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Abstract

Generating video from conditions, such as text, image,
and audio, enables both spatial and temporal control, lead-
ing to high-quality generation results. Videos with dramatic
motions often require a higher frame rate to ensure smooth
motion. Currently, most audio-to-visual animation models
use uniformly sampled frames from video clips. However,
these uniformly sampled frames fail to capture significant
key moments in dramatic motions at low frame rates and re-
quire significantly more memory when increasing the num-
ber of frames directly. In this paper, we propose KeyVID, a
keyframe-aware audio-to-visual animation framework that
significantly improves the generation quality for key mo-
ments in audio signals. Given an image and an audio in-
put, we first localize keyframe time steps from the audio.
Then, we use a keyframe generator to generate the cor-
responding visual keyframes. Finally, we generate all in-
termediate frames using the motion interpolator. Through
extensive experiments, we demonstrate that KeyVID sig-
nificantly improves audio-video synchronization and video
quality across multiple datasets, particularly for highly dy-
namic motions. The code and demo will be released after
acceptance.

1. Introduction

Recent years have witnessed remarkable progress in video
generation, driven by advancements in diffusion-based
models [1, 3, 24]. These frameworks typically condition
the generation process on text prompts and/or image inputs,
where the text provides semantic guidance, while the image
specifies spatial composition. Despite their success, these
methods largely focus on aligning visual outputs with static
text or image, leaving dynamic, time-sensitive modalities
such as audio underexplored.

Audio-Synchronized Visual Animation (ASVA) [26]
aims to animate objects in a static image into a video with
motion synchronized with the input audio. To achieve pre-
cise synchronization, it is crucial to align key visual actions
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Figure 1. Top: Uniformly sampled sparse frames fail to capture

the key moments in audio. Bottom: Key frames precisely aligned
with the hammer strike, matching the critical moments.
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with their corresponding audio signals. For example, given
hammering sounds, the hammer should strike at the exact
moment the impact sound occurs. However, this synchro-
nization is constrained by frame rates—AVSyncD [26] op-
erates at 6 FPS, while audio carries fine-grained temporal
information, causing key moments to be lost in sparse low
frame rate videos (see Fig. 1).

Directly training on high frame rate videos incurs sub-
stantial computational costs in GPU memory and training
time. A common solution adopts a two-stage strategy that
generates low frame rate videos then applies frame interpo-
lation [1, 18]. However, this approach struggles in highly
dynamic sequences, where critical events may be lost due
to the sparsity of initial uniform frames. To ensure accurate
audio-visual synchronization while maintaining computa-
tion efficiency, we propose KeyVID, a Keyframe-aware
VIdeo Diffusion framework. We first develop a keyframe
selection strategy that identifies critical moments based on
optical flow-based motion score. A Keyframe Localizer
predicts keyframe positions directly from audio. Instead
of uniform downsampling, we train a Keyframe Genera-
tor that explicitly captures crucial moments without requir-
ing excessive frames. A specialized Motion Interpolator
then synthesizes intermediate frames between the uneven
keyframes. This approach mimics animation workflows in
the animation industry where a “Key Animator” establishes
crucial moments and a “In-betweener” fills gaps.
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Figure 2. KeyVID video generation pipeline.

We demonstrate that our keyframe-aware approach out-
performs state-of-the-art methods in video quality and
audio-video synchronization in ASVA task. The main con-
tributions are:

* A keyframe-aware framework that localizes keyframes
from audio and generates them as video diffusion model.

* A motion interpolation network enabling high frame rate
generation while maintaining efficiency.

 Superior performance in audio-synchronized video gen-
eration, particularly for dynamic scenes.

2. Related Work

Video Diffusion Models. Recent video diffusion mod-
els [1, 3, 8, 24] generate high-quality videos by learning
to denoise Gaussian noise through a reversed diffusion pro-
cess. For efficiency, latent video generation [2, 24] encodes
video into latent space. These models incorporate text [3, 9]
and image [6, 24] to guide generation, but typically use uni-
form frame sampling, limiting their ability under critical
motion moments at low frame rates.

Audio-to-Video Generation. = While early audio-
conditioned video synthesis focused on domain-specific
tasks [13, 19], recent work leverage pre-trained audio
encoders [4, 5] for general video generation. Some
approaches use audio as global features [10, 21],
while others [11, 12, 17] consider temporal alignment.
AVSyncD [26] introduced time-dependent audio features
for finer temporal control, but remains limited by low frame
rates (6 FPS) for dynamic motions. Directly increasing
frame density requires prohibitive computational resources.

3. Methods

We present KeyVID, a keyframe-aware video generation
framework. Given input audio and first frame, we fol-
low a three-stage process to get the the video output (see
Fig. 2): (1) the Keyframe Localizer first predicts keyframe
locations from audio; (2) the Keyframe Generator produces
the keyframes conditioned on audio and image for each po-
sitions; (3) Motion Interpolator synthesize all the interme-
diate frames to obtains a smooth high frame rate videos.

3.1. Keyframe Localization from Audio

We train a Keyframe Localizer to infer keyframe loca-
tions from audio by exploiting correlations between acous-
tic events and motion changes. These motion changes are
defined by analyzing the motion score from training videos
and serve as pseudo labels. Using RAFT [22], we com-
pute optical flow OF; between consecutive frames and cal-
culate the motion score as: M(t) = >, ;(|u(i,5)| +
|ve(i,7)]), where ug, vy are horizontal/vertical flow com-
ponents. The keyframe localizer takes audio spectrograms
as input, which consists of pretrained ImageBind [5] as fea-
ture extractor and fully connected layers to predict motion
scores. The training process is guided by L2 loss.

3.2. Audio-conditioned Keyframe Generation

Our keyframe generator produces T keyframes from a 7'-
frame video, conditioned on audio, first frame, and text.

3.2.1. Keyframe Data Selection

Rather than the uniformly sampled T'x frames [24] to train
the video diffusion model, we select Ty < T keyframes
from the peaks and valleys of motion score which represents
the most crucial moments of motions in a video clip. We
choose the first frame, randomly select up to TTK — 1 peaks,
add valleys between consecutive peaks, then evenly sample
remaining frames. This ensures coverage of critical mo-
ments while approximating uniform sampling for smooth
sequences. The details of the selection algorithm are in
Appendix B. The selected keyframe indices {t1,...,tr, }
serve as additional conditions to the following step.

3.2.2. Keyframe Generator Diffusion Model

The keyframe generator introduces two key enhancements:
(1)A Frame index embedding encodes each frame’s ab-
solute position, ensuring coherence when generating non-
uniformly distributed frames; (2) Multi-modal condition
features consist of global text features, and audio and image
features extracted from corresponding keyframe timesteps.
As shown in Fig. 3(b), we build upon latent diffusion
models [1, 2] with pretrained encoder and decoder from
Xing et al. [24]. The latent features are represented as
z € RB*TuxCxhxw where B denotes the batch size, T}
the number of frames at each denoising step, h and w the
spatial dimensions, and C' is the feature channels.
Frame Index Embedding. We introduce an embedding
layer to encode the absolute index of each keyframe within
the original video sequence {i;};%,. The frame index em-
bedding formp, € REXTxXC is added up with the latent fea-
tures z before passing them into the denoising U-Net, en-
suring explicit positional information is provided to the net-
work to enable generation of non-uniformly spaced frames.
Audio Feature Conditions. We extract audio features us-
ing pretrained ImageBind [5], which encodes spectrograms
into global and local tokens capturing semantic and tempo-
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Figure 3. (a) Keyframe selection from motion score curve. (b) Diffusion model for keyframe generation with audio, image, text conditions

and frame index embedding.

ral information. We segment the features into 7" timesteps
matching the final video length, then select T features at
keyframe indices {i;}, for cross-attention fusion in the
U-Net, ensuring audio-visual synchronization.

Image/Text Feature Conditions. We extract first-frame
features using CLIP [16] and project them to 7" frames via
learned tokens, yielding £, € REXTXCXHXW we select
T features at keyframe indices {it}tTfl for the cross at-
tention during denoising. The text descriptions are encoded
using CLIP [16] and repeated for all Tx keyframes.
Feature Fusion. Each conditioning feature (audio, im-
age, and text) is processed separately through spatial cross-
attention layers during the denoising step. Given input la-
tent features F'j,, one denoising step computes:

Fou = Fin + SpatialAttn(Fin, fix) + A1 - Spatial Attn(Fin, faua)
+ A2 - Spatial Attn(Fin, fimg),

where A1, A2 are learnable fusion weights.

3.3. Motion Interpolator

After generating Tk keyframes, we synthesize intermediate
frames using a motion interpolator. Unlike uniform interpola-
tion [1, 24] that predicts between first/last frames, we adapt our
keyframe generator to condition on all generated keyframes via
masked frame conditioning. We use FreeNoise [15] to generate all
T frames in a single pass. Details are in Appendix C.

4. Experiments

4.1. Implementation Details

Datasets. We evaluate on AVSyncl15 [26], Landscapes [12], and
TheGreatestHits [14]. AVSyncl5 contains 15 activity classes with
synchronized audio-video. Landscapes features natural scenes
with ambient sounds. TheGreatestHits contains percussive hitting
sounds aligned with motions. We use 2-second clips at 24fps (48
frames) resized to 320x512, with Tx = 12 keyframes.
Baselines. We compare with: (1) T+A: TPoS [10], TempoTo-
ken [25]; (2) I+T: DynamiCrafter [24], 12VD [26]; (3) I+T+A:
CoDi [21], AADISf [11], AVSyncD [26].

Metrics. We use the Frechet Image Distance (FID) [7] and
Frechet Video Distance (FVD) [23] to evaluate the visual qual-
ity and temporal coherence of synthesized videos. We evaluate
the audio sycronization with the generated video by RelSync and
AlignSync proposed by Zhang et al. [26].

4.2. Quantitative results

Table 1 presents results on three datasets. On AVSynclS5, our
KeyVID achieves the highest AlignSync (24.09) and RelSync
(48.30) scores, demonstrating the effectiveness of our keyframe
selection strategy in capturing crucial dynamic moments. Our
method also achieves competitive visual quality (FID=11.0,
FVD=262.3), outperforming AVSyncD. On Landscapes, which
has less dynamics and is used for evaluating visual quality, our
method achieves the lowest FVD score (391.09). On TheGreat-
estHits, featuring distinct percussive audio events, our approach
achieves the best performance across all metrics, with notable im-
provements over AVSyncD.



Input  Model | AVSyncl5 | Landscapes | The Greatest Hit
| FID, FVD| AlignSynct RelSynct | FID] FVD| AlignSynct RelSynct | FID, FVD| AlignSync? RelSync
tea  TPOS[I0] 135 2671.0 19.52 42.50 165 20813 23.12 48.15 | 33.85 3327.90 21.48 44.90
TempoToken [25] 122 44664 19.74 44.05 16.4  2480.0 24.21 48.65 | 2590 3300.53 21.56 4538
T 12VD [26] 12.1 398.2 21.80 43.92 16.7 539.5 24.74 49.89 9.1 425.0 22.05 44.58
DynamiCrafter [24] 11.7 400.7 21.76 43.68 23.51 4458 24.17 49.63 124 337.71 22.82 45.85
CoDi [20] 14.5 1522.6 19.54 41.51 20.5 982.9 22.63 45.48 21.78  1336.00 22.30 45.35
TPoS [10] 11.9 1227.8 19.67 39.62 16.2 789.6 23.51 47.05 2843  1370.57 22.04 45.55
I+T+A  AVSyncD [26] 1.7 349.1 22.62 45.52 162 4152 24.82 49.93 8.7 249.3 22.83 45.95
KeyVID (Ours) 11.00 2623 24.08 48.33 23.28 3910 24.35 49.95 12.1 202.1 2291 46.03
Static - 1220.4 21.83 43.66 - 11775 25.79 51.59 - 348.9 24.36 48.73
Groundtruth - - 25.04 50.00 - - 25.01 50.00 - - 25.02 50.00
Table 1. Performance on AVSyncl5 and Landscapes.
(@) Audio L —W o

(b) Ground Truth

(d) Ours- Uniform

(e) AVSyncD

(f) Dynamicrafter

Ea " o
_ S A

(2) Hammering

Figure 4. Qualitative comparison of KeyVID and baseline methods. We crop a key motions on audio waveform in (a) and the corresponding
ground truth video in (b) as references and compare the generated video clip between models from (c) to (f). Compared with other models,
our KeyVID with keyframe awareness in (c) have better alignment of the motion peaks with audio signals, for example, hitting the

hammering, smoke in gun shooting.

4.3. Visualization Method FID, FVD] AlignSynct RelSynct
Figure 4 presents qualitative comparisons between our method and Evaluate on 12 frames
baseline approacheg Our keyfram:c-awa.re applioach more accu- KeyVID 1100 262.34 24.08 48.33
rately captures motion peaks that align with audio events, such as Uni. Frame 11.01  273.40 23.53 4723
the exact moment of impact in hammering or the smoke in gun

. . . Evaluate on 48 frames
shooting. This demonstrates the effectiveness of keyframe-aware
training across both high- and low-intensity motion scenarios. KeyVID 483  335.68 24.08 48.37

Uni. Frame 490 337.10 23.96 48.09

4.4. Ablation Study

We conduct ablation studies to validate the effectiveness of
keyframe awareness, as shown in Tab. 2. Specially, we train
a variant of the KeyVID model using uniformly sampled 12
frames. Since our method generates high-frame-rate videos (48
frames/2s), we evaluate under two settings: (1) downsample our
output to 12 frames to compare with the baseline’s 12 uniform
frames; (2) interpolate the baseline’s 12 frames to 48 using the
same method from Sec. 3.3 and evaluate on 48 frames. KeyVID
consistently outperforms uniform sampling in both settings, with
notable improvements in synchronization metrics (AlignSync and
RelSync). These results support our hypothesis that selecting
keyframes based on audio and motion cues enhances temporal
alignment between audio events and visual dynamics.

Table 2. Ablation study comparing keyframe-based generation
with uniform sampling. KeyVID achieves better performance in
both audio synchronization and visual quality with keyframes.

5. Conclusion

We introduce a keyframe-aware, audio-synchronized visual ani-
mation model that improves video quality and audio alignment,
especially under dynamic motion. Our approach first detects
keyframes locations from audio input, then generates them with
video diffusion model, and then interpolates intermediate frames
for smooth, high-frame-rate output with low memory cost. Exper-
iments on multiple datasets show significant gains in both visual
quality and synchronization.
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Supplementary Material

A. Details of Keyframe Localization Network
from Audio
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Figure 5. (a) We first calculate the optical flow and then take the
average across all pixels for each frame to form a curve of motion
score. The peaks (red) and valleys (green) indicate key frames. (b)
key frame prediction network from audio, described in Sec. 3.1.

In the Sec. 3.1 of main paper, we introduce that we need to
know the position of key frame at the begin of inference by pre-
dicting optical motion scores. Here is the detailed structure of this
network. The network processes raw audio by converting it into
a spectrogram A € RE4*T4 where C'4 denotes the number of
frequency channels and T4 represents the temporal length. The
original ImageBind preprocessing pipeline applies a CNN with a
kernel stride of (10, 10) to patchify the input spectrogram, produc-
ing feature embeddings that are then processed by a transformer-
based encoder fuugio € RZ*T*C. However, this results in T (e.g.
T=19) being misaligned with the temporal resolution of the dense
motion curve sequence (e.g. 48).

To address this, we modify the CNN stride to (10, 4), increas-
ing the temporal resolution of extracted features (e.g. increase to
46). The transformer encoder then processes the updated feature
sequence:

Faudio = faudio(A)7 Faudio € RBXT’XC7 (1)

where T” > T reflects the increased temporal resolution. Since
the transformer relies on positional embeddings, we interpolate
the pretrained positional embeddings to match the new sequence
length T and keep them frozen during training.

The extracted features are passed through fully connected lay-
ers to predict a sequence of confidence scores s € R? XT/, where
each s; represents the likelihood of a keyframe occurring at time

step ¢:

s = U(WFaudio + b)» ()

where W € R and b € R”4 are learnable parameters, and
o () is the sigmoid activation function. The model is trained using
an L1 loss:

L=ls—8, ®)

where § represents the ground-truth keyframe labels derived from
optical flow analysis.

B. Details of Keyframe Selection
B.1. Detect Peak and Valley

To identify the local maxima (peaks) and minima (valleys) from
a one-dimensional motion score { M (t)}{_;, we perform the fol-
lowing steps:

1. Smoothing: Convolve the raw score M (t) with a short aver-
aging filter with a window size 5, producing a smoothed label
M (t). This helps reduce noise and minor fluctuations.

2. Peak Detection: Finds all local maxima by simple comparison
of neighboring values for M (t). We force a minimum distance
of 5 frames between any two detected peaks and requiring a
prominence (height relative to its surroundings) of at least 0.1.
This returns the indices of the local maxima.

3. Valley Detection: Repeat the same peak-finding procedure on
the negative of the smoothed signal.

B.2. Sample keyframes

In the main text, we discuss the process of selecting Tx < T
keyframes based on the motion score M (t) for each frame. Specif-
ically, we first pick the initial frame, then select up to TTK —1 peaks
among all detected ones (or all peaks if fewer are found). Next,
we include a valley between each consecutive pair of selected
peaks. Finally, we sample any remaining frames by an evenly
distributed (proportional) strategy, which approximates uniform
downsampling if few peaks and valleys are present. This approach
ensures that smooth motion or weak audio signals, producing lim-
ited peaks and valleys, do not degrade the consistency of training
for video diffusion models.

Algorithm 1 is the detailed pseudo-code for the full procedure,
including both peak and valley selection and the final proportional
allocation of remaining key frames.

C. Structure of Motion Interpolation

As shown in Fig. 6, we present the pipeline of motion interpo-
lation network as introduced in Sec. 3.3. After generating Tk
keyframes, we use a motion interpolator to generate the missing
frames back to the full video sequence of length 7. Interpolation
has been widely used in uniform frame generation [1, 24], where

a model predicts a fixed number of intermediate frames given the



Algorithm 1: Keyframe Selection Algorithm

Input: Motion scores { M (t)}1_,, desired keyframe
count T < T.
Output: A set of Tk keyframes.
1 Step 1: Detect peaks and valleys based on M (¢).
2 Step 2: Initialize keyframe list:
Keyframes < {first_frame}.
3 Step 3: Randomly select peaks
Choose up to {TTK —
from the detected peaks and add to Keyframes.
4 Step 4: Insert valleys
for each pair of consecutive peaks in

Keyframes do
L Select one valley in between and add it to

Keyframes.

5 Step 5: Compute how many more keyframes are
needed:
R+ Tk — |Keyframes|.
6 if R > 0 then
7 Define a list of N remaining frames (unselected)
with some weights {wy, ..., wx}.
8 W «+ Zi\il W;
9 fori < 1to N do
L ideal_share; + R - %%;
allocated; «+ |ideal_share; |;

10 r< R— Zf\il allocated; ; // Remainder
after flooring

11 if » > 0 then

fori < 1to N do

L frac; <— ideal_share; — allocated;;
Sort frames by frac; in descending order.
for j < 1tordo

1" < index of the j-th largest frac;;

L allocated;+ < allocated;~ + 1;

12 fori <+ 1to N do
if allocated; > 0 then
| Keyframes « Keyframes U {frame; };

13 return Keyframes

first and last frame. However, for keyframe-based generation, the
positions of missing and available frames vary, introducing addi-
tional challenges.

To address this, we adapt our keyframe generator diffusion
model into a motion interpolator model that generates T'x frames
at once using masked frame conditioning. The overall architecture
remains nearly unchanged, with the primary difference lying in
how image conditions are incorporated. Rather than conditioning
solely on the first frame, the model utilizes the features of gener-
ated keyframes as conditions, thereby learning to synthesize the
missing frames in between. This approach facilitates interpolation

between non-uniformly distributed keyframes while maintaining
temporal consistency. A pipeline can be found in Appendix C.

To generate a full video with 7" frames in a single pass, we in-
corporate FreeNoise [15] to increase the number of output frames
during inference. This allows the interpolation model to take all
generated keyframes as conditioning inputs and predict all missing
frames in one single step.
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Figure 6. The frame interpolation models has the same structure
as the orignal keyframe generation model, but has different im-
age features for concatenation. (a) For the keyframe generation in
Sec 3.2.2, the first frame features are repeated to match the frame
length of the latent vector; (b) In frame interpolation, the condi-
tion feature from keyframes are padded with zero tensor between
keyframe locations to match the frame length.

D. Motion score prediction evaluation

Quantitative result. We evaluate the keypoint detected from the
predicted motion score with the ground truth score. We calculate
the average precision with a distance threshold ¢. In this way, for
each keypoint in ground truth motion score curve, if it can match
with a predicted keypoint with distance lower than ¢, it will be
consider as a successful match. The average precision means the
the average of Nyatcn /N (total) across all instance, denoted as
AP@t We achieve the AP@3 = 60.57% and APQ5 = 77.92%.
Visualization

E. More Qualitative Results of Video Genera-
tion

As the generation result need to be watch with audio for the best
experience, we have put more visualization result into the supple-
mentary as mp4 files.

F. Experimental Details

For the experiments of KeyVID on three dataset AVSyncD, Land-
scape, and TheGreatestHit, we all train on resolution 320 x 512
as Dynamicrafter [24]. During the inference time, we use ddim
sampling with step 90. The temporal length of both key frame
generation and interpolation model are all 12. As our interpolation
module use freenoise[15] techniqual to obtain the final 48 frames
in one run. we change the windows size 12 and the stride 6 to fit
our temporal length.



Figure 7. Visualization of (a) Predicted motion score from audio
with the ground truth caluate from video data; and (b) the gener-
ated video keyframe by diffusion network described in Sec. 3.2.2
before interpolations.

G. Multimodal Classifier Free Guidance

Similar to Xing et al. [24], we introduce three guidance scales Sing,
St and Saua to extend video generation with additional audio con-

trol. These scales allow balancing the influence of different con- Saud ‘ FID| FVD| AlignSyncT RelSynct
ditioning modalities in video generation. The modified noise esti-
mation function is defined as: 4.0 11.4 2705 48.18 24.14

‘o ( ) = €0 (22, 0,2, 2) @ 7.5 11.0 262.3 48.33 24.08

€0 B Cime, oy Cand) = €028, 52,525 9.0 | 1.1 2772 48.55 24.16

im 5 im,gyg - agvgvg

simg (€6 (2, Cing, 2, @) = o (22 ) 1.0 | 111 2786 4866 24.22
+ 5w (€0 (2, Cimg, Cxt, &) — €o (2, Cimg, I, @))
+Saud (€0 (Zt, Cimg, Cixt, Caud) — €0 (Z¢, Cimg, Cixt, D)) - Table 3. Performance metrics for different guidance values.

Here, Cimg, Cix, and cauq represent image, text, and audio condi-
tioning, respectively. The newly introduced audio guidance scale
Saud €nables the model to integrate temporal audio cues, ensuring
synchronized motion generation in audio-reactive video synthesis.
By adjusting these guidance parameters, we can control the rela-
tive impact of each modality in the final video output.

In experiment, we choose the audio guidance scale to 7.5 and
image guidance scale to 2, for both keyframe generation network
and frame interpolatio network. As we add the audio guidance as a
new feature, we compare the result from different audio guidance
from 4.0 to 11.0 as list in Tab. 3. Although the higher audio guid-
ance obtains a better audio synchronization score (RelSync and
AlignSync) we finally choose the one with the best visual quality
(FVD and FID) but still ahiveve compatible audio synchronization
score.
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