coordinates and its corresponding type. Subsequently, the inter-
atomic distances are computed, effectively governing the establishment of edge connections within
the molecular graph.

They define a set of points (xi,hi)i=1,...,M , where each node has associated to it a coordinate
representation xi ∈ R3((b) in Fig. 2) and an atom types hi ((a) in Fig. 2).

To generate t-step noised embedding in Fig. 2, we begin by normalizing the continuous coordi-
nates and converting categorical atom types into either one-hot or bit representation. Subsequently,
we apply the equivariant noise process q(zt|x,h) described in Eq. 1 to produce the t-step noised
embedding.

q(zt|x,h) = q(z
(x)
t |x) · q(z(h)t |h) = Nx(z

(x)
t |αtx, σ

2
t I) · Nh(z

(h)
t |αth, σ

2
t I) (1)

where Nxh is a concise notation for the product of two distributions, one for the noised coordinates
Nx and another for the noised atom types N . αt ∈ R+ controls how much signal is retained and
σ ∈ R+ controls how much noise is added.

In simpler terms, the process can be described as applying Gaussian noise to two features, as shown
in the Eq. 2.

zt = αt[x,h] + σt[ϵ
(x), ϵ(h)] (2)

where [·, ·] denote a concatenation.

So our network φ predicts ϵ̂ = [ϵ̂(x), ϵ̂(h)]. Using this prediction, we can obtain [x̂, ĥ] = zt

αt
− ϵ̂t · σt

αt
.

Therefore, our equivariant denoising process can be obtained as Eq. 3.

p(zt−1|zt) = Nxh(zt−1|µt→t−1([x̂, ĥ], zt), σ
2
t→t−1I) (3)

In this project, we are working with a much larger dataset that includes a significantly higher number
of molecules, atoms, and elements compared to the EDMs dataset, as shown in Table 1 1. Hence, we
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Table 1: Dataset Information
Dataset # Molecules # Atoms # Elements Description

QM9 1.3 million 1∼9 5 Property descriptors
& 3D atomic coordinates

Molecule3D 3.9 million avg. 29.1 30 Ground-state 3D geometrics
& Quantum properties

SPICE 1.1 million 2∼96 5∼15 small molecules, dimers, dipeptides,
and solvated amino acids

investigate the equivariant noise process for categorical data N (z
(h)
t |αth, σ

2
t I) in Equation 1 using

both the one-hot representation honehot and the analog-bit representation hanalog−bit Chen et al.
(2022).

The reason for considering both representations is that when using the one-hot representation, the
embedding dimension after applying t-step noise increases based on the number of atom types in
the dataset (N). However, when using the analog-bit representation, the increase is only by log2 N.
Additionally, since there is no existing research analyzing the results of applying diffusion to both
the one-hot representation and the analog-bit representation across multiple datasets, we aim to
explore this aspect.

3.1 DATASET

In this project, we develop a model and evaluate its performance on three datasets. The details of
the dataset are summarized in the Table 1.

The QM9 dataset Ramakrishnan et al. (2014) contains molecular property descriptors and 3D atomic
coordinates for 1.3 million small molecules. Each molecule in QM9 can contain up to nine heavy
atoms, or 29 atoms if hydrogen is included.

Molecule3D Xu et al. (2021) is the first benchmark to systematically perform the task of ground-
state 3D molecular shape prediction. The dataset contains information on more than 3.9 million
molecules, including molecular graphs, ground-state 3D geometries, and various quantum proper-
ties. It is built upon the PubChemQC Nakata & Shimazaki (2017) dataset and curated to provide a
more easily usable form for machine learning applications.

The SPICE Eastman et al. (2023) is a new quantum chemistry dataset for training potentials related
to the simulation of drug-like small molecules interacting with proteins. It contains over 1.1 million
conformations for a variety of small molecules, dimers, dipeptides, and solvated amino acids.

In this paper, we improve the algorithm by modifying the discrete diffusion method and conduct
performance experiments on various datasets. We use the QM9 dataset used in the literature as a
baseline, and expand the dataset to check the performance. Furthermore, we utilize more diverse
datasets to test and validate that the model performs well for 3D coordinate generation.

4 EXPERIMENTS

Metrics It uses the distance between pairs of atoms and the type of atom to predict the bond type
(single, double, triple, or none). It then measures atomic stability (the percentage of atoms with the
correct valence) and molecular stability (the percentage of molecules created in which all the atoms
are stable).

Experiment Settings For the molecule generation, all models use 500 diffusion steps, EGNN with
3 layers, 128 features per layer, and SiLU activation, and are trained using Adam with a batch size
of 256 and a learning rate of 10-4. We report the validity (measured by RDKit) and uniqueness of
the generated compounds.
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Table 2: Neg. log-likelihood, atom stability, molecule stability, validity and uniqueness over 1,000
molecules with standard deviation across 3 runs on QM9.

# Metrics NLL Atom stable (%) Mol stable (%) Valid (%) Unique (%)
EDM 12.4±0.48 98.05±0.00 86.53±0.01 84.27±1.67 100±0.00

Bit-EDM (Ours) 589.9±16.4 1.3±0.00 0.0±0.0 97.4±2.4 1.0±0.7

Figure 3: Selection of samples generated by the denoising process of EDM (up) and Bit-EDM
(down) on QM9.

4.1 QM9

In this experiment, we train Bit-EDM and EDM to unconditionally generate molecules with three-
dimensional coordinates, 5 atom types (H, C, N, O, F), and integer values of atomic charges.

Results are reported in Table2. As shown in Table 2, EDM is able to generate a very high percentage
of valid and unique molecules. While the original authors built their model with 9 layers and 3,000
training rounds, we built our model with 3 layers and 1,000 training rounds due to computational
limitations, so we believe that our model is relatively under-trained, which may explain the positive
NLL values for EDM and Bit-EDM in general. The validity of EDM is lower compared to Bit-EDM.
This might be due to RDKit’s correction process, where it adjusts valency by adding hydrogens
to heavy atoms during calculation. We thought that using the bit-diffusion method instead of the
traditional EDM method of one-hot encoding would reduce the time, which would be suitable for
model training. However, in the actual model implementation stage, we had a problem that it took a
little more time because we had to perform bit diffusion and then perform one-hot encoding again.
We also expected that converting bits would reduce the amount of GPU memory required. However,
we discovered that the size of the molecule has a much bigger impact compared to the representation
of atom types. As a result, we were unable to achieve reduction in computational costs.

4.2 CONDITIONAL MOLECULE GENERATION - QM9

In this section, we aim to generate molecules that target several desired properties. Since the main
goal of drug discovery is to generate molecules that are optimized for their properties, we train a
conditional diffusion model in QM9 to generate according to the homo and lumo properties. Each
property is described in more detail below. 1) HOMO: The highest occupied molecular orbital
energy. 2) LUMO: The lowest unoccupied molecular orbital energy.

Experiment Settings In this conditional experiment, both EDM and Bit-EDM used EGNNs with
7 layers, 128 features per hidden layer, and SiLU activation. We used an Adam optimizer with a
learning rate of 10-3 and a batch size of 512. We only modeled atom type (categorical) and position
(continuous), and did not model atomic charge. All methods were trained for 1,000 epochs.

Results HOMO and LUMO values are measures of chemical reactivity and are important indicators
in the field of molecule generation as well as drug discovery. We applied EDM and Bit-EDM to
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Table 3: Mean Absolute Error for molecular property prediction on a QM9 subset, EDM and Bit-
EDM generated samples.

Task Homo Lumo
EDM 0.0544 0.0498

Bit-EDM (Ours) 0.0571 0.0454

Table 4: Neg. log-likelihood, atom stability, molecule stability, validity and uniqueness over 500
molecules with standard deviation across 3 runs on SPICE.

# Metrics NLL Atom stable (%) Mol stable (%) Valid (%) Unique (%)
EDM 79.9±24.2 66.0±0.0 0.0±0.0 79.9±0.02 98.5±0.00

Bit-EDM (Ours) 3855.5±83.8 28.75±0.02 0.13±0.0 65.33±0.29 5.50±0.05

derive MAE values for HOMO and LUMO values, and found that there was no difference between
the results of Bit-EDM and the MAE values of EDM, as shown in Table 3.

4.3 SPICE

The SPICE Eastman et al. (2023) dataset contains 1.1 million molecules with sizes up to a maximum
of 96. It contains dipeptides, solvated amino acids, dimers, monomers, ion pairs, and pubchem small
moelcules. In this experiment, we train Bit-EDM and EDM to unconditionally generate molecules
with three-dimensional coordinates, 15 atom types (H, Li, C, N, O, F, Na, Mg, P, S, Cl, K, Ca, Br,
I), and integer values of atomic charges.

Results The experimental results for the SPICE dataset are summarized in the Table4. Bit-EDM
had lower atom stable and mol stable, which is too low to draw meaningful conclusions. We believe
is due to the different size subsets of the SPICE dataset. For example, the SPICE dimers subset
has 3,490 molecules with 2-34 atoms, and the solvated amino acids subset has 26 molecules with
79-96 atoms. As the number of atoms in each subset varies and the number of molecules varies, we
believe that there were limitations in the molecule generation training process. Also, as with QM9,
we found that the validity and uniqueness decreased in Bit-EDM compared to EDM.

Limitations In order to check validity and stability of the generated structures, we compute the
distance between all pairs and use these distances to predict the existence of bonds and their orders.
In addition, margins are defined in single, double, triple bonds m1, m2, m3 = 10, 5, 3 which were
found empirically to describe the QM9 dataset well. However, for SPICE dataset molecules are
much larger which introduces more atypical behavior.

4.4 MOLECULE3D

In this experiment, we train Bit-EDM and EDM to generate molecules using Molecule3D Xu et al.
(2021) dataset.

Dataset Preparation The Molecule3D dataset contains 3.9 million molecules with the largest
molecule composed of 51 heavy atoms. Since using large molecules with a high number of atoms
requires a significant amount of GPU memory, we exclude the hydrogen atoms from the molecules.
We randomly select one million molecules with sizes less than 30 from this dataset for experimenta-
tion. Then, the dataset contains 30 elements. The constructed dataset is divid into train, validation,
and test sets with an 8:1:1 ratio, respectively.

Experiment Settings For the model architecture, we utilized EGNN with three layers and a hidden
feature dimension of 128 for both EDM and Bit-EDM. The model was trained for a maximum of
500 epochs and updated for approximately 780,000 steps with a batch size of 512. The total number
of diffusion steps was set to 500.

Results The experimental results for the Molecule3D dataset are summarized in the Table 5 above.
The baseline model is the EDM model, and our model is called Bit-EDM. According to the table,
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Table 5: Neg. log-likelihood, atom stability, molecule stability, validity and uniqueness over 1,000
molecules with standard deviation across 3 runs on Molecule3D.

# Metrics NLL Atom stable (%) Mol stable (%) Valid (%) Unique (%)
EDM 45.9±1.8 95.5±0.1 64.3±0.7 96.3±0.5 99.8±0.1

Bit-EDM (Ours) -21.8±1.0 81.6±0.1 7.7±0.6 28.1±0.5 60.7±1.7

Bit-EDM exhibits a lower negative log-likelihood value compared to EDM. However, EDM results
in better performance in terms of other metrics such as validity, uniqueness, and stability.

5 CONCLUSION

This project aims to extend the Equivariant Diffusion for Molecule Generation in
3D(EDMs) Hoogeboom et al. (2022) by utilizing a larger and more diverse dataset that includes
three-dimensional molecular structures such as small molecules, peptides, and amino acids. The
objective is to assess the generalization capability of an alternative discrete diffusion method, which
has not been employed in previous 3D molecule generation models.

We conduct experiments using three datasets: QM9 Ramakrishnan et al. (2014), SPICE Eastman
et al. (2023), and Molecule3D Xu et al. (2021). EDM and our Bit-EDM generates the molecules
in 3D structures and the generated molecules are evaluated with various metrics such as validity,
uniqueness and stability. Based on the results, we demonstrate that the EDM model is well-suited
for the Molecule3D dataset, while it is not as effective for the SPICE dataset. This could be because
the SPICE dataset consists of more diverse molecules compared to the Molecule3D dataset. For
example, in the case of the Molecule3D dataset, there is a size limitation, resulting in relatively
small variations in the sizes of the molecules used.

Initially, our expectation was that the incorporation of Bit Diffusion would yield comparable results
to the EDM model while reducing computational resources. However, our findings reveal that the
utilization of Bit Diffusion actually leads to a performance decline. Our Bit-EDM model consistently
generates molecules of lower quality compared to the existing model across all three experiments.

6 FUTURE WORKS

In the project, both models generate only the atom type and 3D coordinates of the atoms. Conse-
quently, in order to construct the complete molecular structure, it is essential to determine the bonds
between the atoms. To do this, we calculate the distances between atoms and assign bonds based
on these distances. In this approach, it is necessary to define distances based on both atom types
and bond types. However, as the complexity of the molecule increases, the range of possible values
becomes more diverse. This can result in potential errors in predicting the correct bonds. To address
this issue, we propose utilizing the methods presented in this study Kim & Kim (2015). This partic-
ular method converts the 3D geometry into a molecular structure with atom connectivity. However,
since our datasets contain some metal atoms, dataset filtering would be necessary. Nevertheless,
incorporating this referenced method is anticipated to be beneficial in overcoming these challenges.
Another limitation of this project is the bit-to-decimal conversion. During the conversion process,
there is a possibility that the predicted decimal value exceeds the maximum allowable value. In such
cases, we currently assign a random value from the range of possible integers to the decimal value.
However, this approach can introduce errors and result in a degradation of performance. To address
this issue in future research, it would be beneficial to explore alternative methods for handling this
problem.
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