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Abstract
Bayesian inference usually requires running po-
tentially costly inference procedures separately
for every new observation. In contrast, the idea of
amortized Bayesian inference is to initially invest
computational cost in training an inference net-
work on simulated data, which can subsequently
be used to rapidly perform inference (i.e., to return
estimates of posterior distributions) for new obser-
vations. This approach has been applied to many
real-world models in the sciences and engineering,
but it is unclear how robust the approach is to ad-
versarial perturbations in the observed data. Here,
we study the adversarial robustness of amortized
Bayesian inference, focusing on simulation-based
estimation of multi-dimensional posterior distri-
butions. We show that almost unrecognizable, tar-
geted perturbations of the observations can lead
to drastic changes in the predicted posterior and
highly unrealistic posterior predictive samples,
across several benchmark tasks and a real-world
example from neuroscience. We propose a com-
putationally efficient regularization scheme based
on penalizing the Fisher information of the con-
ditional density estimator, and show how it im-
proves the adversarial robustness of amortized
Bayesian inference.

1. Introduction
Bayesian inference is a commonly used approach for identi-
fying model parameters that are compatible with empirical
observations and prior knowledge. Classical Bayesian infer-
ence methods such as Markov-chain Monte Carlo (MCMC)
can be computationally expensive at test-time, as they rely
on repeated evaluations of the likelihood function and, there-
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Tübingen, Germany. Correspondence to: Manuel Gloeckler
<manuel.gloeckler@uni-tuebingen.de>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

fore, require a new set of likelihood evaluations for each
observation. In contrast, the idea of amortized Bayesian
inference is to approximate the mapping from observation
to posterior distribution by a conditional density estimator,
often parameterized as a neural network. Once this density
estimation network has been trained, inference on a particu-
lar observation can be performed very efficiently, requiring
only a single forward-pass through the network. This amor-
tization can be achieved by training conditional density esti-
mators on simulated data and framing Bayesian inference
as a prediction problem: For any observation, the neural
network is trained to predict either the posterior directly
(Papamakarios & Murray, 2016; Greenberg et al., 2019;
Gonçalves et al., 2020; Radev et al., 2020) or a quantity
that allows to infer the posterior without further simulations
(Papamakarios et al., 2019; Hermans et al., 2020). This
approach has several advantages over MCMC methods: It
can be used to perform ‘simulation-based inference’, i.e.,
applied to models which are only implicitly given as sim-
ulators (models which allow to sample the likelihood but
not to evaluate it), it does not require the model to be differ-
entiable (as compared to, e.g., Hamiltonian Monte Carlo),
and it allows application in high-throughput scenarios (Dax
et al., 2021; von Krause et al., 2022; Boelts et al., 2022;
Arnst et al., 2022).

However, these benefits come at a cost: the posterior pre-
dicted by the neural network will not be exact (Lueckmann
et al., 2021), can be overconfident (Hermans et al., 2022),
and can be sensitive to misspecified models (Cannon et al.,
2022; Schmitt et al., 2022). Here, we study another possi-
ble limitation of neural network-based amortized Bayesian
inference: It is well known that neural networks can be
susceptible to adversarial attacks, i.e., tiny but targeted per-
turbations to the inputs can lead to vastly different outputs
(Szegedy et al., 2014). For amortized Bayesian inference,
this would indicate that even minor perturbations in the
observed data could lead to entirely different posterior esti-
mates.

Adversarial attacks have become a common technique to
evaluate the robustness of ML algorithms. Attacks can
be used to assess performance in the presence of small
worst-case perturbations, offering valuable insights into how
models perform when faced with model misspecification.
Furthermore, amortized inference is increasingly used in
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Figure 1.Adversarial attack on amortized inference.A minor
perturbation of the observed data (left column, here: a voltage
recording) creates a remarkably different estimate of the poste-
rior over parameters (middle column, here: over parameters of a
biophysical neuron model). Predictive samples from the adversar-
ial posterior estimate are very differentboth from the observed
and perturbed data (right column)–in this case, they exhibit two
“spikes”, while the original data only has a single one—showing
that the attack leads to a break-down of the posteriorestimateof
the inference network (rather than a change in the true posterior).
Our defense strategy leads to a more reliable posterior estimate
(bottom row) with realistic predictive samples.

real-world safety-critical applications such as, e.g., robotics
(Ramos et al., 2019) or applications accessible to the general
public (Moon et al., 2023; Shen et al., 2023). In science
and engineering, users are usually domain experts, but they
are often not machine learning experts and, hence, must be
aware of the limitations and brittleness of any such methods.

Here, we investigate the impact of adversarial attacks on
amortized inference, focusing on a particular method for
amortized Bayesian inference, namely Neural Posterior Es-
timation (NPE, Cranmer et al. 2020). While adversarial
attacks have been extensively studied in the context of clas-
si�cation (Rauber et al., 2017; Croce et al., 2021; Li et al.,
2022), we present an approach and benchmark problems
for evaluating the adversarial robustness of neural networks
approximating multi-dimensional Bayesian posterior distri-
butions. Using this approach, we demonstrate that NPE can
be highly vulnerable to adversarial attacks. Finally, we de-
velop a computationally ef�cient method for improving the
adversarial robustness of NPE, and demonstrate its utility
on a real-world example from neuroscience.

Our overall approach is the following (Fig. 1): Given an
observationx o, we consider an adversarial perturbation
(Sec. 3.1). As we will show, even barely visible adversarial
perturbations can strongly change estimated posterior dis-
tributions, and lead to predictive samples which strongly
deviate from the original observation. We suggest and im-
plement a defense strategy (Sec. 3.2), and will show that it
reduces the impact on the posterior estimate, in particular,
such that it still contains the ground truth parameters.

2. Background and Notation

2.1. Amortized Bayesian inference

In this work, we consider a �xed generative model that
de�nes a relationship betweenx and unknown parameters
� , given byp(� ; x ) = p(x j� )p(� ). By Bayes theorem,
there exists a functionf : X ! P (� ) which maps data onto
the posterior distributionf (x o) = p(� jx o). As opposed to
computing the posterior distribution for every observation,
amortized Bayesian inference targets to learn the mapping
f directly, thereby amortizing the cost of inference.

One method to perform amortized Bayesian inference is
Neural Posterior Estimation (NPE). NPE �rst draws sam-
ples from the joint distributionp(� ; x ) and then trains a
conditional density estimatorq� (� jx ) with learnable param-
eters� to approximate the posterior distribution:

L (� ) = Ep( � ;x ) [� logq� (� jx )] �
1
N

NX

i =1

� logq� (� i jx i )

If the conditional density estimator is suf�ciently expressive,
then this is minimized if and only ifq� (� jx ) = p(� jx ) for
all x in the support ofp(x ) (Papamakarios & Murray, 2016).

2.2. Adversarial attacks and defenses

Szegedy et al. (2014) �rst proposed the concept of adversar-
ial examples to fool neural networks. Adversarial examples
are typically de�ned as solutions to an optimization problem
(Szegedy et al., 2014; Goodfellow et al., 2015)

~x = arg max
jj ~x � x jj X � �

�( f ( ~x ); f (x )) ;

where� speci�es a distance between the predictions of the
neural network.

Many defenses against adversarial examples have been pro-
posed. We build upon a popular defense called TRADES
(Zhang et al., 2019)– when translated to inference tasks,
TRADES can be interpreted as regularizing the neural net-
work loss with the Kullback-Leibler divergence between the
clean data and an adversarially perturbed data point:

L (� ) = Ep( ~x ;x ;� ) [� logq� (� jx )+

�D KL (q� (� jx )jjq� (� j ~x ))]

Here,~x is obtained by generating an adversarial example
during training. This regularization requires generating an
adversarial example for every datapoint and epoch, which
requires running several gradient descent steps for every
datapointx – this would be exceedingly computationally
costly for our inference tasks, but we will present methods
for overcoming this limitation. To simplify notation, we
abbreviate the posterior estimate given clean data asq :=
q� (� jx ) and given perturbed data as~q := q� (� j ~x ).
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3. Methods

3.1. Adversarial attacks on amortized inference

Adversarial perturbations are typically studied in classi�-
cation tasks, in which the perturbation makes the neural
network predict a wrong class. For amortized Bayesian
inference, however, the output of the neural network is a
continuous probability distribution (the estimate of the pos-
terior). We therefore de�ne the target of the adversarial
perturbation to maximize the divergence between the es-
timated posterior given the `clean' vs. the adversarially
perturbed data, i.e.,DKL (q(� jx )jjq(� jx + � )) (Gondim-
Ribeiro et al., 2018; Willetts et al., 2021; Dax et al., 2022;
Dang-Nhu et al., 2020).

We here focus on the Kullback-Leibler divergence1, but any
divergence or pseudo-divergence (e.g. a distance function
on moments of the posterior) would be possible (Gondim-
Ribeiro et al., 2018; Willetts et al., 2021; Dax et al., 2022;
Dang-Nhu et al., 2020). An attack is thus de�ned by the
constrained optimization problem

� � = arg max
�

DKL (q� (� jx )jjq� (� jx + � )) s.t. jj � jj � �:

To solve it, we use projected gradient descent (PGD) as an
attacking scheme (Madry et al., 2018), following work on
adversarial robustness for classi�cation. We estimate the
divergence between distributions parameterized by condi-
tional normalizing �ows using Monte Carlo sampling. We
use the reparameterization trick (Kingma & Welling, 2014)
to estimate gradients (details in A1.1).

We note that small perturbations to the observed data are
expected to change thetrue posterior distribution. A suf-
�ciently small perturbation will, in general, only cause a
minor change in the posterior distribution (Latz, 2020). Fur-
thermore, posterior predictive samples should match the
perturbed observation (Berger et al., 1994; Sprungk, 2020).
In contrast, we will demonstrate that the estimated poste-
rior will change strongly after minor changes to the data,
and that predictive samples of the posterior estimate do not
match the perturbed observation, implying that the attack
indeed breaks the amortized posteriorestimate.

3.2. An adversarial defense for amortized inference

How do we modify NPE to be robust against such attacks?
As described in Sec. 2.2, many adversarial defenses (e.g.,
TRADES) rely on generating adversarial examples during
training, which can be computationally costly. In particu-
lar, for expressive conditional density estimators such as
normalizing �ows, generating an adversarial attack requires

1We focus onD KL (qjj ~q) to generate and evaluate attacks,
but we discuss and evaluate the effect of a different adversarial
objective in Sec. A4.2.

several Monte Carlo (MC) samples at every gradient step,
thus rendering this approach exceedingly costly. Here, we
propose a computationally ef�cient method based on a mov-
ing average estimate of the trace of the Fisher information
matrix.

Regularizing by the Fisher information matrix To
avoid having to generate adversarial examples during train-
ing, we exploit the fact that adversarial perturbations tend
to be small and apply a second-order Taylor approximation
to the KL-divergence (as has been done in previous work,
Zhao et al. 2019; Shen et al. 2019; Miyato et al. 2016). This
results in a quadratic expression (Blyth, 1994),

DKL (q� (� jx )jjq� (� jx + � )) �
1
2

� T I x � ;

whereI x is the Fisher information matrix (FIM) with re-
spect tox , which is given by

I x = Eq� ( � j x )
�
r x logq� (� jx )( r x logq� (� jx ))T �

:

This suggests that the neural network is most brittle along
the eigenvector of the FIM with the largest eigenvalue (in
particular, for a linear Gaussian model, the optimal attack
onDKL correspondsexactlyto the largest eigenvalue of the
FIM, Sec. A5).). To improve robustness along this direction,
one can regularize with the largest eigenvalue of the FIM
� max (Zhao et al., 2019; Shen et al., 2019; Miyato et al.,
2016):

L (� ) = Ep(x ;� ) [� logq� (� jx ) + �� max] :

While this approach overcomes the need to generate ad-
versarial examples during training, computing the largest
eigenvalue of the FIM can still be costly: First, it requires es-
timating an expectation overq� (� jx ) to obtain the FIM and,
second, computing the largest eigenvalue of a potentially
large matrix. Below, we address these challenges.

Reducing the number of MC samples with moving aver-
ages For expressive density estimators such as normaliz-
ing �ows, the expectation overq� (� jx ) cannot be computed
analytically, and has to be estimated with MC sampling:

Î x =
1
N

X

i

�
r x logq� (� i jx )( r x logq� (� i jx ))T �

To reduce the number of samples required, we exploit that
consecutive training iterations result in small changes of
the neural network, and use an exponential moving average
estimator for the FIM, i.e.,̂I ( t )

x = 
 Î x + (1 � 
 )Î ( t � 1)
x ,

where the superscript(t) indicates the training iteration.

Using the trace of the Fisher information matrix as reg-
ularizer Such an exponential moving average estimator
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Algorithm 1 FIM-regularized NPE
Inputs: conditional density estimatorq� (� jx ) with learn-
able parameters� , batch sizeB , number of training steps
T, learning rate� , regularization strength� , regulariza-
tion momentum
 , number of Monte Carlo samplesN
Initialize: g(0) = 0
for t = 1 to T do

for b = 1 to B do
L (� ) = � 1

B logq� (� bjx b) // NPE loss
� 1b; : : : ; � Nb � q� (� jx b) // Monte Carlo

end for
r = 1

B

P
b

1
N

P
i

P
d [r x logq� (� ib jx b)]2

d
// FIM Trace

g( t ) = 
 r � r + (1 � 
 )g( t � 1) // moving average
� t = � t � 1 � � (ADAM (r � L (� ) + �g ( t ) ))

end for

decreases the number of required MC samples, but it would
require storing the FIM for eachx and computing the FIM's
largest eigenvalue at every iteration. Computing the largest
eigenvalue scales cubically with the number of dimensions
of x (but could be scaled with power-iterations, Miyato
et al. 2016) and obtaining the largest eigenvalue of a random
matrix (such as the MC-estimated FIM) requires many MC
samples (Hayashi et al., 2018; Hayou, 2017). To overcome
these limitations, we regularize instead with the trace of the
FIM, which is an upper bound to the largest eigenvalue.

Unlike the largest eigenvalue, the trace of the FIM can be
computed from MC samples quickly and without explicitly
computing the FIM. Using the trace of the FIM simpli�es
the moving average estimator to

tr(Î ( t )
x ) = 
 tr(Î x ) + (1 � 
 )tr(Î ( t � 1)

x ):

To avoid maintaining the computation graph for everyx and
(t), we store theaveragegradient with respect to the neural
network parameters instead of storing tr(Î ( t )

x ) directly,

g( t ) := r � Ep(x )

h
tr(Î ( t )

x )
i

:

Summary and illustration Our adversarial defense is
summarized in Algorithm 1. At every iteration, the method
computes the Monte Carlo average of the trace of the Fisher
information, updates the moving average of this quantity,
and uses it as a regularizer to the negative log-likelihood loss.
Despite our approximations, our method performs similarly
to regularizers based on the largest eigenvalue or trace of the
exact FIM (comparison with a Gaussian density estimator
on the VAE task in Sec. A7). Finally, we note that using
the FIM-regularizer systematically changes the posterior
estimate even with in�nite training data and, therefore, leads
to a trade-off between accuracy on clean data and robustness

Figure 2.Regularizing conditional density estimators by the
Fisher information matrix (FIM) . We trained a neural spline
�ow to estimate a conditional density with negative log-likelihood
loss (left) and with our FIM regularizer (right). The Fisher in-
formation (bottom) is high in regions that are non-smooth along
the conditioning variablex. The regularized loss leads to density
estimates which are smoother while still being able to capture
complex densities.

to perturbations (Sec. A3). For a generalized linear Gaussian
density estimator, the bias induced by FIM-regularization
can be calculated exactly (details in Sec. A6).

We demonstrate the method on a simple one-dimensional
conditional density estimation task using a neural spline �ow
(Dolatabadi et al., 2020) (Fig. 2). The Fisher information
is large inx -regions whereq� (� jx ) changes quickly as a
function ofx . By regularizing with the trace of the FIM,
the learned density is signi�cantly smoother.

4. Experimental results

4.1. Benchmark tasks

We �rst evaluated the robustness of Neural Posterior Esti-
mation (NPE) and the effect of FIM-regularization on six
benchmark tasks (details in Sec. A1.2). Rather than using
established benchmark tasks (Lueckmann et al., 2021), we
chose tasks with more high-dimensional data, which might
offer more �exibility for adversarial attacks.

Visualizing adversarial attacks We �rst visualized the
effect of several adversarial examples on inference models
trained with standard (i.e., unregularized) NPE. We trained
NPE with a Masked Autoregressive Flow (MAF, Papamakar-
ios et al. 2017) on100k simulations and generated an adver-
sarial attack for a held-out datapoint. Although the perturba-
tions to the observations are hardly perceptible, the posterior
estimates change drastically, and posterior predictive sam-
ples match neither the clean nor the perturbed observation
(Fig. 3). This indicates that the attacked density estimator
predicts a posterior distribution that does not match the true
Bayesian posterior given the perturbed datapointp(� j ~x ),
but rather it predicts an incorrect distribution.
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Figure 3.Adversarial examples for each benchmark task. Each panel shows i) the original observation (blue line) and corresponding
posterior predictive samples (blue shaded), ii) the adversarial example (orange line) and posterior predictive samples based on the
perturbed posterior estimate, and iii) posterior distribution plots with the posterior estimate for the original (blue) and perturbed (orange)
data, and the ground-truth parameters (black dot).

How does the adversarial attack change the prediction of the
neural density estimator so strongly? We investigated two
possibilities for this: First, the adversarial attack could con-
struct a datapoint~x which is misspeci�ed. Previous work
has reported that NPE can perform poorly in the presence of
misspeci�cation (Cannon et al., 2022). Indeed, on the SIR
benchmark task (Fig. 3D), we �nd clues that are consistent
with misspeci�cation: At the end of the simulation (t > 20),
the perturbed observation shows an increase in infections
although they had already nearly reached zero. Such an
increase cannot be modeled by the simulator and cannot be
attributed to the noise model (since the noise is log-normal
and, thus, small for low infection counts).

A second possibility for the adversarial attack to strongly
change the posterior estimate would be to exploit the neural
network itself and generate an attack for which the network
produces poor predictions. We hypothesized that, on our
benchmark tasks, this possibility would dominate. To in-
vestigate this, we performed adversarial attacks on different
density estimators and evaluated how similar the adversar-
ial attacks were to each other (Fig. A3). We �nd that the
attacks largely differ between different density estimators,
suggesting that the attacks are indeed targeted to the speci�c
neural network.

Quantifying the impact of adversarial attacks We quan-
ti�ed the effect of adversarial attacks on NPE without using
an adversarial defense. After training NPE with 100k simu-
lations, we constructed adversarial attacks for104 held-out
datapoints (as described in Sec. 3.1). As a baseline, we
also added a random perturbation of the same magnitude
on each datapoint. We then computed the averageDKL

between the posterior estimates given clean and perturbed
data (Fig. 4). For all tasks and tolerance levels (the scale of
the perturbation), the adversarial attack increases theDKL

more strongly than a random attack. In addition, for all tasks
apart from the linear Gaussian task, the difference between
the adversarial and the random attack is several orders of
magnitude (Fig. 4A).

As a second evaluation-metric, we computed the expected
coverage of the perturbed posterior estimates, which allows
us to study whether posterior estimates are under-, or over-
con�dent (Fig. 4B, details in Sec. A1.3) (Cannon et al.,
2022). For stronger perturbations, the posterior estimates
become overcon�dent around wrong parameter regions and
show poor coverage. As expected, adversarial attacks im-
pact the coverage substantially more strongly than random
attacks.

Additional results for different density estimators, alterna-
tive attack de�nitions, and simulation budgets can be found
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Figure 4.Adversarial attacks on neural posterior estimation. (A) KL-divergence between posterior estimates for original and perturbed
data,D KL (qjj ~q) for targeted (L2PGD) and random (L2Noise) attacks on a linear Gaussian model and six benchmark tasks (details in
Sec. A1.2), for several tolerance levels. Error bars show 15% and 85% quantiles.(B) Nominal coverage vs. empirical expected coverage
for L2PGD (top) and L2Noise (bottom) attacks. The dotted line is identity.

in Sec. A4.2 (Figs. A4, A1, A5). The results are mostly
consistent across different density estimators (with minor
exceptions at low simulation budgets), indicating that more
�exible estimators are not necessarily less robust.

Adversarial defense of NPE Next, we evaluated the ad-
versarial robustness when regularizing NPE with the mov-
ing average estimate of the trace of the Fisher Information
Matrix (FIM) (Sec. 3.2). In addition, we evaluated two ap-
proaches adapted from defense methods for classi�cation
tasks– however, both of these approaches rely on generating
adversarial examples during training and are, thus, more
computationally expensive (details in Sec. A2, methods are
labeled as `Adv. training' and `TRADES').

All adversarial defense methods signi�cantly reduce the
ability of attacks to change the posterior estimate (Fig. 5A).
In addition, the FIM regularizer performs similarly to other
defense methods but is computationally much more ef�cient
and scalable (A4.1, Fig. A2, sweeps for� in Fig. A6).

We evaluated the expected coverage when using FIM regu-
larization (Fig. 5B, results for Adv. Training and TRADES
in Fig. A7). For all tasks, the coverage is shifted towards the
upper left corner, indicating a more conservative posterior
estimate (further analysis in Sec. A3). Even for medium to
high tolerance levels (i.e., strong perturbations), the poste-
rior estimate often remains undercon�dent and covers the

true parameter set, a behavior which has been argued to be
desirable in scienti�c applications (Hermans et al., 2022).
Other defense methods (that were not speci�cally developed
as adversarial defenses), such as posterior ensembles or
noise augmentation, barely increase the adversarial robust-
ness of NPE (Fig. A7, Sec. A4.3). Further, we investigate
this effect directly comparing against the true posterior (as
estimated via MCMC for a subset of tasks) in Sec. A8, veri-
fying that posterior approximation on adversarial perturbed
data is poor but can be improved using FIM regularization.

Finally, we studied the trade-off between robustness to ad-
versarial perturbations and accuracy of the posterior estimate
on unperturbed data (Zhang et al., 2019; Tsipras et al., 2019).
We computed the accuracy on unperturbed data (evaluated
as average log-likelihood) and the robustness to adversarial
perturbations (measured asDKL between clean and per-
turbed posteriors) for a range of regularization strengths
� (Fig. 5C). For a set of intermediate values for� , it is
possible to achieve a large gain in robustness while only
weakly reducing accuracy (details in Sec. A3, results for
other density estimators in Sec. A4.3, Figs. A6 and A8).

Overall, FIM regularization is a computationally ef�cient
method to reduce the impact of adversarial examples on
NPE. While it encourages undercon�dent posterior esti-
mates, it allows for high robustness with a relatively modest
reduction in accuracy.
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