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ABSTRACT

Wasserstein distance is a key metric for quantifying data divergence from a distri-
butional perspective. However, its application in privacy-sensitive environments,
where direct sharing of raw data is prohibited, presents significant challenges. Exist-
ing approaches, such as Differential Privacy and Federated Optimization, have been
employed to estimate the Wasserstein distance under such constraints. However,
these methods often fall short when both accuracy and security are required. In this
study, we explore the inherent triangular properties within the Wasserstein space,
leading to a novel solution named TriangleWad. This approach facilitates the
fast computation of the Wasserstein distance between datasets stored across dif-
ferent entities, ensuring that raw data remain completely hidden. TriangleWad not
only strengthens resistance to potential attacks but also preserves high estimation
accuracy. Through extensive experiments across various tasks involving both image
and text data, we demonstrate its superior performance and significant potential for
real-world applications.

1 INTRODUCTION

Optimal Transport (OT) is one of the representative approaches that provides a geometric view
that places a distance on the space of probability measures Villani et al. (2009). Specifically, it
aims to find a coupling matrix that moves the source data to the target data with smallest cost,
thereby inducing the Wasserstein distance, a metric used to measure the divergence between two
distributions. Due to its favorable analytical properties, such as computational tractability and the
ability to be computed from finite samples, the Wasserstein distance has been applied in various
domains, including document similarity measurement Kusner et al. (2015), domain adaption Courty
et al. (2016; 2017), geometric measurement between labelled data Alvarez-Melis & Fusi (2020),
generative adversarial networks Arjovsky et al. (2017), dataset valuation and selection Just et al.
(2023); Kang et al. (2024).

However, calculating the Wasserstein distance often requires access to raw data, which restricts its
use in privacy-sensitive environments. In Federated Learning (FL), for instance, multiple parties
collaboratively train a model without sharing raw data, while their data are usually non-independently
and identically distributed (Non-IID) Li et al. (2022). In this context, the Wasserstein distance can
be used to measure data heterogeneity, cluster clients with similar distributions, filter out out-of-
distribution data, and ultimately improve FL model performance. However, since raw data cannot
be accessed in the FL setting, direct computation of the Wasserstein distance becomes infeasible.
Similarly, in a data marketplace, buyers seek to acquire training data from multiple sellers to build
models for specific predictive tasks. However, sellers are often reluctant to grant access to their
data prior to transactions due to the risk of data being copied, while buyers are hesitant to make
purchases without first assessing the data’s value, quality, and relevance Lu et al. (2024). In this case,
a promising approach to aligning the interests of data sellers and buyers is to compute the Wasserstein
distance between datasets in a privacy-preserving manner.

Recently, FedWad Rakotomamonjy et al. (2024) takes the first step to approximate the Wasserstein
distance between two parties via triangle inequality. However, its applicability is limited to scenarios
involving only two parties, making it unsuitable for data marketplaces with multiple data sellers, where
the Wasserstein distance between aggregated training data (from multiple sellers) and validation data
(held by the buyer) is required. Moreover, privacy concerns arise due to the shared information used
to facilitate FedWad calculations, which unintentionally exposes raw images from both parties. By
exploiting optimization conditions, it is even possible to reconstruct “clean’ images from the shared
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data. Privacy risks are even more pronounced when dealing with textual data, as shared information
in the embedding space can reveal most of the original raw words. All of the aforementioned risks
are undesirable for high-sensitive parties and make FedWad unacceptable in real-world applications.
FedBary Li et al. (2024b) extends the previous work and addresses the task of noisy data detection
based on shared information, but it suffers from an asymmetry in detection capabilities: only clients
in FL or sellers in the data marketplace know exactly which data points are noisy, while the server in
FL or data buyers lack this information. This asymmetry becomes particularly problematic when data
sellers or clients are not trusted. Therefore, there is an urgent need for a privacy-enhanced approach
to Wasserstein distance computation that ensures efficiency, accuracy, and symmetry in detection
capabilities, especially in settings involving sensitive data and multiple parties.

This paper aims to develop a faster and more secure method for approximating the Wasserstein
distance without sacrificing much accuracy. Our approach is based on geometric intuition derived
from the intercept theorem associated with geodesics: by constructing two similar triangles, we
establish a proportional relationship between their corresponding sides. This enables the direct
approximation of the Wasserstein distance between two data distributions through the distance of
their parallel segments. With our approach, accurate estimation can be achieved in just one round
of interaction, significantly reducing computational costs. Moreover, as we reduce the interactions
and change the optimization condition, our approach mitigates the privacy concerns associated with
previous methods, which will be discussed in detail later. Thanks to its scalability, efficiency, and
effectiveness, this solution addresses various real-world challenges. These include calculating client
contributions in FL, performing clustering in FL, filtering out corrupt data points before training,
assessing data relevance in data marketplaces, and any other privacy-sensitive contexts that require
measuring distributional similarity.

Our major contributions: (1) We conduct a comprehensive theoretical analysis of geometric
properties within the Wasserstein space, design a distributional attack against FedWad and introduce a
novel approach, TriangleWad; (2) TriangleWad is simple, fast, accurate and enhances privacy.
It also significantly improves the detection of noisy data from the server side in FL, better aligning
with real-world requirements; (3) We conduct extensive experiments on both image and text datasets,
covering a range of applications such as data evaluation, noisy data detection, and word movers
distance, demonstrating its strong generalization capabilities.

2 PRELIMINARY AND RELATED WORK

2.1 RELATED WORK

Private Wasserstein Distance There are very few efforts to provide privacy guarantees for computing
Wasserstein distance when raw data is forbidden to be shared. The first attempt is to apply Differential
Privacy (DP) Lê Tien et al. (2019) with Johnson-Lindenstrauss transform. However, this approach
is used for domain adaptation tasks, where only the source distribution is perturbed while the
target distribution remains unchanged. Additionally, it does not have geometric property, and has
inaccurate estimation empirically. The following work Rakotomamonjy & Liva (2021) considers DP
for Sliced Wasserstein distance, and Jin & Chen (2022) uses DP for graph embeddings. Recently
proposed FedWad Rakotomamonjy et al. (2024) develops a Federated way to approximate distance
iteratively based on geodesics and interpolating measures, and FedBary Li et al. (2024b) extends this
approach to approximate data valuation and Wasserstein barycenter, which could further be used for
distributionally robust training Li et al. (2024a). It is worthy to note that one latest work Wasserstein
Differential Privacy Yang et al. (2024) focuses computing privacy budgets through Wasserstein
distance, which is not related to our applications.

Data Evaluation in FL and Data Marketplace Data quality valuation has gained more attentions
in recent years since it has impact on the trained models and downstream tasks. Due to privacy
issue, e.g. Federated Learning, only model gradients are shared for evaluation. Therefore, Shapley
value (SV) Song et al. (2019); Jia et al. (2019); Liu et al. (2022); Xu et al. (2021a;b) is mainly
used to measure client contributions as it provides marginal contribution score. Recently, based
on Rakotomamonjy et al. (2024), FedBary Li et al. (2024b) uses Wasserstein distance to measure
dataset divergence as the score of client contribution, and it leverages sensitivity analysis to further
select valuable data points. In this paper, we focus on the horizontal FL, where clients’ data shares
the same feature space. Data evaluation with privacy guarantees is also applied in data marketplaces,
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where evaluation must be conducted before granting data access. Recently, DAVED Lu et al. (2024)
proposed a federated approach to the data selection problem, inspired by linear experimental design,
which achieves lower prediction error without requiring labeled validation data.

2.2 OPTIMAL TRANSPORT AND WASSERSTEIN DISTANCE

Definition 1 (Wasserstein distance) The p-Wasserstein distance between measures µ and ν is

Wp(µ, ν) =
(

inf
π∈Π(µ,ν)

∫
X×X

dp(x, x′)dπ(x, x′)
)1/p

, (1)

where d(x, x′) is the pairwise distance metric, e.g. Euclidean distance. π ∈ Π(µ, ν) is the joint
distribution of µ and ν, and any π attains such minimum is considered as an optimal transport plan.

In the discrete space, the two marginal measures are denoted as µ =
∑m

i=1 aiδxi
, ν =

∑n
j=1 bjδx′

j

,where δxi is the dirac function at location xi ∈ Rd, and ai and bi are probability masses associated
to the i- sample and belong to the probability simplex,

∑m
i=1 ai =

∑n
j=1 bj = 1. Therefore, the

Monge problem seeks a map that associates to each point in xi, a single point x′j and which must
push the mass of µ toward the mass of ν. However, when m ̸= n, the Monge maps may not exist
between a discrete measure to another, especially when the target measure has larger support size of
the source measure. Therefore, we consider the Kantorovich’s relaxed formulation, which allows
mass splitting from a source toward several targets. The Kantorovich’s optimal transport problem is

Wp(µ, ν) = ( min
P∈Π(µ,ν)

⟨C,P⟩)1/p (2)

where C
.
= (dpX(xi, x

′
j)) ∈ Rm×n is the matrix of all pairwise costs, and Π(µ, ν) = {P ∈

Rm×n
+ |P1m = µ,P⊤1n = ν} is the set of all transportation couplings.

2.3 WASSERSTEIN GEODESICS AND INTERPOLAING MEASURE

Definition 2 (Wasserstein Geodesics, Interpolating measure Rakotomamonjy et al. (2024); Ambrosio
et al. (2005)) Denote µ, ν ∈ Pp(X ) with X ⊆ Rd compact, convex and equipped with Wp. Let
π ∈ Π(µ, ν) be an optimal transport plan. For t ∈ [0, 1], define η(t) = ((1 − t)x + tx′)#π, x ∼
µ, x′ ∼ ν, thus η(t) is the push-forward measure under the map π. Then, the curve µ̄ = (η(t))t∈[0,1]

is a constant speed geodesic between µ and ν, also called a Wasserstein geodesics between µ and ν.
Any point η(t) on µ̄ is an interpolating measure between distribution µ and ν, as expected

Wp(µ, ν) = Wp(µ, η(t)) +Wp(η(t), ν). (3)

In the discrete setup, denoting P⋆ a solution of equation 2, an interpolating measure is obtained as

η(t) =

m,n∑
i,j

P⋆
i,jδ(1−t)xi+tx′

j
, (4)

where P⋆
i,j is the (i, j)-th entry of P⋆, and the maximum number of non-zero elements of P is

n+m− 1. Rakotomamonjy et al. (2024) proposes to use the barycentric mapping to approximate
the interpolating measure as

η(t) =
1

m

m∑
i=1

δ(1−t)xi+tm(P⋆xν)i (5)

where xi is i-th support from µ, xν is the matrix of ν. When m = n, equation 4 and equation 5 are
exactly equivalent. In both equation 4 and 5, the parameter t is defined as push-forward parameter,
which controls how much we could push forward the source distribution µ to the target distribution ν,
and construct the interpolating measure η(t).
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3 METHODOLOGY

3.1 PROBLEM STATEMENT

Our goal is to compute the Wasserstein distance among different datasets distributed on separate
parties, with the constraint that raw data is not shared. Without loss of generality, we start with the
case to calculate the Wasserstein distance between two measures, which can be easily extended to
measuring the divergence among multiple measures. We consider the 2-Wasserstein distance W2(·, ·)
in this paper, while our proposed approach can be generalized to other p cases.

3.2 INTUITION AND MOTIVATION

Based on equation 3, FedWad Rakotomamonjy et al. (2024) proposes a Federated manner to approxi-
mate the interpolating measure ξ between µ and ν, and obtain the Wasserstein distance Ŵ2(µ, ν) via
W2(µ, ξ) +W2(ξ, ν). However, based on equation 4 and equation 5, directly calculating the interpo-
lating measure ξ needs to access to raw data from both sides. Therefore, two additional measures
ηµ and ην are introduced to approximate ξ. The proposed approach decomposes the Wasserstein
distance W2(µ, ν) into 4 parts as follows, and the right-hand side provides an upper bound of the
exact distance,

W2(µ, ν) ≤ Ŵ(k)
2 (µ, ν) = W2(µ, η

(k)
µ )+W2(η

(k)
µ , ξ(k−1))+W2(ξ

(k−1), η(k)ν )+W2(η
(k)
ν , ν). (6)

Specifically, ξ(0) is randomly initialized and shared with both parties. For every round k, each party
calculates the interpolating measure η(k)µ /η

(k)
ν between µ/ν and ξ(k−1), respectively. Then η(k)µ and

η
(k)
ν are shared to optimize a new ξ(k), which is an interpolating measure between η(k)µ and η(k)ν .

With iterative optimizations, all η(K)
µ , ξ(K), η

(K)
ν will converge to interpolating measures between µ

and ν at K-th round, then equation 6 will become an equation, such that W2(µ, ν) = Ŵ(k)
2 (µ, ν).

During above iterations, public information contains a set of {η(k)µ , η
(k)
ν , ξ(k)}Kk=0, and Wasserstein

distances W2(µ, ξ
(K)) and W2(ξ

(K), ν) need be shared. Private information consists of the OT plans
between µ and ξ(k), OT plans between ξ(k) and ν, and parameters t for constructing the interpolating
measure. The privacy advantage lies in keeping the OT plans and t being private. However, we
identify a potential privacy risk when equation 6 holds as an equality. Even without access to the
informative elements (OT plans and t), an attacker could still infer raw data. Firstly, we observe that
the interpolating measure ξ(K)can significantly leak raw data when computing Wasserstein distance
for textual structured data. For instance, retrieving the top-1 similar words within the embedding
space of ξ(K) (Figure 3) reveals that most of these words originate directly from the raw text of
both parties. Secondly, there is a potential distributional attack in which an attacker could leverage
the available information to construct the approximation that has a very small Wasserstein distance
from the raw data. This is undesirable to some high-sensitive parties such as hospitals. Suppose the
attacker holds µ, and he wants to infer information of ν from the other side. Available information
for this attacker is: W2(µ, ν), W2(µ, ξ

(K)), µ, η(K)
µ , and ξ(K). Therefore, the intuition of the

proposed attack is straightforward: Two Wasserstein balls B(µ,W2(µ, ξ
(K))) and B(µ,W2(µ, ν)),

along with the condition that µ, ξ(K), ν lie on the same geodesics, could uniquely determine the
distribution of ν. The attacker could initialize a learnable attack data matrix ν̂, and computes the
distance W2(ν̂, µ) and W2(ν̂, ξ

(K)). In empirical experiments, we relax the constraint that ν̂ is
on the same geodesics with µ and ν, and only meet two conditions: W2(µ, ν̂) = W2(µ, ν) and
W2(ν̂, ξ

(K)) = W2(ν, ξ
(K)) = W2(ν, µ) −W2(ξ

(K), µ). Then we find we could get ν̂ such that
W2(ν̂, ν) ≃ 0, which means the attack data and raw data are distributional identical. Empirical
results are shown in Appendix D.1.

3.3 PROPOSED SOLUTION

From the previous discussion, we observe a trade-off between privacy and accuracy: performing
exact calculations constructs Wasserstein balls, which provide geometric information that could
reveal the distribution of the raw data. Therefore, our proposed solution is to avoid constructing any
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Figure 1: Technical Comparison: In previous work Rakotomamonjy et al. (2024), two Wasserstein
balls B(µ,W2(µ, ξ)) and B(µ,W2(µ, ν)), along with the condition that µ, ξ, ν lie on the same
geodesics, could uniquely determine the distribution of ν. TriangleWad does not have such an
interpolating measure between µ and ν. Simultaneously, W2(ν, γ),W2(ν, ηµ),W2(ην , γ) are private
information. IM(a, b) represents the interpolating measure between a and b

interpolating measures between raw distributions and to minimize interactions as much as possible.
The technical comparison is shown in Figure 1. Suppose µ ∈ Rm×d, ν ∈ Rk×d, where µ and ν are
raw data held by two separate parties, γ ∈ Rn×d ∼ N (mγ , σ

2
γ) is a randomly initialized gaussian

measure. If ηµ(t) is an interpolating measure between µ and γ, ην(t) is an interpolating measure
between ν and γ, we state there is a proportional relationship between W2(ηµ, ην) and W2(µ, ν) as

W2(µ, ν) ≤ Ŵ2(µ, ν) =
1

1− t
W2(ηµ, ην). (7)

The geometric intuition behind is the intercept theorem: if ηµ is on the segment [γ, µ], ην is on the
segment [γ, ν], given the segment [ηµ, ην ] is parallel to the segment [µ, ν], there is a proportional rela-
tionship between W2(ηµ, ην) and W2(µ, ν). We follow the same barycentric mapping in equation 5
and analyze the error bound between Ŵ2(µ, ν) and W2(µ, ν) as follows,

Theorem 1 Suppose γ ∈ Rk×d ∼ N (µγ , σ
2
γ). Let π⋆(µ, γ) ∈ Rm×k be the OT plan between

µ and γ, π⋆(ν, γ) ∈ Rn×k be the OT plan between ν and γ. If ηµ and ην are approximated by
Eq. equation 8 as

ηµ(t) =
1

m

m∑
i=1

δ(1−t)µi+mt[π⋆(µ,γ)γ]i ην(s) =
1

n

n∑
i=1

δ(1−s)νi+ns[π⋆(ν,γ)γ]i . (8)

with the condition that both measures have the same push parameters, e.g. t = s, then the approxi-
mation error |Ŵ2(µ, ν)−W2

2 (µ, ν)| is bounded by O(Cσ2
γ), where C << 1, and it has a negative

relationship with k: the data size of γ.

The proof is shown in Appendix. Additionally, we provide the proof that for the general Wp, the
approximation error |Ŵp

p (µ, ν) −Wp
p (µ, ν)| is bounded by the p-th sample moments of γ, which

also aligns with the conclusion in Theorem 1. t and s are parameters to control how much we could
push forward the raw data to the target distribution γ and construct the interpolating measure. This
theorem tells that if both sides calculate the interpolating measures between their own data and γ with
the same push-forward parameter t, then they can easily approximate the Wasserstein distance with
trivial errors. Furthermore, based on the proof of the Theorem 1, there are some special cases that the
approximated Wasserstein distance is the same as the true Wasserstein distance, such that equation 7
becomes an equation.

Corollary 1 If one of the following condition holds: (1) σγ = 0; (2) k = 1; (3) k → ∞; (4) µ and ν
are Gaussian distributions with the same covariance matrix or m = n, then the approximation value
Ŵp(µ, ν) is exactly the true distance Wp(µ, ν).

Corollary 2 Suppose γ ∼ N (γ̄, σ2
γ), then each element of ηµ is obtained by the linear transformation

with the Gaussian distribution N
(
γ̄, σ2(π⋆(µ, γ)γ)

)
as follows,

ηµ(t) =
∑
i=1

δ(1−t)µi+t[γ̄+σ(π⋆(µ,γ)γ)zi]. (9)
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where zi ∼ N (0, 1). If k → ∞, then σ(π⋆(µ, γ
)
γ) → 0.

Corollary 2 demonstrates that constructing the interpolating measure is equivalent to adding general
perturbations to the raw data. The noise level is influenced by t, which controls the weights, as well
as by the randomness introduced through π⋆(µ, γ)γ. Both Theorem 1 and Corollary 9 suggest scaling
up γ and setting a larger variance for γ can be strategic choices for enhancing randomness. Scaling
up γ increases the complexity of the OT plan, and setting a larger variance for γ directly boosts
randomness. However, these two strategies have conflicting effects on σ(π⋆(µ, γ

)
γ), necessitating

careful tuning to balance utility and privacy. In practice, we could set k ≃ min{m,n}.

Remark 1 Advantages of approximating the interpolating measure: The OT plan between µ/ν and
γ has at most (m+ k − 1)/(n+ k − 1) non-zero elements, when m ̸= n ̸= k. If we use the exact
calculation as in equation 4, the larger size of the interpolating measures ηµ and ην will potentially
lead to significant computational overhead. However, with barycentric mapping as in equation 5,
we can ensure that the size of the interpolating measures ηµ and ην remains consistent with µ and
ν, respectively, which helps reduce computational costs, as discussed in Sec 4.1. Additionally, from
Corollary 2, we observe that the interpolating measure is equivalent to a linear transformation of the
raw data, which is useful for detecting noisy data points. This will be further discussed in Sec 3.5.

3.4 APPROXIMATE WASSERSTEIN DISTANCE WITH UNKNOWN t

Theorem 1 states that the approximation error is minimized when the interpolating measures ηµ(t)
and ην(t) are calculated using the same t via equation 8, implying that the value of t should be public
information. As discussed in Sec 3.2, OT plans and push-forward parameters are key elements for
reconstructing raw data and should remain private. While making t public might seem to contradict
privacy guarantees, we argue that the OT plan is the most critical component for reconstructing raw
data, and it is impossible to reconstruct raw data without access to this information, which will be
discussed in detail in Sec 4.2.1. However, we find when computing Wasserstein distance among
multiple data distributions, there is a solution to hide such push-forward parameter. Before explaining
the calculation procedure, we present the following theorem,

Theorem 2 Given a fixed measure ηµ(t0), which is the interpolating measure between µ and γ at
a fixed value t0 ∈ (0, 1). Let ην(s) be the interpolating measure between ν and γ with ∀s ∈ (0, 1).
Then the 2-Wasserstein distance W2(ηµ(t), ην(s)) is a quadratic function with respective to the value
of s, such that

W2
2 (ηµ(t0), ην(s)) = f(s) = a2s

2 + a1s+ a0, (10)
where a2, a1, a0 are constant coefficients.

The proof is shown in Appendix B. Specifically, the party A calculates the measure ηµ(t0), where
t0 is his private information. Then party A shares ηµ(t0) with the party B, and requires the
set of tuples {sj ,W2(ην(sj), ηµ(t0))}Bs

j=1, where sj ∈ (0, 1), Bs is the sampling budget and
W2(ην(sj), ηµ(t0)) is calculated by the party B. Then the party A could fit an estimator function
f(s) = W2(ηµ(t0), ην(s)) based on equation 11, and calculate Ŵ2(µ, ν) with 1

1−t0
f(t0).

(â0, â1, â2) = arg min
a0,a1,a2

Bs∑
j=1

(
Ŵ2(ην(sj), ηµ(t0))−W2

2 (ην(sj), ηµ(t0))
)2

. (11)

In practice, we opt for the choice of sj ∈ { 1
4 ,

1
2 ,

3
4}, which is enough to provide accurate estimations.

Once the parameters are learned, the distance predictor can be used to predict the Wasserstein distance
by plugging true push-forward parameter t0 as input to the predictor.

The above procedures could be applied in the data marketplace, when there are multiple data sources
{νi}Ni=1, and the data buyer wants to know the Wasserstein distance between the aggregated data∑N

i=1 νi and his own validation set µ, e.g. W2(
∑N

i=1 νi, µ). Follow the similar procedure, a global
shared random distribution γ is initialized. The buyer calculates ηµ(t0) and sends it to each data
seller without sharing the value of t0. Then the i-th data seller calculates the cost matrix Ci(sj) =
Ci(ηνi

(sj), ηµ(t0)), which represents the point-wise euclidean distance between the interpolating
measure ηνi(sj) and ηµ(t0), where sj is the sampling ratio requested by the data buyer. Then the
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concatenated cost matrix C(sj) = [Ci(sj), · · · ,CN (sj)]
T is utilized to optimize the OT problem,

and calculate the 2-Wasserstein distance W2
2 (
∑N

i=1 ηνi(sj), ηµ(t0)) = minP⟨C(sj),P⟩. Finally the
set {sj ,W2

2 (
∑N

i=1 ηνi
(sj), ηµ(t0))}Bs

j=1 is used to approximate the parameters in equation 11, and
the buyer could calculate the Wasserstein distance by putting the true value of t0.

3.5 BROADER APPLICATIONS

We will explain how TriangleWad can be extended to various applications with minor modifications,
which are useful for domain adaptation and data evaluation in privacy setting.
Wasserstein Distance between labeled dataset OOTD Alvarez-Melis & Fusi (2020) introduces an
effective way to augment data representations for calculating Wasserstein distance with labeled data.
It leverages the point-wise notion z = (x, y) ∈ X × Y for measurements

d
(
z, z′

)
= d

(
(x, y), (x′, y′)

)
≜

(
d(x, x′) +W2

2 (αy, αy′)
)1/2

,

W2
2 (αy, αy′) = ||my −my′ ||22 + ||Σy − Σy′ ||22, (12)

where αy′ is conditional feature distribution P (x|Y = y′) ∼ N (my′ ,Σ2
y′). However, the calculation

of the interpolating measure requires the vectorial representation, which means the point-wise cost
matrix could not be directly applied for our setting. For our extension, we follow the similar way
in Rakotomamonjy et al. (2024), to incorporate the label information by constructing the augmented
representation as X := [x;my; vec(Σ1/2

y )]. Therefore, when conducting approximations, all labeled
datasets should be pre-processed into such form and the random initialisation of γ follows the same
dimension.

Detecting valuable or noisy data points Beyond calculating the Wasserstein distance between
datasets, we could evaluate the “contribution score” of individual data point, to identify the valuable
or noisy subsets. We take advantage of characteristics that the duality of the optimal transport problem
is linear, and conduct the sensitivity analysis as in Just et al. (2023); Li et al. (2024b), to assign the
score to individual data point. We use the interpolating measures ηµ and ην to conduct the evaluation,
as a noisy data point in the raw data should also be the distributional outlier in the transformed form.
The duality problem is W2(ηµ, ην) = max(f,g)∈C0(Z)2⟨f, ηµ⟩+ ⟨g, ην⟩, where C0(Z) is the set of
all continuous functions, f ∈ Rm×1 and g ∈ Rn×1 are the dual variables. Then the constructed
gradient score is as follows

sl =
∂W2(ηµ, ην)

∂ηµ(zl)
= f⋆l −

∑
j∈{1,··· ,m}\l

f⋆j
m− 1

, (13)

which represents the rate of change in W2(ηµ, ην) w.r.t. the given data point zl in ηµ, likewise for
ην . The interpretation of the value sl is: the data point with the positive/negative sign of the score
causes W2(ηµ, ην) to increase/decrease, which is considered noisy/valuable. This score suggests
removing data points with large positive gradient could help to match the target distribution. Li et al.
(2024b) discovered the detection capability is unsymmetrical. In TriangleWad, introducing ηµ and
ην engenders symmetrical capabilities in identifying noisy data, facilitating recognition by both the
client and Server. This enhancement aligns more closely with real-world scenarios: Server can select
valuable data points or identify potential attacks from clients.

4 THEORETICAL ANALYSIS

4.1 COMPLEXITY ANALYSIS

We conduct similar complexity analysis as in Rakotomamonjy et al. (2024). The communication cost
involves the transfer of γ, ηµ and ην . If the size of the data dimension is d, then the communication
cost is O((k + m + n)d). As for the computational complexity of interpolating measures and
Wasserstein distance, an appropriate choice of the support size of γ is necessary. If we choose for the
exact calculations, considering that µ and ν are discrete measures, ηµ and ην are supported on at most
m+k−1 and n+k−1 respectively based on equation 4. Then for computing W2(ηµ, ην), there are
(m+ n+ 2k − 2) non-negative elements in the OT plan, it might yield the computational overhead
when all n,m, S are large. Therefore, we opt for the choice of a smaller support size of γ, such as

7
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k = min{m,n}. Furthermore, with the barycentric mapping as in equation 5, we can guarantee that
the support size of ηµ and ην are always m and n respectively. Therefore, for computing W2(ηµ, ην),
we can guarantee the computational complexity as O((n+m)nmlog(n+m)).

4.2 PRIVACY ANALYSIS

In this section, we will discuss two privacy benefits of our proposed approach.

(1) Sec 4.2.1: Attackers lack important pieces of information to infer raw data: Attackers can
only infer raw data µ when they know ηµ(t0), the OT plan π(µ, γ) and the value of push-forward
parameter t0, while the later two terms are kept private. And approximating the OT plan is an NP-hard
problem; Compared to the previous approach, our approach involves only one round of interaction,
which limits the available common information and hinders any attempts at approximation.

(2) Sec 4.2.2:Setting a large t0 could help protect privacy: from a geometric perspective, it controls
how much the interpolating measure is pushed closer to random Gaussian noise. From a statistical
perspective, it introduces more substantial noise to the raw data. Consequently, a larger t0 results in a
greater Wasserstein distance between ηµ(t0) and µ, indicating higher dissimilarity between them.

4.2.1 DEFENSE TO ATTACKS

Traditional general attacks cannot be directly applied in our setting, as our approach does not involve
any model training, and the shared information is insufficient to train a model. We consider two types
of attack tailored to this research from both geometric and statistical views. Suppose an attacker tries
to infer µ̂ based on available information, there are two potential attacks:

(1) Distributional attack: Whether W2(µ̂, µ) < ϵ for a very small ϵ?
(2) Reconstruction attack: Whether ∥µ̂− µ∥2 < ϵ for a very small ϵ?

The first attack is the distributional attack designed for FedWad. TriangleWad does not calculate
any interpolating measure between µ and ν, so the attacker can not use available information to
identify the distribution of the raw data. For the second attack, the attacker knows the structure
of equation 5, ηµ,γ. The attacker might approximate µ̂ = 1

1−t (ηµ − tγ) while the groundtruth is
1

1−t0
(ηµ−t0π(µ, γ)γ). In the worst case that t0 becomes public information, it is also challenging for

the attacker to reconstruct raw data, as private information π(µ, γ) has m+ k − 1 non-zero elements
with non-identical value, which is impossible to exactly approximate. Therefore, without knowing the
exact value of both t0 and π(µ, γ), µ̂ and µ will have a significant gap in both the Euclidean distance
and Wasserstein distance, making the attack fail. We visualize this result in Figure 2 (lower right
panel) in the experiments, and find each element in ηµ (Local IM) and µ̂ (Attack) are uninformative.

4.2.2 QUANTIFY THE DIFFERENCE BETWEEN µ AND ηµ(t)

We have proved that the proposed approach preserves the procedure of normal perturbations with
some randomness in Corollary 2. The following theorem helps to quantify the distance between the
interpolating measure and the raw data.

Theorem 3 The 2-Wasserstein distance between raw data and the interpolating measure is propor-
tional to the 2-Wasserstein distance between raw data and the random noises as

W2(µ, ηµ(t)) = tW2(µ, γ). (14)

The proof is shown in Appendix. This result implies that we can set a larger t ∈ (0, 1) to increase
the dissimilarities between ηµ(t) and µ in Wasserstein space, thereby protecting privacy without
sacrificing utility. The empirical result is shown in Appendix F.2.

5 EXPERIMENTS

We conduct experiments on both image and text datasets to demonstrate the efficiency and effective-
ness of TriangleWad across multiple tasks. For the quantitative analysis, we expect TriangleWad
to provide accurate estimations with reduced computational time. For the qualitative analysis, we

8
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Figure 2: Qualitative Visualizations with Gaussian Noises: the global interpolating measure γ in
FedWad (FedWad IM) is visually informative, while in our approach, all interpolating measures (Local
IM and Server IM) and γ (Defense) are visually noisy. In addition, the statistic plot in the right side
shows Local IM indeed follows the Gaussian distribution while FedWad IM is similar to raw data.

anticipate that the shared measure will reveal minimal information from the raw data: for image
data, visual elements should be unrecognizable, and for text data, fewer raw words will be retrieved.
Additional applications with empirical results are provided in the Appendix.

5.1 QUANTITATIVE AND QUALITATIVE ANALYSIS FOR IMAGE DATA

We employ CIFAR10, Fashion, and MNIST datasets as case studies to provide both quantitative and
qualitative analyses among DirectWad, FedWad, and TriangleWad. DirectWad calculates Wasserstein
distance with raw data directly, which is our ground truth. We will compare FedWad and TriangleWad
in terms of their approximation differences from the ground truth and the average computation time
and the results are summarized in Table 1. For data processing, we randomly select subsets µ and ν
with equal sizes (100/500/1000), and their distributions do not necessarily to be identical. Dnoise

1 and
Dnoise

2 are derived from the clean data µ, with the former containing 20 noisy data points and the latter
containing 50 noisy data points. The noisy type is to add the Gaussian noise in the feature space. For
fair comparisons, we set γ = ξ(0) ∼ N (0, 1) for TriangleWad and FedWad, and the iteration epoch
is set as 30 for FedWad because the optimization round does not affect the distance significantly
when attaining the local convergence Rakotomamonjy et al. (2024). DirectWad provides the ground
truth distance. FedWad is our baseline, using the triangle inequality to approximate the distance.
The average gap refers to the distance gap with DirectWad, while the average time represents the
computational cost. Therefore, TriangleWad provides competitive approximation accuracy with less
computational time compared to FedWad. These findings emphasize the efficiency of our approach
without compromising estimation precisions. The qualitative analysis aims to demonstrate the privacy
guarantee, and we visualize the results in Figure 2. The left panel illustrates the CIFAR10 data
distributed in parties A and B, γ of FedWad between A and B (FedWad IM), ηµ and ην of TriangleWad
(Local IM, Server IM), and randomly constructed γ (Defense). Both Local IM and Server IM do not
reveal any information about the data. From FedWad IM, we can identify the class of each image. In
the right-side histogram plot, we construct a statistical test to demonstrate that our local interpolating
measure follows a Gaussian distribution, while FedWad IM would reveal statistical information. In
addition, we visualize the reconstruction attack towards TriangleWad in lower right panel, where the
γ follows the gamma distribution. Both local IM and D̃attack are uninformative noises.

5.2 MEASURE DOCUMENT SIMILARITY WITH PRIVACY

Datasets We utilize BBC data processed by Jiang et al. (2023), and use the Word2Vec model Mikolov
et al. (2013) to map raw data into embeddings e(·). We remove stop words, which are generally
category independent.
Baselines We compare FedWad Rakotomamonjy et al. (2024), as it is the only approach that is fit to
this case.

9
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DirectWad FedWad TriangleWad( 100/1000)
CIFAR10 100 500 1000 100 500 1000 100 500 1000
W2(µ, ν) 27.46 24.73 24.16 32.90 30.75 30.72 27.51/32.88 24.73/30.76 24.16/30.69

W2(D
noise
1 , ν) 571.73 216.54 141.68 571.99 217.50 143.08 571.74/572.01 216.54/217.02 141.68/143.68

W2(D
noise
2 , ν) 975.79 376.65 248.32 975.94 377.15 249.16 975.80/975.88 376.65/377.32 248.32/249.10

Avg.Gap - - - 1.95 2.49 2.93 0.05 0.00 0.00
Avg.time(s) - - - 2.55 34.23 92.46 0.17 1.38 3.26

Fashion 100 500 1000 100 500 1000 100 500 1000
W2(µ, ν) 12.68 10.94 10.45 15.59 14.30 15.22 12.68/15.67 10.94/15.77 10.45/15.34

W2(D
noise
1 , ν) 295.17 107.62 70.51 295.29 108.14 71.81 295.17/296.38 107.62/107.71 70.51/71.88

W2(D
noise
2 , ν) 687.70 269.77 178.21 687.76 270.06 179.22 687.70/688.40 269.78/270.88 178.21/179.17

Avg.Gap - - - 1.02 1.39 2.35 0.00 0.00 0.00
Avg.time(s) - - - 1.76 18.62 54.72 0.08 0.69 3.32

MNIST 100 500 1000 100 500 1000 100 500 1000
W2(µ, ν) 15.05 12.99 12.57 18.66 17.13 17.04 15.05/18.40 12.99/17.02 12.57/17.66

W2(D
noise
1 , ν) 290.19 114.30 75.81 290.37 115.12 76.90 290.19/290.88 114.30/115.13 75.81/76.88

W2(D
noise
2 , ν) 688.94 274.37 181.39 688.98 275.06 182.04 688.94/689.69 274.37/275.54 181.39/ 182.88

Avg.Gap - - - 1.27 1.88 2.07 0.00 0.00 0.00
Avg.time(s) - - - 1.44 17.22 65.33 0.07 2.44 9.71

Table 1: Quantitative Comparisons in the balanced OT problem: DirectWad represents the ground-
truth, we compare FedWad and TriangleWad on the approximation error and computational time.

Figure 3: BBC Data: words in highlight are words retrieved by e(µ). We randomly choose words
retrieved by embeddings of FedWad e(ξ(K)) and embeddings of TriangleWad e(ηµ).

This experiment aims to demonstrate that using interpolating measures in FedWad raises more
serious privacy concerns for text data compared to image data. In images, the interpolating measures
provide a visual recognition of each image, but not the original data statistics. However, with text
data, the interpolating measures can accurately retrieve original words of raw data in embedding
space, causing privacy leakage. Specifically, after computing the Wasserstein distance, we employ
the similar_by_vector function to explore the most similar words with e(ξ(K))i and e(ηµ)i
respectively. In Figure 3, we observe the text retrieved from e(ξ(K)) matches words in the raw data
µ, but for e(ηµ), most words are unrelated. We define the matching rate as the proportion of words
retrieved by e(·) that are identical to the words in the original text, e.g.words retrieved by e(µ). When
comparing two different texts W2(e(µ), e(ν)), the matching rates for ξ(K) and ηµ are 69% and 4%.

6 CONCLUSION

In summary, we introduce TriangleWad, a novel approach to efficiently and effectively compute the
Wasserstein distance among datasets stored by different parties. We provide a detailed analysis of
the approximation bound and the privacy benefits of our proposed approach, along with empirical
results demonstrating its practical effectiveness through simulations on various problems, such as
data valuation in FL and data selection in data markets. Extensive experiments showcase its superior
performance across various tasks involving image and text data.
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A PROOF OF THEOREM 1

Our approach mainly focus on the discrete OT problem. However, we also provide the proof for the
general continuous OT problem, where we have a similar conclusion: For 2-Wasserstein distance, the
approximation error is bounded by the variance of γ is it follows the Gaussian distribution.

A.1 PROOF OF THE DISCRETE OT PROBLEM

Before proving the Theorem 1, we provide the essential property 1 from Panaretos & Zemel (2019)
as follows

Property 1 For any vector x ∈ Rd×1, W2(X + x, Y + x) = W2(X,Y ).

We will begin our proof with the case of Gaussian distributions, as their Wasserstein distance has
a clear analytical form, which could provide a rigorous approximation error bound. However, our
theoretical analysis can be extended to more complex distributions.

Suppose Xa ∈ Rm×d ∼ N (µa, σ
2
a), Xb ∈ Rn×d ∼ N (µb, σ

2
b ), γ ∈ Rk×d ∼ N (µγ , σ

2
γ). We

consider 2-Wasserstein distance and the Kantorovich relaxation of mass splitting. Without loss of
generality, we set t = 0.5. Then based on the barycentric mapping, the interpolating measures are

ηXa
= 0.5×Xa + 0.5×m[π(Xa, γ)γ],

ηXb
= 0.5×Xb + 0.5× n[π(Xb, γ)γ], (15)

where π(Xa, γ) ∈ Rm×k, π(Xb, γ) ∈ Rn×k are optimal transport plans.

(1) When k = 1, γ = [γ1, · · · , γd]1×d, π(Xa, γ) = [ 1m ]m×1,π(Xb, γ) = [ 1n ]n×1, then based on
Property 1, 2W2(ηXa , ηXb

) = W2(Xa + γ,Xb + γ) = W2(Xa, Xb)

(2) When k > 1 and k ̸= m ̸= n. π(Xa, γ) ∈ Rm×k,π(Xb, γ) ∈ Rn×k. For π(Xa, γ), we define
wi,l as the value of the (i, l)-position value, where i ∈ [1,m], l ∈ [1, d], wi =

∑d
l=1 wi,l = 1

m .
Further, with uniform weights, there are

⌊
m+k−1

m

⌉
non zero elements in each row of π(Xa, γ). We

denote the indices of the nonzero values in each row as the set Ii. For simplicity, we assume all
non-zero elements in π(Xa, γ) has an uniform weight of 1

m+k−1 .

a. k → ∞, then the weight is around 1
k if l ∈ Ii and 0 otherwise. In geometirc view, each point in

Xa are splited to map k points in γ. Then we have

2ηXa
= Xa +m× [

k∑
l=1

wi,l × γl,j ]
m,d
i,j=1 =

m

k
× k[E(γ1), · · · ,E(γd)]

= m[γ̄1, ..., γ̄d]1×d (16)

Then based on the Property 1 we have 2W2(ηXa , ηXb
) = W2(Xa, Xb).

b. When k <∞, 2ηXa
= Xa+m× [

∑k
l=1 wi,l×γl,j ]m,d

i,j=1 = Xa+m× 1
m+k−1 [

∑k
l=1 Il∈Ii

γl,j ] =

Xa +m × 1
m+k−1 × m+k−1

m [γ̄ai,j ]
m,d
l,j=1 = Xa + [γ̄ai,j ]

m,d
l,j=1. Similarly, ηXb

= Xb + [γ̄bi,j ]
n,d
i,j=1. If

we denote γ̄a = [γ̄ai,j ]
m,d
l,j=1 = [µγ + σaZa], γ̄

b = [µγ + σbZb], where Za ∈ Rm×d ∼ N (0, 1),Zb ∈
Rn×d ∼ N (0, 1), then

σ2
a = V ar(

m

m+ k − 1

∑
l∈Ii

γl,j) = [
m

m+ k − 1
]2V ar(

∑
l

γl,j). (17)

As γl,j is i.i.d sampled from N (µγ , σ
2
γ), then V ar(

∑
l γl,j) =

∑
l V ar(γl,j) =

∑
l σ

2
γ = m+k−1

m σ2
γ .

We can get σ2
a = m

m+k−1σ
2
γ . Similarly, σ2

b = n
n+k−1σ

2
γ

We define pa =
√

m
m+k−1 , pb =

√
n

n+k−1 . Therefore, our approximation is

2W2
2 (ηXa

, ηXb
) = W2

2 (Xa + paσγZa, Xb + pbσγZb)

= ∥µa − µb∥22 + ∥(σ2
a + p2aσ

2
γ)

1
2 − (σ2

b + p2bσ
2
γ)

1
2 ∥22. (18)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Furthermore, we focus on the second term as

∥(σ2
a + p2aσ

2
γ)

1
2 − (σ2

b + p2bσ
2
γ)

1
2 ∥22

= (σ2
a + p2aσ

2
γ)− (σ2

b + p2bσ
2
γ)− 2

√
(σ2

a + p2aσ
2
γ)(σ

2
b + p2bσ

2
γ)

= (σ2
a − σ2

b ) + σ2
γ(p

2
a − p2b)− 2

√
(σaσb)2 + (σapbσγ)2 + (paσγσb)2 + (papbσ2

γ)
2︸ ︷︷ ︸

K

= ∥σa − σb∥22 + σ2
γ(pa − pb)

2 + 2 (σaσb + papbσ
2
γ −K)︸ ︷︷ ︸

H

< ∥σa − σb∥22 + σ2
γ(pa − pb)

2. (19)

Then we can have an upper bound as

2W2
2 (ηXa

, ηXb
) < ∥µa − µb∥22 + ∥σa − σb∥22 + σ2

γ(pa − pb)
2 = W2

2 (Xa, Xb) + σ2
γ(pa − pb)

2

(20)

Reversely,

H =σaσb + papbσ
2
γ −

√
(σaσb)2 + (σapbσγ)2 + (paσγσb)2 + (papbσ2

γ)
2

=
√
(σaσb)2 +

√
(papbσ2

γ)
2 −

√
(σaσb)2 + (σapbσγ)2 + (paσγσb)2 + (papbσ2

γ)
2

>
√
(σaσb)2 + (papbσ2

γ)
2 −

√
(σaσb)2 + (σapbσγ)2 + (paσγσb)2 + (papbσ2

γ)
2

=
(σaσb)

2 + (papbσ
2
γ)

2 − [(σaσb)
2 + (σapbσγ)

2 + (paσγσb)
2 + (papbσ

2
γ)

2]√
(σaσb)2 + (papbσ2

γ)
2 +

√
(σaσb)2 + (σapbσγ)2 + (paσγσb)2 + (papbσ2

γ)
2

> −

√
[(σapbσγ)2 + (paσγσb)2]2

2(σaσb)2 + 2(papbσ2
γ)

2 + (σapbσγ)2 + (paσγσb)2
(21)

Therefore, we have a lower bound

2W2
2 (ηXa , ηXb

) = ∥µa − µb∥22 + ∥σa − σb∥22 + σ2
γ(pa − pb)

2 + 2H

>W2
2 (Xa, Xb) + σ2

γ(pa − pb)
2 − 2

√
[(σapbσγ)2 + (paσγσb)2]2

2(σaσb)2 + 2(papbσ2
γ)

2 + (σapbσγ)2 + (paσγσb)2︸ ︷︷ ︸
M

(22)

As for M , we will compare the value of the numerator and the denominator as

2(σaσb)
2 + 2(papbσ

2
γ)

2 + (σapbσγ)
2 + (paσγσb)

2 − [(σapbσγ)
2 + (paσγσb)

2]2

= 2(σaσb)
2 + 2(papb)

2σ4
γ + (p2b + p2a)σ

2σ2
γ − [(p2b + p2a)

2(σaσb)
2]σ4

γ

= (σaσb)
2[2− (p2b + p2a)

2σ4
γ ] + 2(papb)

2σ4
γ + (p2b + p2a)σ

2σ2
γ , (23)

then set σ2
γ ≤

√
2

p2
a+p2

b
will definitely guarantee 0 < M < 1. Therefore, the approximation error

|2W2
2 (ηXa , ηXb

)−W2
2 (Xa, Xb)| is bounded by σ2

γ(pa − pb)
2 ≪ σ2

γ . When pa = pb or k → ∞, we
have 2W2

2 (ηXa , ηXb
) = W2

2 (Xa, Xb).

Overall, the approximation gap is affected only by σγ and k. Specifically, given a larger k, (pa− pb)2
becomes smaller, resulting in a better estimation.

A.2 PROOF OF THE CONTINUOUS OT PROBLEM

For the continuous OT problem, we obatin the similar analysis result but without the multiplayer

Theorem 4 In Wasserstein space, if ηµ and ην are approximated by Eq. equation 5 respectively with
the same t, then the approximation error |Wp

p (ηµ, ην)− tWp
p (µ, ν)| is bounded by σp

γ , which is the
p-th sample moments of γ.
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Suppose the OT plan between µ and γ is πµ, and OT plan between ν and γ is πν .

Proof 1 The Wasserstein distance between the interpolation measure ηµ and ην can be written as

Wp
p (η

µ, ην) =

∫
X×X

dp

(
ηµi , η

ν
i

)
dπ(ηµi , η

ν
i )

(a)
=

∫
X×X

dp

(
t× xµi + (1− t)×m(πµQ)i, t× xνi + (1− t)×m(πνQ)i

)
dπ(xµi , x

ν
i )

(b)
=

∫
X×X

dp

(
t× xµi + (1− t)× xγµ(i), t× xνi + (1− t)× xγν(i)

)
dπ(xµi , x

ν
i )

=

∫
X×X

∥t× xµi − t× xνi + (1− t)× xγµ(i) − (1− t)× xγν(i)∥
pdπ(xµi , x

ν
i ), (24)

where the equation (a) is based on the definition of Wasserstein distance, and (b) comes from the fact
that πu is a permutation matrix and for each row i, πu(i, j) is non-zero only for µ(i) column and
πu(i, µ(i)) =

1
n .

According to the triangle inequality and equation 24, we have

Wp
p (η

µ, ην) ≤
∫
X×X

{
∥t× xµi − t× xνi ∥p + ∥xγµ(i) − xγν(i)∥

p
}
dπ(xµi , x

ν
i )

(a)
= tWp

p (µ, ν) + (1− t)p
∫
µ(i)×ν(i)

∥xγµ(i) − xγν(i)∥
pdµ(i)× ν(i)

≤tWp
p (µ, ν) + (1− t)p

∫
µ(i)

∥xγµ(i) − x̄γ∥pdµ(i) + (1− t)p
∫
ν(i)

∥xγν(i) − x̄γ∥pdν(i)

=tWp
p (µ, ν) + 2(1− t)pσp

γ , (25)
where the last inequality is due to that γ has uniform weights of samples, σp

γ denotes the p-th moments
of samples, and x̄γ is the central moment. Similar, we have

Wp
p (η

µ, ην) ≥tWp
p (µ, ν)− (1− t)p

∫
µ(i)×ν(i)

∥xγν(i) − xγµ(i)∥
pdµ(i)× ν(i)

≥tWp
p (µ, ν) + 2(1− t)pσp

γ . (26)

Therefore, we can conclude that |Wp
p (η

µ, ην)− tWp
p (µ, ν)| is bounded by σp

γ .

B PROOF OF THEOREM 2

For ψ ∈ Π(µ, γ, ν), we set

W2
2ψ(ηµ(t), ξ) =

∫
X 3

∥(1− t)xi + txj − xk∥dψ(xi, xj , xk) (27)

It is clear that W2
2 (ηµ(t), ξ) ≤ W2

2ψ(ηµ(t), ξ).

Based on the Hilbertian identity,
∥(1− t)xi + txj − xk∥2 = (1− t)∥xi − xk∥2 + t∥xj − xi∥2 − t(1− t)∥xj − xi∥2 (28)

we have
W2

2ψ(ηµ(t), ξ) = (1− t)W2
2ψ(µ, ξ) + tW2

2ψ(γ, ξ)− t(1− t)W2
2ψ(µ, γ) (29)

Based on the Proposition 7.3.1 from Ambrosio et al. (2005), there esists a plan ψ† such that

W2
2 (ηµ(t), ξ) = (1− t)W2

2ψ
†(µ, ξ) + tW2

2ψ
†(γ, ξ)− t(1− t)W2

2ψ
†(µ, γ)

≥ (1− t)W2
2 (µ, ξ) + tW2

2 (γ, ξ)− t(1− t)W2
2 (µ, γ), (30)

which results in the theorem that the Wasserstein space is a positively curved metric space(Theorem
7.3.2 Ambrosio et al. (2005)), thus we have the following relationship

W2
2 (ηµ(t), ξ) ≥ (1− t)W2

2 (µ, ξ) + tW2
2 (γ, ξ)− t(1− t)W2

2 (µ, γ), (31)
where ξ is the fixed measure. We can then reformulate the right-hand side of equation 31 as follows

W2
2 (µ, γ)t

2 +
[
−W2

2 (µ, ξ) +W2
2 (γ, ξ)−W2

2 (µ, γ)
]
t+W2

2 (µ, ξ), (32)
which we can find this is a quadratic function with respective to t and each coefficient is a constant.
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C PROOF OF THEOREM 3

Let ηt := (1− t)x+ tx′. Let π ∈ Π(µ, γ) be an optimal transport plan in the sense that

W2(µ, γ) =

∫
X×X

∥x− x′∥2dπ(x, x′) (33)

For any 0 ≤ s ≤ t ≤ 1, define the coupling πs,t := (ηµ(s), ηµ(t))#µ ∈ Πω(s),ω(t), where
ω(s) = (ηs)#µ and ω(t) = (ηt)#µ. Specifically, ω(0) = µ, ω(1) = γ, then

W2
2 (ω(s), ω(t)) ≤

∫
∥x− x′∥dπs,t(x, y)

=

∫
∥πs(x, x′)− πt(x, x

′)∥dπ(x, x′)

=

∫
∥
(
(1− s)x+ sx′

)
−
(
(1− t)x+ tx′

)
∥dπ(x, x′)

= (t− s)2
∫

∥x− x′∥dπ(x, x′)

= (t− s)2W2
2 (ω(0), ω(1)), (34)

Therefore if s = 0, we have proved that

W2(µ, ηµ(t)) ≤ |t− s|W2(µ, γ). (35)

Then we could leverage the triangle inequality to yield

W2(ω(0), ω(1))

(a)

≤ W2(ω(0), ω(s)) +W2(ω(s), ω(t)) +W2(ω(t), ω(1))

(b)

≤ (s+ |t− s|+ |1− t|)W2(ω(0), ω(1))

= W2(ω(0), ω(1)), (36)

which means (a) and (b) should be equalities. If we dive into

W2(ω(0), ω(s)) +W2(ω(s), ω(t)) +W2(ω(t), ω(1))

= (s+ |t− s|+ |1− t|)W2(ω(0), ω(1)) (37)

we could have the following inequalities based on equation 35

W2(ω(0), ω(s)) ≤ sW2(ω(0), ω(1))

W2(ω(t), ω(1)) ≤ |1− t|W2(ω(0), ω(1)), (38)

therefore the following inequality holds

W2(ω(s), ω(t)) ≥ |t− s|W2(ω(0), ω(1)). (39)

Overall, we have proved

W2(ω(s), ω(t)) = |t− s|W2(ω(0), ω(1)), (40)

where ω(0) = µ and ω(1) = γ, thereby when s = 0, we complete the proof.

D ADDITIONAL EXPERIMENTS

D.1 DISTRIBUTIONAL ATTACK RESULTS

The empirical results are shown in Figure 4 (a) and (b). For CIFAR10 data, the left side two plots are
ξ(K) in FedWad, visually we observe it is a kind of combination of two pictures. The right-side are
our constructed attack data, and we successfully extract raw “cat” and “car” elements within ξ(K),
which are originally from µ and ν. We also visualize more results in Figure 5.
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Figure 4: Attack results (a,b): the attack data will gradually converge to the target data with identical
distribution; DP results (c): The difference |W2(µ, ν)−W2(µperturb, ν)| on 2-dimensional Gaussian
data results in different level of distance gap with different privacy budget.

Figure 5: More results on distributional attack

Figure 6: Toy Example
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Figure 7: Line plots: The lines of Predicted Wasserstein distance (blue) and actual Wasserstein
distance (green) between interpolating measures are overlapping. When t = s0, the Ŵ2(µ, ν)
has minimal gap with W2(µ, ν) ; Dot plots: Predicted distance vs. actual distance between two
interpolating measures. Orange dots are for fitting and blue dots are for predictions.

D.2 TOY ANALYSIS

We illustrate how the intuition behind TriangleWad could be applied to calculate the Wasserstein
distance between two Gaussian distributions. We sample 200 data points with different means and
the same covariance matrix for Party A, Party B and defense data. For computing local interpolating
measures, we set t = 0.5 for both sides. In Figure 6, left panel shows out how interpolating measures
locating between raw data distributions, and right panel shows the approxited Wasserstein distance
and exact one, with different support size for γ. We set the log value for approximation error and
time. The support size does not affect accurations significantly.

D.3 PREDICTING PERFORMANCE FOR UNKNOWN t

In this section, we consider measuring the Wasserstein distance among three data distributions
µ,ν1 and ν2 without revealing the value of push-forward parameters. We want to calculate
W2(µ, ν1 + ν2), as mentioned in Sec 3.4. For synthetic data, we consider the balanced OT
problem, where ν1 =

∑250
i=1 x

3
i , xi ∼ N (12, 102), ν2 =

∑250
i=1 x

2
i , xi ∼ N (3, 1) and µ =∑500

i=1 x
′
i, x

′
i ∼ N (20, 302). For the CIFAR10 data, we consider unbalanced OT problem, where

ν1 = {xi, yi}100i=1, ν2 = {xj , yj}100j=1, µ = {x′i, y′i}150i=1. The labeled dataset is transformed into the
vectorial form as discussed before. For simplicity, we define ν = ν1 + ν2.

We set t0 = 0.3 and sampling ratios are sj ∈ {0.1, 0.35, 0.60}. The randomly initialized γ has
a standard deviation σ(γ) = 3. We then use the tuple {sj ,W2(ηµ(t0), ην(sj))} to fit the func-
tion f(s) as described in equation 10, where W2(ηµ(t0), ην(sj)) is calculated based on the op-
timization result with the input of the constructed cost matrix C(sj) = [C1(sj),C2(sj)]

T . As
observed in Figure 7, the predicted values 1

1−t0
Ŵ2(ηµ(t0), ην(s)) (blue line) and the true values

1
1−t0

W2(ηµ(t0), ην(s)) (green line) are overlapping, which represents our method have a strong
representation power. Specifically, we find when s = t0 = 0.3, the green line has an interaction with
the true distance W2(µ, ν) for the synthetic data, or has the minimal gap with the true distance for
the CIFAR10 data. It is worthy to note that only ηµ(t0),W2(ηµ(t0), ην(sj)), sj ∈ {0.1, 0.35, 0.60}
are public information, while t0, ην(sj) = ην1

(sj) + ην2
(sj) are kept private.

D.4 EXPERIMENTS ON THE UNBALANCED OT PROBLEM

We consider two IID and two non-IID cases. Data size is na = 80, nb = 200. For FedWad, set
nξ = ma +mb − 1, ξ(0) ∼ N (0, 1) and iterations K = 50. For TriangleWad, set nγ = nξ,γ ∼
N (0, 2) (left) or N (0, 5) (right). For all cases, we set dimension da = db = dξ = dγ = d = 100
except the second case we also add d = 400. FedWad could not guarantee to find the interpolating in
high-dimensional case. The result is shown in Table 2. Additionally, we find the σ(γ) will affect the
approximation error. When the variance becomes larger, TriangleWad provides the approximation
with larger difference with the true Wasserstein distance.
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N (10, 3) N (10, 20) (d=100,400) N (10, 2),N (50, 3) N (100, 20),N (50, 30)
DirectWad 37.27 249.10 532.46 401.47 593.20
FedWad 41.02 276.83 575.89 401.66 607.03

TriangleWad 40.99 45.73 252.32 266.51 536.05 544.05 401.78 404.01 594.91 602.90

Table 2: Quantitative comparisons of unbalanced OT problem: We calculate the Wasserstein
distance between two distributions with varying mean, variance and data size. The first two cases
calculate the wasserstein distance with the same data distribution; the last two cases calculate the
wasserstein distance with the different data distributions

Figure 8: Comparisons when the interpolating measure is exactly calculated/approximated: in both
settings, TriangleWad is faster and more accurate than FedWad.

D.5 ABLATION STUDY

Our approach is also fast and accurate when exactly calculating the interpolating measures instead of
approximating. We set µ ∼ N (20, 52), |µ| = N − 200 and ν ∼ N (100, 102), |ν| = N + 200. Data
dimension is set to be d = 50. For fair comparisons, we set the supporting size of ξ(0) for FedWad and
γ for ours as |ν|+ |µ| − 1. The global iteration rounds for FedWad are set to be 10. The experimental
results are shown in Figure 8. These three plots show the calculation time and approximated distance
of FedWad and TriangleWad when N = [500, 1000, 1500] and σ(γ) = σ(ξ(0)) = 10. Our approach
is efficient since we only need 3 OT plans in total, thus preventing the computational overhead
mentioned in FedWad. Additionally, TriangleWad does not have the significant gap when calculating
the exact interpolating, whereas FedWad is unstable and has a larger approximation gap.

E BROADER APPLICATIONS

E.1 TRIANGLEWAD OTDD RESULTS

We replicate the experiment of Alvarez-Melis & Fusi (2020) and utilize the code from Rakotoma-
monjy et al. (2024) on the labeled data. We conduct the toy example of generating isotropic
Gaussian blobs for clustering. We simulate two datasets Da = {xi

a, y
i
a}

Na
i=1,Db = {xj

b, y
j
b}

Nb
j=1

Specifically, we set the data dimension to be d = 2. The size of source data to be Na = 500,
and the size of target data to be Nb = 600. The number of classes is set to be 3. We con-
duct the data augmentations with the corresponding class-conditional mean and vectorized co-
variance. To reduce the dimension of the augmented representation, we consider the diagonal
of the covariance matrix. Then we calculate the 2-Wasserstein distance with TriangleWad and
exact OTDD. The technical details of our approach is as follows: firstly, we construct a ma-
trix Xa = [xa,mya , vec(Σ

1/2
ya )]. Therefore, we get Xa ∈ RNa×(d+d0), where d0 is the dimen-

sion of the class-conditional mean and vectorized covariance. Secondly, we randomly initialize
γ ∈ Rk×(d+d0), k = min{Na, Nb}, and construct the interpolating measure ηa(t) ∈ RNa×(d+d0)

with the barycentric mapping. Similarly, Xa = [xb,myb
, vec(Σ

1/2
yb )] and ηb(t) ∈ RNb×(d+d0).

Finally, we calculate Ŵ2(Xa,Xb) =
1

1−tW2(ηa(t), ηb(t)). This procedure is different to OTDD,
where the cost matrix is changed as d(z, z′) in equation 12. The data is visualized in Figure 9. In
our results, the distance calculated by OTDD is 208.23 and TriangleWad has the result of 210.18.
While TriangleWad could have relatively accurate approximation with the augmented form, there is
an issue when some data points are mislabeled. For the mislabeled part, it is very important to break
the constraint of vectorial representations. We will leave it for the future work.
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Figure 9: The visualization of synthetic labeled data

# Clients ExactFed GTG MR DataSV FedBary (1000/5000) TriangleWad
5 31m 33s 5m 25m 7m / 20m 2m
10 3h20m 7m 40m 2h30m 14m / 40m 4m
50 - - - - 1h10m / 3h20m 20m
100 - - - - 2h20m / 6h40m 40m

Table 3: Evaluation time with different size of N : For ExactFed, GTG and MR, we only consider the
evaluation time after model training; Evaluation time of FedBary and TriangleWad increase linearly
with N . A smaller support size in FedBary results in less time, yet a larger distance gap.

E.2 CONTRIBUTION EVALUATION IN FL

Datasets We use all image datasets mentioned before, and follow the same data settings in Liu et al.
(2022): We simulate N = 5 parties and consider both iid and non-iid cases.
Baselines We consider 7 different baselines, in which all of them evaluate client contribution in
FL: exact calculation exactFed, accelerated GTG-Shapley with its variants (GTG-Ti/GTG-Tib) Liu
et al. (2022), MR and OR Song et al. (2019), DataSV Ghorbani & Zou (2019) and FedBary Li et al.
(2024b).

We consider exactFed as the ground truth since it precisely calculates the marginal contribution of
adding model parameters from one party by considering all subsets, for example, 2N for N parties.
In previous quantitative comparisons, we found that the Wasserstein distances computed by Fedwad
and our method have trivial differences with Gaussian noises. Shapley-based approaches provide
marginal contributions, thus illustrating proportional contributions. On the other hand, FedBary and
TriangleWad provide absolute values, so we normalize them to ensure all values fall within the range
[0, 1]. Overall, Wasserstein-based approaches offer distributional views with correct contribution
topology. For case (1), all client contributions are identical due to identical distributions. Case (2)
and Case (3) resemble exactFed, while others are more sensitive. Due to computational methods,
our approach is more sensitive to features, resulting in wider differences in contribution levels. MR
and our method follow the same topology as exactFed, whereas other approximated approaches are
completely wrong in this case, e.g. Party 5, with the most noise, has the highest contribution score.
We also present the evaluation time of various algorithms. Our approach provide a linear complexity
w.r.t to the number of clients, as the evaluation of each client is independent.

Figure 10: Contribution evaluation of 5 parties with CIFAR10 data
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Figure 11: Noisy Feature Detection on CIFAR10 and two tabular datasets: Adult and Stock. Our
approach has better noisy detection ability compared to other data valuation approaches. It is worthy
to note that others need to use raw data, while TriangleWad could be used in the private setting.

E.3 NOISY DATA DETECTION

We conduct experimental results on one image dataset: CIFAR10 and three tabular datasets: Adult
Income, Stock prediction, Fraud detection. Here we randomly choose the proportion 15% of the
training dataset to perturb. For the selected training datapoints to be perturbed, we add Gaussian
noises N (0, 1) to the original features. Then KNNShapley, InfluneceFuction, LeaveOneOut utilize
raw data to conduct value detection, while TriangleWad use encrypted data to conduct detection,
respectively. In most cases, we control σ(πγ) = σ to make fair comparisons.

Results are shown in Figure 11. The x-axis represents the proportion of inspected datapoints, while
the y-axis indicates the proportion of discovered noisy samples. Therefore, an effective approach
should identify more noisy samples with fewer inspected samples. For each method, we inspect
datapoints from the entire training dataset in descending order of their scores, as higher scores indicate
greater data value. For ours, we use the negative gradient because it has an inverse relationship
compared to others. Our approach significantly outperforms other methods. Notably, even when
we set a very large σ(γ) = 100 and |γ| = 20 to increase σ(πγ) for image data, the first 10%
of datapoints identified as noisy by us contain 100% of the noisy feature datapoints. This result
demonstrates the high effectiveness and robustness of our approach for image data. In other cases,
ours also outperforms the best.

E.4 DATA VALUATION FOR BOOSTING TEST PERFORMANCE

In the practical data acquisition scenarios, a data buyer has a specific goal and wants to buy training
data to predict their test data Lu et al. (2024). Specifically, given a set of unlabeled test data
Dtest = {xtest

1 , · · · , xtest
m }, the data valuation and selection task is to select valuable subsets of training

data points from the data sellers Dtrain = {(xtrain
j , ytrain

j )}j=1,··· ,n, so that the model trained on these
valuable data points will have a smaller prediction loss on the test data. Notably, in this setting, we
do not incorporate the labels of the training data.

Following a similar experimental setup as in Lu et al. (2024), we conduct experiments on one
synthetic Gaussian dataset and one real-world medical dataset: the RSNA Pediatric Bone Age
dataset Halabi et al. (2019), where the task is to assess bone age (in months) from X-ray images.
To extract features of RSNA Pediatric Bone Age dataset, each image is embedded using a CLIP
ViT-B/32 model Radford et al. (2021). We set ∥Dtrain∥ = 1000 and ∥Dtest∥ = 50, selecting training
data under varying selection budgets. Specifically, two interpolating measures ηxtrain(t) and ηxtest(t)
are constructed via equation 5. These measures are then used as inputs to compute the gradient score
via equation 13. After optimization, we select the top-k most valuable data points (those with the
largest negative gradient scores) and train a regression model to predict the test data. We compare our
approach with other baselines on the test mean squared error (MSE). As shown in Figure 12, our data
selection algorithm achieves lower prediction MSE on the test data compared to the baselines.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 12: Our approach has low test error (MSE) on both synthetic data and real-world medical
imaging data

Figure 13: Empirical results of Corollary 2: σ(π(x, γ)γ continuously decreases as k increases.
Simultaneously, the logarithmic approximation error drops to negative value, which means x̂ → x.
This result demonstrates how the size and variance of γ determine the data privacy level.

F EMPIRICAL RESULTS FOR THEORETICAL ANALYSIS

F.1 EMPIRICAL RESULTS OF COROLLARY 2

This section validates the theoretical analysis of Corollary 2. Without loss of generality, we set
x ∈ Rm×d ∼ N (0, 1),m = 100, γ ∈ Rk×d ∼ N (0, 16), where k is increased from 1 to 4000.
Based on equation 9, we approximate x̂ = 1

1−t

(
ηx(t)− t× γ̄ − t× σ(π⋆(x, γ)γ)

)
, and calculate

the average approximation loss as ∥x̂− x∥22. To better visualize the values, we apply a logarithmic
scale log(·) for the approximation loss. The experimental results are shown in Figure 13. We observe
that the approximation loss (green line) continuously decreases as k increases. Additionally, the
standard deviation (orange line) converges to a very small value.

F.2 QUANTIFY THE DISSIMILARITY OF RAW DATA AND INTERPOLATING MEASURE

This section validates the theoretical analysis of Theorem 3. We conduct the experiments on the
CIFAR10 data set. We calculate the Wasserstein distance W2(ηµ(t), ην(t)) when t increases from
0.1 to 0.9. The result is shown in Table 4. The groundtruth distance is 806.4. We could find
our approximation serves the robustness with the relatively large push-forward value t, due to the
geometric property. However, in general perturbations, W2(µ+ γ, γ) = 10.9 when σ(γ) = 1. When
t becomes 0.9, there might be a large deviation as the interpolating measure is very close to the
random gaussian distribution γ. Overall, we can set a large value of t to increase the dissimilarity of
raw data and interpolating measure, to protect the privacy.

σ(γ) t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 groundtruth

1 W2(ηµ, ην) 806.5 806.5 806.6 806.6 806.8 807.0 807.4 807.8 808.7 806.4
W2(ηµ, µ) 20.54 41.09 61.6 82.2 102.7 123.3 143.8 164.4 184.9 -

5 W2(ηµ, ην) 806.3 806.6 806.9 807.3 807.5 807.9 808.9 811.8 818.9 806.4
W2(ηµ, µ) 22.3 44.7 67.1 89.4 111.8 134.2 156.6 178.9 201.3 -

Table 4: Given fixed γ, we change the parameter t from 0.1 to 0.9. Geometrically, when t = 0,
ηµ = µ, when t→ 1, ηµ is closer to γ. Although ηµ has different distribution with µ, we could still
provide accurate estimation.
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