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Abstract

Mamba, a lightweight sequence modeling framework offering near-linear complex-
ity, presents a promising alternative to Transformers. In this work, we introduce
MOGO (Mamba Only Glances Once), an end-to-end framework for efficient video
action detection built entirely on the Mamba architecture. In MOGO, our newly
designed Mamba-based decoder can even use just one Mamba layer to effectively
perform action detection. It uses neither Transformer structures nor RCNN-like
methods for proposal detection. Our framework introduces two key innovations.
First, we propose a pure Mamba-based encoder-decoder architecture. The encoder
processes cross-frame video information, while the decoder incorporates two novel
Mamba-based structures that leverage Mamba’s intrinsic capabilities to detect
actions. Theoretical analysis and ablation experiments confirm their synergy and
the necessity of each structure. Second, we design a video token construction
mechanism to improve the model’s performance. The token importance block can
ensure that the retained token information is highly relevant to the predicted targets.
These two innovations make MOGO both efficient and accurate, as demonstrated
on the JHMDB and UCF101-24 benchmark datasets. Compared to SOTA action
detection methods, MOGO achieves superior performance in terms of GFLOPs,
model parameters, and inference speed (latency) with comparable detection pre-
cision. Additionally, it requires significantly less GPU memory than some SOTA
token reconstruction methods. Code is available at https://github.com/YunqingLiu-
ML/MOGO.

1 Introduction

The goal of video action detection is to localize and classify actions within video sequences, requir-
ing models to capture spatiotemporal dependencies. Recently, Sia and Rawat [1] address this by
introducing a lightweight encoder-only model for open-vocabulary detection. Other advancements in
this field, such as DETR [2] and TubeR [3], have relied on Transformer-based architectures. These
models leverage the attention mechanism to model long-range dependencies across video frames,
achieving SOTA performance in capturing temporal context and action semantics. However, the
self-attention mechanism incurs quadratic computational complexity with respect to sequence length,
making it computationally expensive for long video sequences. For instance, the methods proposed in
[4] and [5] achieved significant performance improvements but are reported to have relatively high
GFLOPs. This inefficiency makes such models less practical for resource-constrained environments.

The Mamba framework [6] emerges as a promising alternative to Transformers. Unlike the attention-
based paradigm, Mamba employs state-space modeling to achieve near-linear complexity, offering a
scalable solution for processing spatiotemporal data. Recent adoptions, such as VideoMamba [7]
for video classification and MS-Temba [8] for temporal action localization, demonstrate Mamba’s
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efficiency in handling sequential data. However, its potential remains underexplored in the context of
video action detection.

Figure 1: Motivation of MOGO. Comparison
between Transformer and Mamba complexity in-
spires our framework design. By Mamba-izing
the Transformer’s (1) attention architecture, our
framework enables (2) linear transformation for
single-sequence modeling and (3) selective copy-
ing mechanism for cross-sequence modeling.

To develop an efficient and effective framework
for video action detection, we proposed a purely
Mamba-based framework. The motivation of
our design is detailed in Figure 1. The Trans-
former depends on self-attention and cross atten-
tion to capture the dependency relationships. In
contrast, Mamba utilizes linear transformations
to project queries into target spaces and employs
selective copying to efficiently model cross-
sequence information. Building on this, we pro-
pose MOGO (Mamba Only Glances Once), an
end-to-end framework for efficient video action
detection. Unlike SOTA methods that incorpo-
rate external structures such as RCNN for region
proposals [4] or Transformer components like
ViT [9], MOGO eliminates the need for these
additional modules. Our framework introduces
two key innovations:

(1) Pure Mamba-based Architecture. Our de-
signed decoder processes learnable queries and
video information tokens through a streamlined
pipeline of EQ-Mamba, QVI-Mamba, and an
FFN as shown in Figure 2. Ablation studies con-
firm the synergistic necessity of each module.

(2) Video Token Construction Mechanism. As
shown in Figure 3, this module computes im-
portance scores for encoder tokens across spa-
tiotemporal frames. Coupled with an target-
guided loss function, this mechanism reduces
redundancy and enhances token relevance, fur-
ther boosting efficiency.

The whole method’s main strengths are compu-
tational efficiency and a token-importance block, as demonstrated on the JHMDB [10] and UCF101-
24 [11] benchmark datasets. Compared to SOTA action detection methods, MOGO achieves superior
performance in terms of GFLOPs, model parameters, and inference speed (latency) with comparable
detection precision. Additionally, it requires significantly less GPU memory than some SOTA token
reconstruction methods.

2 Method

2.1 Overall MOGO Architecture

Our proposed MOGO framework introduces an end-to-end action detection pipeline built entirely on
a Mamba-based architecture, as illustrated in Figure 2. Specifically, it detects actions on a designated
keyframe within a short video clip while using the remaining frames as temporal context. Because
predictions are made on a single keyframe, some non-keyframe tokens may be redundant or weakly
informative, which motivates selective token retention and importance modeling, as illustrated in
Figure 3. Unlike SOTA methods that incorporate external structures such as RCNN for region
proposals [4] or Transformer components like ViT [9], MOGO leverages only Mamba’s inherent
capabilities, with a primary goal of minimizing computational overhead while maintaining robust
detection performance. The MOGO architecture comprises several key components, and the main
elements include: Mamba encoder, Mamba decoder, token importance module, and loss function.

2.2 Pure Mamba-based Architecture

Our proposed method adopts an end-to-end purely Mamba-based architecture as shown in Table 1:
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Figure 2: Overview of the proposed structure. The encoder processes PE-embedded video tokens
through Mamba layers, accompanied by a target-based token importance block that highlights
informative regions for action detection. The decoder then operates on two Mamba-based modules
followed by a linear layer. Illustration corresponds to batch size = 1. (EQ-Mamba: Eye Query-based
Mamba, QVI-Mamba: Query-Video Information-fused Mamba, PE: Positional Embedding, ResDrop:
Residual connection with Dropout, Drop: Dropout, K: Key frame.)

Encoder. Leveraging the pretrained models [7], our encoder is designed to extract comprehensive
feature maps from input video frames. Following the patch embedding, which transforms the input
clip into a sequence of patches, we incorporate spatial positional embeddings and temporal positional
embeddings to model inter-frame dependencies across the video sequence. Then we incorporate a
bidirectional Mamba setup. The encoder comprises le layers, which is evaluated through ablation
studies in Section 3.4.

Table 1: Tensor shape flow across the MOGO architecture. M contains keyframe tokens and
important non-keyframe tokens.

Stage Tensor Shape / Description

Input x [B, 3, T,H,W ]
Patch Embedding Conv3D(x) [B,C, T,H′,W ′], where C = embed_dim
Flatten and Rearrange x [B, T ·N,C], N = H′ × W ′

Add Positional Embedding +PE, +TPE [B, T ·N,C]
Token Importance Block MLP(x) [B, T ·N, 1]
Apply Mask x · σ(MLP(x)) [B, T ·N,C]
Mamba Encoder (depth = le) Block1 → · · · → Blockle [B, T ·N,C]
Mamba Decoder (depth = ld) Block1 → · · · → Blockld –
- Decoder Queries Q = Embedding(Nq) [Nq, B, C]
- Decoder EQ-Mamba Q′ [Nq, B, C]
- Decoder QVI-Mamba Concat(Q′,M) [Nq + M,B,C]→ [Nq, B, C]
- Decoder FFN F [Nq, B, C]
Prediction Heads Class: Linear(F ) [B,Nq, num_classes + 1]

Box: MLP(F ) [B,Nq, 4] (normalized)

Decoder. Our decoder, as depicted in Figure 2, uses the Mamba operator to process queries and
integrate video information. Given an input sequence x ∈ RL×d, the Mamba block computes its
output y ∈ RL×d via a state-space model:

ht = A · ht−1 +B · xt

yt = C · ht
(1)

where A,B,C ∈ Rd×d are learnable transition and projection matrices, and ht is the hidden state at
time step t. Compared with attention-based modules, this formulation enables linear-time complexity
in sequence length L.

In the decoder design, Mamba serves two key functions: (1) linear transformation, and (2) feature
extraction and sequence modeling based on selective copying [6]. EQ-Mamba primarily uses the
first function, while QVI-Mamba exploits the second. Additionally, the concatenation of query and
video information in the decoder draws inspiration from [7]. The decoder, consisting of ld layers, is
evaluated through ablation studies in Section 3.4 and A.4. Specifically, EQ-Mamba operates solely
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Figure 3: Structure of the video token construction mechanism. This module enables the decoder
to obtain sufficient and effective information for action detection. Sufficient information is ensured
by incorporating the complete spatial features of the keyframe (prediction frame), while redundancy
reduction is achieved by filtering encoder tokens through token importance block. Importance scores
are computed for each token in the encoder, retaining only the top-k highest-scoring tokens to supply
temporal information. These tokens are then combined with a fixed keyframe memory portion, which
preserves semantic context.

on the query embeddings, projecting and refining them within their own latent space. This process
resembles self-attention in its focus on intra-query relationships but relies on Mamba’s state-space
modeling instead of attention mechanisms, enabling efficient linear transformations of the query
tokens. QVI-Mamba integrates the refined query embeddings with the encoder’s video features
(hidden states), concatenating them to create a mixed representation that captures both query-specific
information and video context. Finally, the FFN processes the output of the QVI-Mamba block,
further transforming the fused representations to predict bounding boxes and class probabilities.

The key difference between Mamba and Transformer architectures underpins our design choices.
While Transformers serve as attention and correlation mechanisms between tokens, Mamba relies on
its unique mechanism of information storage and linear transformation via state-space dynamics.

2.3 Video Token Construction Mechanism

Prior work [4] shows that employing a token-importance mechanism improves performance over
processing all tokens. In this work, to optimize token utilization, we introduce a token importance
module. This module selects the most relevant tokens from the encoder, which aggregates tokens from
different spatiotemporal frames, to enhance the decoder’s ability to capture salient features. In encoder,
it employs an MLP to compute importance logits for each token, followed by a sigmoid activation to
derive importance scores. It should be noted that this part consists of learnable parameters, which are
dynamically adjusted based on the token importance loss. For details on the computation of the loss,
refer to Section 2.4. The decoder’s input tokens are derived by selecting high-scoring tokens based
on their importance, resulting in a more informative and compact representation for processing, as
shown in Figure 3.

Specifically, we compute importance scores for each token in the encoder, and then guide the token
selection process in the decoder. To preserve the features learned from the large-scale pretraining
model, we do not reduce the number of tokens in the encoder; instead, token importance serves only
as an indicator at this stage. The importance scores are directed by a learnable mechanism. After
calculating the importance scores, we perform token selection by picking the top k percentage of
tokens with the highest importance scores for each frame, keeping only the most informative tokens
for further processing in the decoder. To further enhance this process, we combine a fixed portion of
the memory, which contains all the keyframe tokens, with the selected tokens. The keyframes are
crucial as they contain the accurate semantic information for the current frame. Next, we describe
this process in tensor notation. For a batch of size B, the encoder processes a total of T ×Nf tokens,
where T is the frame number, and Nf is the number of tokens per frame. The token importance block
assigns an importance score to each token (derived via the learnable MLP with sigmoid activation).
Based on a top-k selection strategy (k is evaluated through ablation studies in Section 3.4.), we retain
⌊k ·Nf⌋ tokens per frame. These selected tokens, totaling Ns = ⌊k · (T ·Nf )⌋, are concatenated
with the keyframe tokens (fixed at Nf per keyframe).
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2.4 Loss Functions

Since Mamba does not possess an intrinsic attention-based importance mechanism as Transformers
do, this section seeks to answer the question: what constitutes important or relevant tokens? We do so
under the premise that the L2 magnitude of a token does not directly represent its actual importance.
Our training objective comprises two parts:

Detection Loss (L1): We adopt a DETR-style loss to supervise the action detection, which integrates
three components: classification, bounding box position, and overlap, assigned weights of wcls, wbox,
and wovl, respectively. A Hungarian Matcher is employed to align predictions with ground-truth
targets. These weight values are ablated in our ablation experiments to optimize performance, as
we do not directly adopt coefficients from prior DETR-based works (e.g., [2], [12]), given that our
loss function is newly designed to suit the Mamba-based architecture. There’s also a weight for the
no-object class.

Token Importance Loss (Limportance): To learn token importance scores, we construct a binary
ground-truth mask y

(b)
i for each token i in sample b, indicating whether the token’s center coordinates

fall inside any ground-truth bounding box. Let α(b)
i be the raw logit from the MLP for token i in

sample b. We compute the binary cross-entropy loss:

Limportance = −
1

BN

B∑
b=1

N∑
i=1

[
y
(b)
i log(σ(α

(b)
i )) +

(
1− y

(b)
i

)
log

(
1− σ(α

(b)
i )

)]
(2)

where B is the batch size, N is the total number of tokens per sample, and σ(·) is the logistic sigmoid.

Total Loss: The final loss combines the two objectives:

L = L1 + λ · Limportance, (3)

where λ balances action detection performance and token importance learning, which is evaluated
through ablation studies in Section 3.4.

Mamba lacks an attention map, unlike Transformers, which use attention scores to represent token
importance. Transformers motivated us to design token importance. The proposed token importance
block is not an off-the-shelf, plug-and-play module, but a learning-based, multi-stage system requiring
end-to-end training. The key steps are:

(1) Encoder-side importance calculation. The encoder includes a trainable MLP that outputs a
continuous importance value for each token, supervised by our custom loss.

(2) Token selection in the decoder. The learned importance scores are used to select important tokens
from the non-keyframes, which are concatenated with the keyframe tokens as the decoder input.

(3) Loss design. The overall loss combines standard action detection loss and token importance loss.
The optimal loss ratio is determined through ablation studies.

This system’s effectiveness relies on the synergy of all its components and joint training.

3 Experiments

3.1 Experimental Setup

We evaluate our MOGO on three common datasets for video action detection: JHMDB [10], UCF101-
24 [11] and AVA [13]. JHMDB contains 928 trimmed videos from 21 action classes. We follow the
data annotation and procedure outlined in [14]. UCF101-24 comprises 3,207 videos spanning 24
sports classes. Following standard practice, we report performance on split-1. AVA is a large-scale
benchmark and contains 299 15-minute videos, divided into 211k training clips and 57k validation
clips. The results for AVA are shown in Section 4. We evaluate performance with mAP under an IoU
threshold of 0.5 on NVIDIA A40 GPUs. Other implementation details are shown in Section A.3.
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Table 2: Efficiency analysis of MOGO.

Module #Param GFLOPs

Encoder 73.996M 101
Query_embed 57.6K -
Decoder 7.228M 2.297
Class_embed 13.271K 1.325e-3
Bbox_embed 0.667M 6.659e-2

Overall 81.962M 104

Figure 4: Breakdown of parameter and com-
putational distribution across components.
Based on the pretrained encoder, only a small
amount of extra computation is added while still
achieving good performance.

3.2 Efficiency Analysis

To assess the computational efficiency of MOGO, we measure the number of parameters, GFLOPs
and inference speed and follow the code procedure in [7].

First, Table 2 details the parameters and GFLOPs for the model and its key modules. The entire
MOGO model comprises 81.962 million parameters and incurs around 104 GFLOPs, reflecting a
lightweight design compared to SOTA methods (see Section 3.3). The encoder dominates the compu-
tational load, accounting for roughly 97.7% of the total FLOPs as shown in Figure 4, as the encoder
processes the 8-frame input using the pretrained Mamba-based backbone. In contrast, the decoder is
significantly lighter, with 7.228M parameters and 2.297 GFLOPs, while auxiliary components like
query_embed (57.6K parameters), class_embed (13.271K parameters), and bbox_embed (0.667M
parameters) contribute minimally to the overall computational cost. This means that, based on the
pretrained encoder, we only added a small amount of extra computation but still achieving good
precision performance.

Second, we benchmark the inference speed using the throughput protocol defined in [4] with a video
clip length of 8 frames. We run the model with 3 warm-up iterations and compute the average
inference time over 10 additional runs. Our results show that MOGO achieves an average latency
of 3.9 ms/img, corresponding to a throughput of 256 img/s. As shown in Table 3, this performance
surpasses existing transformer-based methods: EVAD [4] (240 img/s on ViT-B), WOO [5] (176 img/s
on ViT-B, 147 on SF-R101), and TubeR [3] (64 img/s). While EVAD reports a peak throughput of
334 img/s under certain alternative configurations, our approach remains highly competitive, even
though the current version of Mamba’s CUDA/C++ kernels still has limitations in parallel processing
relative to Transformer implementations.

3.3 Comparison with SOTA Methods

Table 3: Comparison of MOGO with SOTA methods. GFLOPs are reported where available. Art.:
Architecture, Thrp.: Throughput. C: CNN, T: Transformer, M: Mamba. dec.: decoder. Cv.: The
original work only reported GFLOPs based on image-based RGB input, which has been converted
here. J: JHMDB, U: UCF101-24.

(a) Comparison on efficiency.
Model Art. Backbone #Param GFLOPs Thrp.

SlowFast [15] C SF-R101-NL - 234×30 -
MOC [14] C DLA34 - 235.2 [Cv.] -
MaskFeat [16] T MViTv2-L 218M 2828 -
EVAD [4] T ViT-L 185M (dec.) 737 153
MeMViT [17] T MViTv2 52.6M 620 -
VideoMAE [18] T ViT-L 305M 597 -
WOO [5] T ViT-B 314M (head) 378 176
WOO [5] T SF-R101 314M (head) 252 147
EVAD [4] T ViT-B 185M (dec.) 243 240
TubeR [3] T CSN-152 - 240 64*

Ours (MOGO) M Mamba-M 82M 102–104 256

(b) Comparison on performance.
Model Art. Backbone Pre-train f-mAP (J) f-mAP (U)

EESSL [19] C I3D-CNN - 64.4 69.9
ACT [20] C VGG - 65.7 69.5
SMT [21] C I3D-CNN K400 69.8 73.9
MOC [14] C DLA34 - 70.8 78.0
AVA [13] C I3D-VGG - 73.3 76.3
STAD [22] T ViT-B InternVid 61.4 71.6
WOO [5] T SF-R101 K600 80.5 76.7*
TubeR [3] T I3D IG+K400 80.7 81.3

Ours (MOGO) M Mamba-B K400 76.7 78.2
*: measured by [4].

We evaluate our MOGO model against SOTA methods on two datasets, with results summarized in
Table 3. Our approach achieves an mAP of 76.7 on JHMDB while maintaining a low computational
cost of 102-104 GFLOPs, leveraging an 8-frame Mamba-based backbone. Although our mAP is
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slightly lower than top-performing Transformer-based methods such as WOO (80.5) and TubeR
(80.7), these models rely on heavier architectures (e.g., ViT-B), which may increase computational
overhead. In contrast, our model surpasses all CNN-based methods on JHMDB dataset, including
I3D-CNN architectures like EESSK (64.4), and ACT (65.7), demonstrating the superior efficiency of
Mamba-based modeling over conventional convolution designs. Compared to WOO (SFR101) and
TubeR (CSN-152), our MOGO model reduces GFLOPs by approximately 60% and 57%, respectively,
while only sacrificing 3.8–4.0 mAP points (from 80.5 to 76.7 for WOO, and 80.7 to 76.7 for TubeR)
on the JHMDB dataset. Compared to TubeR (I3D), our MOGO model only sacrifices 3.1 mAP points
on the UCF101-24 dataset. Part of this gap likely reflects the availability of strong Transformer
pretraining (e.g., IG+K400) leveraged by TubeR and other Transformer-based methods, whereas
comparable large-scale pretrained checkpoints for Mamba are still scarce.

Figure 5: Comparison of GPU memory us-
age between our method and EVAD under
different token retention ratios.

Comparison on GPU Memory Usage with
EVAD [4]. We evaluate GPU memory consumption
using the same settings as EVAD (an efficient video
action detection method with significant performance
improvements using Transformer), employing a sin-
gle GPU with a batch size of 8. Both methods adopt
token reduction strategy, where tokens are removed
according to predefined rules. The results in Figure 5
demonstrate that: first, our method consistently con-
sumes less GPU memory compared to EVAD. EVAD
requires around 1.6 times more memory than our
method, when token retention ratio is 0.4. Second,
as the number of retained tokens increases, the GPU
memory usage of EVAD grows significantly. In the
extreme case where all tokens are retained, EVAD
requires 2.8 times more memory than our method.
Therefore, MOGO maintains lower and stable GPU memory footprints compared to EVAD. That
means under the same hardware and experimental conditions, it can employ larger batch sizes
to improve performance further.

3.4 Ablation Studies

Figure 6: Qualitative ablation: visualization of the impact of the token importance mechanism.
Row 1 shows raw Mamba outputs without the loss guidance. Row 2 shows outputs with our proposed
importance modeling. Tokens inside target regions are more emphasized.

Qualitative Ablation. Unlike Transformers, which rely on attention mechanisms to compute token-
to-token interactions, Mamba encodes temporal dependencies implicitly through sequential modeling.
This makes it challenging to directly interpret token importance. As shown in the first row of Figure 6,
raw Mamba outputs tend to produce scattered and less structured token representations. To address
this, we propose a heuristic loss function (see Sec. 2.4), which encourages tokens inside the ground
truth bounding boxes to receive higher importance. Furthermore, to avoid introducing significant
computational overhead, we insert a lightweight MLP directly before the encoder tokens as shown in
Table 1. This MLP outputs a token-wise importance score, which is then multiplied element-wise
with the encoder tokens. With this, as shown in the second row of Figure 6, the token activations
become more focused on semantically meaningful regions. More examples are provided in Figure S4.

Quantitative Ablation. The following ablation experiments are conducted on the JHMDB dataset.
The findings are summarized in Table 4.

Pretrained models. Table 4(a) presents the results of ablation experiments conducted on pretrained
models. All models employ a Mamba-based middle-sized model as the backbone, pretrained on
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Table 4: Quantitative ablation: experiments results. (a) Pretrained models. Using different pre-
trained models as the encoder. MFT: mask with fine-tuning, MPT: mask with pretraining. (b) Encoder
depth. enc.: encoder. (c) Decoder components. The EQ-Mamba and QVI-Mamba components are
critical design elements. These components are evaluated by removing each one individually to
assess their impact on the model’s performance. dec.: decoder, md.: model, rmd.: removed. (d)
Decoder input: temporal info. In the decoder, the top k% of tokens are selected and integrated with
keyframe tokens. (e) Decoder input: keyframe info. Ex.: Exchange token positions of keyframe and
temporal info. (f) Query number. (g) Ratio of total loss.

(a) Pretrained models.
Model Baseline MFT MPT

mAP 51.7 65.0 31.2

(b) Encoder depth.
le mAP enc.GFLOPs (#param)

24 60.4 76 (55.721M)
32 66.2 101 (73.996M)
40 61.1 126 (92.271M)

(c) Decoder components.
Case dec.GFLOPs md.GFLOPs

EQ rmd. 2.098 103
QVI rmd. 0.466 102
Proposed 2.297 104

(d) Decoder input: temporal info.

k mAP dec.GFLOPs(#Param) md.GFLOPs

5 66.4 1.198 (7.228M) 103
10 66.8 1.357 (7.228M) 103
20 67.1 1.676 (7.228M) 103
40 67.4 2.297 (7.228M) 104
50 66.5 2.616 (7.228M) 104
70 65.6 3.237 (7.228M) 105

(e) Decoder input: keyframe info.
Case Removed Ex. Proposed

mAP 53.7 53.9 69.0

(f) Query number.
Case 50 100 200

mAP 58.5 66.0 61.3

(g) Ratio of total loss.
λ 0.1 0.5 1 2

mAP 73.3 75.6 74.4 74.4

the K400 dataset [23] with a resolution of 224×224. The baseline model achieves a mAP of 51.7.
Introducing a mask with fine-tuning significantly boosts the mAP to 65.0. In contrast, using a mask
with pretraining yields a decrease, achieving an mAP of 31.2. These results suggest that fine-tuning
with masking is more effective than pretraining, likely due to better adaptation to the target task.
Further discussion about pretrained models can be found in Section 4.

Encoder depth. The results in Table 4(b) indicate that using 32 layers in the encoder achieves the
highest mAP of 66.2, with an encoder computational cost of 101 GFLOPs (73.996M parameters)
and a model-level cost of 104 GFLOPs. Increasing the depth to 40 layers results in performance
degradation (mAP 61.1) despite a higher computational cost of 126 GFLOPs (92.271M parameters),
likely due to overfitting. Therefore, we set the encoder depth to 32 as the default.

Figure 7: The trends of mAP and decoder
GFLOPs with varying numbers of retained non-
keyframe tokens. It demonstrates the importance
of video feature tokens from non-keyframes as
temporal information. We evaluate the impact of
selecting the top k% of tokens.

Decoder components. Table 4 (c) investigates
the decoder structure by ablating key compo-
nents, EQ-Mamba (EQ) and QVI-Mamba (QVI),
and comparing them against the proposed de-
sign. Removing EQ-Mamba or QVI-Mamba
reduces the mAP significantly (possible theo-
retical reason is that removing EQ is equiva-
lent to a random query directly entering Mamba,
while removing QVI is equivalent to using in-
adequate video information), although decoder
GFLOPs drops slightly. This demonstrates that
every component of our design is indispensable
but lightweight, further validating the correct-
ness of our extrapolation from Transformer to
Mamba as depicted in Figure 1.

Decoder input: temporal information. Table 4
(d) evaluates the impact of selecting the top k%
of non-keyframe tokens in the decoder, which
are integrated with keyframe tokens for process-
ing. As k increases from 5 to 70, the mAP im-
proves from 66.4 to a peak of 67.4 at k=40, while decoder GFLOPs rise from 1.198 to 3.237, with the
number of parameters remaining constant at 7.228M and model GFLOPs slightly increasing from 103
to 105. Beyond k=40, the mAP declines to 66.5 at k=50 and further to 65.6 at k=70, despite higher
computational costs. This indicates that k=40 strikes an optimal balance between performance and
efficiency, making it the most effective choice for this strategy. Figure 7 demonstrates the importance
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of video information from frames other than the keyframe as temporal information. Intuitively, this
drop when k>40 occurs because k controls only the retention of non-keyframe tokens. We keep all
keyframe tokens and perform detection on the keyframe, while non-keyframes serve primarily as
contextual support. As k increases, more low-utility background tokens from non-keyframes are
admitted, which can dilute salient cues and slightly reduce performance.

Decoder input: keyframe information. Table 4 (e) compares different configurations of keyframe
information usage. The one with keyframe information removed achieves an mAP of 53.7, while
exchanging the token positions of the keyframe information and the temporal information (Ex.)
slightly improves the mAP to 53.9. In contrast, the initial arrangement outperforms both alternatives
with an mAP of 69.0. This performance gap demonstrates that the proposed design, leveraging the
full potential of keyframe information, is the most effective approach for video token construction.

Query number. Table 4 (f) evaluates the effect of varying the number of queries on model performance.
This limitation of using a fixed number of queries is discussed in Section 5.

Ratio of total loss. Due to our redesign of the loss function, the relationships between the different
components have also changed, making the final results sensitive to the choice of weights. Therefore,
a re-evaluation of the weight configurations is necessary to optimize performance. The findings are
summarized in Table 4 (g), with parameters defined in Section 2.4. For the total loss ratio, adjusting
λ reveals that 0.5 is the optimal choice, achieving the highest mAP of 75.6.

4 Discussion

First, we discuss innovation 1: pure Mamba-based architecture:

Extension to multi-label detection. MOGO is originally designed for end-to-end detection, while
AVA involves multi-label prediction per bounding box. To further evaluate adaptability, we modified
the existing decoder to support multiple labels per bounding box without introducing an explicit
classification branch. Corresponding adjustments were made to the loss and training setup. On the
AVAv2.2 validation set, the adapted MOGO achieved an mAP of 16.2 (at step 26). This shows that
MOGO can extend to multi-label settings with competitive accuracy. Training logs are presented
in Figure S6. Another Mamba-based work [24] has reported their evaluations; however, a fair
comparison would require additional details (e.g., architectural specifications and FLOPs calculation).

Comparison with FlashAttention. This comparison assesses how an optimized Transformer baseline
performs relative to Mamba. We implemented a decoder variant that replaces the Mamba blocks
with FlashAttention 2.8.2 (non-causal). The modified decoder reduces parameters from 7.228M to
5.321M and GFLOPs from 2.297 to 1.116, indicating higher computational efficiency. Trained on
JHMDB with 4 × A40 GPUs for 50 epochs and a batch size of 32, it achieves an mAP of 70.1 (Initial
loss: 7.7654, grad norm: 14.1749 → Final loss: 0.4765, grad norm: 1.8073). While FlashAttention
offers higher efficiency, its mAP does not surpass our Mamba-based decoder. However, this motivates
improving Mamba’s low-level C++/CUDA kernels.

Table 5: Performance on longer video sequences.
Ex. Frames Pretrained Model Batch Size mAP

1 16 K400 16 69.50
2 64 Breakfast-actions-dataset 4 41.90
3 64 K400 4 63.43

Performance on longer video sequences and
varying pretraining models. We conducted
experiments on longer video sequences using
the UCF101-24 dataset. For each setup, we
employed a corresponding pre-trained encoder
from [7] and adjusted the decoder accordingly.
All experiments were trained for 30 epochs on 2 NVIDIA A40 GPUs. The configurations and results
are summarized in Table 5. These results indicate that our method maintains good performance
on longer video sequences. Moreover, we observed that the choice of pre-trained model plays a
crucial role: using K400 pretraining yields higher accuracy than using the Breakfast dataset [25]. To
further investigate this factor, we trained with a new encoder pretrained on the SSV2 dataset [26]
(2 A40 GPUs, 50 epochs, batch size 30) and obtained an f-mAP of only 64.1 on JHMDB (Initial
loss: 7.9834, grad norm: 67.6360 → Final loss: 0.4847, grad norm: 6.6854). The results confirm that
K400 pretraining remains superior to SSV2 in our setting.

Training with long frames and autoregressive tracking. Autoregressive trackers such as Track-
Former [27] propagate track queries frame-by-frame to jointly detect and track objects across long
videos without fixing a global clip length, illustrating an alternative way to scale beyond 64 frames. In
contrast, our method currently relies on publicly available pretrained encoders [7], whose checkpoints
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are trained for inputs up to 64 frames. Since action-detection mAP is highly sensitive to the encoder’s
pretraining quality and capacity, this limitation arises from data and model availability rather than the
framework itself. In principle, our pipeline can process much longer sequences.

Bidirectional scan in the encoder. Our encoder employs a bidirectional scan. In Mamba, this
means that at each position a forward state summarizes all preceding tokens and a backward state
summarizes all following tokens; the token representation is then obtained by fusing these two states.
As a result, each token can store richer information.

Next, we discuss Innovation 2: video token construction mechanism:

Rethinking token selection: RLT-based and random token selection. Inspired by Run-Length
Tokenization (RLT) [28], we replace our original decoder-side token selection with two key com-
ponents: (i) token selection, which prunes temporally redundant tokens while retaining tokens that
change semantically across frames; and (ii) run-length embedding, which encodes how long a selected
token remains stable and injects this temporal continuity into the token features before decoding.
On JHMDB (4 GPUs, 60 epochs, batch size 32), this variant reaches an f-mAP of 72.1 (Initial loss:
8.4603, grad norm: 143.7739 → Final loss: 0.4385, grad norm: 2.4390). While slightly below
our best MOGO configuration, these results indicate that combining RLT-style token selection with
run-length information is a promising direction for further improvement. The above is a heuristic
attempt. For a stochastic baseline, we removed importance logits and randomly retained a fixed
proportion of tokens per frame (40%), keeping all other settings identical to Figure 7. Trained for 30
epochs, this random-selection variant achieved an f-mAP of 67.2 (Initial loss: 7.9832 → Final loss:
0.6982). Under the same environment and retention ratio, our importance-guided selection attains
67.4 mAP, indicating a consistent gain over random sampling.

Generalizing the token-importance block to other methods. To broaden applicability beyond our
own architecture, we integrate the token-importance module into TubeR [3] and evaluate on JHMDB,
comparing the standard full-token setting with variants that retain only a subset of non-keyframe
tokens. Using the released JHMDB-pretrained CSN-152 checkpoint, the detector attains 71.2 mAP
after one epoch. We therefore adopt the pretrained setting as the full-token baseline. With our
importance scores guiding token reduction, keeping 80% of non-keyframe tokens yields 72.05 mAP,
and keeping 40% yields 72.0 mAP. Note that while the Transformer in TubeR inherently possesses an
attention-based token importance mechanism, we align its setup with our proposed method by using
the outputs of the trainable MLP to represent token importance within the encoder. The intermediate
frames are also designated as key frames. For the loss, however, we adhere to the original TubeR
implementation. These results are on par with the full-token baseline in small-scale experiments.

Keyframe-centric detection without an action-switch head. Our approach does not employ an
explicit action-switch head; instead, it follows a DETR-style formulation with Hungarian matching
over class logits and bounding box predictions. Conceptually, the method can be viewed as image-
style action detection: we predict on a designated keyframe (typically the middle frame) while
importing contextual tokens from preceding and following frames. This design helps the model
sense how a person’s action shifts across time, but it does not explicitly model precise action
boundaries or subtle temporal transitions.

5 Conclusion and Future Work
Our proposed MOGO framework introduces a pure Mamba-based architecture for end-to-end video
action detection, eliminating reliance on Transformer components. This design addresses limitations
noted in prior work, such as the complexity overhead in [4], by leveraging Mamba’s state-space
modeling for efficient processing of video sequences. This results in a significant reduction in
computation while maintaining competitive precision. Additionally, our video token construction
mechanism can obtain important token information across spatiotemporal frames. In this way,
important cues (closely related to the action prediction) can be effectively retained.

MOGO’s performance is among the top-tier Transformer-based methods, though it has not surpassed
the very best ones. This limitation stems from two factors: first, GFLOPs reduction may trade off
some precision; second, the scarcity of pre-trained Mamba models limits feature representation
quality, unlike the extensive pretraining pools available for Transformers. A further limitation is the
use of a fixed query; in its current form, the model cannot reliably handle scenes with more than 100
people. However, this study highlights Mamba’s promise in this new field. Future work will focus on
developing richer pretrained models to help enhance performance.

10



Acknowledgments and Disclosure of Funding

Funding: This work received no third-party funding or support. Competing Interests: The authors
declare no competing interests.

References
[1] Zhen Hao Sia and Yogesh Singh Rawat. Scaling open-vocabulary action detection. arXiv

preprint arXiv:2504.03096, 2025.

[2] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In Proceedings of the
European Conference on Computer Vision (ECCV), 2020.

[3] Jiaojiao Zhao, Yanyi Zhang, Xinyu Li, Hao Chen, Bing Shuai, Mingze Xu, Chunhui Liu,
Kaustav Kundu, Yuanjun Xiong, Davide Modolo, Ivan Marsic, Cees G. M. Snoek, and Joseph
Tighe. TubeR: Tubelet transformer for video action detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[4] Lei Chen, Zhan Tong, Yibing Song, Gangshan Wu, and Limin Wang. Efficient video ac-
tion detection with token dropout and context refinement. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2023.

[5] Shoufa Chen, Peize Sun, Enze Xie, Chongjian Ge, Jiannan Wu, Lan Ma, Jiajun Shen, and Ping
Luo. Watch only once: An end-to-end video action detection framework. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

[6] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023.

[7] Kunchang Li, Xinhao Li, Yi Wang, Yinan He, Yali Wang, Limin Wang, and Yu Qiao. Video-
mamba: State space model for efficient video understanding. arXiv preprint arXiv:2403.06977,
2024.

[8] Arkaprava Sinha, Monish Soundar Raj, Pu Wang, Ahmed Helmy, and Srijan Das. MS-
Temba: Multi-scale temporal mamba for efficient temporal action detection. arXiv preprint
arXiv:2501.06138, 2025.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations (ICLR), 2021.

[10] Hueihan Jhuang, Juergen Gall, Silvia Zuffi, Cordelia Schmid, and Michael J. Black. Towards
understanding action recognition. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), 2013.

[11] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human
actions classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

[12] Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, and
Jingdong Wang. Conditional DETR for fast training convergence. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

[13] Chunhui Gu, Chen Sun, David A. Ross, Carl Vondrick, Caroline Pantofaru, Yeqing Li, Sudheen-
dra Vijayanarasimhan, George Toderici, Susanna Ricco, Rahul Sukthankar, Cordelia Schmid,
and Jitendra Malik. AVA: A video dataset of spatio-temporally localized atomic visual actions.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

[14] Yixuan Li, Zixu Wang, Limin Wang, and Gangshan Wu. Actions as moving points. In
Proceedings of the European Conference on Computer Vision (ECCV), 2020.

11



[15] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. SlowFast networks for
video recognition. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2019.

[16] Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan Yuille, and Christoph Feichten-
hofer. Masked feature prediction for self-supervised visual pre-training. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[17] Chao-Yuan Wu, Yanghao Li, Karttikeya Mangalam, Haoqi Fan, Bo Xiong, Jitendra Malik,
and Christoph Feichtenhofer. MeMViT: Memory-augmented multiscale vision transformer
for efficient long-term video recognition. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2022.

[18] Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. VideoMAE: Masked autoencoders are
data-efficient learners for self-supervised video pre-training. In Advances in Neural Information
Processing Systems (NeurIPS 2022), 2022.

[19] Akash Kumar and Yogesh Singh Rawat. End-to-end semi-supervised learning for video action
detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022.

[20] Vicky Kalogeiton, Philippe Weinzaepfel, Vittorio Ferrari, and Cordelia Schmid. Action tubelet
detector for spatio-temporal action localization. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2017.

[21] Akash Kumar, Sirshapan Mitra, and Yogesh Singh Rawat. Stable mean teacher for semi-
supervised video action detection. arXiv preprint arXiv:2412.07072, 2024.

[22] Tao Wu, Shuqiu Ge, Jie Qin, Gangshan Wu, and Limin Wang. Open-vocabulary spatio-temporal
action detection. arXiv preprint arXiv:2405.10832, 2024.

[23] Will Kay, João Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, and Andrew
Zisserman. The kinetics human action video dataset. arXiv preprint arXiv:1705.06950, 2017.

[24] Jinyoung Park, Hee-Seon Kim, Kangwook Ko, Minbeom Kim, and Changick Kim. Video-
mamba: Spatio-temporal selective state space model. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), 2024.

[25] Hilde Kuehne, Ali Arslan, and Thomas Serre. The language of actions: Recovering the syntax
and semantics of goal-directed human activities. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2014.

[26] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne
Westphal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag,
Florian Hoppe, Christian Thurau, Ingo Bax, and Roland Memisevic. The "something something"
video database for learning and evaluating visual common sense. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2017.

[27] Tim Meinhardt, Alexander Kirillov, Laura Leal-Taixé, and Christoph Feichtenhofer. Track-
former: Multi-object tracking with transformers. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2022.

[28] Rohan Choudhury, Guanglei Zhu, Sihan Liu, Koichiro Niinuma, Kris M. Kitani, and László A.
Jeni. Don’t look twice: Faster video transformers with run-length tokenization. In Proceedings
of the 38th Conference on Neural Information Processing Systems (NeurIPS 2024), 2024.

[29] Lei Chen, Zhan Tong, Yibing Song, Gangshan Wu, and Limin Wang. CycleACR: Cycle
modeling of actor-context relations for video action detection. arXiv preprint arXiv:2303.16118,
2023.

[30] Rohit Girdhar, João Carreira, Carl Doersch, and Andrew Zisserman. Video action transformer
network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

12



[31] Hui Lu, Albert Ali Salah, and Ronald Poppe. Snakes and ladders: Two steps up for videomamba.
arXiv preprint arXiv:2406.19006, 2024.

[32] Ali Hatamizadeh and Jan Kautz. MambaVision: A hybrid mamba-transformer vision backbone.
arXiv preprint arXiv:2407.08083, 2024.

[33] Soumyabrata Chaudhuri and Saumik Bhattacharya. Simba: Mamba augmented u-shiftgcn for
skeletal action recognition in videos. arXiv preprint arXiv:2404.07645, 2024.

[34] Xiuwei Chen, Yifan Zhang, Hao Li, Lei Wang, Ming Liu, Jie Zhou, Wei Xu, and Qiang Yang.
Transmamba: Fast universal architecture adaption from transformers to mamba. arXiv preprint
arXiv:2502.15130, 2025.

[35] Yuhui Lin, Jiaxuan Lu, Yue Yong, and Jiahao Zhang. Mv-gmn: State space model for multi-view
action recognition. arXiv preprint arXiv:2501.13829, 2025.

13



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: They state the main contributions and scope of the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discusses key limitations in Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: This paper provides the full set of assumptions and a complete proof in
Section 2.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide full implementation details in Section 2 and Section A.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15



Answer: [Yes]

Justification: The paper provides open access to its code in the abstract.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental settings are detailed in Section 3 and Section A.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For latency evaluation, we report the average inference time over multiple runs
to account for runtime variability, as described in Section 3.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We specify the GPU type and batch size used for inference speed evaluation in
Section 3, and Section A.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research complies with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: As a foundational work introducing a lightweight Mamba-based architec-
ture for video action detection, the paper’s primary positive impact lies in reducing the
computational cost and memory usage as described in Section 1.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not involve the release of any high-risk models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly cite all datasets and pretrained models used in Section 3. All
datasets are publicly available and used in accordance with their licenses.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Algorithms and experiments are well documented in Section 2.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This study does not involve any human participants or data derived from
human subjects, thus IRB approval is not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our research does not involve large language models as a core component.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Why Mamba, not Transformers?

We argue that the proposed Mamba-based framework is well-suited for video action detection due to
the following reasons:

Linear Complexity. Transformers rely on self-attention to model long-range dependencies, resulting
in quadratic complexity with respect to sequence length. Specifically, for a sequence of length L and
feature dimension d, the computational cost of self-attention is:

CostTransformer = O(L2d). (S1)

In contrast, the Mamba block updates hidden states via a linear state space model:

CostMamba = O(Ld2) ≈ O(L). (S2)

This is critical for video sequences in real-time or resource-constrained settings.

Causal Modeling. Equation (1) models causal dependencies. Each output depends only on the
previous hidden state and current input. This aligns well with the nature of action detection, which
relies on the context of preceding and current frames. (However, Mamba may not be well-suited
for non-causal tasks such as image restoration, which require access to future tokens.) By contrast,
general Transformer-based models perform undifferentiated attention over a large number of previous,
current and future information tokens, which can introduce redundancy and noise. Mamba, therefore,
offers a more efficient and focused modeling paradigm for video-based tasks. This is essentially
a coarse-to-fine design. While Transformer attention is detail-oriented (attention), Mamba views
the input-output process as a holistic dynamic system. This allows us to design global optimization
strategies. From a theoretical perspective, it supports more principled modeling than heuristically
stacking attention layers.

However, Mamba lacks explicit attention mechanism. This is why we introduce a minimalistic
linear projection (MLP) layer coupled with a purposefully designed loss function to simulate attention-
like behavior. This enhancement enables the model to focus on important tokens while preserving the
framework performance.

A.2 Related Works

Transformer-Based Action Detection. Recent Transformer-based methods often employ a two-stage
pipeline, combining 2D backbones for actor localization with 3D backbones for temporal context
extraction. For instance, CycleACR [29] uses a Transformer to model actor-context relations, enhanc-
ing detection through cyclic consistency across frames. Query-based approaches like TubeR [3] and
WOO [5] build on DETR [2], predicting action tubes and categories with the quadratic complexity of
attention mechanisms. In VAT [30], spatiotemporal features are aggregated around actors. Despite
these advances, the computational burden of Transformers remains a challenge, especially for long
sequences, motivating exploration of efficient alternatives.

Mamba-Related Applications. The Mamba architecture [6], with its linear-time state-space model-
ing, has emerged as a lightweight alternative to Transformers. VideoMamba [7] adapts Mamba for
video classification, achieving competitive top-1 accuracy on K400 by leveraging selective state-space
mechanisms to model temporal dependencies efficiently. VideoMambaPro [31] further enhances
this by addressing historical decay and element contradiction. MS-Temba [8] extends Mamba to
multi-scale temporal localization on datasets like MultiTHUMOS. However, while Mamba excels
in classification and localization, its application to video action detection remains underexplored,
providing a gap that our MOGO framework addresses with a pure Mamba-based end-to-end solution.

Hybrid Approaches. Mamba has also been explored in hybrid models like MambaVision [32], a
work combining Mamba and Transformer for vision tasks, and Simba [33], which augments Mamba
with graph networks for skeletal action recognition. Recently, TransMamba [34] introduced a hybrid
Transformer-Mamba backbone that adapts attention mechanisms for faster inference while preserving
detection accuracy. Similarly, MV-GMN [35] combines rule-based and KNN-based methods with
state-space models to enhance robust action recognition.
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A.3 Implementation Details

Data Processing. We decode raw videos using the Decord backend and uniformly sample 8 frames
for training and evaluation. The input frames are resized and cropped to 224×224 resolution. To
construct training and testing samples, we rely on the provided split lists from relative datasets, and
retain only clips that have valid annotation files. The underrepresented classes were balanced. For
data augmentation during training, we include random short-side scale jittering ([256, 320]), random
horizontal flipping, and optional color jittering (PCA-based lighting augmentation). During testing,
center cropping is applied after resizing the shorter side to 256. All frames are normalized using the
mean and standard deviation values, respectively. Bounding boxes are clipped to image boundaries
to avoid numerical instability. Per-frame annotations are matched using the keyframe index of each
sampled clip, and annotations are encoded as bounding boxes and class indices for downstream use.

Training Engine. All experiments are conducted using PyTorch with mixed-precision training
(torch.cuda.amp.autocast). Gradient clipping is applied to stabilize training. Both the learning rate
and weight decay are scheduled using precomputed cosine decay curves and updated at every step.
We adopt the AdamW optimizer with betas set to (0.9, 0.999), a weight decay of 0.05, and an initial
learning rate of 1e-4. The learning rate is scaled according to the effective batch size and follows
a cosine annealing schedule. Training is performed for 50 epochs, with a 5-epoch warmup phase.
Since the designed model has an advantage in GPU memory usage, we recommend using a larger
batch size for training (≥30). We use a batch size of 30 per GPU and set the update frequency to 1.
Training is distributed using torch.distributed, with full synchronization across processes. The total
loss consists of a standard object detection loss, including classification, bounding box regression,
and GIoU terms, along with a token importance loss. The latter encourages alignment between
the model-predicted token importance and the ground-truth spatial token relevance derived from
bounding box annotations, computed using binary cross-entropy. (Specifically, we first generate
normalized spatial coordinates for all tokens in each frame. Given H ×W spatial patches and T
temporal frames, this produces a tensor of shape [T ×HW, 2]. These are compared with all bounding
boxes to obtain a binary inclusion map.) Evaluation is done using torchmetrics with COCO-style
AP. For each sample, we extract predicted logits and bounding boxes, apply softmax to logits, and
select the top score per query. Each training batch consists of B video clips, where each clip is
represented as a tensor of shape [3, T,H,W ]. Annotations are processed into lists of dicts with keys
boxes and labels, compatible with TorchMetrics and detection criteria. We log training loss, learning
rate, gradient norm, and validation mAP at each step using a custom logger. We use torchrun to
launch distributed training with synchronized logging and gradient updates across GPUs.

Model. The core architecture consists of a Mamba-based spatiotemporal encoder and a lightweight
decoder. The video encoder is designed based on the Mamba sequence modeling block. Following
standard video modeling practices, we adopt a 3D convolutional layer to embed T -frame video clips
into patch tokens of shape [B, T ×N,D], where N is the number of spatial patches per frame. Each
patch is then projected using a temporal tubelet embedding (kernel size = 1). Spatial and temporal
positional embeddings are added separately. The token features are further enhanced by a stack of
le Mamba-based encoder blocks, each composed of a selective copy mechanism and RMSNorm.
To improve efficiency and enable token reduction, we introduce a simple yet effective module that
estimates the importance of each token via an MLP. This module predicts a scalar score for each token,
and soft masks are applied before the encoder layers. For the decoder, a learnable query embedding
of shape [100, D] is provided as input, and an ld-layer Mamba decoder processes over the encoded
memory tokens. The final outputs are passed through a classification head and a bounding box
regression head (MLP with sigmoid activation). We adopt RMSNorm as the default normalization
layer. The encoder is initialized from a pretrained checkpoint [7] on a large-scale masked video
modeling task.

A.4 Ablation Studies - Supplementary

Table S1: Quantitative ablation (supplementary): experiments results. (a) Decoder depth. (b)
Weights of detection loss. w=wcls: wbox: wovl

(a) Decoder depth.
ld 1 3 6

mAP 75.6 71.7 32.0

(b) Weights of detection loss.
w 11:1:1 5:1:1 1:1:1 1:5:2 2:3:2

mAP 67.2 68.6 46.3 4.2 35.6

22



Decoder depth. Table S1(a) shows that a 1-layer decoder gives the best mAP (75.6), while 3 or 6
layers degrade performance, likely due to overfitting. We adopt a single-layer decoder by default.
Therefore, MOGO (Mamba Only Glances Once), i.e., our Mamba-based decoder that glances only
once. For the corresponding training dynamics, please refer to Figure S1.

Figure S1: Training curves and diagnostics. Training loss (right axis) and gradient norm (left axis)
for decoder depths ld > 1.

Weights of detection loss. This set of experiments was conducted with parameter λ (Table 4) fixed.
For the detection loss (Table S1(b)), emphasizes the classification weight (wcls) proves beneficial,
with ratios of 5:1:1 and 11:1:1 yielding strong mAP scores of 68.6 and 67.2, respectively, compared
to lower performance at other settings (e.g., 46.3 at 1:1:1). This suggests that a larger wcls enhances
detection accuracy. We note that the 1:5:2 configuration performs poorly; controlled re-runs confirm
this trend. When using 1:5:2 weights, we observed high loss (epoch[0]:6.0x/5.9x → epoch[29]:2.x)
and unstable grad norms (400 after 20 epochs), while mAP stayed under 0.05. In contrast, the 5:1:1
configuration yields stable optimization dynamics: the loss decreases steadily (epoch[0]:8.0x →
epoch[29]:0.8x), gradient norms consistently drop after 10 epochs, and the mAP rises above 0.6. So
now we have enough evidence to say that the 1:5:2 setting may overwhelm optimization with box/ovl
weights, preventing the model from learning effective action features.

A.5 Video-level Results

Video-Level Detection mAP. We provide the video-mAP results on JHMDB and UCF101-24 datasets.
As shown in Table S2, Table S3 and Table S4, our method achieves lower video-level mAP compared
to WOO while outperforming both WOO and TubeR in terms of model size, GFLOPs, and throughput.
Because our method detects actions on a designated keyframe within each clip (e.g., the middle frame
in an 8-frame snippet), using the remaining frames as temporal context, frame-level metrics such as
f-mAP@0.5 are a more appropriate measure. In contrast, video-level mAP emphasizes constructing
continuous tubes over the entire clip, which may understate the strengths of our keyframe formulation.

Table S2: Per-class AP on JHMDB under video-level detection evaluation. (IoU: 0.2)
Class brush_hair catch clap climb_stairs golf jump kick_ball pick pour pullup push

AP 0.833 0.553 0.743 0.725 1.000 0.437 0.791 0.843 1.000 0.937 0.976

Class run shoot_ball shoot_bow shoot_gun sit stand swing_baseball throw walk wave

AP 0.486 0.450 1.000 0.870 0.297 0.421 0.667 0.181 0.576 0.465

Table S3: Per-class AP on UCF101-24 under video-level detection evaluation. (IoU: 0.2)
Class Basketball BasketballDunk Biking CliffDiving CricketBowling Diving Fencing FloorGymnastics

AP 0.556 0.519 0.596 0.757 0.404 0.974 0.767 0.981

Class GolfSwing HorseRiding IceDancing LongJump PoleVault RopeClimbing SalsaSpin SkateBoarding

AP 0.886 0.940 0.227 0.864 0.928 0.884 0.447 0.993

Class Skiing Skijet SoccerJuggling Surfing TennisSwing TrampolineJumping VolleyballSpiking WalkingWithDog

AP 1.000 0.913 0.806 0.596 0.494 0.448 0.189 0.817

Table S4: Comparison of video-level detection performance and model efficiency.
Method Video-mAP@0.2 (U) Video-mAP@0.2 (J) Video-mAP@0.5 (U) Video-mAP@0.5 (J) #Params GFLOPs Throughput

WOO [5] 74.4 70.0 55.8 69.5 314M (head) 252–378 147–176
TubeR (I3D) [3] 85.3 81.8 60.2 80.7 - 240 64

Ours 70.8 67.9 39.4 42.0 82M 102–104 256
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Video-Level Classification mAP. We further provide the video-level classification mAP results on
the JHMDB and UCF101-24 datasets. We conduct this experiment because the dataset provides
video-level category labels. Therefore, we aim to evaluate the model’s ability to extend frame-
level predictions. Our method follows a sliding-window inference strategy to compute video-level
predictions. Given an input video, we first extract RGB frames and apply standard preprocessing
including resizing, normalization, and batching. The video is divided into clips, and each clip is fed
into the model to obtain per-query logits. We compute the average of softmaxed logits (excluding
the background class) across all queries and clips. Finally, the class probabilities are aggregated
over the video to produce the final prediction. The performance is measured by per-class AP and the
overall mean AP. On the JHMDB dataset, as shown in Table S5, our model achieves strong results
across most categories, particularly excelling in actions such as golf, pullup, push, and shoot_bow.
Overall, our approach attains a video-level mAP of 0.812, demonstrating robust performance on this
benchmark.

Table S5: Per-class AP on JHMDB under video-level classification evaluation.
Class brush_hair catch clap climb_stairs golf jump kick_ball pick pour pullup push

AP 0.932 0.711 0.908 0.981 1.000 0.811 0.986 0.870 1.000 1.000 1.000

Class run shoot_ball shoot_bow shoot_gun sit stand swing_baseball throw walk wave

AP 0.560 0.555 1.000 0.951 0.378 0.486 0.996 0.560 0.751 0.616

On the UCF101-24 dataset, it achieves an mAP of 0.971. This result demonstrates that our model
possesses strong classification capabilities at the video level without considering bounding box
predictions.

Table S6: Per-class AP on UCF101-24 under video-level classification evaluation.
Class Basketball BasketballDunk Biking CliffDiving CricketBowling Diving Fencing FloorGymnastics

AP 0.927 1.000 0.999 0.993 0.902 1.000 1.000 0.861

Class GolfSwing HorseRiding IceDancing LongJump PoleVault RopeClimbing SalsaSpin SkateBoarding

AP 0.929 1.000 1.000 0.993 1.000 1.000 1.000 0.972

Class Skiing Skijet SoccerJuggling Surfing TennisSwing TrampolineJumping VolleyballSpiking WalkingWithDog

AP 0.980 0.924 0.851 1.000 0.981 1.000 0.996 0.996

A.6 Result Analysis and Visualization

Per-Class Metric Visualization. To further investigate the importance of keyframe information in our
framework, we conduct a study comparing three variants: (1) Ours, the full model using both selected
tokens and the fixed keyframe segment; (2) Exchange, where the keyframe segment is exchanged
with non-keyframe tokens; and (3) Remove, where the keyframe segment is discarded altogether.
As shown in Figure S2, our method consistently outperforms the baselines across most action
classes, indicating that preserving keyframe information is crucial for accurate action localization.
In particular, categories such as golf, shoot_bow, and pullup benefit significantly from retaining
discriminative keyframe cues.

Figure S2: Per-class AP(0.5:0.95) under different keyframe strategies on the JHMDB dataset.
Ours uses both the preserved keyframe and selected tokens. Exchange swaps keyframe tokens with
other temporal tokens. Remove drops keyframe information completely. Preserving keyframe cues
leads to the best performance across most categories.
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Notably, the impact of certain parameters on mAP may vary slightly across datasets. We ablate the
matcher’s coefficients to understand the role of classification versus localization in action detection
on the UCF101-24 dataset. As shown in Figure S3, using balanced weights (1:1:1) generally yields
higher AP across a majority of the 24 classes. Emphasizing classification via (3:1:1) slightly improves
a few classes (e.g., Skiing).

Figure S3: Per-class AP(0.5:0.95) under different matcher weight ratios on the UCF101-24
dataset. We compare the decoder performance using the default matcher weights (1:1:1) versus a
biased setting (3:1:1).

Learning Token Importance without Explicit Attention. Unlike Transformers, which rely on
explicit attention mechanisms to compute token-to-token interactions, Mamba encodes temporal
dependencies implicitly through sequential modeling. This makes it challenging to directly interpret
token importance. However, token selection is part of our design. As shown in the first rows of
Figure S4, raw Mamba outputs tend to produce scattered and less structured token representations. To
address this, we propose a heuristic loss function (see Section 2.4), which encourages tokens inside
the ground truth bounding boxes to receive higher importance. Furthermore, to avoid introducing
significant computational overhead, we insert a lightweight MLP directly before the encoder tokens
as shown in Table 1. This MLP outputs a token-wise importance score, which is then multiplied
element-wise with the encoder tokens. Notably, the output dimension of the MLP matches the number
of encoder tokens, enabling one-to-one correspondence. With this, as shown in the second row, the
token activations become more focused on semantically meaningful regions.
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Figure S4: Visualization of token importance. Row 1 shows raw Mamba outputs without the loss
guidance. Row 2 shows outputs with our proposed importance modeling. Tokens inside target regions
are more emphasized.
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Spatial Distribution of Preserved Tokens and Corresponding Prediction Results. To better
understand the effectiveness of our token selection mechanism and the final prediction results, we
visualize the spatial distribution of selected tokens alongside the predicted bounding boxes for
some classes as shown in Figure S5. It is evident that the retained tokens are highly concentrated
around target subjects and action-relevant regions, showing strong alignment with the predicted
bounding boxes. In particular, actions such as clap involve fine-grained upper-body motions, where
the preserved tokens closely overlap with the hands and head regions. This confirms that our token
importance module effectively captures discriminative cues, helping the decoder focus on relevant
spatial areas and improving localization precision.
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Figure S5: Visualization of preserved tokens by token importance block on the JHMDB dataset.
Important cues such as people can be effectively retained and are closely related to the bbox prediction
of the decoder.

Extension to Multi-Label Detection. On the AVA v2.2 validation set, the adapted MOGO achieved
an mAP of 16.2 (at step 26). This demonstrates that MOGO can flexibly extend to multi-label settings
with competitive accuracy. Training logs are presented in Figure S6.

Figure S6: Training logs on the AVA dataset.

A.7 Architecture Algorithm

To further clarify our architectural design, we present a step-by-step breakdown of the key modules
in the form of pseudocode. Our approach introduces a token importance mechanism into video
understanding pipelines, enabling dynamic token weighting and selection for efficient and effective
representation learning.
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Algorithm 1 Token Importance-Guided Frame Encoding

Require: Video input x ∈ RB×C×T×H×W

Ensure: Feature representation f , importance logits s
1: x← PatchEmbed(x) {Convert frames to patch tokens}
2: Add spatial positional embedding to each frame
3: Add temporal positional embedding across frames
4: s← ImportanceMLP(x) {Predict token importance scores}
5: x← x⊙ σ(s) {Weight tokens by importance (sigmoid)}
6: f ←MambaEncoder(x)
7: return f, s

Algorithm 2 Top-k Token Selection per Frame

Require: Feature f ∈ RB×N×D, importance s ∈ RB×N

Ensure: Reduced feature fselected
1: Divide f into T temporal segments, each with NT = N/T tokens
2: for each frame t = 1 to T do
3: st ← s[:, t ·NT : (t+ 1) ·NT ]
4: ft ← f [:, t ·NT : (t+ 1) ·NT , :]
5: Select top-k indices by st
6: f ′

t ← Gather ft using top-k indices
7: Append f ′

t to fselected
8: end for
9: return fselected

Algorithm 3 Object Detection with Mamba Decoder

Require: Memory fmemory, learnable queries q ∈ RQ×D

Ensure: Predicted boxes b̂, class logits ŷ
1: q ← Repeat q for each batch and initialize tgt
2: hs←MambaDecoder(tgt, fmemory)
3: ŷ ← ClassHead(hs) {Predict object class}
4: b̂← BoxHead(hs) {Predict bounding box (normalized)}
5: return ŷ, b̂

Together, these components define the core workflow of our Mamba-based action detection frame-
work.
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