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A : No. The 

bicycle is not 

visible.

Q : From the 

perspective of the 

man with a 

backpack, is the 

woman to the 

right of the silver 

car?

A : The woman is 

to the right of the 

silver car.

Q : If you are the man 

in the black vest, is the 

bicycle visible?

A : The wooden table is 

located closer than the 

man with a backpack.

Q : Can you determine which is 

closer from the woman’s 

perspective: the man with a 

backpack or the wooden table?

A : The dog is 

located on the 

right. 

Q : If you are the black 

pickup truck, is the dog 

located on the left or 

right side of you?

A : The man with a 

cowboy hat is 

closer than the 

sheep.

Q : From the perspective 

of the dog, is the man 

with a cowboy hat closer 

than the sheep?

Q : If you are 

the man with a 

cowboy hat, 

can you see the 

sheep?

A : The man 

with a cowboy 

hat sees no 

sheep.

Figure 1: We introduce Abstract Perspective Change (APC), a framework that empowers VLMs to
adopt arbitrary perspectives for spatial reasoning. As demonstrated by the examples above, APC sig-
nificantly enhances VLM’s ability to imagine a scene from alternative viewpoints, overcoming the
inherent egocentric bias that constrains the spatial reasoning of existing VLMs to the camera’s view-
point.

Abstract: We present a framework for perspective-aware reasoning in vision-
language models (VLMs) through mental imagery simulation. Perspective-
taking—the ability to perceive an environment or situation from an alternative
viewpoint—is a key benchmark for human-level visual understanding, essential
for environmental interaction and collaboration with autonomous agents. Despite
advancements in spatial reasoning within VLMs, recent research has shown that
modern VLMs significantly lack perspective-aware reasoning capabilities and ex-
hibit a strong bias toward egocentric interpretations. To bridge the gap between
VLMs and human perception, we focus on the role of mental imagery, where
humans perceive the world through abstracted representations that facilitate per-
spective shifts. Motivated by this, we propose a framework for perspective-aware
reasoning, named Abstract Perspective Change (APC), that effectively leverages
vision foundation models, such as object detection, segmentation, and orienta-
tion estimation, to construct scene abstractions and enable perspective changes.
Our experiments on synthetic and real-image benchmarks, compared with vari-
ous VLMs, demonstrate significant improvements in perspective-aware reasoning
with our framework, further outperforming fine-tuned spatial reasoning models
and novel-view-synthesis-based approaches.
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1 Introduction
Vision-language models (VLMs) have made remarkable progress, positioning themselves as a cru-
cial backbone for general-purpose physical AI agents. The growing research efforts to improve
VLMs’ spatial reasoning capabilities [1, 2, 3, 4] reflect this potential. Early VLMs were limited to
basic tasks such as visual question answering (VQA) and image captioning [5, 6, 7]. However, re-
cent advancements have enabled them to perform complex visual reasoning [8, 9, 10, 11, 12, 13] and
extract spatial properties, including spatial relationships, relative sizes, and distances [14, 1]. Further
techniques such as instruction-tuning and vision-centric adapters, have expanded their capabilities,
allowing depth-aware [3, 15] and region-aware [2, 16] spatial reasoning.

Egocentric Question
Question:

Given the image, consider the real-world 

3D locations and orientations of the 

objects. If you stand at the camera’s 

position facing where it is facing, Is the 

cat on the left or right of the dog? 

Answer:

      Human: “on the right”

      VLM: “on the right”

Allocentric Question
Question:

Given the image, consider the real-world 

3D locations and orientations of the 

objects. If you stand at the man’s 

position facing where he’s facing, Is the 

dog on the left or right of the man? 

Answer:

      Human: “on the right”

      VLM: “on the left”

Figure 2: Egocentric vs. Allocentric. While
VLMs perform well when questions are asked from
an egocentric (i.e. camera’s) perspective, they strug-
gle when the same questions are posed from an al-
locentric perspective, showing a strong bias toward
egocentric reasoning.

Despite these advances, progress remains largely
confined to egocentric spatial reasoning, and
even the latest VLMs struggle with allocentric
reasoning—answering questions from perspec-
tives other than the camera’s (Fig. 2). Allocentric
reasoning is crucial for high-level planning, envi-
ronmental interaction, and collaboration with au-
tonomous agents [17, 18, 19]. Moreover, it serves
as a key benchmark for human-level spatial un-
derstanding. However, as analyzed by Zhang et
al. [20], most VLMs exhibit a strong bias to-
ward an egocentric perspective. Even when ex-
plicitly prompted to adopt an allocentric view-
point, VLMs often revert to egocentric interpre-
tations [21, 22, 20, 23]. Recent efforts to enhance
spatial reasoning remain focused on improving
egocentric reasoning [3, 2, 4], leaving allocentric
reasoning largely unaddressed.

To bridge the gap between VLMs and human perspective reasoning, we ask: What cognitive pro-
cess allows humans to effortlessly shift perspectives? Unlike current VLMs, humans seamlessly
form internal representations of the physical world, making perspective reasoning an intuitive
and natural process. The mechanism of creating internal representations, known as mental im-
agery [24, 25, 26, 27, 28], plays a fundamental role in cognition, enabling us to simulate visual,
spatial, and conceptual scenarios. This ability allows for abstraction beyond immediate perception,
facilitating sophisticated spatial reasoning tasks such as mentally rotating objects, inferring occlu-
sions, and envisioning alternative viewpoints [29, 30, 31].

A key aspect of mental imagery is that it is not simply the process of visualizing a clear image
from different perspectives; rather, it involves forming an abstract representation of a scene that
encodes essential spatial information and can be reinterpreted from a new perspective. From a
computational standpoint, such an abstract representation is particularly advantageous, as equipping
VLMs with the imaginative capability to generate novel views remains extremely challenging. In
contrast, constructing an abstract representation requires significantly less computation and can be
achieved procedurally.

Inspired by this, we introduce a novel framework for adapting perspectives in VLMs by simulat-
ing the mental imagery process and modifying the perspective in the given prompt. Our goal is
to leverage the strengths of both VLMs and recent vision foundation models, such as object de-
tection [32, 33, 34], image segmentation [35, 36], and orientation estimation [37]. The proposed
framework takes an image and a perspective-based question as input and operates through three key
stages. First, by simulating the mental imagery process, it builds an abstract representation of the
scene in the input image. The VLM parses the prompt to identify objects in the image, while vi-
sion foundation models extract the center and orientation information of each object in 3D space.
Second, the VLM analyzes the prompt to determine the reference object from whose perspective
the question is asked, and transforms the abstraction to be aligned with that perspective. Finally,
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a new prompt is generated by reinterpreting the scene from the reference object’s perspective. We
explore different formats for rendering the scene abstraction: (1) a text-based representation, where
objects are described using numerical 3D coordinates, and (2) an image-based representation, where
objects are visualized as colored boxes corresponding to the original image. The newly generated
prompt is fed to the VLM to obtain the final answer. Note that our framework is not designed for
a specific type of allocentric question. We leverage the egocentric reasoning capabilities of VLMs
by performing allocentric-to-egocentric prompt conversion through scene abstraction, removing the
perspective-related barrier in the question while preserving its original intent in the new prompt.

In our experiments on COMFORT++ [20] and 3DSRBench [38], our method achieves robust spatial
reasoning across a variety of tasks and perspectives. In constrast, baseline VLMs and previous
frameworks for spatial reasoning often struggle with even simple viewpoint shifts, reconfirming
a notable bias toward the camera’s perspective. These results highlight how our abstraction-based
representation significantly enhances the spatial reasoning capabilities of VLMs beyond their default
egocentric perspectives.

2 Related Work
2.1 Spatial Reasoning with VLMs

Building on the remarkable advancements of vision-language models (VLMs) [10, 39, 14, 11, 12],
recent studies have adapted VLMs for real-world spatial reasoning. Numerous evaluations revealed
that VLMs struggle on even elementary spatial-perception tasks [40, 41, 42, 43, 44] and higher-level
spatial reasoning based on images or videos [45, 46, 47, 48, 49, 50]. SpatialVLM [3] tackles this
issue with a data-synthesis pipeline that injects rich spatial cues, while Cambrian-1 [1] introduces
an architecture purposed for improved spatial reasoning. Another line of work allows VLMs to
utilize richer vision-centric data such as points, depth maps or segmentation masks through fine-
tuning [51, 15, 52, 48] or employing auxiliary encoders [2]. Taking a different approach, other
works exploit the planning and programming abilities of language models, building LLM/VLM-in-
the-loop systems that call external vision modules as needed [53, 54, 55]. Notably, SpatialPIN [4]
extracts dense visual priors from multiple vision foundation models [56, 57] and uses a VLM [8] to
combine and interpret this information.

2.2 Visual Perspective-Taking

Visual perspective-taking (VPT) is the ability to imagine an alternative viewpoint, whether from
another person’s perspective or a different camera angle. This ability is essential for fundamen-
tal human skills such as navigation, spatial awareness, and social interaction [58, 25, 59, 60]. To
be regarded as a general vision agent capable of human-like reasoning, a VLM should possess ro-
bust perspective-taking abilities. However, recent analyses reveal that current VLMs fail to shift
to allocentric perspectives, showing a strong bias toward the egocentric viewpoint of a given im-
age [20, 38, 23, 21, 22]. Zhang et al. [20] propose a synthetic evaluation protocol to assess whether
VLMs can adopt different frames of reference (i.e. perspective). Likewise, 3DSRBench [38] in-
cludes real image-question pairs asked from an object’s viewpoint, and finds that recent VLMs
still demonstrate near chance level on perspective-related tasks. These findings suggest that while
VLMs are rapidly improving in both complex visual reasoning [8, 9, 10, 11, 12] and basic spatial
reasoning [14, 1, 3, 15, 2, 16], their abilities remain confined to the egocentric viewpoint, posing
a significant barrier to human-like reasoning. Recently, SAT [61] proposed to improve VLMs’ al-
locentric reasoning through instruction-tuning, yet it remains restricted to left/right relations with
the need for annotations. In this work, we empower VLMs to reason from arbitrary perspectives,
by reformulating any spatial reasoning task into their default egocentric viewpoint, resulting in a
generalizable framework.

2.3 Visual Prompting

Visual prompting frames an input image as an instruction for a VLM, functioning similarly to how
text prompts guide language models [62, 63, 64, 65, 66, 67, 68]. Numerous studies have demon-
strated its effectiveness by exploiting the inherent image comprehension capabilities of VLMs.
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Set-of-Marks [69] augments each object in an image with its corresponding segmentation mask
for more fine-grained visual grounding. Visual Sketchpad [70] provides tool-based framework
for VLMs to utilize drawing tools to annotate images for complex tasks such as math prob-
lem solving and visual search. Recent research further proposes visual chain-of-thought (CoT)
pipelines [71, 72, 67, 73, 74, 75, 76] that visualize intermediate reasoning steps as images and feed
them back to the model as auxiliary inputs. This visual feedback loop has proven effective for spa-
tial tasks, as it anchors textual reasoning to concrete visual cues [71, 73]. Building on this idea, we
propose to transform an abstraction of a given scene and feed it back to a VLM in the form of a
visual prompt, offering a new way for the model to reason from arbitrary viewpoints.

3 Method: Abstract Perspective Change

Our goal is to enable VLMs to solve spatial reasoning tasks from any given perspective (Fig. 2). Let
us call the entity of the target perspective as the reference viewer. Since VLMs inherently approach
spatial reasoning from an egocentric perspective [20], we propose to reformulate perspective-specific
questions to align with the reference viewer’s egocentric perspective. Inspired by theories in mental
imagery [25, 24, 28], we begin by explicitly building an abstraction of the scene and use it as a
foundation for shifting perspectives (Fig. 3).

Q : From the person’s perspective, is 

the tree on the left or the right of the 

house?

Vision Modules

Mental Image

A: On the left! A : On the left!

Human VLM

Scene Abstraction

?

Figure 3: Mental Imagery Simulation. Inspired by how
humans employ mental imagery to reason across different
perspectives (left), we propose a similar process for VLMs,
by constructing an explicit abstraction of the input scene and
using it as a foundation for perspective changes (right).

Overview of APC. We call our approach
Abstract Perspective Change (APC), which
consists of three main stages. (1) First,
APC constructs a coarse 3D abstraction of
the scene from the input image by select-
ing and extracting objects of interest using
off-the-shelf vision modules (Sec. 3.1),
drawing inspiration from human mental
imagery [25]. (2) Next, APC selects a
reference viewer for the spatial reasoning
task among the objects of interests in the
constructed scene abstraction. This deter-
mines “where to look from”. Such a for-
mulation allows the conversion of the allocentric reasoning problem to an egocentric spatial rea-
soning task by performing a perspective change that transforms the base coordinate system of the
abstraction from the original camera view to that of the reference viewer (Sec. 3.2). (3) Finally, the
transformed abstracted scene, which can now be posed as an egocentric problem, is fed back into the
VLM for spatial reasoning (Sec. 3.3). We explore two alternative representations when providing
the VLM with transformed astract scene information: 1) directly feeding numerical 3D coordinates
of each object as a text prompt (numerical prompt), and 2) generating an abstract rendering of the
scene as viewed by the reference perspective (visual prompt). An illustration of our APC pipeline is
shown in Fig. 4, and we detail each step as follows.

3.1 Scene Abstraction

APC begins by building a coarse 3D abstraction of the scene. Given an image I and a spatial reason-
ing question Q, we define the abstraction of a scene as the set SE := {Oi}ni=1 composed of objects
of interest from the question Q. Here, E denotes that the abstraction is defined in the camera’s
egocentric coordinate system, and the number of objects of interest n is determined by the VLM
based on Q. Each Oi corresponds to an object of interest in the image and is represented as a tuple
(ti, ci, pi), where ti is the object’s description, ci ∈ R3 is its 3D position, and pi ∈ S3 is a unit vector
that indicates its orientation. Additionally, the camera is also included as an object of interest. This
abstraction provides a minimal yet sufficient information in order to perform perspective changes,
and mirrors how humans draw and rotate mental images when reasoning with perspectives [28, 25].
It allows for our APC to convert an allocentric problem to an egocentric spatial reasoning task, which
VLMs can better solve [20]. More details are described below.
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Vision Modules

Orientation Semantics Depth

Abstract Perspective Change

3D Scene Abstraction Perspective Change Perspective Prompt Generation

The question requires 3D spatial 
relationship between the woman, 
the dog, and the chair.

Objects: [woman, dog, chair]

The question is asked from the 
woman’s perspective, which is 
different from the viewer’s 
perspective.

Perspective to look from: woman

Woman

Viewer

# Coordinate System

- The origin is at the woman’s position
- The woman's facing direction is [0, 0, 1]

# Object Coordinates

- woman : [0, 0, 0]
- chair : [-1.91, -0.535, 1.438]
- dog : [0.834, 0.467, 1.1]

Perspective-Aware 

Reasoning

Q : From the woman’s 

perspective, is the dog 

on the left or right of the 

chair?

A : Right Scene Abstraction

Visual Prompt

Numerical Prompt

Perspective 
Prompt

Answer: Left

The dog is on the left of 
the chair!

Vanilla VLM Output

Extract Objects of Interest Set a Reference Perspective

Perspective 

Change

Answer: Right

The dog is on the right of 
the chair!

VLM Output

Woman

Egocentric Transformation

Woman

Egocentric Rendering

(x,y,z)

Woman

(x,y,z)

woman

dog

chair

dog

chair

Q : In the woman’s 

perspective, is the 

dog on the left or 

right of the chair?

or

Inputs

Figure 4: Pipeline Overview of APC. Our proposed framework consists of three stages. 1) Scene
Abstraction (Sec. 3.1): APC first detects the objects of interest and build a coarse 3D abstraction of
the scene using off-the-shelf vision foundation models. 2) Perspective Change (Sec. 3.2): Then, a
reference perspective is set and the abstraction is transformed into the reference viewer’s egocentric
coordinate frame. 3) Perspective Prompting (Sec. 3.3): Finally, APC passes the transformed scene to
the VLM by producing (1) a numerical (textual) prompt or (2) an abstract visual prompt, and poses
the question of interest from the reference perspective.

Extracting Objects of Interest. To determine which objects in the image should be included in
the scene abstraction SE , we provide the image I and the question Q to the VLM and instruct it to
identify the list of objects necessary for answering the question. The VLM then returns the list of
objects of interest, specified by their name, which we denote as ti. The detailed instruction prompts
are included in the Appendix (Sec. E).

Building Object Abstractions. Given the list of objects of interest, we complete our abstracted
scene representation by extracting the position and orientation of each object Oi using off-the-shelf
vision foundation models. To obtain the 3D position of Oi, we first query GroundingDINO [32]
with image I and the object description ti and obtain its 2D bounding box bi. We then crop I with
bi, and utilize SAM [77] to obtain a precise segmentation mask for Oi. Next, we extract the metric
depth map of I using DepthPro [78] and unproject the pixels within the segmentation mask to 3D.
Subsequently, the position ci is obtained by taking the median coordinate of this 3D point cloud. For
further implementation details, please refer to the Appendix (Sec. C). Estimating the orientation pi
for each object Oi is also necessary to perform the desired perspective transformation. We utilize
OrientAnything [37], which returns the object’s frontal orientation within the camera coordinate
system. For this, we crop the image with bi and feed the cropped image to OrientAnything to obtain
Oi’s orientation, hence completing our scene abstraction representation.

3.2 Perspective Change

With egocentric scene abstraction SE for a given image I and question Q, APC then determines the
reference viewer and performs perspective change to obtain a transformed scene abstraction from the
reference viewer’s perspective. This effectively converts an allocentric problem into an egocentric
task, which VLMs find easier to handle.

Setting a Reference Perspective. APC first determines “where to look from” by selecting a refer-
ence viewer from the set of objects of interest. For this, we provide the spatial reasoning question Q
to the VLM and instruct it to identify the reference perspective from which the question should be
answered. We denote the extracted reference perspective as A, and provide the complete instruction
for perspective extraction in the Appendix (Sec. E).

Transforming Scene Abstraction. After identifying the reference viewer, we then transform the
original camera-based scene abstraction SE into the reference viewer’s egocentric coordinate sys-
tem. Specifically, we apply coordinate transformation from the camera’s frame to that of the refer-
ence viewer A. In the resulting abstraction SA, the reference viewer A is placed at the origin, and its
orientation is aligned with the z-axis. This step supports APC’s main objective of reframing a gen-
eral perspective question—typically an allocentric problem—into the reference viewer’s egocentric
viewpoint, making it an egocentric task. Finally, we provide SA to the VLM so it can answer the
question Q from A’s perspective. We describe this stage more in depth below.
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Given the color-object map above, change all the colored boxes in the below response into 

their respective objects.

[Original Response]: The blue cube is located on the left side of the red cube.

      : The snowman is located on the left side of the horse.

Based on the previous response, answer the question: { Question }

Q : From the woman's 

perspective, which 

object located on the 
left side, the snowman 

or the horse?

A : snowman

Numerical Prompt

Imagine that you are at the woman’s position and facing 

where she is facing. We have the coordinates of different 

objects in the woman’s coordinate system.

# Coordinate System

• The origin is at the woman’s position.

• The woman's facing direction is [0, 0, 1], which is 

aligned with the z-axis.

• The x-axis is to the right, the y-axis is up, and the z-axis 

is forward.

# Object Coordinates

• woman : [0, 0, 0]

• snowman : [-1.741, -0.707, 1.611]

• horse : [0.746, 0.187, 1.08]

# Task

Given the above woman’s coordinate system and the 

object coordinates, please answer the following question:

{ Question }

Visual Prompt

# Object Abstraction

We provide a color-object map that maps each colored box to an 

object:

# Color-Object Map

• blue cube → snowman

• red cube → horse

# Abstract Question

Which object is located on the left side, the blue cube or the red cube?

     : The blue cube is located on the left side of the red cube

Figure 5: Perspective Prompt Samples. We explore two variations of perspective prompting, nu-
merical (left) and visual (right). Numerical (textual) prompt is generated by directly utilizing the
3D coordinate and orientation information. To generate the Visual prompt, we first place a colored
cube at each object’s identified 3D position then render the scene at the reference viewpoint, which
results in an egocentric depiction of the scene. In addition, we construct an abstract question along
with object-color mapping to ground the abstracted view.

3.3 Perspective Prompting

The final step of APC involves generating a prompt from the transformed scene abstraction SA to
feed as input for the VLM. That is, how is the VLM asked with the transformed, now egocentric
spatial reasoning task? We refer to our generated prompt as the perspective prompt for image I
and question Q. Since VLMs can take images and text inputs, we explore two choices for the
representation of this prompt: numerical (textual) and visual.

Numerical (Textual) Prompt. Recall that an object abstraction in the transformed scene abstrac-
tion SA consists of the object’s textual description, its corresponding 3D position, and its orientation,
i.e. O′

i = (ti, c
′
i, p

′
i). Hence, a straightforward approach is to directly feed this information into the

VLM. Specifically, we include the 3D position c′i in a predefined instruction template and instruct
the VLM to directly solve the question Q.

Visual Prompt. Our goal is to let VLMs “view the scene from A’s perspective”; thus an alternative
choice for the perspective prompt is a visualization of our abstraction SA. We begin by assigning
each object an equal-sized cube, with each cube’s position matching the objects’ positions c′i. We
then render these cubes from the reference viewer A’s vantage point, generating an egocentric de-
piction of the scene abstraction. To distinguish between objects, each cube is assigned a unique
color. When providing this information to the VLM, we modify the original question Q to reflect
the abstract visual representation. Specifically, we replace object names (e.g. “dog”) with their cor-
responding colored cubes (e.g. “red box”), forming an abstract question Q∗. Refer to Fig. 5 for an
example of an obtained abstraction question. Putting it all together, the VLM receives as a prompt
both the abstract rendered image—showing colored cubes—and the reformulated question Q∗. This
allows it to answer spatial reasoning questions originally posed from arbitrary perspectives by rea-
soning with this abstract, egocentric visual prompt. More details on the visual prompting process
are presented in the Appendix (Sec. C.3).

4 Results

In this section, we present the experimental results of our APC across a range of spatial reasoning
tasks that include specified reference perspectives. We compare APC to multiple baseline meth-
ods and show how our abstraction-based allocentric-to-egocentric reasoning framework enables the
VLM to handle alternative perspectives. We use Qwen2.5-VL [11] as our backbone VLM.

4.1 Evaluation Settings

Benchmarks. We validate our APC on both synthetic [20] and real-world [38] benchmarks in
which the spatial reasoning requires perspective changes. Sample image-question pairs from each
benchmark are shown in Fig. 6.

6



• COMFORT++: Zhang et al. [20] introduce COMFORT, a benchmark synthesis protocol
designed to evaluate VLMs on perspective-aware spatial reasoning. It employs a simple
Blender [79] rendering pipeline to place multiple objects in a synthetic scene with one refer-
ence viewer and various other objects. Each scene poses a spatial reasoning question from the
reference viewer’s perspective. Building on COMFORT, we construct four types of spatial rea-
soning tasks that require a reference viewer different from the camera: left/right, closer/further,
visibility, and facing.

• 3DSRBench: Ma et al. [38] introduce a 3D spatial reasoning benchmark based on MS-COCO
images [80]. We focus on three categories that require an allocentric viewpoint: left/right, vis-
ibility, and facing. Note that we recast the original front/behind question in 3DSRBench into a
visibility question using the same images. We provide further discussion on the dataset and the
evaluation protocol in the Appendix (Sec. D).

Real – 3DSRBench

Spatial Relationship (L/R) Visibility

Q : If I stand at the teddy 

bear’s position facing where it 

is facing, is the kid visible or 
not?

A : Yes

Q : If I stand at the fridge’s 

position facing where it is 

facing, is the microwave on 
the left or right of me?

A : Right

Q : From the cat’s perspective, 

which object between dog, 

snowman is visible? 
A : Snowman

Q : From the horse’s 

perspective, which object is 

located closer to the viewer, 
the duck or the basketball?

A : Duck

Synthetic-COMFORT++

Spatial Relationship (L/R) Facing Direction (U/B)

Facing Direction

Q : Which object is the man in 

blue t-shirt facing towards, the 

frisbee or the bench?
A : Frisbee

Q : From the refrigerator’s 

perspective, which object is 

located closer to the viewer, 
the laptop or the camel?

A : Laptop

Closer

Figure 6: Example image-question pairs from
3DSRBench [38] and COMFORT++ [20] bench-
marks. The tasks probe spatial reasoning across
left-right relations, object visibility, closeness,
and the facing direction of objects.

Baselines: VLMs. We benchmark our APC against
multiple state-of-the-art VLMs, including both
open-source and proprietary models. For open-
source, we include LLaVA-NeXT [39], LLaVA-
OneVision [14], Molmo [12], and Qwen2.5-
VL [11]. We also include proprietary models:
GPT-4o [8] and Gemini-2.0-Flash [9]. We refer
to these as pure VLMs. Additionally, we compare
against grounded VLMs, which include models ex-
plicitly tuned for spatial reasoning, such as Spa-
tialVLM [3] and SpatialRGPT [2]. We also in-
clude SpatialPIN [4], which leverages interactions
between VLMs and vision foundation models for
complex spatial reasoning.

Baselines: Dense Reconstruction. To compare
APC with standard dense reconstruction techniques
for novel view synthesis, we introduce two base-
lines. First, we extend SpatialPIN [4] to include our
perspective change phase (Sec. 3.2). We use the gen-
erated meshes from its original pipeline and render the meshes from the reference perspective, and
denote this extension as SpatialPIN∗. Refer to the Appendix (Sec. B) for more details. Second,
we adopt ViewCrafter [81], a novel view synthesis method designed for single-image inputs. For
both baselines, we synthesize a novel view according to the reference perspective’s relative pose,
and feed the resulting image to the VLM for spatial reasoning.

4.2 Evaluation on COMFORT++ [20]
Tab. 1 (cols 2-5) provides quantitative comparisons on COMFORT++. Here, APC-Vis refers to our
visual prompt, and APC-Num corresponds to the numerical prompt. Even though the benchmark
consists of objects rendered in a simple, synthetic scene (see Fig. 6), we find that most pure VLMs
(rows 3-9) struggle with the left/right task, hovering around chance level with the best performing
model LLaVA-OneVision scoring only 55.33%. This confirms earlier observations [20] that VLMs
fail to adopt alternative perspectives. Even specialist VLMs designed for spatial reasoning perform
poorly, with SpatialVLM at 46.0% and both SpatialRGPT and SpatialPIN also exhibiting low accu-
racy. We observed that SpatialRGPT often generates hallucinated responses unrelated to the instruc-
tion, thereby resulting in low accuracy. While SpatialPIN∗—employing perspective change—shows
better performance, low-quality meshes often bottleneck further improvements (refer to Sec. B for
more discussions). In contrast, our APC significantly outperforms these baselines, achieving 89.67%
accuracy with a visual prompt and 88.67% with a numerical (textual) prompt.

For the closer task, some VLMs show relatively high accuracy (79.00% for both LLaVA-OneVision
and Cambrian-1), likely since they can also solve the question by comparing object distances di-
rectly from the egocentric viewpoint. Even in this case, APC achieves higher accuracy, attaining 96%
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Method COMFORT++ [20] 3DSRBench [38]
left/right closer visibility facing left/right visibility facing

Random 50.00 50.00 50.00 50.00 50.00 50.00 50.00

LLaVA-NeXT [39] 48.00 47.33 40.00 39.00 34.10 41.57 50.29
LLaVA-OneVision [14] 55.33 79.00 50.94 38.33 32.09 46.51 60.12
Molmo [12] 36.33 35.67 31.88 29.00 19.77 22.97 32.08
Qwen2.5-VL [11] 43.33 74.33 51.25 43.00 34.96 45.06 53.47
Cambrian-1 [1] 52.00 79.00 57.50 41.00 40.97 49.71 65.03
GPT-4o [8] 41.00 61.33 53.75 38.67 2.01 40.12 47.70
Gemini-2.0-Flash [9] 43.67 26.00 40.31 13.00 24.93 57.65 55.20

SpatialVLM [3] 46.00 41.67 42.81 29.33 22.35 46.51 47.11
SpatialRGPT [2] 27.08 33.90 29.25 1.33 25.98 27.19 42.55
SpatialPIN [4] 19.62 23.96 48.43 43.91 11.10 42.40 11.66

SpatialPIN∗ [4] 59.80 70.45 49.84 50.51 50.10 52.30 28.86
ViewCrafter [81] 32.33 53.00 38.75 37.46 28.41 22.47 18.31

APC-Num (Ours) 88.67 96.00 71.25 62.00 71.92 62.79 60.98
APC-Vis (Ours) 89.67 94.33 90.00 88.33 72.78 67.44 66.47

Table 1: Quantitative Comparisons. Purple ( ) represents pure VLMs, green ( ) represents
grounded VLMs, and red ( ) represents dense reconstruction-based frameworks. Gray ( ) corre-
sponds to our APC. Bold and underline indicate the best and the second-best result for each column,
respectively. APC-Num and APC-Vis refer to our method employing numerical prompt and visual
prompt, respectively.

when using a numerical prompt. Moreover, for visibility and facing categories, the baseline mod-
els perform at near-chance levels, failing to take the reference perspectives into account. Notably,
APC exhibits a performance gap between visual and numerical prompts, with the visual prompt out-
performing the numerical one by +18.75% and +26.33%, respectively. We attribute this difference
to trivial logical errors that VLMs often make when relying on numerical coordinates. In contrast,
for these two tasks the visual prompt requires only simple visual perception, mitigating such logical
errors and achieving more accurate results.

4.3 Evaluation on 3DSRBench [38]
Tab. 1 (cols 6-8) presents quantitative comparisons on 3DSRBench, which includes real images.
Compared to the synthetic environment in COMFORT++, using real images introduces additional
noise into both the VLMs’ visual reasoning and our APC’s scene abstraction phase. For the left/right
task, baseline VLMs consistently fall under 50% accuracy, including the grounded VLMs. Even
SpatialPIN∗ with perspective change only reaches 50.10%, at near chance-level. We find that using
ViewCrafter to generate a novel view from the reference perspective yields 28.41% accuracy, due
to the noise and hallucinations during generation. We provide visualizations of the rendered views
from both SpatialPIN∗ [4] and ViewCrafter [81] in the Appendix (Sec. B), along with more discus-
sions on the different between our abstraction-based approach and the dense reconstruction-based
approaches. Compared to other baselines, APC consistently achieves accuracies above 60% both
with visual and numerical prompts, showing that our framework is robust to real images.

For visibility task, while our method outperforms the baselines, the accuracy appears lower than
previous tasks—67.44% with the visual prompt and 62.79% with the numerical prompt. We attribute
this decline to the noise in the scene abstraction phase, particularly errors in detected orientations
or centroids. This issue is evident when compared to the visibility task in COMFORT++, which
employs the same question format but with a simpler scene. Lastly, for the facing task, Cambrian-1
achieves 64.03%, yet our APC with a visual prompt still leads at 66.47%. Qualitative examples on
3DSRBench are shown in Fig. 7.
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Q: Which object is the man facing towards, the trash bin or the motorcycle?

Ours (Numerical) Ours (Visual)Qwen2.5-VL Cambrian

Q: From the cat’s perspective, which object is located on the left side, the camel or the chair?

Q: From the woman’s perspective, which object between penguin, duck is visible?

A: The man is facing towards the 

motorcycle. He appears to be looking 

at it closely, possibly reading 

something on it or examining it. The 

trash bin is behind him and not the 

focus of his attention.

The answer is: Motorcycle

A: The motorcycle is positioned in 

front of him, and his gaze is directed 

towards it, indicating that his attention 

is focused on the motorcycle. 

Therefore, the correct answer to the 

question is: Motorcycle

Reasoning based on 

## Coordinates ## 

man : [0, 0, 0]

trash bin : [-2.644, 0.113, 3.06]…

Then based on the coordinates,…

A: Motorcycle

Reasoning based on #abstract visual 

prompt#, #abstract question#, #color-

object map#:

A: Motorcycle

A: From the cat's perspective, the 

camel is located on the left side, and 

the chair is on the right side.

The answer is: Camel

A: The cat is positioned to the right of 

the chair, and the camel is to the left 

of the chair. Since the question 

specifies the object on the left side 

from the cat's perspective, the correct 

answer is: Camel

Reasoning based on 

## Coordinates ## 

cat : [0, 0, 0]

camel : [0.809, 0.209, 0.268]

Then based on the coordinates,…

A: Chair

Reasoning based on #abstract visual 

prompt#, #abstract question#, #color-

object map#:

A: Chair

A: From the woman's perspective, 

both the penguin and the duck are 

visible. The penguin is on her left side, 

and the duck is on her right side.

The answer is: Both

A: The duck is placed to the right of 

the woman and is closer to her than 

the penguin, which is on the left. 

Therefore, the correct answer to the 

question is: Duck

Reasoning based on 

## Coordinates ## 

penguin : [-0.22, -0.159, 1.228]

duck : [0.246, -0.25, -1.265]

Then based on the coordinates,…

A: Penguin

Reasoning based on #abstract visual 

prompt#, #abstract question#, #color-

object map#:

A: Penguin

Q: If I stand at the person’s position facing where it is facing, is the table on the left or on the right of me?

A: If you stand at the person's position 

and face the same direction they are 

facing, the table would be on your left. 

The table is to the left of the person in 

the image.

The answer is: Left

A: The person is seated with their 

back to the television, and the table is 

directly to their left, partially obscured 

by the laptop stand. 

Therefore, the correct answer is:

Left

 

Reasoning based on 

## Coordinates ## 

person : [0, 0, 0]

table : [0.556, -0.004, -0.646]

Then based on the coordinates,…

A: Right

Reasoning based on #abstract visual 

prompt#, #abstract question#, #color-

object map#:

A: Right

Figure 7: Spatial Reasoning with Perspective Change. Recent VLMs such as Qwen2.5-VL [11] and
Cambrian-1 [1] often struggle with spatial reasoning tasks that require a shift to a specific reference view-
point. In constrast, our APC effectively handles such perspective changes by constructing a scene abstraction
and delivering the transformed view through a simple prompting technique.

4.4 Probing the Perspective-Awareness of VLMs

COMFORT++ Left/Right COMFORT++ Closer

Ac
cu

ra
cy

Angle
Molmo

Qwen2.5-VL Random
LLaVA-OneVisionLLaVA-NeXTCambrian-1

APC-Vis (Ours)

Figure 8: Each plot shows accuracy versus the
angular offset θ between the camera and the ref-
erence viewpoint. While baselines show clear
degradation at certain ranges of θ, APC retains
robust accuracy across all angles, demonstrating
strong perspective-aware reasoning.

Finally, we analyze the perspective-awareness of
each method by assessing spatial reasoning accu-
racy across different viewpoints. Specifically, we se-
lect two tasks—left/right and closer—and construct
60 scenes similar following our setting in COM-
FORT++. Each scene is rendered from 20 evenly
spaced azimuth angles. We define θ as the angu-
lar offset between the camera’s orientation and the
reference viewer’s orientation. Here, for θ = 0◦

the camera is aligned with the reference perspective,
while θ = 180◦ indicates that the reference viewer
is facing towards the camera.

The results are shown in Fig. 8. For the left/right task
(left), the baselines exhibit clear bell-shaped curves,

achieving near perfect accuracy when θ is close to 0◦ (egocentric) but rapidly declining as the mag-
nitude of θ increases (allocentric). In contrast, APC maintains consistently high accuracy across
all angles, demonstrating strong perspective-aware reasoning. For the closer task (right), baseline
models also show noticeable accuracy drops, especially near the leftmost and rightmost θ ranges.
APC consistently achieves over 80% accuracy, robustly handling viewpoints regardless of their devi-
ation from the egocentric perspective.

5 Conclusion
In this work, we introduced APC, a framework empowering VLMs with the capability of perspective-
aware reasoning. Our key idea is to simulate the mental imagery process of humans, abstracting
the scene in an image to facilitate allocentric-to-egocentric perspective shifts, and in turn convey
the transformed view to the VLM in the form of a prompt. The scene abstraction is constructed
using vision foundation models for object detection, segmentation, and orientation estimation. The
reframed prompt from the new perspective, either in text or image form, is then processed by VLMs,
leveraging their egocentric reasoning capabilities. As shown by our experiment on both synthetic
and real spatial reasoning benchmarks, APC enables robust accuracy across diverse perspectives,
thereby opening new possibilities of VLMs on real-world spatial tasks.
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Appendix

In this appendix, we first discuss the limitations of our work and potential directions for future
work (Sec. A). We then analyze the failure cases of two dense reconstruction-based baselines—
SpatialPIN∗ [4] and ViewCrafter [81]—in allocentric reasoning scenarios (Sec. B). We describe the
implementation details of our APC framework (Sec. C) and provide details on the evaluation setups
(Sec. D). Finally, we provide the text prompts used in each stage of our method (Sec. E).

A Limitations and Future Work

Our APC framework empowers VLMs with perspective-aware spatial reasoning, but its use of mul-
tiple vision foundation models [32, 77, 82] introduces additional memory usage compared with
running the VLM alone. In our experiments, we ran inference on two NVIDIA RTX 3090 GPUs
each with 24GB VRAM.

Moreover, the robustness of the scene abstraction stage depends on the accuracy its detection, seg-
mentation, and orientation modules. To quantify each module’s impact, we conducted an ablation
study by substituting its predictions with the oracle ground truth. The left-hand table in Fig. A.1
shows the ablated accuracy on the left/right split of COMFORT++, while the right-hand figures de-
pict representative failure cases. Injecting oracle information consistently improves performance,
indicating that APC’s accuracy is indeed influenced by each module’s robustness, yet does not work
as a critical bottleneck.

Accuracy
APC-Vis 89.67

+ det./seg./depth 91.67
+ ori. 96.67

+ det./seg./depth/ori. 97.33

Figure A.1: Ablation. Accuracy of APC with oracle values (left), and failure cases of the vision
modules (right).

While in this work we introduced a minimal yet effective form of 3D abstraction for perspective
change in VLMs, exploring richer scene abstractions from images could offer an promising direction
for future research—such as the use of 3D bounding boxes [83, 84, 85] and coarse, semantic 3D
scene reconstructions [86, 87, 88].

B Analysis on Dense Reconstruction Baselines

In this section, we further discuss the dense reconstruction-based baselines introduced in Sec. 4.1.
In contrast to APC’s abstraction-based approach, another intuitive approach for perspective-aware
spatial reasoning is to perform a dense 3D reconstruction of the scene and then render a novel view
from the target perspective. This new view can then be provided to the VLM instead of the visual
prompt used in Sec. 3.3. We explore two such approaches that involve dense 3D reconstruction
process: (1) a modified version of SpatialPIN [4], which directly lifts objects from the image into
meshes and renders them from the target view, and (2) ViewCrafter [81], which synthesizes novel
views by using an intermediate point cloud reconstruction. As the original SpatialPIN [4] does
not include a rendering phase for novel target perspectives, we refer to our extended pipeline as
SpatialPIN∗. For the inference of SpatialPIN∗, we used One-2-3-45 [89] in contrast to One-2-3-
45++ [57] in the original paper due to the limited access of the API.

While a dense reconstruction-based approach may appear to be an obvious alternative to our
abstraction-based framework, our experiments show that constructing an accurate and descriptive
view of the target perspective is challenging and expensive. As illustrated in Fig. A.2, the synthe-
sized novel views from both SpatialPIN∗ (row 1) and ViewCrafter (row 2) are often excessively

16



Input Image Target View Input Image Target View Input Image Target View

[Perspective] At the cat’s position facing where 

it’s facing

[Q] Is the laptop to the left or to the right of 

me?

[Perspective] At the couch’s position facing 

where it’s facing

[Q] Which object am I facing, the tv or the 

lamp?

[Perspective] At the chair’s position facing 

where it’s facing

[Q] Is the penguin toy in front or left of me?

V
ie
w
C
ra
ft
e
r

Input Image Target View Input Image Target View Input Image Target View

[Perspective] At the faucet’s position facing 

where it’s facing

[Q] Is the potted plant to the left or to the right 

of me?

[Perspective] At the cat’s position facing where 

it’s facing

[Q] Is the knife in front of me or behind me?

[Perspective] From the refrigerator's 

perspective

[Q] Which object is located closer to the 

viewer, the chair or the woman?

S
p
a
ti
a
lP
IN

*

Figure A.2: Dense Reconstruction Baseline Examples. Novel views synthesized by
SpatialPIN∗ [4] and ViewCrafter [81] both display noisy and inaccurate objects and scene struc-
tures lacking the original context of the input image, thereby leading to low accuracy when VLMs
are fed the images as a visual input for spatial reasoning.

noisy and fail to preserve the context of the input image. Consequently, providing these recon-
structed views to the VLM for spatial reasoning results in lower accuracy as previously shown in
Tab. 1. In addition, both methods incur notably longer inference times due to the dense 3D recon-
struction steps, as shown in Tab. B.1. In contrast, as in our APC, constructing an minimal abstraction
of the scene with precise mappings between the original objects and their abstractions not only yields
more accurate reasoning but also substantially reduces inference time.

Method SpatialPIN∗ [4] ViewCrafter [81] APC (Ours)

Time (s) 336.21 260.57 17.47

Table B.1: Inference Time Comparison. Both dense reconstruction-based baselines [4, 81] require
over 14 times the inference time of our APC to answer a single question.

C Implementation Details

In this section, we provide the implementation details of our APC framework in Sec. 3. As the
backbone VLM, we used Qwen2.5-VL-7B-Instruct1.

C.1 Scene Abstraction
Detection Refinement with VLM. While GroundingDINO [32] excels in object detection, it often
struggles when the input text prompt is complex. We add a simple refinement stage utilizing the
VLM for improved detection accuracy. For each object description ti we keep GroundingDINO’s
predicted candidates whose confidence exceeds a threshold s, then select the top k candidates. The
corresponding image crops are laid out in a grid, and we query the VLM to select the crop that
best matched ti. We set s = 0.15 and k = 5. Fig. C.1 illustrates a case in which the initial
GroundingDINO output is incorrect but is corrected by this refinement step.

Filtering Outliers. To obtain the 3D position of each object abstraction Oi ∈ SE , we unproject
the segmented pixels using the predicted depth map. To handle outliers caused by background pixels
being included in the segmentation masks, we filter out the points whose depth values fall outside the
range [0.9di, 1.1di], where di is the mode depth within the mask. We then assign the coordinate-wise
median of the remaining points in the remaining points as the 3D position ci of object Oi.

1https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct
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“Select the image that best fits the description: ‘man in white shirt’.

Please return its index.”

Input Image Detection Refinement Template Image

Figure C.1: Detection Refinement Example. Starting with candidate detections from Ground-
ingDINO [32], we select the top k predictions and present them as a grid of cropped images (right).
We then query the VLM to return the index that best aligns with the input text prompt. Red indicates
GroundingDINO’s initial choice and green indicates the refined choice.

C.2 Egocentric Rephrasing
Recall that our APC converts an allocentric question Q—originally stated with respect to a refer-
ence viewpoint A—into an egocentric one posed from A itself. To ensure compatibility with the
perspective prompts introduced in Sec. 3.3, we remove the explicit perspective descriptions from
Q. In practice, we query the VLM to rewrite Q, excluding the phrases that mention a reference
perspective. In turn we obtain a perspective-agnostic reformulation of the task, which is then used
in each type of perspective prompt.

C.3 Visual Prompt Rendering.
To render a visual prompt from the transformed scene abstraction SA = {O′

i}ni=1 as shown in Fig. 5,
we use the Trimesh renderer [90]. Note that SA is defined in the coordinate system of the reference
perspective A. Each object O′

i is converted to an equal-sized cube with distinct colors, and the
visual prompt is obtained by rendering the scene accordingly. Given the camera in SA faces in the
positive z-direction, only the objects with z > 0 appear in the visual prompt. Objects with z ≤ 0
are considered to be out of view ( not visible) from perspective A.

Normalization. To prevent cubes from appearing too small or large in the visual prompt, we nor-
malize the coordinates of SA, ensuring z values lie within a predefined range [zmin, zmax]. Likewise,
we scale the x, y coordinates into a fixed range [−d∗, d∗] to keep objects within the view frustum.

Camera Translation. By default, we place the camera at reference viewer’s position—the origin
of SA. As an exception, for the left/right task in 3DSRBench [38], we shift the camera backward
along the z-axis to ensure all objects in the scene appear in the visual prompt. This adjustment
is applied to match the benchmark’s setup, where an object that lies behind and to the right of a
reference viewer is still treated as being on the right side from that viewer’s perspective.

D Evaluation Details
In this section, we provide further details on our evaluation setup in Sec. 4. Each VLM response
is scored with a two-step process that combines exact matching and LLM-assisted evaluation. We
first perform exact matching: if the response consists solely of the correct option index or the exact
answer phrase, we label it as correct. Otherwise, we pass the entire response to an LLM along
with the answer to determine its correctness. For this, we used the judgment prompt template from
VLMEvalKit [91].

Following 3DSRBench [38], we employ CircularEval [92], which takes into account VLM’s re-
sponse consistency by permuting the answer options for each image-question pair. The VLM is
considered to be correct for a question Q only if it selects the correct across all permutations. Cir-
cularEval is applied for both COMFORT++ [20] and 3DSRBench [38].

To construct the COMFORT++ benchmark for each task, we first collected 7 object meshes from
the original implementation [20] and additional 6 meshes from Objaverse-XL [93]. For the left/right
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and closer tasks, we arranged three objects in a predefined layout, designating one as the reference
viewer, and added random perturbations to the objects’ x, y coordinates to diversify the layouts.
We prepared 60 scenes and rendered each from 20 evenly spaced azimuth viewpoints. Then, we
randomly sampled five views per scene, resulting in a total of 300 images for each task. For the
visibility task, we created 160 scenes, each containing a reference viewer and single target object
positioned so that the object is either visible or invisible from the viewer’s perspective. We rendered
each scene two opposite viewpoints, yielding 320 images. Finally, for the facing task, we arranged
three objects in a linear configuration, setting the central object as the reference viewer, and oriented
it to face either one of the two remaining objects. Each scene is rendered once, resulting in 300
images in total.

For 3DSRBench [38], we used the original left/right and facing criteria. We recasted the fron-
t/behind task as a visibility judgment for two reasons: (i) the provided task can be more naturally
interpreted as deciding whether an object is visible from the reference object’s viewpoint, and (ii)
VLMs struggle to infer that an object is behind it when the object is not present in the image it-
self. This adjustment better serves our goal of measuring the egocentric and allocentric reasoning
capabilities of VLMs.

E Details on Text Prompts
In this section, we present the text prompts used at each stage of our APC pipeline. To guide the
VLM towards the desired response format, we include examplar question-answer pairs for in-context
learning. For the text prompt fed along with the visual prompt, we add simple prompt engineering
to help suppress hallucinations: we (i) define the the relation “facing towards” and (ii) explicitly
that the larger object is considered as being closer to the viewer—an assumption that holds since our
abstraction assigns equal size to every object.

(1) Scene Abstraction (Sec. 3.1) — Extracting Objects of Interest.

# Situation Description
Given an image and a spatial-reasoning question, identify all entities mentioned
in the question.

# Example
[Question] You are standing at the airplane’s position, facing where it is
facing. Is the person on your left or right?
[Detect] [airplane, person]

# Your Task
Now, given the question below, list the entities that appear in the question.

[Question] {Question}
[Detect]

(2) Perspective Change (Sec. 3.2) — Setting a Reference Perspective

Given a question about spatial reasoning, we want to extract the perspective
of the question. If the question is from the camera’s perspective, return
++camera++.

# Example
[Question] From the woman’s perspective, is the tree on the left or right?
[Perspective] ++woman++

# Your Task
Given the question below, please specify the perspective from which the question
is asked.
You must return in the format: [Perspective] ++object name++

[Question] {Question}
[Options] obj1, obj2, ..., camera
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[Perspective]

(3) Egocentric Rephrasing (Sec. C.2)

From a sentence with a perspective description, we need to remove the perspective
description.

# Example
[Question] From the car’s perspective, which is on the right side: the person or
the tree?
[Output] Which is on the right side: the person or the tree?

# Your Task
Given the question below, please remove the perspective description.

[Question] {Question}
[Output]

(4) Perspective Prompting (Sec. 3.3) — Visual Prompt.

This is an image of a 3D scene.

- The viewer is facing towards the object that is closest to the center.
- A larger object is closer to the viewer compared to a smaller object.

# Task
Based on the image, please answer the following question.

{Question}

Please only return the answer.

(5) Perspective Prompting (Sec. 3.3) — Numerical Prompt.

Imagine that you are at the {src obj}’s position and facing where it is facing.
We have the coordinates of different objects in {src obj}’s coordinate system.

# Coordinate System
- The origin is at the {src obj}’s position.
- The {src obj}’s facing direction is [0, 0, 1], which is aligned with the
z-axis.
- The x-axis is to the right, the y-axis is up, and the z-axis is forward.

# Object Coordinates
[...]

# Task
Given the above {src obj}’s coordinate system and the object coordinates, please
answer the following question:

[Question] {Question}
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