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Abstract

Generating video from conditions, such as text, image,001
and audio, enables both spatial and temporal control, lead-002
ing to high-quality generation results. Videos with dramatic003
motions often require a higher frame rate to ensure smooth004
motion. Currently, most audio-to-visual animation models005
use uniformly sampled frames from video clips. However,006
these uniformly sampled frames fail to capture significant007
key moments in dramatic motions at low frame rates and re-008
quire significantly more memory when increasing the num-009
ber of frames directly. In this paper, we propose KeyVID, a010
keyframe-aware audio-to-visual animation framework that011
significantly improves the generation quality for key mo-012
ments in audio signals. Given an image and an audio in-013
put, we first localize keyframe time steps from the audio.014
Then, we use a keyframe generator to generate the cor-015
responding visual keyframes. Finally, we generate all in-016
termediate frames using the motion interpolator. Through017
extensive experiments, we demonstrate that KeyVID sig-018
nificantly improves audio-video synchronization and video019
quality across multiple datasets, particularly for highly dy-020
namic motions. The code and demo will be released after021
acceptance.022

1. Introduction023

Recent years have witnessed remarkable progress in video024
generation, driven by advancements in diffusion-based025
models [1, 3, 24]. These frameworks typically condition026
the generation process on text prompts and/or image inputs,027
where the text provides semantic guidance, while the image028
specifies spatial composition. Despite their success, these029
methods largely focus on aligning visual outputs with static030
text or image, leaving dynamic, time-sensitive modalities031
such as audio underexplored.032

Audio-Synchronized Visual Animation (ASVA) [26]033
aims to animate objects in a static image into a video with034
motion synchronized with the input audio. To achieve pre-035
cise synchronization, it is crucial to align key visual actions036
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Figure 1. Top: Uniformly sampled sparse frames fail to capture
the key moments in audio. Bottom: Key frames precisely aligned
with the hammer strike, matching the critical moments.

with their corresponding audio signals. For example, given 037
hammering sounds, the hammer should strike at the exact 038
moment the impact sound occurs. However, this synchro- 039
nization is constrained by frame rates—AVSyncD [26] op- 040
erates at 6 FPS, while audio carries fine-grained temporal 041
information, causing key moments to be lost in sparse low 042
frame rate videos (see Fig. 1). 043

Directly training on high frame rate videos incurs sub- 044
stantial computational costs in GPU memory and training 045
time. A common solution adopts a two-stage strategy that 046
generates low frame rate videos then applies frame interpo- 047
lation [1, 18]. However, this approach struggles in highly 048
dynamic sequences, where critical events may be lost due 049
to the sparsity of initial uniform frames. To ensure accurate 050
audio-visual synchronization while maintaining computa- 051
tion efficiency, we propose KeyVID, a Keyframe-aware 052
VIdeo Diffusion framework. We first develop a keyframe 053
selection strategy that identifies critical moments based on 054
optical flow-based motion score. A Keyframe Localizer 055
predicts keyframe positions directly from audio. Instead 056
of uniform downsampling, we train a Keyframe Genera- 057
tor that explicitly captures crucial moments without requir- 058
ing excessive frames. A specialized Motion Interpolator 059
then synthesizes intermediate frames between the uneven 060
keyframes. This approach mimics animation workflows in 061
the animation industry where a “Key Animator” establishes 062
crucial moments and a “In-betweener” fills gaps. 063
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Figure 2. KeyVID video generation pipeline.

We demonstrate that our keyframe-aware approach out-064
performs state-of-the-art methods in video quality and065
audio-video synchronization in ASVA task. The main con-066
tributions are:067
• A keyframe-aware framework that localizes keyframes068

from audio and generates them as video diffusion model.069
• A motion interpolation network enabling high frame rate070

generation while maintaining efficiency.071
• Superior performance in audio-synchronized video gen-072

eration, particularly for dynamic scenes.073

2. Related Work074

Video Diffusion Models. Recent video diffusion mod-075
els [1, 3, 8, 24] generate high-quality videos by learning076
to denoise Gaussian noise through a reversed diffusion pro-077
cess. For efficiency, latent video generation [2, 24] encodes078
video into latent space. These models incorporate text [3, 9]079
and image [6, 24] to guide generation, but typically use uni-080
form frame sampling, limiting their ability under critical081
motion moments at low frame rates.082

Audio-to-Video Generation. While early audio-083
conditioned video synthesis focused on domain-specific084
tasks [13, 19], recent work leverage pre-trained audio085
encoders [4, 5] for general video generation. Some086
approaches use audio as global features [10, 21],087
while others [11, 12, 17] consider temporal alignment.088
AVSyncD [26] introduced time-dependent audio features089
for finer temporal control, but remains limited by low frame090
rates (6 FPS) for dynamic motions. Directly increasing091
frame density requires prohibitive computational resources.092

3. Methods093

We present KeyVID, a keyframe-aware video generation094
framework. Given input audio and first frame, we fol-095
low a three-stage process to get the the video output (see096
Fig. 2): (1) the Keyframe Localizer first predicts keyframe097
locations from audio; (2) the Keyframe Generator produces098
the keyframes conditioned on audio and image for each po-099
sitions; (3) Motion Interpolator synthesize all the interme-100
diate frames to obtains a smooth high frame rate videos.101

3.1. Keyframe Localization from Audio 102

We train a Keyframe Localizer to infer keyframe loca- 103
tions from audio by exploiting correlations between acous- 104
tic events and motion changes. These motion changes are 105
defined by analyzing the motion score from training videos 106
and serve as pseudo labels. Using RAFT [22], we com- 107
pute optical flow OFt between consecutive frames and cal- 108
culate the motion score as: M(t) =

∑
i,j(|ut(i, j)| + 109

|vt(i, j)|), where ut, vt are horizontal/vertical flow com- 110
ponents. The keyframe localizer takes audio spectrograms 111
as input, which consists of pretrained ImageBind [5] as fea- 112
ture extractor and fully connected layers to predict motion 113
scores. The training process is guided by L2 loss. 114

3.2. Audio-conditioned Keyframe Generation 115

Our keyframe generator produces TK keyframes from a T - 116
frame video, conditioned on audio, first frame, and text. 117

3.2.1. Keyframe Data Selection 118

Rather than the uniformly sampled TK frames [24] to train 119
the video diffusion model, we select TK ≪ T keyframes 120
from the peaks and valleys of motion score which represents 121
the most crucial moments of motions in a video clip. We 122
choose the first frame, randomly select up to TK

2 − 1 peaks, 123
add valleys between consecutive peaks, then evenly sample 124
remaining frames. This ensures coverage of critical mo- 125
ments while approximating uniform sampling for smooth 126
sequences. The details of the selection algorithm are in 127
Appendix B. The selected keyframe indices {t1, . . . , tTK

} 128
serve as additional conditions to the following step. 129

3.2.2. Keyframe Generator Diffusion Model 130

The keyframe generator introduces two key enhancements: 131
(1)A Frame index embedding encodes each frame’s ab- 132
solute position, ensuring coherence when generating non- 133
uniformly distributed frames; (2) Multi-modal condition 134
features consist of global text features, and audio and image 135
features extracted from corresponding keyframe timesteps. 136

As shown in Fig. 3(b), we build upon latent diffusion 137
models [1, 2] with pretrained encoder and decoder from 138
Xing et al. [24]. The latent features are represented as 139
z ∈ RB×Tk×C×h×w where B denotes the batch size, Tk 140
the number of frames at each denoising step, h and w the 141
spatial dimensions, and C is the feature channels. 142
Frame Index Embedding. We introduce a embedding 143
layer to encode the absolute index of each keyframe within 144
the original video sequence {it}TK

t=1. The frame index em- 145
bedding femb ∈ RB×TK×C is added up with the latent fea- 146
tures z before passing them into the denoising U-Net, en- 147
suring explicit positional information is provided to the net- 148
work to enable generation of non-uniformly spaced frames. 149
Audio Feature Conditions. We extract audio features us- 150
ing pretrained ImageBind [5], which encodes spectrograms 151
into global and local tokens capturing semantic and tempo- 152
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Figure 3. (a) Keyframe selection from motion score curve. (b) Diffusion model for keyframe generation with audio, image, text conditions
and frame index embedding.

ral information. We segment the features into T timesteps153
matching the final video length, then select TK features at154
keyframe indices {it}TK

t=1 for cross-attention fusion in the155
U-Net, ensuring audio-visual synchronization.156

Image/Text Feature Conditions. We extract first-frame157
features using CLIP [16] and project them to T frames via158
learned tokens, yielding fimg ∈ RB×T×C×H×W . We select159

TK features at keyframe indices {it}TK
t=1 for the cross at-160

tention during denoising. The text descriptions are encoded161
using CLIP [16] and repeated for all TK keyframes.162

Feature Fusion. Each conditioning feature (audio, im-163
age, and text) is processed separately through spatial cross-164
attention layers during the denoising step. Given input la-165
tent features Fin, one denoising step computes:166

Fout = Fin + SpatialAttn(Fin, ftxt) + λ1 · SpatialAttn(Fin, faud)

+ λ2 · SpatialAttn(Fin, fimg),
167

where λ1, λ2 are learnable fusion weights.168

3.3. Motion Interpolator169

After generating TK keyframes, we synthesize intermediate170
frames using a motion interpolator. Unlike uniform interpola-171
tion [1, 24] that predicts between first/last frames, we adapt our172
keyframe generator to condition on all generated keyframes via173
masked frame conditioning. We use FreeNoise [15] to generate all174
T frames in a single pass. Details are in Appendix C.175

4. Experiments 176

4.1. Implementation Details 177

Datasets. We evaluate on AVSync15 [26], Landscapes [12], and 178
TheGreatestHits [14]. AVSync15 contains 15 activity classes with 179
synchronized audio-video. Landscapes features natural scenes 180
with ambient sounds. TheGreatestHits contains percussive hitting 181
sounds aligned with motions. We use 2-second clips at 24fps (48 182
frames) resized to 320×512, with TK = 12 keyframes. 183
Baselines. We compare with: (1) T+A: TPoS [10], TempoTo- 184
ken [25]; (2) I+T: DynamiCrafter [24], I2VD [26]; (3) I+T+A: 185
CoDi [21], AADiff [11], AVSyncD [26]. 186
Metrics. We use the Frechet Image Distance (FID) [7] and 187
Frechet Video Distance (FVD) [23] to evaluate the visual qual- 188
ity and temporal coherence of synthesized videos. We evaluate 189
the audio sycronization with the generated video by RelSync and 190
AlignSync proposed by Zhang et al. [26]. 191

4.2. Quantitative results 192

Table 1 presents results on three datasets. On AVSync15, our 193
KeyVID achieves the highest AlignSync (24.09) and RelSync 194
(48.30) scores, demonstrating the effectiveness of our keyframe 195
selection strategy in capturing crucial dynamic moments. Our 196
method also achieves competitive visual quality (FID=11.0, 197
FVD=262.3), outperforming AVSyncD. On Landscapes, which 198
has less dynamics and is used for evaluating visual quality, our 199
method achieves the lowest FVD score (391.09). On TheGreat- 200
estHits, featuring distinct percussive audio events, our approach 201
achieves the best performance across all metrics, with notable im- 202
provements over AVSyncD. 203
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Input Model AVSync15 Landscapes The Greatest Hit

FID↓ FVD↓ AlignSync↑ RelSync↑ FID↓ FVD↓ AlignSync↑ RelSync↑ FID↓ FVD↓ AlignSync↑ RelSync↑

T+A
TPoS [10] 13.5 2671.0 19.52 42.50 16.5 2081.3 23.12 48.15 33.85 3327.90 21.48 44.90
TempoToken [25] 12.2 4466.4 19.74 44.05 16.4 2480.0 24.21 48.65 25.90 3300.53 21.56 45.38

I+T
I2VD [26] 12.1 398.2 21.80 43.92 16.7 539.5 24.74 49.89 9.1 425.0 22.05 44.58
DynamiCrafter [24] 11.7 400.7 21.76 43.68 23.51 445.8 24.17 49.63 12.4 337.71 22.82 45.85

I+T+A

CoDi [20] 14.5 1522.6 19.54 41.51 20.5 982.9 22.63 45.48 21.78 1336.00 22.30 45.35
TPoS [10] 11.9 1227.8 19.67 39.62 16.2 789.6 23.51 47.05 28.43 1370.57 22.04 45.55
AVSyncD [26] 11.7 349.1 22.62 45.52 16.2 415.2 24.82 49.93 8.7 249.3 22.83 45.95
KeyVID (Ours) 11.00 262.3 24.08 48.33 23.28 391.0 24.35 49.95 12.1 202.1 22.91 46.03

Static - 1220.4 21.83 43.66 - 1177.5 25.79 51.59 - 348.9 24.36 48.73
Groundtruth - - 25.04 50.00 - - 25.01 50.00 - - 25.02 50.00

Table 1. Performance on AVSync15 and Landscapes.
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Figure 4. Qualitative comparison of KeyVID and baseline methods. We crop a key motions on audio waveform in (a) and the corresponding
ground truth video in (b) as references and compare the generated video clip between models from (c) to (f). Compared with other models,
our KeyVID with keyframe awareness in (c) have better alignment of the motion peaks with audio signals, for example, hitting the
hammering, smoke in gun shooting.

4.3. Visualization204

Figure 4 presents qualitative comparisons between our method and205
baseline approaches. Our keyframe-aware approach more accu-206
rately captures motion peaks that align with audio events, such as207
the exact moment of impact in hammering or the smoke in gun208
shooting. This demonstrates the effectiveness of keyframe-aware209
training across both high- and low-intensity motion scenarios.210

4.4. Ablation Study211

We conduct ablation studies to validate the effectiveness of212
keyframe awareness, as shown in Tab. 2. Specially, we train213
a variant of the KeyVID model using uniformly sampled 12214
frames. Since our method generates high-frame-rate videos (48215
frames/2s), we evaluate under two settings: (1) downsample our216
output to 12 frames to compare with the baseline’s 12 uniform217
frames; (2) interpolate the baseline’s 12 frames to 48 using the218
same method from Sec. 3.3 and evaluate on 48 frames. KeyVID219
consistently outperforms uniform sampling in both settings, with220
notable improvements in synchronization metrics (AlignSync and221
RelSync). These results support our hypothesis that selecting222
keyframes based on audio and motion cues enhances temporal223
alignment between audio events and visual dynamics.224

Method FID↓ FVD↓ AlignSync↑ RelSync↑

Evaluate on 12 frames

KeyVID 11.00 262.34 24.08 48.33
Uni. Frame 11.01 273.40 23.53 47.23

Evaluate on 48 frames

KeyVID 4.83 335.68 24.08 48.37
Uni. Frame 4.90 337.10 23.96 48.09

Table 2. Ablation study comparing keyframe-based generation
with uniform sampling. KeyVID achieves better performance in
both audio synchronization and visual quality with keyframes.

5. Conclusion 225

We introduce a keyframe-aware, audio-synchronized visual ani- 226
mation model that improves video quality and audio alignment, 227
especially under dynamic motion. Our approach first detects 228
keyframes locations from audio input, then generates them with 229
video diffusion model, and then interpolates intermediate frames 230
for smooth, high-frame-rate output with low memory cost. Exper- 231
iments on multiple datasets show significant gains in both visual 232
quality and synchronization. 233
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