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ABSTRACT

Language has become a prominent modality in computer vision with the rise of
LLMs. Despite supporting long context-lengths, their effectiveness in handling
long-term information gradually declines with input length. This becomes criti-
cal, especially in applications such as long-form video understanding. In this pa-
per, we introduce a Language Repository (LangRepo) for LLMs, that maintains
concise and structured information as an interpretable (i.e., all-textual) represen-
tation. Our repository is updated iteratively based on multi-scale video chunks.
We introduce write and read operations that focus on pruning redundancies in
text, and extracting information at various temporal scales. The proposed frame-
work is evaluated on zero-shot visual question-answering benchmarks including
EgoSchema, NExT-QA, IntentQA and NExT-GQA, showing state-of-the-art per-
formance at its scale. Our code will be made publicly available.

1 INTRODUCTION

Video data is central to learning systems that can interact and reason about the world. Yet, they
also associate with significant challenges such as increased compute requirements and redundant
information, to name a few. This is especially critical in long-form videos. Even so, recent literature
on video understanding have progressed so far, enabling reasoning capabilities in hours-long video
streams (Team et al., 2023; Islam et al., 2024), in contrast to very-limited temporal spans (e.g. sec-
onds or minutes) just a few years ago. Such progress is intriguing considering how complex the se-
mantics become when temporal span is increased (Sigurdsson et al., 2016; Yeung et al., 2018). Work
on efficient spatio-temporal attention mechanisms (Arnab et al., 2021; Bertasius et al., 2021), mem-
ory management (Wu et al., 2022; Ryoo et al., 2023), and large-language-models (LLMs) (Wang
et al., 2022a; Yu et al., 2024; Team et al., 2023) have been key ingredients for such improvements.

LLMs, or more-specifically, vision-large-language-models (VLLMs) have been outperforming pure
vision models in recent years in all facets, including image-based reasoning (Liu et al., 2024; Zheng
et al., 2024; Li et al., 2023b), grounding (Lai et al., 2023; Rasheed et al., 2023), video understand-
ing (Wang et al., 2022a; Ye et al., 2023b; Yu et al., 2024), and even robotics (Zeng et al., 2022;
Ahn et al., 2022; Liang et al., 2023; Li et al., 2024b). The sheer model scale and the vast pretrain-
ing data have enabled such frameworks to capture world knowledge and semantics, beyond what
is possible with visual data only. Besides, the ability to process long context-lengths is also key,
as it helps modeling long-term dependencies that are crucial for more-complex reasoning and in-
teractions. However, recent studies show that despite the availability of such context-lengths, the
effectiveness of models declines with longer input sequences (Levy et al., 2024). This promotes the
search for alternate representations that can compress input language data without losing meaningful
information, essentially managing the context utilization of LLMs.

Moreover, the use of text (i.e., language) in modeling has shown numerous benefits such as rich
semantics (Wang et al., 2022b; Menon & Vondrick, 2022; Kahatapitiya et al., 2023), ease of in-
formation sharing between different specialized-models (Zeng et al., 2022) or modalities (Liu et al.,
2024; Girdhar et al., 2023), and interpretability (Zhao et al., 2023a; Singh et al., 2024). Among such,
interpretability has a huge societal impact in the age of LLMs, to manage adversities such as bias
(Liang et al., 2021; Ferrara, 2023) and hallucinations (Zhang et al., 2023b; Dhuliawala et al., 2023).
Simply put, it enables human observers to understand and monitor what really happens within mod-
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Figure 1: Overview of our Language Repository (LangRepo): We propose an all-textual reposi-
tory of visual information that updates iteratively, creating a multi-scale and interpretable represen-
tation. It extracts information from captions corresponding to video chunks, generated by a VLLM.
In write-to-repo, we prune and rephrase input descriptions, creating concise entries in the
repository. In read-from-repo, such language descriptions (together with any optional meta-
data, e.g., timestamps) at multiple semantic-scales are summarized to generate outputs suited for
video VQA. Here, rephrase and summarize are LLM-calls. We also compare LangRepo against
state-of-the-art methods, showing strong performance at its scale.

els. Hence, interpretable representations have also been of interest to the community, in place of
latent representations (Wu et al., 2022; Ryoo et al., 2023).

Motivated by the above, we introduce Language Repository (LangRepo), an interpretable rep-
resentation for LLMs that updates iteratively. It consumes input captions corresponding to video
chunks , as shown in Fig. 1 (left). As LangRepo is all-textual, we rely on text-based operations to
write and read information. The write operation (write-to-repo) prunes redundant text, creat-
ing concise descriptions that keep the context-utilization of LLMs in-check. Its iterative application
with increasingly-longer chunks enables it to learn high-level semantics (e.g. long temporal depen-
dencies). The read operation (read-from-repo) extracts such stored language information at
various temporal scales, together with other optional metadata within the repository entries (e.g.
timestamps). Altogether, our proposed framework is applied to long-term video reasoning tasks
including visual question-answering (VQA) on EgoSchema (Mangalam et al., 2024), NExT-QA
(Xiao et al., 2021) and IntentQA (Li et al., 2023a), and visually-grounded VQA on NExT-GQA
(Xiao et al., 2023a), showing strong performance at its scale, as given in Fig. 1 (right). Finally, we
ablate our design decisions, providing insights on key components.

2 RELATED WORK

Long-video understanding: Video models have progressed over the years, going from primitive
recognition tasks (Soomro et al., 2012; Kuehne et al., 2011) to complex and fine-grained reasoning
tasks (Sigurdsson et al., 2016; Yeung et al., 2018; Xiao et al., 2021; Grauman et al., 2022; Man-
galam et al., 2024) over long horizons. Both convolutional baselines (Carreira & Zisserman, 2017;
Feichtenhofer et al., 2019; Feichtenhofer, 2020) and transformer architectures (Arnab et al., 2021;
Bertasius et al., 2021; Nagrani et al., 2021) have explored research directions such as multi-scale
representations (Feichtenhofer et al., 2019; Fan et al., 2021; Liu et al., 2022), efficiency concerns as-
sociated with heavy spatio-temporal computations (Duke et al., 2021; Li et al., 2019), and handling
redundant information within video inputs (Chen et al., 2018; Kahatapitiya & Ryoo, 2021). More
recently, long-video understanding has made a leap forward thanks to benchmark datasets (Grauman
et al., 2022; Mangalam et al., 2024; Xiao et al., 2021) and model improvements (Yu et al., 2024;
Zhang et al., 2023a; Papalampidi et al., 2023), validating the importance of modeling complex in-
teractions that happen over long periods of time. Still, the sub-par performance of SOTA models on
such benchmarks suggests the room for improvement.

Long-context models: Even before the age of LLMs, models based on convolutions (Wang et al.,
2018; Piergiovanni & Ryoo, 2018; 2019; Kahatapitiya & Ryoo, 2021), recurrent blocks (Greff et al.,
2016; Chung et al., 2014; Hutchins et al., 2022) or transformers (Wu et al., 2022; Ryoo et al., 2023;
Chen et al., 2021) have exploited long-term dependencies, especially in the context of video under-
standing (Wang et al., 2018; Wu et al., 2022) and robotics (Chen et al., 2021; Shang et al., 2022).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

With the rise of LLMs, scaling laws have revealed the importance of longer contexts even more
(Team et al., 2023; Reid et al., 2024), and, thanks to the breakthroughs such as sparse processing
(Shazeer et al., 2017; Fedus et al., 2022), caching (Ge et al., 2023; Kwon et al., 2023; Khandelwal
et al., 2018), model-sharding (Zhao et al., 2023b; Chowdhery et al., 2023; Lepikhin et al., 2020), and
efficient attention (Dao et al., 2022; Lefaudeux et al., 2022), such long-context LLMs have become a
reality. Even with very large context lengths, maintaining the effectiveness of reasoning over longer
inputs is challenging (Levy et al., 2024; Xiong et al., 2023; Shi et al., 2023). This motivates us to
think about concise representations that can better-utilize LLM context.

Compressing representations: When handling heavy inputs, deep learning models have relied on
compressed representations. It may come in the form of pruning (Ryoo et al., 2021; Bolya et al.,
2022), latent memory (Ryoo et al., 2023; Graves et al., 2014; Wu et al., 2022), or external feature
banks (Wu et al., 2019), to name a few. Despite the intuitive novelties and efficiency gains of such
techniques, it is challenging to realize which information gets preserved, and how semantically-
meaningful they are post-compression. An interpretable representation that supports compression,
if available, may shed light on such details.

Language as an interpretable modality: More-recently, language has emerged as a dominant
modality in computer vision due to its strong generalization capabilities (Radford et al., 2021; Jia
et al., 2021). It can also act as a bridge between various domain-specific models (Zeng et al., 2022),
other modalities (Liu et al., 2024; Girdhar et al., 2023), and even human instructions (Surı́s et al.,
2023; Gupta & Kembhavi, 2023), showing intriguing applications in domains such as chat agents
(e.g. ChatGPT, Bard) and robotics (Ahn et al., 2022; Liang et al., 2023). Since language is inter-
pretable, it enables humans to interact with models naturally and make sense of model predictions.

Motivated by the above, we introduce an interpretable language representation that can (1) prune re-
dundant information, and (2) extract multi-scale (or, high-level) semantics, enabling better context-
utilization within LLMs. We rely on open-source LLMs without additional video pretraining, yet
showing a strong performance compared to concurrent work based on much-larger proprietary mod-
els (Park et al., 2024; Wang et al., 2024b; Fan et al., 2024; Wang et al., 2024e;d; Kim et al., 2024)
or video-pertained multi-modal models (Wang et al., 2024a; Li et al., 2024a; Wang et al., 2024c).

3 OBSERVATIONS ON LONG-RANGE INPUTS

Table 1: Observations on increasing input
length: We evaluate the VQA performance
of an LLM (Jiang et al., 2023) at different
input lengths, on multiple long-video bench-
marks (Mangalam et al., 2024; Xiao et al.,
2021; Li et al., 2023a). Even with a sufficient
context length, the effectiveness of predic-
tions decreases with longer input. Here, 1×
corresponds to captions generated at a stan-
dard frame-rate (and, 0.5×/2× corresponds
to a compression/expansion by a factor of 2).

Dataset Captions per-video
0.5× 1× 2×

EgoSchema 49.8 48.8 46.8
NExT-QA 48.2 48.2 46.9
IntentQA 47.1 46.9 45.2

In this section, we investigate how LLMs perform
with increasing inputs lengths (i.e., #tokens). Re-
cent LLMs with very-large context lengths such as
Gemini-Pro-1.5 (Team et al., 2023) (1M tokens) or
Claude-2.1 (200k tokens), can support extremely
long input sequences. Yet, when feeding longer
inputs, the reasoning capabilities (especially, long-
term reasoning) of such models diminish. This be-
havior is also observed in concurrent work (Levy
et al., 2024), and evident in benchmark results of
state-of-the-art models (Ye et al., 2023b; Yu et al.,
2024) (i.e., better performance with shorter inputs,
or fewer video frames). To better investigate this
in our setup, we evaluate VQA performance on
standard long-term video understanding benchmarks
while varying the input length (see Table 1). We
consider frame/short-clip captions extracted using a
VLLM at a baseline framerate (1×) as inputs (in-
troduced in (Zhang et al., 2023a)). We either subsample (0.5×) or replicate (2×) the captions,
decreasing/increasing the input lengths of a question-answering LLM, namely, Mistral-7B (Jiang
et al., 2023) with 8k (or, theoretical 128k) context length. All inputs fit within the context, without
any overflow. The observation from this study is consistent: even though the context length of the
LLM is sufficient to process given inputs, the effectiveness of its predictions (shown by VQA perfor-
mance) drops with longer inputs. This motivates us to introduce a concise language representation
that preserves important details of long-range inputs, while pruning any redundant information.
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Algorithm Long-video VQA pipeline in LangRepo

require captions of video chunks C0 = {c0i | i = 1, · · · , n},
number of iterations K.

def write-to-repo(c):
cdst, csrc = split(c)
simsrc-dst = similarity(encode(csrc), encode(cdst))
cgrp = group(cdst, csrc, simsrc-dst)
creph = rephrase(templatereph(cgrp))
r = (creph, t, o) // t: timestamps, o: occurances
return r

def read-from-repo(r):
d = summarize(templatesum(r))
return d

r0i = write-to-repo(c0i )
d0i = read-from-repo(r0i )

for k in range(K): // iterative write and read
Ck+1 = re-chunk([· · · , rki , · · · ])
rk+1
i′ = write-to-repo(ck+1

i′ )

dk+1
i′ = read-from-repo(rk+1

i′ )

ans = vqa(q, [ d0i , · · · ]) // q: query

Figure 2: Detailed view of our Language Repository (LangRepo): Here we present the write
and read operations within LangRepo. Given short-captions corresponding to video chunks,
write-to-repo first prunes redundant captions within each chunk. The same process is it-
eratively applied on increasingly longer (or, higher-level) chunks— that are already within the
repository— to generate multi-scale repository entries. Pruning consists of two stages: (1) grouping
most similar captions based on embedding (e.g. CLIP (Radford et al., 2021)) similarities between
two subsets, and (2) rephrasing grouped captions with an LLM-call. The resulting LangRepo will
include rephrased-captions and any optional metadata (e.g. #occurrences, timestamps). Next,
read-from-repo generates concise descriptions for different semantic levels by summarizing
the multi-scale language representation, which is also an LLM-call.

4 LANGUAGE REPOSITORY

We present a Language Repository (LangRepo) that iteratively updates with multi-scale descrip-
tions from video chunks. In contrast to external feature banks (Wu et al., 2019) or learnable latent
memory representations (Wu et al., 2022; Ryoo et al., 2023; Balažević et al., 2024), our proposal has
a few key advantages: (1) it requires no training (i.e., zero-shot), and (2) it is compatible with both
LLM-based processing and human interpretation, as it is fully-textual, i.e., it exists in language-
space instead of a latent-space. LangRepo consists of two main operations: (1) information writ-
ing (write-to-repo), which prunes redundancies and iteratively updates language descriptions
based on increasingly-longer video chunks, and (2) information reading (read-from-repo),
which extracts preserved descriptions (with any optional metadata) in multiple temporal scales. We
show a detailed view of these operations in Fig. 2, and further elaborate in the following subsections.

Consider a long video that is split in to n non-overlapping chunks, denoted as V = {vi | i =
1, · · · , n}. Assume that we already have frame or short-clip captions extracted by a VLLM (e.g.
LLaVA (Liu et al., 2024)) corresponding to such chunks, denoted by C0 = {c0i | i = 1, · · · , n}.
Here, each chunk may consist of p such captions as in c0i = {c0ij | j = 1, · · · , p}. Altogether, V is
represented by n× p captions which we consider as inputs to our framework.

4.1 WRITING TO REPOSITORY

We intend to create a concise, all-textual representation with multiple scales (or, semantic-levels) of
information. Hence, our writing operation is text-based, and applied iteratively on different scales
of input. In the first iteration, it consumes low-level details in each chunk i, in the form of captions
c0i , generating initial entries to the repository repo0(i), or r0i .

r0i = write-to-repo(c0i ) . (1)

In each subsequent iteration k + 1, previous repo entries of iteration k are re-combined into longer
chunks and processed in the same way, generating information for higher semantic-levels.

[ck+1
1 , · · · , , ck+1

m ] = re-chunk([rk1 , · · · , rkn]) , (2)

rk+1
i′ = write-to-repo(ck+1

i′ ) . (3)
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[INST] <<SYS>> You are a helpful expert in first person view video analysis. <</SYS>>
 
You are given a list of ${num_of_groups} language descriptions for a first person view video. Each sentence 
describes a ${clip_length}s clip. Here are the descriptions as a list: ${grouped_captions}.

Please summarize and rephrase each item in the list as a single sentence of ${num_words} words. Keep the 
same original subject. Keep all information intact without leaving anything out. Return only the rephrased list of 
${num_of_groups} descriptions in the same order, without additional details. [/INST] 
The rephrased list is as follows:

[INST] <<SYS>> You are a helpful expert in first person view video analysis. <</SYS>>
 
You are given some language descriptions of a first person view video. The video is ${duration}s long. 
The descriptions cover the whole video exactly. Here are the descriptions: ${language_repository_entry}.

Please give me a ${num_words} words summary. When doing summarization, remember that your summary 
will be used to answer this multiple choice question: ${question} [/INST]
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Figure 3: LLM prompt templates in LangRepo: Here, we show the zero-shot prompt templates
used for rephrasing (templatereph) and summarizing (templatesum) operations. Rephrase
prompt needs a list of grouped captions as input, while its output adheres to more-strict require-
ments (e.g. same order, same number of list items) needed for correct parsing. Summarize prompt
takes in each repository entry and generates a more-flexible (i.e., open-ended) output, while option-
ally conditioning on the question.

Here, re-chunk(·) denotes the creation of longer (and, fewer, i.e., m < n) chunks within the
repository. More specifically, we simply concatenate (denoted by [·]) all entries from previous it-
eration, and split them again into fewer number of chunks (hence, longer chunk size). Note that i′
in the above equation is not the same as the previous chunk indexing i, as we may have different
(usually, fewer) number of chunks in each subsequent iteration. Each write operation involves two
stages: (1) Grouping redundant text, and (2) Rephrasing, which are detailed below.

Grouping redundant text: Given textual descriptions of a video chunk (i.e., captions in the first
write iteration, or previous repo descriptions in subsequent iterations), we plan to identify most-
similar ones and merge them as a single description. Without loss of generality, let us consider the
first write iteration, for which the input is in the form of c0i = {c0ij | j = 1, · · · , p}. Inspired
by (Bolya et al., 2022), we first split the captions of each chunk into two sets, namely, source (src)
captions c0src,i and destination (dst) captions c0dst,i. Let us drop the chunk index (i) and iteration index
(0) for brevity. Here, dst captions cdst are sampled uniformly distributed across the temporal span of
a chunk, while all the rest are considered as src captions csrc (see Fig. 2 top-left).

cdst, csrc = split(c) . (4)

Here, we usually have fewer dst captions (i.e., |cdst| < |csrc|). Next, we embed all captions using
a text-encoder (e.g. CLIP (Radford et al., 2021)), and compute the cosine similarity of each pair
between src-dst sets to find most-similar matches.

simsrc-dst = similarity(encode(csrc), encode(cdst)) . (5)

Based on the similarity matrix above (simsrc-dst), we then prune the highest x% similarities by group-
ing such source captions with their corresponding destination matches, forming a set of grouped
descriptions cgrp for the given chunk. Refer to the color-coded captions after ‘Group’ in Fig. 2.

cgrp = group(cdst, csrc, simsrc-dst) . (6)

Here, an additional hyperparameter (i.e., x) decides the grouping ratio. Finally, such grouped de-
scriptions go through a rephrasing operation prior to entering the repository.

Rephrasing: Grouped captions cgrp of each chunk are rephrased via an LLM-call. This allows
redundant information within each group to be dropped, while generating a concise and coherent
description. We first form a list of grouped captions, where each list item corresponds to a single
group (i.e., a dst caption and any one or more src captions matched to it), and feed it to the LLM,
wrapped in a rephrasing-template (templatereph) as shown in Fig. 3 (top-left).

creph = rephrase(templatereph(cgrp)) . (7)
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    [t=17,18]: Man X picks domino pieces. (x2)
    [t=16-27]: Man X picks/takes dominoes. (x4)
    [t=2,26-28,37]: Person C plays puzzle. (x4)
    [t=3,24-39]: Person C plays dominoes. (x4)
    [t=35,36]: Person O holds/picks a dice. (x2)

    [t=17]: #O man X picks a domino piece. 
    [t=18]: #O man X picks a domino piece.

    [t=16]: #O man X picks dominoes. 
    [t=21]: #O man X takes dominoes. 
    [t=23]: #O man X takes dominoes. 
    [t=27]: #O man X picks dominoes.

    [t=2]: #C C plays puzzle. 
    [t=26]: #C C plays puzzle. 
    [t=28]: #C C plays puzzle. 
    [t=37]: #C C plays puzzle.

    [t=3]: #C C plays dominoes. 
    [t=24]: #C C plays the dominoes game.
    [t=30]: #C C plays dominoes game. 
    [t=39]: #C C plays dominoes.

    [t=35]: #O O holds a dice. 
    [t=36]: #O O picks a dice.

Grouped redundant captions

Non-redundant captions
[t=0]:   #C C picks up dominoes.  (x1)
[t=8]:   #O man X plays dominoes game.  (x1)
[t=12]: #C C puts dominoes piece down.  (x1)
[t=20]: #O man X picks up domino.  (x1)
[t=25]: #C C moves dominoes.  (x1)
[t=29]: #C C puts dominoes on table.  (x1)
[t=34]: #O O drinks the juice.  (x1)
[t=40]: #C C plays dice.  (x1)
[t=44]: #C C looks around.  (x1)

Rephrased captions

Repository entry
Multi-scale Repo.

entries
In the first-person video, the protagonist, 
referred to as C, engages in various activities, 
while other individuals, referred to as man X, 
man A, and persons X, also participate in some 
of these activities. The overall purpose of C's 
actions revolves around playing games, 
specifically puzzles, dice, and dominoes. C 
starts by playing with dice, then shifts focus to 
solving a puzzle. Subsequently, C picks up 
dominoes, which are initially arranged and later 
moved around. C also interacts with other 
individuals in the video, as observed when 
shaking hands with man X, who subsequently 
plays a dominoes game with C. Man X, man A, 
and other persons also participate in the 
dominoes game, either by picking up or 
arranging the pieces. Throughout the video, C 
is seen looking around, possibly observing the 
actions of others and the game's progression. 
C also sets the dice aside, suggesting a shift in 
focus from one game to another. Towards the 
end of the video, C picks up a bottle, which 
could indicate a break from the games ...

Output description

chunk

Figure 4: A qualitative example of a LangRepo entry: Given a video chunk, redundant captions
are first grouped together during pruning operation. During rephrasing, such groups are more-
concisely written to the repository, along with additional metadata. Other non-redundant captions
are written directly. This process is continued iteratively with increasingly-longer chunks, creating
multi-scale repository entries (refer Fig. A.1 for a more-detailed view). Finally, such descriptions
from various temporal scales are read to generate the output.

Here, the LLM output (creph) is restricted to be a list in the same order with the same number of items,
where each item is a single concise sentence. Finally, such rephrased descriptions together with other
metadata such as timestamps (t) and number of occurrences (o) are written in the repository.

r = {(creph,j , tj , oj) | j = 1, · · · , p′} . (8)

Note that here p′ < p as we have grouped and rephrased a pre-defined ratio (e.g. 50%) of most-
similar captions. Alongside each description in a repository entry, t maintains a list of timestamps
corresponding to its founding captions, whereas the occurrences counter (o) keeps track of the num-
ber of captions grouped together. A qualitative example of a repository entry is given in Fig. 4.

In subsequent iterations, the same operations apply when writing multi-scale entries. The only
difference is the change in input, which now constitutes of previous repo entries re-combined into
high-level chunks (i.e., c0 → ck). Each new iteration generates information corresponding to a
higher semantic-level (i.e., going from short-range to long-range dependencies), forming our multi-
scale language representation.

4.2 READING FROM REPOSITORY

As we make a single VQA prediction for a given long video— instead of making predictions ev-
ery chunk— our read operation (read-from-repo) is applied after fully-forming each scale
of multi-scale repository (i.e., after writing all chunks). The repo entries from K scales can
be denoted as {rk | k = 0, · · · ,K} where each scale (rk) may consist of multiple entries
{· · · , rki−1, r

k
i , r

k
i+1, · · · }. When reading, we generate summaries for each entry in the repo sep-

arately, allowing it to focus on varying temporal spans. More specifically, each entry goes through
a summarizing-template (templatesum) as shown in Fig. 3 (bottom), and the resulting prompt is
fed to the LLM.

dki = read-from-repo(rki ) = summarize(templatesum(r
k
i )) . (9)

Here, dki corresponds to the output description of each entry i in the repository, at the respective
scale k. Optionally, we can make use of additional metadata such as timestamps and #occurrences,
by prompting the read operation with descriptions of repo entries formatted as “[timestamps]
description (×#occurrences)” (see Fig. 4). Finally, we concatenate all output descrip-
tions and prompt the LLM again to generate the answer prediction.

ans = vqa([· · · , dki , · · · ]) . (10)

5 EXPERIMENTS

In our experiments, we rely on captions pre-extracted using VLLMs, as given in (Zhang et al.,
2023a). As for the LLM, we use either Mistral-7B (Jiang et al., 2023) (w/ 7B parameters) or Mixtral-
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Table 2: Results on EgoSchema (Mangalam et al., 2024): We present comparisons with state-
of-the-art models on EgoSchema subset (500-videos) and fullset (5000-videos). We focus on the
zero-shot setting. LangRepo shows a strong performance at its scale.

Model Video Pretrain Params Subset (%) Fullset (%)

finetuned
MC-ViT-L (Balažević et al., 2024) ✓ 424M 62.6 44.4
ImageViT (Papalampidi et al., 2023) ✓ 1B 40.8 30.9
ShortViViT (Papalampidi et al., 2023) ✓ 1B 47.9 31.0
LongViViT (Papalampidi et al., 2023) ✓ 1B 56.8 33.3

zero-shot (with proprietary LLMs)
Vamos (Wang et al., 2023) ✓ 175B - 41.2
Vamos (Wang et al., 2023) ✓ 1.8T - 48.3
LLoVi (Zhang et al., 2023a) ✗ 175B 57.6 50.3
ProViQ (Choudhury et al., 2023) ✗ 175B - 57.1
MoReVQA (Min et al., 2024) ✗ 340B - 51.7
LVNet (Park et al., 2024) ✗ <1.8T 68.2 61.1
VideoAgent (Wang et al., 2024b) ✗ 1.8T 60.2 54.1
VideoAgent (Fan et al., 2024) ✗ 1.8T 62.8 -
IG-VLM (Kim et al., 2024) ✗ 1.8T - 59.8
VideoTree (Wang et al., 2024e) ✗ 1.8T 66.2 61.1
LifelongMemory (Wang et al., 2024d) ✗ 1.8T 68.0 62.1

zero-shot (with open-source LLMs)
VIOLET(Fu et al., 2023) ✓ 198M - 19.9
InternVideo (Wang et al., 2022a) ✓ 478M - 32.1
FrozenBiLM (Yang et al., 2022) ✓ 890M - 26.9
SeViLA (Yu et al., 2024) ✓ 4B 25.7 22.7
Tarsier (Wang et al., 2024a) ✓ 7B 56.0 49.9
VideoChat2 (Li et al., 2024a) ✓ 7B 63.6 54.4
VideoLLaMA 2 (Cheng et al., 2024) ✓ 12B - 53.3
Vamos (Wang et al., 2023) ✓ 13B - 36.7
InternVideo2 (Wang et al., 2024c) ✓ 13B - 60.2
Tarsier (Wang et al., 2024a) ✓ 34B 68.6 61.7
mPLUG-Owl (Ye et al., 2023b) ✗ 7B - 31.1
Mistral (Jiang et al., 2023) ✗ 7B 48.8 -
LLoVi (Zhang et al., 2023a) ✗ 7B 50.8 33.5
LangRepo (ours) ✗ 7B 60.8 38.9
LangRepo (ours) ✗ 12B 66.2 41.2

8×7B (Jiang et al., 2024) (w/ 12B active parameters) by default. As the text encoder in similarity-
based pruning, we use CLIP-L/14 (Radford et al., 2021). Note that all the models used in our
framework are open-source and within a reasonable model-scale, making our work accessible even
in academic settings. We do zero-shot inference on all datasets without any finetuning, evaluating
the performance on long-form video VQA benchmarks.

For evaluations, we consider four challenging long-video VQA benchmarks in our evaluations.
EgoSchema (Mangalam et al., 2024) derived from Ego4D (Grauman et al., 2022), consists of 3-
minute long clips, each with a question and 5 answer-choices. Its public validation subset consists
of 500 videos, whereas the held-out fullset has 5K videos. NExT-QA (Xiao et al., 2021) contains
videos up to 2 minutes long (at an average of 44 seconds), annotated with 52k open-ended ques-
tions and 48k close-ended questions (i.e., multiple-choice with 5 answer options). The questions
are further classified into temporal, causal, or descriptive categories, to evaluate different reasoning
capabilities of models. We consider zero-shot evaluation on the validation set. IntentQA (Li et al.,
2023a) is based on the same NExT-QA videos, yet focuses more on intent-related questions (e.g.
why?, how? or before/after) with a total of 16k multiple-choice questions on 4.3k videos. Here, we
consider zero-shot setting on the test set. NExT-GQA (Xiao et al., 2023a) is a visually-grounded
VQA dataset with 10.5K temporal grounding annotations, where we consider zero-shot inference
similar to (Zhang et al., 2023a), on the test split.

5.1 MAIN RESULTS

EgoSchema: In Table 2, we present the VQA performance of LangRepo on standard EgoSchema
(Mangalam et al., 2024) splits, comparing with other state-of-the-art frameworks. Here, we focus
on zero-shot evaluation, yet also report finetuned setting (i.e., any downstream-data-specific train-
ing) for completeness. We consider Mistral-7B (Jiang et al., 2023) and Mixtral-8×7B (Jiang et al.,
2024) as the choice of LLMs in our setup, both with reasonable model scales (7B and 12B active pa-
rameters, respectively). We de-emphasize the comparisons with models having significantly-higher
#parameters (e.g. 175B GPT-3.5, or 1.8T GPT-4 variants), and multi-modal LLMs that use video-
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Table 3: Results on NExT-QA (Xiao et al., 2021): We compare LangRepo against state-of-the-art
methods on NExT-QA validation set, highlighting standard splits: causal, temporal and descriptive.
We focus on the zero-shot setting. Our method shows strong performance at its scale.

Model Video Pretrain Params Causal (%) Temporal (%) Descriptive (%) All (%)

finetuned
CoVGT (Xiao et al., 2023b) ✓ 149M 58.8 57.4 69.3 60.0
SeViTFiD (Kim et al., 2023) ✓ 215M - - - 60.6
HiTeA (Ye et al., 2023a) ✓ 297M 62.4 58.3 75.6 63.1
MC-ViT-L (Balažević et al., 2024) ✓ 424M - - - 65.0
InternVideo (Wang et al., 2022a) ✓ 478M 62.5 58.5 75.8 63.2
BLIP-2 (Li et al., 2023b) ✓ 4B 70.1 65.2 80.1 70.1
SeViLA (Yu et al., 2024) ✓ 4B 74.2 69.4 81.3 73.8
LLama-VQA (Ko et al., 2023) ✓ 7B 72.7 69.2 75.8 72.0
Vamos (Wang et al., 2023) ✓ 7B 72.6 69.6 78.0 72.5

zero-shot (with proprietary LLMs)
ViperGPT (Surı́s et al., 2023) ✗ 175B - - - 60.0
ProViQ (Choudhury et al., 2023) ✗ 175B - - - 64.6
MoReVQA (Min et al., 2024) ✗ 340B 70.2 64.6 - 69.2
LVNet (Park et al., 2024) ✗ <1.8T 75.0 65.5 81.5 72.9
IG-VLM (Kim et al., 2024) ✗ 1.8T 69.8 63.6 74.7 68.6
LLoVi (Zhang et al., 2023a) ✗ 1.8T 69.5 61.0 75.6 67.7
TraveLER (Shang et al., 2024) ✗ 1.8T 70.0 60.5 78.2 68.2
VideoAgent (Wang et al., 2024b) ✗ 1.8T 72.7 64.5 81.1 71.3
VideoTree (Wang et al., 2024e) ✗ 1.8T 75.2 67.0 81.3 73.5

zero-shot (with open-source LLMs)
VFC (Momeni et al., 2023) ✓ 164M 45.4 51.6 64.1 51.5
InternVideo (Wang et al., 2022a) ✓ 478M 43.4 48.0 65.1 49.1
SeViLA (Yu et al., 2024) ✓ 4B 61.3 61.5 75.6 63.6
Tarsier (Wang et al., 2024a) ✓ 7B - - - 71.6
Tarsier (Wang et al., 2024a) ✓ 34B - - - 79.2
Mistral (Jiang et al., 2023) ✗ 7B 51.0 48.1 57.4 51.1
LLoVi (Zhang et al., 2023a) ✗ 7B 55.6 47.9 63.2 54.3
LLoVi (Zhang et al., 2023a) ✗ 12B 60.2 51.2 66.0 58.2
LangRepo (ours) ✗ 7B 57.8 45.7 61.9 54.6
LangRepo (ours) ✗ 12B 64.4 51.4 69.1 60.9

caption pretraining. LangRepo shows significantly-better performance compared to other methods
at a similar scale, validating its effectiveness. We achieve +7.8% on fullset over mPLUG-Owl (Ye
et al., 2023b), +12.0% on subset over pure Mistral LLM baseline (Jiang et al., 2023), +10.0% on
subset and +5.4% on fullset over LLoVi (7B) (Zhang et al., 2023a) (w/ Mistral (Jiang et al., 2023)),
+4.5% on fullset over Vamos (Wang et al., 2023) (w/ Llama2 (Touvron et al., 2023)), and +4.8%
on subset over Tarsier (7B) (Wang et al., 2024a).

NExT-QA: In Table 3, we report the performance of LangRepo on standard NExT-QA (Xiao et al.,
2021) validation splits (Causal, Temporal and Descriptive) and the full validation set. On zero-shot
evaluation, our framework outperforms other methods consistently. Compared to smaller models,
we gain +11.8% over InternVideo (Wang et al., 2022a) and +9.4% over VFC (Momeni et al.,
2023). Compared to models of similar scale, we gain +3.5% over baseline Mistral LLM (Jiang
et al., 2023) and +2.7% over LLoVi (12B) (Zhang et al., 2023a). We de-emphasize the comparisons
with much-larger models, and multi-modal LLMs pretrained with video captions (whereas we rely
on LLaVA-1.5 (Liu et al., 2023) captions that has not seen any video pretraining). Finally, we
observe that LangRepo outperforms competition on semantic splits showing the generalization of
our language representation.

IntentQA: In Table 4, we evaluate our zero-shot framework against other state-of-the-art models
on IntentQA (Li et al., 2023a) test splits (Why?, How? and Before/After) and the full test set.
LangRepo outperform comparable models with similar scale consistently, showing gains of +3.4%
over baseline Mistral LLM (Jiang et al., 2023) and +2.5% over LLoVi (12B) (Zhang et al., 2023a).
Again, we de-emphasize significantly larger models and those pretrained with video-captions.

NExT-GQA: In Table 5, we compare the performance of LangRepo with state-of-the-art models
on NExT-GQA (Xiao et al., 2023a). We follow the same grounding setup as in Zhang et al. (2023a).
Our method achieves a strong performance at its scale, outperforming baseline Mistral LLM (Jiang
et al., 2023) by +2.0% and LLoVi (12B) (Zhang et al., 2023a) by +0.9% on Acc@GQA metric.
Despite being zero-shot, it is also competitive with weakly-supervised baselines. Here, we de-
emphasize significantly-larger models and those pretrained with video-captions.
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Table 4: Results on IntentQA (Li et al., 2023a): We compare LangRepo against state-of-the-art
methods on IntentQA test set, highlighting standard splits: why?, how? and before/after. We focus
on the zero-shot setting. Our method shows strong performance at its scale.

Model Video Pretrain Params Why? (%) How? (%) Before/After (%) All (%)

finetuned
HQGA (Xiao et al., 2022a) ✓ 46M 48.2 54.3 41.7 47.7
VGT (Xiao et al., 2022b) ✓ 511M 51.4 56.0 47.6 51.3
Vamos (Wang et al., 2023) ✓ 7B 69.5 70.2 65.0 68.5
BlindGPT (Ouyang et al., 2022) ✓ 175B 52.2 61.3 43.4 51.6
CaVIR (Li et al., 2023a) ✓ 175B 58.4 65.5 50.5 57.6

zero-shot (with proprietary LLMs)
LVNet (Park et al., 2024) ✗ <1.8T 75.0 74.4 62.1 71.7
LLoVi (Zhang et al., 2023a) ✗ 1.8T 68.4 67.4 51.1 64.0
IG-VLM (Kim et al., 2024) ✗ 1.8T - - - 64.2
VideoTree (Wang et al., 2024e) ✗ 1.8T - - - 66.9

zero-shot (with open-source LLMs)
SeViLA (Yu et al., 2024) ✓ 4B - - - 60.9
Mistral(Jiang et al., 2023) ✗ 7B 52.7 55.4 41.5 50.4
LLoVi (Zhang et al., 2023a) ✗ 7B 57.9 55.4 42.3 53.6
LLoVi (Zhang et al., 2023a) ✗ 12B 59.7 62.7 45.1 56.6
LangRepo (ours) ✗ 7B 56.9 60.2 42.1 53.8
LangRepo (ours) ✗ 12B 62.8 62.4 47.8 59.1

Table 5: Results on NExT-GQA (Xiao et al., 2023a): We compare LangRepo against state-of-
the-art methods on NExT-GQA test set. We focus on the zero-shot setting. Our method shows strong
performance at its scale.

Model Video Pretrain Params mIoP IoP@0.5 mIoU IoU@0.5 Acc@GQA

weakly-supervised
IGV (Li et al., 2022) ✓ 110M 21.4 18.9 14.0 9.6 10.2
Temp[CLIP] (Radford et al., 2021; Xiao et al., 2023a) ✓ 130M 25.7 25.5 12.1 8.9 16.0
FrozenBiLM (Yang et al., 2022; Xiao et al., 2023a) ✓ 1B 24.2 23.7 9.6 6.1 17.5
SeViLA (Yu et al., 2024) ✓ 4B 29.5 22.9 21.7 13.8 16.6

zero-shot (with proprietary LLMs)
MoReVQA (Min et al., 2024) ✗ 340B 37.8 37.6 19.7 15.4 39.6
LLoVi (Zhang et al., 2023a) ✗ 1.8T 37.3 36.9 20.0 15.3 24.3

zero-shot (with open-source LLMs)
Mistral (Jiang et al., 2023) ✗ 7B 20.4 20.2 8.7 5.9 9.2
LLoVi (Zhang et al., 2023a) ✗ 7B 20.7 20.5 8.7 6.0 11.2
LLoVi (Zhang et al., 2023a) ✗ 12B 31.4 28.8 18.4 12.0 16.2
LangRepo (ours) ✗ 7B 20.3 20.0 8.7 6.0 11.2
LangRepo (ours) ✗ 12B 31.3 28.7 18.5 12.2 17.1

5.2 ABLATION STUDY

Choice of backbone LLM, text encoder and classifier: We ablate the choice of LLM-backbones
within the framework in Zhang et al. (2023a) in Table 6a. We observe that Mistral-7B (Jiang et al.,
2023) is significantly better at video reasoning compared to LLama2-13B (Touvron et al., 2023).
Next, we consider different text encoders to embed our text descriptions prior to pruning, such as
CLIP-L/14 (Radford et al., 2021) or Sentence-T5-XL (Reimers & Gurevych, 2019) in Table 6b.
Surprisingly, CLIP outperforms Sentence-T5 that is trained with a sentence-level objective (which
is expected to better align with our caption-similarity computation). Finally, we evaluate different
classifiers used for close-ended (i.e., multiple-choice question) VQA setups (see Table 6c). Despite
commonly-used in LLM literature, generative classifier performs worse than log-likelihood classi-
fier. Such performance is also intuitive as the latter constrains predictions within the given answer
choices (hence, less hallucination). More discussion on this is in supplementary.

Repository setup and metadata: In the formulation of LangRepo we ablate different hyperpa-
rameter settings related to the number of repo-updates (#iterations), the number of video chunks
in each iteration (#chunks), and multiple temporal-scales considered when reading data in reposi-
tory. In Table 6d, we make two observations: (1) more update iterations with finer chunks (higher
#chunks per iteration) can preserve more-useful information, and (2) reading information in multi-
ple temporal-scales is consistently better. Moreover, we consider optional metadata to help preserve
information that may get lost when pruning (e.g. temporal ordering, or repetitive captions), namely,
timestamps and #occurrences (i.e., the number of captions grouped within each repo description).
We see in Table 6e that #occurrences help weigh each description when summarizing, resulting in
better performance. However, timestamps do not provide meaningful improvement in our setup, in
the context of EgoSchema VQA.
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Table 6: Ablating design decisions on EgoSchema (Mangalam et al., 2024): We evaluate different
design decisions of our framework on EgoSchema 500-video subset for zero-shot video VQA.

(a) Choice of LLM: In the LLoVi
framework, Mistral outperforms
LLama2 even at a smaller scale.

LLM Scale Acc.

Llama2 (Touvron et al.) 13B 43.0
Mistral (Jiang et al.) 7B 50.8

(b) Text encoder: CLIP outperforms
Sentence-T5 (trained with setntence ob-
jective) for similarity-based pruning.

Text encoder Acc.

Sentence-T5-XL (Reimers & Gurevych) 56.4
CLIP-L/14 (Radford et al.) 57.8

(c) VQA classifier: Log-
likelihood classifier performs
better on close-ended VQA.

VQA classifier Acc.

Genearative 57.8
Log-likelihood 60.8

(d) Repository setup: Having
more iterations with finer chunks
in writing, and multiple scales in
reading is better in LangRepo.

#Iter #Ch Read Acc.

1 [2] 1 57.0
1 [4] 1 60.8

3 [4,3,2] 1 58.4
3 [4,3,2] 2 59.4
3 [4,3,2] 3 61.2

(e) Metadata in reposi-
tory: Timesteps do not
help, yet #occurrences help
with proper weighing.

Model Acc.

LangRepo (ours) 60.8
+ tstmp 60.4
+ occ 61.4
+ tstmp + occ 58.2

(f) Efficiency in a multi-query setup: Despite
being initially expensive, re-using our concise
representation on multiple-queries is efficient
(measured on an A5000 GPU).

Model Params Latency per video (s)
q/v = 1 q/v = 2 q/v = 5

LLoVi (Zhang et al.) 7B 22.11 44.34 108.75
LangRepo 7B 30.98 37.46 56.90

LLoVi (Zhang et al.) 12B 50.06 99.84 249.95
LangRepo 12B 85.09 94.90 124.33

(g) Captioner: Clip-level cap-
tions (e.g. LaViLa) performs
better than frame-level ones.
A gap to oracle exists.

Captions Acc.

BLIP-2 (Li et al.) 55.4
LLaVA-1.5 (Liu et al.) 58.4
LaViLa (Zhao et al.) 60.8

Oracle 69.2

(h) Video input: Feeding short
captions chunk-by-chunk to the
LLM is empirically-better than
feeding all-at-once.

Streaming setup Acc.

LLoVi (Zhang et al.) 50.8
Chunk-based LLoVi 57.8
LangRepo (ours) 60.8

(i) Input length: Both Mistral
and LLoVi drops performance with
increasing input length, whereas
LangRepo stays more-stable.

Model 0.5× 1× 2×
Mistral (Jiang et al.) 49.8 48.8 46.8
LLoVi (Zhang et al.) 57.2 55.4 53.6
LangRepo 56.4 57.8 56.4

Efficiency in a multi-query setup: We also ablate the efficiency of our concise representation
in Table 6f. LangRepo can be initially expensive, as it requires multiple write-read operations
(yet, each processing smaller context-lengths). However, once repository is created, it can be re-
used more-efficiently in a setup with multiple-queries for a given video (i.e., the initial cost will be
amortized). This is especially relevant in practical scenarios, where users may have multiple queries
correponding to a given video.

Captioner quality: In Table 6g, we evaluate the quality of captions consumed by LangRepo. By
default, we use short-clip captions from LaViLa (Zhao et al., 2023c), which outperform frame-level
captions (BLIP-2 (Li et al., 2023b), LLaVA-1.5 (Liu et al., 2023)). Oracle captions from Ego4D
show the performance upper-bound.

Input format and length: We consider different ways of consuming long video data, either as a
whole or as chunks (see Table 6h). Among these options, processing as chunks enables preserving
more fine-grained details in LLM outputs. Our repository setup provides further improvement show-
ing its effectiveness over the baseline with the same chunk-based processing. Finally, we re-visit the
experiment on how the input length affects the effectiveness of LLMs, presented in Table 1. In Ta-
ble 6i, we show that LangRepo provide more-stable performance with increasing input lengths, in
contrast to baselines.

6 CONCLUSION

In this paper, we introduced a Language Repository (LangRepo), which reads and writes textual in-
formation corresponding to video chunks, as a concise, multi-scale and interpretable language repre-
sentation, together with additional metadata. Both our write-to-repo and read-from-repo
operations are text-based and implemented as calls to a backbone LLM. Our empirical results show
the superior performance of LangRepo on multiple long-video reasoning benchmarks at its respec-
tive scale, while also being (1) less-prone to performance drops due to increasing input lengths, and
(2) interpretable, enabling easier human intervention if and when needed.
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REPRODUCIBILITY STATEMENT

We use open-source LLMs (w/ publicly-available code and pretrained-weights) in all our experi-
ments. By relying on LLMs with reasonable-scale (i.e., not proprietary, paid LLMs), we make our
work more-accessible. As all our experiments are done in zero-shot settings, we do not update any
pretrained weights. All our evaluations are conducted on publicly-available standard long-video
benchmarks. We detail all required steps, and provide prompts to reproduce the proposed contribu-
tions. Finally, we pledge to release our code together with the paper to support further research.
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A APPENDIX

A.1 DESIGN DECISIONS

Similarity-based pruning: We notice that the short captions generated by the VLLM can be highly-
redundant, as it has a limited temporal span. Such excess details can adversely affect the perfor-
mance (see Table 1), while also wasting the LLM context. This motivates us to prune redundancies.
We consider prompting the LLM directly to identify and rephrase redundant information. However,
the outputs in this setup can be noisy and lack of any structure that is useful for parsing. In other
words, although redundancies get pruned, there is limited controllability and inability of identifying
what gets pruned. Hence, we decide to delegate the function of identifying redundancies to a sepa-
rate module: a similarity-based grouping with the help of text embeddings. This gives more control
on what to prune and how much to prune, while generating outputs that can be parsed to extract
other useful metadata (e.g. timestamps).

Processing videos as chunks: Our decision to consume longer videos as chunks is motivated by
prior work (Wu et al., 2022; Ryoo et al., 2023). It allows us to not lose short-term details, while
also keeping track of long-term dependencies via multi-scale processing. Additionally, although
not explored in the scope of this paper, such a setup integrates well with temporally-fine-grained
prediction tasks, where an LLM needs to make multiple predictions over time.

Choice of metadata: To avoid the loss of important details during pruning, we maintain additional
metadata in our LangRepo. Since captions across time can be grouped together in a single repo
description, we save their timestamps as a separate field. This can help with temporal reasoning
questions. We also update an occurrence counter, which shows the number of captions grouped
within a single description. This can act as a weight, to help in cases such as counting or identifying
repetitive events.

All-textual repository: Instead of being a latent representation (Wu et al., 2022; Ryoo et al., 2023;
Balažević et al., 2024), our LangRepo is all-textual. This promotes interpretability for human ob-
servers, while also being a more-natural form of structure for LLM-based processing. Additionally,
our implementation can be formulated to be zero-shot, without requiring any training or finetuning.

Classifier for close-ended VQA: The standard multiple-choice question-answering setup consid-
ers a generative classifier. Meaning, an LLM is prompted to generate the correct answer option
among multiple-choices, directly as next-token prediction. Another approach used in NLP literature
is log-likelihood based classification (see Cloze prompting in (Robinson et al., 2023)). Here, the
LLM is prompted separately for each of the multiple choices with a template such as “Question:
Answer-option”. The choice that maximises the log-likelihood of predicted tokens (i.e., to-
kens corresponding to Answer-option) is selected as the correct answer. This is a more-natural
setup for close-ended VQA since it avoids hallucination. Among these classifiers, we find the latter
to be better-performing. Yet, it is more-sensitive to the prompt template. We direct the reader to
supplementary A.2 for more details.

A.2 PROMPTING FOR VQA

As the evaluation setup, we consider multiple-choice visual question-answering (VQA) on long
videos. Given the close-ended answer formulation, we can consider two different classifiers to
make the prediction: (1) a Generative classifier, which directly generates the answer choice, or (2)
a Log-likelihood classifier, which select the most-probable choice based on the joint-probability of
tokens in each answer option given the description and the question. As we discussed in Sec. A.1,
the latter generally performs better, as it is less-prone to hallucinations (i.e., prediction is explicitly
constrained to answer choices). However, it is also sensitive to the prompts we use. Hence, we
include a discussion on prompting in the following subsections.

Generative classifier: Here, we direcly prompt the LLM to generate the correct answer, conditioned
on the descriptions generated by LangRepo, the question and the answer options (inspired by
(Zhang et al., 2023a)). To make sure that the output can be parsed, we provide additional guiding
instructions and any syntax specific to the LLM (Mistral (Jiang et al., 2023)). This also discourages
any hallucinations. On all benchmarks, we use the common prompt given below.
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‘‘[INST] <<SYS>> You are a helpful expert in first person view video anal-
ysis. <</SYS>> Please provide a single-letter answer (A, B, C, D, E) to
the following multiple-choice question, and your answer must be one of
the letters (A, B, C, D, or E). You must not provide any other response or
explanation. You are given some language descriptions of a first person
view video. The video is ${duration} seconds long. Here are the de-
scriptions: ${description}.\n You are going to answer a multiple choice
question based on the descriptions, and your answer should be a single
letter chosen from the choices.\n Here is the question: ${question}.\n
Here are the choices.\n A: ${optionA}\n B: ${optionB}\n C: ${optionC}\n
D: ${optionD}\n E: ${optionE}\n [/INST]’’

Log-likelihood classifier: In this setup, we prompt the LLM with each answer option separately,
and select the highest-probable answer. The probability is computed only on the tokens of the answer
option, conditioned on the input sequence. In our experiments, we notice that the effectiveness of
this method is sensitive to the prompt. This is due to the question-answer formats in the dataset
considered. For instance, EgoSchema (Mangalam et al., 2024) consists of full-sentence answers,
whereas NExT-QA (Xiao et al., 2021) consists of answer phrases. Hence, the latter benefits from
additional guidance from formatting within the prompt template. More specifically, on EgoSchema
(Mangalam et al., 2024), our prompt has the following format.

‘‘${description} ${question} ${answer option}’’

Here, the probability is computed only on ${answer option}. However, on the benchmarks
based on NExT-QA (Xiao et al., 2021) data, our prompt has the following format with more struc-
ture.

‘‘${description} Based on the description above, answer the follow-
ing question: ${question}? Select one of these choices as the an-
swer:\n A: ${optionA}\n B: ${optionB}\n C: ${optionC}\n D: ${optionD}\n
E: ${optionE}\n The correct answer is, ${option id}: ${answer option}’’

Here, the probability is computed only on ${option id}: ${answer option}. We observe
that neither prompt template works as effective when interchanged.

A.3 QUALITATIVE EXAMPLES OF REPOSITORY ENTRIES

We present qualitative examples from EgoSchema (Mangalam et al., 2024) dataset to better clar-
ify the operations in LangRepo. In Fig. 4, we show the format of repository entries. Here,
non-redundant captions from the input get directly written to the repo. In contrast, any redundant
captions— grouped based on similarity— get rephrased as concise descriptions (1 per-group). Each
repository description may come with additional metadata such as timestamps and #occurrences to
avoid the loss of meaningful information due to pruning. In Fig. A.1, we further elaborate on mul-
tiple scales within the repository, which are generated by iteratively processing increasingly-longer
chunks (created by re-chunk operation). During reading, we can decide to summarize informa-
tion at various temporal scales to generate output descriptions useful for VQA.
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#O person A takes a card from the table. 
#O person A picks the card from the table. 
#O person A picks a card. 
#O person A picks up a card on the table.

#O man A talks to C. 
#O man X talks to C. 
#O person X talks to C.

#O person X holds a cards on the table. 
#O person X takes a play card. 
#O person A holds the card.

#O The man X picks the phone from the table ... 
#O The man X picks up a phone from the table ...

#O The man A turns the card on the table ... 
#O The man X drops the cards in his right hand ...

#O man X picks a playing card from the table. 
#O man X picks a card from the table. 
#O man X picks a card from the table.

#O The man X holds a game board game with ... 
#O The man X picks a game card from game ...

#O person X picks the dice. 
#O person X picks a dice. 
#O person X picks dice. 
#O person X picks a dice.

Grouped redundant captions 
(Scale 1)

#O A man X picks up a dice from the bed. 
#O A man X picks a dice.

#O person A takes the cards. 
#O person A picks the cards. 
#O person X picks a card.

#O Man X picks a poker chip from the table ... 
#O The man X picks a game token from the table ... 
#O The man X picks a game board chip from ...

#O The man X picks the game cards on the table ... 
#O The man X drops the game card on the table ...
#O The man X places the game cards in his left ... 
#O The man X drops the game tokens in his right ... 
#O The man X drops the playing cards in his left ...

#O man X picks a dice. 
#O Man X picks a game dice from the table. 
#O man X picks a dice from the table.

#O person X puts the dice on the table. 
#O person X shakes the dice. 
#O person A plays the dice. 
#O person A moves the dice on the table. 
#O person X takes a dice.

#O man A talks to C. 
#O person X talks to C.

#O The man X drops the spoon in his right hand ... 
#O The man X picks a spoon from the bowl of ... 
#O The man X lifts up the spoon in his right hand.

#O man X picks a dice from a dining table. 
#O Man X drops a dice on the table with his right ... 
#O man X picks a dice from a tray. 
#O man X picks a dice from the table.

#O Man X holds a dice. 
#O man X holds dice.

#O man A places a cards on the table. 
#O man X drops the cards on the table.

#O man X picks the cards from the table. 
#O A man X picks a card from the table. 
#O A man X touches a card.

#O person X touches the dice. 
#O person X picks up the dice. 
#O person A picks a dice. 
#O person A picks a dice. 
#O person X picks a dice from the table. 
#O person X touches a dice.

Man X repeatedly picks a card from the table. 
Man X gathers the game cards with his right hand ...

#O man A holds a book on his left hand. 
#O Man A holds a phone with his right hand.

#O person A puts the dice on the table. 
#O person A picks the dice. 
#O person X puts the dice on the table. 
#O person A picks the dice on the table. 
#O person X puts the dice down. 
#O A man X picks the dice. 
#O man A picks a dice on the table. 
#O man X holds a dice in his left hand.

#O man A picks a glass of water. 
#O man A picks a cup from the table.

#O The man X drops the game chip on the table ... 
#O The man X picks a game chip from a game ... 
#O The man X drops the game disk on the table ... 
#O The man X picks a game chip from the game ... 
#O The man X picks up a game chip from the table ...

#O man A drops a card on the table. 
#O man A picks a card from the dining table. 
#O man A touches the game board card on ...

#C C touches the game board. 
#C C points at the game board. 
#C C points at a game board.

#C C plays card game. 
#C C plays the dice game. 
#C C picks a dice on the table.

#O person A pulls a chair. 
#O person A sits on the chair.

#O person X picks up a phone. 
#O person X stares at a card. 
#O person X picks a card. 
#O person B places a card on the table. 
#O person X plays card. 
#O person B picks a card.

#O man A talks to man D. 
#O Man A talks to C.

#O The man X picks up a dice from the table with ... 
#O The man X drops the game chip in his right ... 
#O The man X drops the game card in his left hand ...

#O man X touches the table. 
#O person A holds the table. 
#O person X plays the table game.

#O The man X adjusts his face with his right hand. 
#O person X puts a hand on the chin.

1. Man X repeatedly picks up and sets down game cards 
    with his right hand, dropping tokens in the process.
2. Man A holds a book in his left hand and a phone in his 
    right hand.
3. Person A places and retrieves dice multiple times, with 
    person X doing the same.
4. Man A picks up a glass of water from the table using 
    both hands.
5. Man X alternately drops and picks up game chips from 
    the table and game board with his right hand.
6. Man A places, retrieves, and touches a card on the 
    dining table.

The given first person view video is a 90-second long 
recording of two characters, identified as #C (Character C) 
and #O (Character X or other characters), engaging in 
various activities centered around table games and 
interactions. The video opens with Character C touching a 
card, setting the stage for the table games to follow. 
Character X is introduced in the first clip, where they touch 
and point at the game board, indicating their interest and 
involvement in the games. In the second clip, Character X 
plays a card game, further emphasizing the theme of table 
games.Throughout the video, both characters engage in 
various activities related to table games. Character X 
moves a game token on the board, picks up a dice, and 
arranges colored chips on the table. They also interact with 
other characters, such as Person A, who picks up a dice and 
arranges cards on the table. Character C, on the other 
hand, looks at the game board and paper game cards. The 
video also showcases several instances of characters ...
.

Grouped redundant captions 
(Scale 2)

Repository entries 
(Scale 1)

Repository entries 
(Scale 2)

Output descriptions 
(Scale 2)

[Optional]
Output descriptions 

(Scale 1)

Rephrase

Re-chunk

Read-from-repo

In the given first person view video, 
which lasts for 60 seconds, ... 

In the given first person view video, 
which lasts for 60 seconds, ... 

In the given first person view video, 
which lasts for 60 seconds, ... 

1. Person A reaches for and picks up a card 
    from the table.
2. Man X engages in conversation with person C.
3. Person X holds cards on the table, then selects 
    a play card.
4. Man X retrieves the phone from the table using 
    his left hand.
5. Man A rotates a card on the table with his right 
    hand.
6. Man X repeatedly picks a card from the table.
7. Man X grasps the game board with his left hand 
    and selects a card with his right.
8. Person X picks up a single dice from the table.

1. A man reaches for and picks up a dice from 
    the bed.
2. Person A collects the cards, while person X 
    picks one out.
3. Man X uses his right hand to pick a chip from 
    the table.
4. Man X gathers the game cards with his right 
    hand and sets them down on the table, 
    then drops the tokens in his right hand.
5. Man X selects a dice from the table.
6. Person X sets the dice on the table, shakes it, 
    and then plays it, while person A moves it 
    around. 

1. Man X speaks with person C.
2. Man X transfers a spoon to the bowl, and raises 
    the spoon in his right hand.
3. Man X retrieves a dice from the dining table.
4. Man X holds a dice in his hand.
5. Man X lays cards on the table.
6. Man X retrieves cards from the table.
7. Person X interacts with the dice, either touching 
    or picking it up. In the given first person view video, which lasts for 

90 seconds, two individuals, identified as Man X and 
Person A, engage in various activities around a dining 
table and other areas. The video opens with Man X 
interacting with a game board, selecting a card with his 
right hand while holding the game in place with his left. 
Person A is also present, reaching for and picking up a card 
from the table. Both individuals engage in similar actions, 
picking up, setting down, and manipulating game cards 
and dice throughout the video.Man X is seen holding cards 
on the table and selecting a play card, while Person A 
places, retrieves, and touches a card on the dining table. 
Man X repeatedly picks up and sets down game cards 
with his right hand, dropping tokens in the process. Both 
individuals exhibit a focus on the game and its components.
Man X and Person A engage in conversation with each other 
and with another individual, C. Man X picks up a single dice 
from the table and a black bowl, while ... 

1. #C touches and points at the game board.
2. #C plays a card game, picks up a dice, and points at 
    the table.
3. #O person A pulls a chair and sits on it.
4. #O person X picks a card, stares at it, places a card 
    on the table, and picks another card. #O person B also 
    picks a card.
5. #O man A talks to man C and man D.
6. #O man X picks up a dice with his left hand, drops a 
    game chip in his right hand, and drops a game card in 
    his left hand on the table.
7. #O man X touches the table, and #O person A holds it, 
    while #O person X plays the table game.
8. #O person X adjusts his face with his right hand and 
    puts a hand on his chin.

Figure A.1: A qualitative example of iterative writing and multi-scale reading in LangRepo:
Here, we present an example with 2-scales, given captions of a 180s long video. In scale-1, we con-
sider 3 chunks of 60s each, and in scale-2, we re-chunk them into 2 chunks of 90s each. We only
show the redundant captions that go through pruning, and also, omit any metadata (e.g. timestamps)
within the repository. In each scale, captions grouped based on similarity get rephrased concisely.
To generate inputs of the subsequent scale, we simply order previous repository descriptions in time,
and split (i.e., re-chunk) into fewer (and, longer) chunks. When reading, each entry in each scale
is summarized separately to create output descriptions of various temporal spans. In general, we
always consider the last-scale descriptions to be mandatory, but any prior-scale to be optional. Yet,
we observe multiple scales to be beneficial (see Table 6d). Best-viewed with zoom-in.
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