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ABSTRACT

Existing open set recognition (OSR) methods are usually performed on rela-
tively small datasets by training a visual model from scratch. OSR on large-scale
datasets has rarely been studied for their great complexity and difficulty. Re-
cently, vision-language (VL) pre-training has promoted closed-set image recog-
nition with prompt engineering on datasets with various scales. However, prompts
tuned on the training data often exhibit label bias towards known classes, leading
to the poor performance in recognizing unknown data in the open environment.
In this paper, we aim at developing a new paradigm for OSR both on small and
large-scale datasets by prompt engineering on VL models in a divide-and-conquer
strategy. Firstly, the closed-set data is processed as the combination of one or more
groups. Each group is devised with a group-specific prompt. Then, we propose
the Group-specific Contrastive Tuning (GCTu), in which negative label words
are introduced into tuning to mitigate the label bias of group-specific prompts.
In inference, to achieve comprehensive predictions both on small and large-scale
datasets, we propose the Group Combined Testing (GCTe). It determines the opti-
mal prediction prompt among the multiple group-specific predictions by focusing
on the group-wise closed-set probability distributions. Our method namely GCT2
achieves excellent performance on both small and large-scale OSR benchmarks.
The strong and wide applicability of our method is also verified in ablation studies.

1 INTRODUCTION

Real-world image recognition often involves samples from unknown classes, which are unseen in
the training stage. Accordingly, open set recognition (OSR) Scheirer et al. (2012); Bendale & Boult
(2016) has been devised for classifying known classes appearing in the training set as well as detect-
ing unknown classes. However, existing OSR methods Sun et al. (2020); Júnior et al. (2017); Oza &
Patel (2019); Neal et al. (2018); Kong & Ramanan (2021); Zhou et al. (2021a) are mostly performed
on small-scale datasets in terms of the number of classes, such as CIFAR10 Krizhevsky (2009) and
TinyImageNet Le & Yang (2015), which include up to tens of known classes and less than two hun-
dred unknown classes. The recognition models are commonly trained from scratch with a simple
visual backbone consisting of nine convolutional layers and one full connection layer Neal et al.
(2018); Zhang et al. (2020); Zhou et al. (2021a). Being far more challenging and difficult, such OSR
methods can not perform well on large datasets due to their great complexity, such as ImageNet Rus-
sakovsky et al. (2015) consisting of 1000 classes. Only a few methods Yang et al. (2020); Chen et al.
(2020a); Lu et al. (2022) are proposed to solve this issue with a stronger backbone ResNet50 He
et al. (2016).

Recently, vision-language (VL) pre-training models Lu et al. (2019); Chen et al. (2020b); Gan et al.
(2020); Li et al. (2020); Zhang et al. (2021) have shown the promising ability to benefit the down-
stream tasks. By redesigning the downstream tasks as pre-training tasks, prompt engineering on the
VL pre-trained models Radford et al. (2021); Jia et al. (2021); Li et al. (2021) exhibits excellent
potential in image recognition tasks with various scales with only a few embedding parameters op-
timized. However, applying prompt to recognition tasks usually obeys the closed setting. The down-
stream training and testing classes are the same. Because VL models have already been pre-trained
on a large amount of data, the open-set concept is hard to be guaranteed if we take the pre-training
data into consideration. Therefore, we refer to the setting where the testing classes are composed
of classes from the downstream training classes and classes out of downstream training classes as
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the open-set setting based on pre-trained VL models. It rises the so-called label bias issue Cao et al.
(2021); Zhao et al. (2021), which is defined as that the prompt tuned on limited training classes
forcefully selects a known class as the predictions for unknown classes, in open-set scenarios.

A question arises that whether it is more effective to apply pre-trained VL models to OSR on datasets
with both small and large numbers of classes. To this end, the main goals in this paper include: (i)
exploring a new paradigm for solving the OSR problem with prompt engineering on pre-trained
VL models; (ii) exploring a strong applicable strategy for OSR on small and large-scale datasets
uniformly. Surpassing other state-of-the-art methods is not our goal.

Firstly, we introduce the divide-and-conquer strategy for the wide applicability on datasets with
both small and large number of classes. Each dataset can be processed as the combination of one or
more mutual-independent class groups. Each group is devised with a set of unused tokens, namely
group-specific prompts, which will be tuned only on the classes in its corresponding group. Then,
we build an open negative label pool containing thousands of label words collected from the Word-
Net Miller (1995). To mitigate the prompt label bias towards closed-set classes in each group, we
propose the Group-specific Contrastive Tuning (GCTu). Several open negative label words irrele-
vant to the downstream datasets are collected from the built label pool and introduced into prompt
tuning without paired images to regularize group-specific predictions.

In inference, each sample obtains multiple predictions from all the group-specific prompts. To make
flexible and comprehensive decisions generalizing to both small and large-scale datasets, we propose
the Group Combined Testing (GCTe). The prompt, which exhibits the highest probability within its
group-specific closed-set classes, of all prompts is employed as the optimal prediction prompt for a
given sample.

To our best knowledge, this is the first work applying VL models to OSR that scales up its ap-
plicability to datasets with a large number of classes by prompt engineering. Experimentally, the
proposed method, which we name as GCT2, achieves excellent performance on both small and
large-scale benchmarks. Extensive ablation experiments validate the effectiveness of each compo-
nent. The highlights of the proposed new paradigm include:

(1) To solve the misclassification issue of prompt in the open world, we propose the Group-specific
Contrastive Tuning (GCTu). It mitigates the prompt label bias by introducing open negative label
words, which are irrelevant to downstream datasets, without paired images into tuning.

(2) To achieve the wide applicability on different scales of datasets, we propose the Group Com-
bined Testing (GCTe). It determines the optimal prompt by measuring the group-wise closed-set
probabilities.

2 RELATED WORK

2.1 OPEN SET RECOGNITION

Towards practical recognition, open set recognition (OSR) Scheirer et al. (2012) has made fast
progress in recent years. Methods in the literature include traditional machine learning meth-
ods Zhang & Patel (2016); Rudd et al. (2017); Clifton et al. (2011); Hoffmann (2007); Scheirer
et al. (2014); Jain et al. (2014); Bendale & Boult (2015); Júnior et al. (2017) as well as deep learn-
ing methods Miller et al. (2021); Geng & Chen (2020); Meyer & Drummond (2019); Oza & Patel
(2019); Sun et al. (2020); Zhou et al. (2021a); Neal et al. (2018); Chen et al. (2020a; 2021), which
almost perform on small-scale datasets. Specifically, CIFAR-series benchmarks Krizhevsky (2009);
Neal et al. (2018) include no more than 10 closed-set classes. TinyImageNet Le & Yang (2015) is
composed of 20 known and 180 unknown classes. In addition, these methods commonly train mod-
els based on a simple visual backbone Neal et al. (2018); Zhang et al. (2020); Zhou et al. (2021a)
from scratch. Being far more challenging and difficult, only a few methods Yang et al. (2020); Chen
et al. (2020a); Lu et al. (2022) are proposed to handle the OSR problem on ImageNet-series Rus-
sakovsky et al. (2015) benchmarks, which include hundreds classes. However, the simple backbone
on small-datasets usually fail when facing the great complexity brought by the large amount of
classes. The visual backbone adopted on large-scale datasets is usually stronger than that on small-
scale datasets. Most similar to our method which adopts pre-trained VL models, ZOC Esmaeilpour
et al. (2022) trains a text decoder based on CLIP Radford et al. (2021) using an image caption dataset
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Figure 1: Framework of Group-specific Contrastive Tuning (GCTu). Group-specific prompts are
tuned only on their corresponding groups. The prompt label bias is mitigated by introducing open
negative label words into the tuning stage. The parameters of the pre-trained model are all kept
frozen. Only the prompt embeddings are optimized.

to generate predicted category words for out-of-distribution (OOD) detection but only on small-scale
datasets. Moreover, it could not gurantee the great closed-set classification performance for its being
conducted in the zero-shot way.

In this paper, we propose a new paradigm, which explores the diverse knowledge of vision-language
pre-trained models, to solve OSR both on small and large scale datasets uniformly with the grouping
strategy.

2.2 PROMPT ENGINEERING

Prompt engineering is primarily proposed in natural language processing (NLP) Petroni et al. (2019).
It redesigns downstream tasks as pre-training tasks Jiang et al. (2020); Lester et al. (2021); Li &
Liang (2021); Liu et al. (2021); Poerner et al. (2019); Shin et al. (2020) and thus narrows down
the gap between them, which contributes to exploring the pre-learned knowledge adequately, also
in vision-language (VL) models Zhou et al. (2021b); Jia et al. (2021); Radford et al. (2021); Li
et al. (2021). Three parts are usually contained in prompt engineering, namely a template, a set of
training samples and their orderings. Concerning the training and testing classes, prompt engineering
is now performed with the closed setting assumption, which causes the so-called label bias Cao et al.
(2021); Zhao et al. (2021) in open world, whereby the model has to output a predicted class in the
training set for all the testing samples. To improve the performance in out-of-distribution (OOD)
detection by prompt, true label words of OOD data are introduced as prior Fort et al. (2021) into
CLIP Radford et al. (2021). However, it is not applicable in the open-set scenario because we have
no knowledge of the unknown classes. Instead, we propose to mitigate the label bias by introducing
open negative label words, irrelevant to the downstream datasets and without paired images, into
both the prompt tuning and in-context prediction stages and serve for OSR.

3 APPROACH

We present our new paradigm for OSR both on small and large-scale datasets with group-guided
prompt engineering on pre-trained vision-language (VL) models. Specifically, the problems in the
new paradigm include two folds: the group-specific prompt engineering and combined prediction.
For the first fold, we propose the Group-specific Contrastive Tuning (GCTu) to learn group-specific
text prompts with the label bias being mitigated, as shown in Fig. 1. Second, the Group Combined
Testing (GCTe) is developed to make flexible and comprehensive decisions combining predictions
on all group-specific prompts, as shown in Fig. 2.

3.1 GROUPING ON CLOSED-SET CLASSES

To develop a widely applicable strategy for small and large-scale datasets, we divide the downstream
closed-set dataset consisting ofNC classes intoG groups, in which the maximum number of classes
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Figure 2: Framework of the proposed Group Combined Testing (GCTe). Each image obtains mul-
tiple predictions from all group-specific prompts. We only focus on the probabilities of the group-
specific closed-set classes for comprehensive comparisons. The prompt which exhibits the highest
closed-set probability is selected as the final prediction prompt.

isNmax. The numbers of classes in the firstG−1 groups are equal. Formally, we denote the number
of classes in each group as N i

g, i ∈ [1, G]. The grouping rule is:

(G− 1) ·Nmax < NC ≤ G ·Nmax, N
G
g ≤= N i

g = Nmax, i ∈ [1, G− 1]. (1)

Aiming at efficiently exploring the knowledge in pre-trained VL models with only a few parameters
to be optimized and obtain the group-independent predictions without mutual impacts, we devise
a set of unused tokens [v] as the group-specific continuous prompts Fi(CLASS), i ∈ [1, G] as
Eq. 2. Each group-specific continuous prompt with length L will be tuned only on the data in its
corresponding group.

Fi(CLASS) = [v]i1[v]
i
2...[CLASS]...[v]

i
L, i ∈ [1, G]. (2)

3.2 GROUP-SPECIFIC CONTRASTIVE TUNING (GCTU)

Image recognition tasks promoted by prompt engineering methods almost obely closed-setting Jia
et al. (2021); Radford et al. (2021); Li et al. (2021) ignoring unknown classes in the open world.
When detecting unknown classes, the significant label bias of prompts Cao et al. (2021); Zhao et al.
(2021) inevitably harms the OSR that unknown data would still be predicted as the classes on which
the prompts have been tuned.

The underlying rationality is that prompts tuned on closed-set classes forces the images belonging
to both known and unknown classes to be predicted within the known classes with high probability.
If the high probability could be regularized, by which closed-set classes could still be correctly
predicted while open-set unknown images obtain much lower probabilities on known classes, the
label bias would be mitigated.

To this end, we propose the Group-specific Contrastive Tuning (GCTu) as shown in Fig. 1. The
open negative label pool is built by collecting thousands of label words that are irrelevant to the
downstream datasets from the WordNet Miller (1995). By introducing open negative label words
into tuning, the prompts are forced to make predictions on each sample not only from the group-
specific closed-set classes, irrelevant label words are set to be selected as probable predictions for
regularization. Therefore, the large probability of unknown data belonging to closed-set classes is
avoided. The labels participated in the tuning stage of each group include two parts: (i) the group-
specific closed-set labels Ci

j , i ∈ [1, G], j ∈ [0, N i
g − 1]; (ii) the group-specific open negative label

words Ci
j , i ∈ [1, G], j ∈ [N i

g, N
i
g + No − 1], in which No is the number of open negative label

words sampled from the open negative label pool.

Given a pre-trained VL model consisting of an image encoder EI and text encoder ET , the prob-
ability that an image x belonging to class Ci

j , i ∈ [1, G], j ∈ [0, N i
g − 1] ∪ [N i

g, N
i
g + No − 1] is

measured by a commonly used cosine metric < · > with the temperature parameter T :

p(y = Ci
j |x) =

exp(< EI(x) · ET (Fi(C
i
j)) >

/
T )

Ni
g+No−1∑
j=0

exp(< EI(x) · ET (Fi(Ci
j)) >

/
T )

.
(3)
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Denoting the true label encoding of an image x in the i-th group as ygt, we optimize the i-th group-
specific prompt using cross entropy loss as:

Li = −
Ni

g+No−1∑
j=0

ygtj log(p(y = Ci
j |x)). (4)

To prevent the mutual impact of the group-specific prompts and achieve group-independent predic-
tions, when a certain prompt is being tuned, others are kept frozen together with parameters of the
pre-trained VL model.

3.3 GROUP COMBINED TESTING (GCTE)

In the testing phase, to preserve the generalization with the prompt bias being mitigated, open neg-
ative label words are also introduced in model inference. As the whole closed-set data is divided
into groups, each image will be predicted by all group-specific prompts. Specifically, to perform
comprehensive predictions combining all closed-set groups and all group-specific predictions, we
propose the Group Combined Testing (GCTe), as shown in Fig. 2.

In the prediction of a group-specific prompt, only the probabilities on the corresponding group-
specific closed-set classes are worth comparison for their actual meanings of how likely the test
sample belongs to these classes. We define the group-specific closed-set maximum probability
pimax, i ∈ [1, G] as:

pimax = max(p(y = Ci
j |x)), i ∈ [1, G], j ∈ [0, N i

g − 1]. (5)

As a test sample will be predicted with a high probability on its true class by the prompt correspond-
ing to its group, we choose the optimal prompt with the group index as Iopt:

Iopt = argmax pimax, i ∈ [1, G]. (6)

Considering the sum of probabilities on group-specific closed-set classes to be the score of being
known. Other probabilities are therefore taken for binary detection by a defined score of being
unknown Sopen as:

Sopen = 1−
N

Iopt
g −1∑
j=0

p(y = C
Iopt
j |x). (7)

We set the threshold τmax on the maximum probability pIoptmax predicted by the optimal prompt to
directly detect the unknown-class samples in OSR. Formally, the prediction is specified as:

pred =

 argmax
j∈[0,NIopt

g −1]
p(y = C

Iopt
j |x), if pIoptmax ≥ τmax

unknown, else
. (8)

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

For data preparation, small datasets are divided into groups by their category names in order,
ImageNet-serises large-scale datasets are grouped by the WordNet ID (WNID) orders. The pre-
trained VL model is contrastive language-image pre-training (CLIP) Radford et al. (2021) with the
base version ViT-B/32 Dosovitskiy et al. (2020) as image encoder. In the GCTu, the initial learn-
ing rate is set to 1e − 5. We apply the linear learning rate decay scheduler to the AdamW opti-
mizer Loshchilov & Hutter (2018) as suggested by the Huggingface Transformers 1 default setup.
The temperature parameter T is set to 1 for simplicity. For each divided group, we tune for 30
epochs on 4 NVIDIA Tesla V100 GPUs with batch size 64. The [CLASS] is placed in the middle
of prompts.

1https://huggingface.co/transformers/.
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4.2 UNKNOWN DETECTION ON SMALL-SCALE DATASETS

In this part, we present the main results of binary known/unknown detection on five small-scale
benchmarks. The AUROC (Area Under ROC Curve) is adopted for performance evaluation based
on the defined score of being unknown Sopen in Eq. 7.

Table 1: Unknown detection performance evaluated by
AUROC on small datasets, averaged among 5 random-
ized trials. We use C and TinyIN to represent CIFAR and
TinyImageNet respectively.

Methods C10 C+10 C+50 TinyIN C100

OSRCI (Neal et al.) 69.9 83.8 82.7 58.6 N.R.
CGDL (Sun et al.) 90.3 95.9 95.0 76.2 N.R.
GDFR (Perera et al.) 83.1 92.8 92.6 60.8 N.R.
C2AE (Oza & Patel) 89.5 95.5 93.7 74.8 N.R.
PROSER (Zhou et al.) 89.1 96.0 95.3 69.3 N.R.
CPN (Yang et al.) 82.8 88.1 87.9 63.9 N.R.
RPL (Chen et al.) 90.1 97.6 96.8 80.9 N.R.
ARPL+CS (Chen et al.) 91.0 97.1 95.1 78.2 N.R.
PMAL (Lu et al.) 95.1 97.8 96.9 83.1 N.R.
OpenGAN-pix (Kong & Ramanan) 97.1 N.R. N.R. 79.5 N.R.
OpenGAN-feat (Kong & Ramanan) 97.3 N.R. N.R. 90.7 N.R.
ZOC (Esmaeilpour et al.) 93.0 97.8 97.6 84.6 82.1

GCT2 (Ours) 96.1 96.1 96.2 88.2 86.2

Datasets and settings. Each dataset is
split into a known and an unknown part.
CIFAR10 Krizhevsky (2009) is ran-
domly split into 6 known classes and 4
unknown classes. The 100 classes in CI-
FAR100 Krizhevsky (2009) are divided
into 20 known classes and 80 unknown
classes. For CIFAR+10/+50 Neal et al.
(2018), 4 classes are selected from CI-
FAR10 as known, 10 or 50 classes are
randomly sampled from CIFAR100 as
unknown. TinyImageNet Le & Yang
(2015) includes 200 classes with 20
classes set as known and the remain-
ing 180 classes set as unknown. Experi-
ments are all performed for five random-
ized trials on each benchmark.

Results comparison. In our ablation
study, when Nmax is set to 20 and L is
set to 10, the results on almost all benchmarks are the best. Under this setting, we show the un-
known detection results of our method compared with other existing methods in Table 1. Our method
achieves excellent performance, especially on CIFAR10, TinyImageNet and CIFAR100. The most
similar method to ours is the ZOC which also adopts CLIP for unknown detection. Our method sur-
passes it on 3 out of 5 datasets more than 3 percents. The competitive performance of our method
validates that the prompt bias has been mitigated and contributes to OSR on small-scale datasets
with only a few parameters to be optimized.

4.3 UNKNOWN DETECTION ON LARGE-SCALE DATASETS

Here, we measure the performance of our method in unknown detection on ImageNet-series bench-
marks, which is more challenging and difficult than on small datasets.

Table 2: Unknown detection AUROC on
large-scale datasets.

Methods IN-100 IN-200 IN-LT

Softmax 79.7 78.4 53.3
CPN (Yang et al.) 82.3 79.5 54.5
RPL (Chen et al.) 81.2 80.2 55.1
PMAL (Lu et al.) 94.9 93.9 71.7

GCT2 (Ours) 98.1 95.5 81.9

Datasets and settings. Following the dataset prepara-
tion Yang et al. (2020); Chen et al. (2020a); Lu et al.
(2022) on the ImageNet dataset which includes 1000
classes in total, two benchmarks namely ImageNet-
100 and ImageNet-200 are constructed. The first 100
or 200 classes in ImageNet are selected as known,
while the remaining 900 or 800 classes are treated
as unknown to build ImageNet-100 and ImageNet-
200 respectively. The other benchmark is a long-tailed
dataset namely ImageNet-LT Liu et al. (2019) which
includes 1000 known classes from ImageNet-2012 Russakovsky et al. (2015). The number of images
in known classes ranges from 5 to 1280. Additional classes in the validation dataset of ImageNet-
2010 are set as unknown.

Results comparison.When setting L to 10 and Nmax to 20, the comparison of our method and the
only three existing methods for unknown detection on large-scale datasets is shown in Table 2. The
results show that by dividing large-scale datasets into small groups for independent prompt tuning
with label bias being mitigated and combined prediction, our method successfully applied to large-
scale datasets and achieves the best performance. Note that as stated in CLIP Radford et al. (2021)
that the pre-training dataset of it does not access to the ImageNet, which will not bring explicit
information of both known and unknown classes.
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Table 3: Comparison to CLIP baseline in unknown detection.

Methods CIFAR10 CIFAR+10 CIFAR+50 TinyImageNet CIFAR100 ImageNet-100 ImageNet-200 IN-LT

CLIP+MSP 87.3 92.2 92.4 83.7 84.0 74.0 78.5 58.1

GCT2 (Ours) 96.1 96.1 96.2 88.2 86.2 98.1 95.5 81.9

4.4 UNKNOWN DETECTION BASELINE COMPARISON

Table 1 and Table 2 compare our method with existing OSR methods with different back-
bones. Though we do not aim to surpass them, for fair comparison and validating the effective-
ness of our method, we construct a baseline adopting the maximum over softmax probabilities
(MSP) Hendrycks & Gimpel (2017) for unknown detection with CLIP. The baseline setting only
involves one prompt for each dataset without grouping. It also does not introduce open negative
label words into tuning. The comparison to the baseline is shown in Table 3.

Our method outperforms the baseline on all datasets by a large margin. Specifically, the performance
margin on large-scale datasets is much larger than that on small-scale datasets. The comparison
validates the effectiveness of the two key designs: (i) introducing open negative label words into
tuning to mitigate the prompt bias; (ii) adopting grouping and combined prediction strategies to
achieve strong applicability, especially on large-scale datasets with great challenge and complexity.

4.5 OPEN-SET RECOGNITION

Table 4: Open-set recognition on CIFAR10 evaluated
by mF1-score. IN-c, IN-r, LS-c, and LS-r represent
ImageNet-crop/-resize, LSUN-crop/-resize.

Methods IN-c IN-r LS-c LS-r

OpenMax (Bendale & Boult) 66.0 68.4 65.7 66.8
OSRCI (Neal et al.) 63.6 63.5 65.0 64.8
LadderNet+Openmax (Yoshihashi et al.) 65.3 67.0 65.2 65.9
DHRNet+Openmax (Yoshihashi et al.) 65.5 67.5 65.6 66.4
CROSR (Yoshihashi et al.) 72.1 73.5 72.0 74.9
C2AE (Oza & Patel) 83.7 82.6 80.6 80.1
CGDL (Sun et al.) 84.0 83.2 80.6 81.2
PROSER (Zhou et al.) 84.9 82.4 86.7 85.6

GCT2 (Ours) 87.0 84.2 87.5 88.5

We evaluate the performance of closed-
set classification and unknown class
recognition using the macro-averaged
F1-score (mF1-score). In consistent
with the literature Neal et al. (2018);
Yoshihashi et al. (2019); Oza & Patel
(2019), we set CIFAR10 as known.
ImageNet-crop, ImageNet-resize,
LSUN-crop, LSUN-resize, which
are cropped and resized from Ima-
geNet Russakovsky et al. (2015) and
LSUN Yu et al. (2015), are selected as
4 sets of open-set data.

Under the setting that Nmax = 10,
No = 10, L = 10 and τmax = 0.90, our method achieves excellent performance as shown in
Table 4. It demonstrates that by introducing open negative label words into prompt tuning, the la-
bel bias has been mitigated with the closed-set classification ability preserved, contributing to the
superior performance both on closed-set classification and unknown recognition.

4.6 EFFECT STUDY OF OPEN NEGATIVE LABEL WORDS

In our method, we introduce additional open negative label words into group-specific contrastive
tuning to mitigate the label bias and regularize the predictions. To see how these words affect the
unknown detection performance, here we show results on CIFAR100 and ImageNet-100. Results
on other benchmarks are shown in the supplementary. As demonstrated in our supplementary, when
Nmax is set to 20, the best performance is achieved when No = 40 for CIFAR100 and No =
20 for ImageNet-100. By this division, CIFAR100 is composed of only 1 group, ImageNet-100 is
composed of 5 independent groups. The comparison of the distributions on pimax between tuning
with and without open negative label words on CIFAR100 and the first group of ImageNet-100 are
shown in Fig. 3.

When No is 0 which stands for no open negative label word is introduced into tuning, the distribu-
tions of closed-set and open-set data exhibit severe overlap on the higher side. It shows the significant
label bias of prompt that test images are prompted to be predicted as known classes with high proba-
bility, which inevitably harms the unknown detection. In contrast, when introducing additional open
negative label words into tuning, the distributions of closed-set and open-set data are clearly sepa-
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(a) CIFAR100, No = 0. (b) CIFAR100, No = 40. (c) ImageNet-100, No = 0.(d) ImageNet-100, No = 20.
Figure 3: Distributions of the maximal similarity pimax between each image to the group-specific
closed-set classes in the unknown detection experiments. The comparisons on the CIFAR100 and
the first group of ImageNet-100 are used.

(a) IN-c as the open-set. (b) IN-r as the open-set. (c) LS-c as the open-set. (d) LS-r as the open-set.
Figure 4: Ablation study on Nmax in open-set recognition on the CIFAR10 benchmark. We use
IN-c, IN-r, LS-c, and LS-r to denote ImageNet-crop/-resize, LSUN-crop/-resize.

Table 5: Ablation study by AUROC on Nmax in unknown detection experiments on small datasets.

AUROC CIFAR10 CIFAR+10 CIFAR+50 AUROC TinyImageNet CIFAR100

Nmax = 1 94.9 92.3 94.4 Nmax = 1 78.7 79.3
Nmax = 2 93.6 92.2 92.9 Nmax = 5 85.2 78.5
Nmax = 6 96.1 96.1 96.2 Nmax = 10 87.2 86.3
Nmax > 6 96.1 96.1 96.2 Nmax = 20 88.2 86.2

rated. Unknown samples are much less confident to be predicted as known, by which the label bias
of prompts has been mitigated to achieve great unknown detection performance. The results reveal
the effectiveness of the proposed GCTu which mitigates the label bias in prompt engineering and
contributes to the great performance of unknown detection in the open world.

4.7 ABLATION STUDY ON THE MAXIMUM NUMBER OF CLASSES IN EACH GROUP Nmax

Setting the length of prompt L to 10 with [CLASS] placed in the medium, we investigate the
impact that grouping brings to small and large-scale datasets in OSR tasks. More groups stand for
more unused tokens are utilized, i.e., more embedding parameters are optimized in tuning.

Table 6: Ablation study on Nmax in
unknown detection experiments on
large-scale datasets. We use IN to
represent ImageNet.

AUROC IN-100 IN-200 IN-LT

Nmax = 10 96.9 94.0 78.8
Nmax = 20 98.1 95.5 81.9
Nmax = 30 97.8 94.3 79.7
Nmax = 40 97.8 94.3 80.2
Nmax = 1000 97.4 91.9 72.5

Ablation study of unknown detection on small-scale
datasets. In this part, we analyze how grouping affects
unknown detection on small-scale datasets. As the known
classes in CIFAR10 and CIFAR+10/50 are no more than
10, we set the Nmax to 1, 2, 6 for comparison. TinyIma-
geNet and CIFAR100 both include 20 known classes, thus
we set the Nmax to 1, 5, 10, 20 for comparison. Specifically,
the group-specific prompts is also the class-specific prompts
when Nmax is set to 1. Larger Nmax represents fewer groups
that the dataset is divided into. The results in Table 5 show
that when there is only 1 group, the unknown detection per-
formance on almost all small-scale datasets is the best. It re-
veals that only one prompt, which corresponds to the special case that the datasets are composed
of only 1 group, is enough for small-scale datasets. More than one prompt leads to more complex
group-combined prediction.

Ablation study of unknown detection on large-scale datasets. The unknown detection perfor-
mance on large-scale datasets setting Nmax to 10, 20, 30, 40 and 1000 is compared in Table 6. The
caseNmax = 1000 refers to the case that only one prompt is devised to all closed-set classes of each
large-scale dataset as defined in Eq. 1. When Nmax is set to 20, the AUROC is the highest. When
the number of classes in a group increases a lot, the prediction within each group is more difficult,
which leads to poorer performance. When only one prompt is devised for all classes, the results

8
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are almost the worst. In contrast, by dividing large-scale datasets into tiny groups which include
10 classes at most, the combined prediction is more complex. The results show that grouping with
rational Nmax contributes to the comprehensive performance on large-scale datasets. As a general
law, when setting Nmax as 20, the performance both on small and large-scale datasets are the best.

Ablation study on CIFAR10. To study the impact the grouping causes to the comprehensive per-
formance of closed-set classification and unknown recognition, we set the Nmax to 1, 2, 5, 10 on
the same benchmark in Table 4. The mF1-score comparison for τ ∈ [0.90, 0.92, 0.94, 0.96, 0.98] are
reported in Fig. 4. Obviously, the best performance is achieved when Nmax = 10 and τmax = 0.90.
From the grouping perspective, the conclusion is the same as that in ablation studies of unknown
detection on small-scale datasets that dividing small-scale datasets into more than one group makes
the prediction more complex and harms the performance.

Ablations in this part validates that grouping achieves the strong applicability on small and large-
scale datasets. As a special case, one group is better for small-scale datasets. More groups are more
suitable for large-scale datasets. As a general law, in our paper, the best performance on small and
large-scale datasets are both achieved by setting Nmax = 20. The wide applicability of our method
has been verified.

4.8 THE EFFECT OF PROMPT LENGTH AND GROUP NUMBER FOR LARGE-SCALE DATASETS

Table 7: Comparisons of AUROC between longer
prompts and more groups in unknown detection
on large-scale datasets. The numbers of unused to-
kens in all settings are same for each dataset.

ImageNet-100 TokenNum Nmax G L AUROC

Setting 1 100 5 20 5 97.1
Setting 2 100 10 10 10 96.9
Setting 3 100 20 5 20 96.5
Setting 4 100 30 4 25 96.5

ImageNet-200 TokenNum Nmax G L AUROC

Setting 1 200 5 40 5 94.5
Setting 2 200 10 20 10 93.7
Setting 3 200 20 10 20 92.0
Setting 4 196 30 7 28 90.9

ImageNet-LT TokenNum Nmax G L AUROC

Setting 1 500 20 50 10 77.9
Setting 2 500 40 25 20 75.2
Setting 3 500 50 20 25 74.3
Setting 4 500 100 10 50 74.2

In our main experiments, the length of each
prompt L is set by 10. The number of adopted
unused tokens increases with the number of
groups, leading to more embedding parameters
can be optimized. In this part, we aim at inves-
tigating whether the performance gains come
from the increase of unused tokens or groups.
We keep the number of unused tokens adopted
for each large-scale dataset the same across
all settings. The length of the group-specific
prompts changes together with the number of
classes in a group. More classes in a group
lead to fewer groups and longer group-specific
prompts. To mitigate the impact caused by
the number of open negative label words and
achieve a general law, the unknown detection
performance is evaluated by average among 4
trials setting No to 10, 20, 40 and 60. The set-
tings and results are compared in Table 7.

Results in setting 1 are the best. The perfor-
mance drops with the increase of Nmax and L.
It reveals that longer prompts are not the reason of improving unknown detection on large-scale
datasets. Making predictions on large groups with more classes is hard and complex. In contrast,
though the prompts in setting 1 are equipped with fewer unused tokens, the grouping strategy
contributes to the excellent performance by combining predictions on multiple groups with a few
classes. The results validate the effectiveness and necessity of grouping on large-scale datasets.

5 CONCLUSION

In this paper, we aim at exploring a new paradigm for solving the OSR problem by prompt engineer-
ing on pre-trained VL models, in which an universal data grouping strategy is devised. We firstly
process the closed-set data into the combination of one or more groups. The Group-specific Con-
trastive Tuning (GCTu) is devised to mitigate the label bias of prompts by introducing open negative
label words from the built label pool for regularizing the predictions. Then, to make comprehen-
sive predictions combining sub-predictions of each group, the Group Combined Testing (GCTe) is
developed. Our method performs competitively across datasets including ImageNet, validating the
effectiveness of the proposed new paradigm for OSR.
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A UNKNOWN DETECTION PERFORMANCE EVALUATED BY AUROC ON
SMALL-SCALE DATASETS

The AUROC results averaged among five randomized trials together with standard deviation are
shown in Table 8. We can see that our method achieves excellent performance. It validates the
efficacy of the proposed new paradigm which solves OSR on small-scale datasets by prompt engi-
neering with the label bias being eliminated.
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Table 8: Unknown detection performance evaluated by AUROC on small-scale datasets. Results are
averaged among 5 randomized trials.

Methods CIFAR10 CIFAR+10 CIFAR+50 TinyImageNet CIFAR100

OSRCI (Neal et al.) 69.9±3.8 83.8±N.R. 82.7±N.R. 58.6±N.R. N.R.
CGDL (Sun et al.) 90.3±0.9 95.9±0.6 95.0±0.6 76.2±0.5 N.R.
GDFR (Perera et al.) 83.1±3.9 92.8±0.2 92.6±0.0 60.8±1.7 N.R.
C2AE (Oza & Patel) 89.5±0.8 95.5±0.6 93.7±0.4 74.8±0.5 N.R.
PROSER (Zhou et al.) 89.1±1.6 96.0±0.4 95.3±0.3 69.3±0.5 N.R.
CPN (Yang et al.) 82.8±2.1 88.1±N.R. 87.9±N.R. 63.9±N.R. N.R.
RPL (Chen et al.) 90.1±N.R. 97.6±N.R. 96.8±N.R. 80.9±N.R. N.R.
ARPL+CS (Chen et al.) 91.0±N.R. 97.1±N.R. 95.1±N.R. 78.2±N.R. N.R.
PMAL (Lu et al.) 95.1±N.R. 97.8±N.R. 96.9±N.R. 83.1±N.R. N.R.
ZOC (Esmaeilpour et al.) 93.0±1.7 97.8±0.6 97.6±0.0 84.6±1.0 82.1±2.1

GCT2 (Ours) 96.1±0.7 96.1±0.8 96.2±0.4 88.2±1.4 86.2±1.3

Table 9: Unknown detection performance evaluated by AUROC with different numbers of open
negative label words No.

AUROC CIFAR10 CIFAR+10 CIFAR+50 TinyImageNet CIFAR100 ImageNet-100 ImageNet-200 ImageNet-LT

No = 5 96.1 94.7 94.3 85.7 84.4 97.0 93.4 72.3
No = 10 94.9 95.1 94.1 85.8 84.9 97.4 93.9 75.1
No = 20 93.7 95.1 95.3 86.6 85.4 98.1 94.9 77.1
No = 40 93.9 96.1 96.2 85.1 86.2 97.7 95.5 77.7
No = 60 94.7 94.9 93.7 88.2 85.9 97.9 93.8 81.9

B ABLATION STUDY ON THE NUMBER OF OPEN NEGATIVE LABEL WORDS

Under the setting that Nmax = 20 and L = 10, the detailed comparison of unknown detection
performance measured by AUROC with different numbers of open negative label words are shown
in Table 9. In addition, the distributions of pimax on each benchmark with/without introducing open
negative label words into tuning are shown in Fig. 5.

The results and distribution comparisons reveal that the significant label bias prevents recognizing
unknown classes correctly when No = 0, which stands for prompt tuning without introducing open
negative label words. After introducing open negative label words, the performance is improved.
The difference in the distributions between closed-set and open-set data has been obviously widened
after introducing the open negative label words. The effectiveness of the Group-specific Contrastive
Tuning (GCTu) has been verified. It successfully addresses the label bias of prompt engineering and
contributes to superior unknown detection performance.

C STUDY ON THE EFFECT OF PROMPT LENGTH AND GROUP NUMBER FOR
LARGE-SCALE DATASETS

In this part, we deliver the comparison results on joint closed-set classification for supplementation.
The joint closed-set classification performance evaluated by accuracy is averaged among 4 trials by
setting No to 10, 20, 40 and 60. Results are shown in Table 10.

Results show that longer prompts are not the reason for improving the joint closed-set classification
on large-scale datasets. After dividing the large-scale datasets into small groups, the group-specific
tuning and inference are simplified for fewer classes within each group. Classification performance
is better in groups with fewer classes.

D STUDY ON THE DEFINITION OF Sopen

In this paper, we define the score measuring a sample being unknown as one minus the sum of
closed-set probabilities. The intuition is that the labels participated into group-specific tuning include
the group-wise closed-set labels and additional open negative label words, in which the sum of the
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(a) CIFAR10, No = 0. (b) CIFAR10, No = 5.

(c) CIFAR+10, No = 0. (d) CIFAR+10, No = 40.

(e) CIFAR+50, No = 0. (f) CIFAR+50, No = 40.

(g) TinyImageNet, No = 0. (h) TinyImageNet, No = 60.

(i) CIFAR100, No = 0. (j) CIFAR100, No = 40.

(k) ImageNet-200, Group 2, No = 0. (l) ImageNet-200, Group 2, No = 40.

(m) ImageNet-LT, Group 13, No = 0. (n) ImageNet-LT, Group 13, No = 60.

Figure 5: The distributions of the maximal similarity pimax between each image to the group-specific
closed-set classes in the unknown detection experiments.

Figure 6: Torch-like pseudocode for semantic similarity sorting process.
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Table 10: Comparisons of closed-set accuracy between longer prompts and more groups in unknown
detection on large-scale datasets. The numbers of unused tokens are kept the same across all settings
for each dataset. Results are averaged among 4 trials.

ImageNet-100 TokenNum Nmax G L Close-Acc

Setting 1 100 5 20 5 82.3
Setting 2 100 10 10 10 78.2
Setting 3 100 20 5 20 76.9
Setting 4 100 30 4 25 77.5

ImageNet-200 TokenNum Nmax G L Close-Acc

Setting 1 200 5 40 5 85.7
Setting 2 200 10 20 10 79.5
Setting 3 200 20 10 20 76.3
Setting 4 196 30 7 28 71.9

ImageNet-LT TokenNum Nmax G L Close-Acc

Setting 1 500 20 50 10 77.97
Setting 2 500 40 25 20 75.6
Setting 3 500 50 20 25 74.2
Setting 4 500 100 10 50 69.8

Table 11: Comparison to CLIP baseline and definition of score of being unknown in unknown de-
tection.

Methods CIFAR10 CIFAR+10 CIFAR+50 TinyImageNet CIFAR100 ImageNet-100 ImageNet-200 IN-LT

CLIP+MSP 87.3 92.2 92.4 83.7 84.0 74.0 78.5 58.1
GCT2+MSP 92.4 94.3 95.0 86.3 85.3 92.2 90.8 79.5

GCT2 (Ours) 96.1 96.1 96.2 88.2 86.2 98.1 95.5 81.9

probabilities on open negative labels are naturally regarded as the score of a sample being unknown.
Thus, we define the Sopen as in Eq. 7 in the main paper.

As the supplement explanation, we conduct comparison experiments on the definition of Sopen. The
compared one is based on maximum over softmax probabilities (MSP) (Hendrycks & Gimpel, 2017)
denoted as SMSP

open :

SMSP
open = 1− pIoptmax. (9)

Results delivered in Table 11 show that our definition is more suitable with our method. In addition,
based on the same definition of the score of being open by using MSP, the results achieved by GCT2
in the second row all surpass the results achieved by vanilla OSR method built on CLIP in the first
row. It further validates the efficacy of our proposed method.

E ABLATION STUDY ON THE GROUPING STRATEGY

Table 12: Ablation study on grouping strategies in un-
known detection on large-scale datasets.

AUROC ImageNet-100 ImageNet-200 ImageNet-LT

CLIP+MSP (Baseline) 74.0 78.5 58.1
PMAL (Lu et al.) 94.9 93.9 71.7

Random 97.4 91.9 80.7
Semantics 96.0 92.6 76.2
WNID Order 98.1 95.5 81.9

As studied in Section 4.7, one group
is better for small-scale datasets, while
multiple groups with rational Nmax

(maximum number of classes per group)
contributes to the great performance on
large-scale datasets. Grouping on small-
scale datasets result in no more than 5
classes within each group due to the
small number of classes. Therefore, in
this section, we only perform the abla-
tion study on the grouping strategy on
large-scale datasets. The strategies in-
clude grouping by WordNet ID (WNID) order adopted in the main experiments, grouping by ran-
domness and grouping by semantic similarities.
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Table 13: Closed-set classification accuracy comparison.

Methods CIFAR10 CIFAR+10 CIFAR+50 TinyImageNet CIFAR100 ImageNet-100 ImageNet-200 ImageNet-LT

SoftMax 80.1 N.R. N.R. N.R. N.R. 81.7 79.7 37.8
CPN (Yang et al.) 92.9 94.8 95.0 81.4 N.R. 86.1 82.1 37.1
CGDL (Sun et al.) 91.2 N.R. N.R. N.R. N.R. N.R. N.R. N.R.
RPL (Chen et al.) 95.1 95.5 95.9 81.7 N.R. 81.8 80.7 39.0
ARPL (Chen et al.) 87.9 94.7 92.9 65.9 N.R. N.R. N.R. N.R.
PMAL (Lu et al.) 97.5 97.8 98.1 84.7 N.R. 86.2 84.1 42.9

GCT2 (Ours) 97.8 96.2 95.8 87.3 87.2 82.7 85.2 78.0

In the semantics grouping strategy, we sort the classes by the similarities on their text embeddings
extracted by the text encoder of CLIP Radford et al. (2021). We select the first class in closed-set
label words as the start one in the semantic order, the class with the highest similarity to the previous
class is then appended to the semantic similarity sorted class list. Details of the ordering is shown
in Fig. 6. Therefore, any two categories that are adjacent in the semantic order list are the ones with
the highest semantic similarity.

The ablation experiments are conducted with Nmax = 20. Results of unknown detection evalu-
ated under different grouping strategies together with the results of method PMAL Lu et al. (2022)
and CLIP baseline are delivered in Table 12. The ablation study show that grouping by WNID or-
der achieves the best results. Even though random grouping and semantic grouping are inferior to
grouping by WNID, the results are still competitive and far better than those of CLIP baseline.
We analyze the reason as that WNID order contributes the optimal inter-class split both within and
across all groups, by which the classes within a group are easily to be classified, the optimal prompts
are easily to be selected without confusion. It validates the effectiveness of GCT2 and the grouping
strategy guided by WNID order.

F CLOSED-SET ACCURACY IN UNKNOWN DETECTION EXPERIMENTS

Taking the results in PMAL Lu et al. (2022), the closed-set classification accuracy in the unknown
detection experiments are compared in Table 13. The results show that our method achieves com-
petitive closed-set classification performance, which demonstrates the efficacy of solving OSR by
promptv tuning with label bias mitigated.
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