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Abstract

Training and inference with large machine learn-
ing models that far exceed the memory capacity of
individual devices necessitates the design of dis-
tributed architectures, forcing one to contend with
communication constraints. We present a frame-
work for distributed computation over a quantum
network in which data is encoded into specialized
quantum states. We prove that for models within
this framework, inference and training using gra-
dient descent can be performed with exponentially
less communication compared to their classical
analogs, and with relatively modest overhead rela-
tive to standard gradient-based methods. We show
that certain graph neural networks are particularly
amenable to implementation within this frame-
work, and moreover present empirical evidence
that they perform well on standard benchmarks.
To our knowledge, this is the first example of ex-
ponential quantum advantage for a generic class
of machine learning problems that hold regard-
less of the data encoding cost. Moreover, we
show that models in this class can encode highly
nonlinear features of their inputs, and their expres-
sivity increases exponentially with model depth.
We also delineate the space of models for which
exponential communication advantages hold by
showing that they cannot hold for linear classifi-
cation. Our results can be combined with natural
privacy advantages in the communicated quantum
states that limit the amount of information that
can be extracted from them about the data and
model parameters. Taken as a whole, these find-
ings form a promising foundation for distributed
machine learning over quantum networks.
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1. Introduction
As the scale of the datasets and parameterized models used
to perform computation over data continues to grow (Ka-
plan et al., 2020; Hoffmann et al., 2022), distributing work-
loads across multiple devices becomes essential for enabling
progress. The choice of architecture for large-scale training
and inference must not only make the best use of compu-
tational and memory resources, but also contend with the
fact that communication may become a bottleneck (Pope
et al., 2022). This is particularly pertinent as models grow
so large that they cannot rely on high-bandwidth intercon-
nects within datacenters (Barroso et al., 2013), but are in-
stead trained across multiple datacenters (Team et al., 2023).
When using modern optical interconnects, classical com-
puters exchange bits represented by light. This however
does not fully utilize the potential of the physical substrate;
given suitable computational capabilities and algorithms,
the quantum nature of light can be harnessed as a powerful
communication resource. Here we show that for a broad
class of parameterized models, if quantum bits (qubits) are
communicated instead of classical bits, an exponential re-
duction in the communication required to perform inference
and gradient-based training can be achieved. This proto-
col additionally guarantees improved privacy of both the
user data and model parameters through natural features of
quantum mechanics, without the need for additional cryp-
tographic or privacy protocols. To our knowledge, this is
the first example of generic, exponential quantum advantage
on problems that occur naturally in the training and deploy-
ment of large machine learning models. These types of
communication advantages help scope the future roles and
interplay between quantum and classical communication for
distributed machine learning.

Quantum computers promise dramatic speedups across a
number of computational tasks, with perhaps the most
prominent example being the ability revolutionize our un-
derstanding of nature by enabling the simulation of quantum
systems, owing to the natural similarity between quantum
computers and the world (Feynman, 1982; Lloyd, 1996).
However, much of the data that one would like to compute
with in practice seems to come from an emergent classical
world rather than directly exhibiting quantum properties.
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While there are some well-known examples of exponential
quantum speedups for classical problems, most famously
factoring (Shor, 1994) and related hidden subgroup prob-
lems (Childs & van Dam, 2008), these tend to be isolated
and at times difficult to relate to practical applications that
involve learning from data. In addition, even though signif-
icant speedups are known for certain ubiquitous problems
in machine learning such as matrix inversion (Harrow et al.,
2009) and principal component analysis (Lloyd et al., 2014),
the advantage is often lost when including the cost of load-
ing classical data into the quantum computer or of reading
out the result into classical memory. This is because the
complexity of loading dense classical data into the ampli-
tudes of a quantum state (which is typically the encoding
needed to obtain an exponential runtime advantage) and
of reading out the amplitudes from a quantum state into
classical memory, are both polynomial in the number of
amplitudes (Aaronson, 2015). In applications where an
efficient data access model avoids the above pitfalls, the
complexity of quantum algorithms tends to depend on con-
dition numbers of matrices which scale with system size
in a way that reduces or even eliminates any quantum ad-
vantage (Montanaro & Pallister, 2015). It is worth noting
that much of the discussion about the impact of quantum
technology on machine learning has focused on computa-
tional advantage. However quantum resources are not only
useful in reducing computational complexity — they can
also provide an advantage in communication complexity,
enabling exponential reductions in communication for some
problems (Raz, 1999; Bar-Yossef et al., 2008). Inspired by
these results, we study a setting where quantum advantage
in communication is possible across a wide class of machine
learning models. This advantage holds without requiring
any sparsity assumptions or elaborate data access models
such as QRAM (Giovannetti et al., 2008).

We focus on compositional distributed learning, known as
pipelining (Huang et al., 2018; Barham et al., 2022). While
there are a number of strategies for distributing machine
learning workloads that are influenced by the requirements
of different applications and hardware constraints (Xu et al.,
2021; Jouppi et al., 2023), splitting up a computational graph
in a compositional fashion (Figure 2) is a common approach.
We describe distributed, parameterized quantum circuits that
can be used to perform inference over data when distributed
in this way, and can be trained using gradient methods.
The ideas we present can also be used to optimize models
that use certain forms of data parallelism (Appendix D). In
principle, such circuits could be implemented on quantum
computers that are able to communicate quantum states.

We show the following:

• Even for simple distributed quantum circuits, there is
an exponential quantum advantage in communication

for the problem of estimating the loss and the gradients
of the loss with respect to the parameters (Section 2).
This additionally implies a privacy advantage from
Holevo’s bound (Appendix L). We also show that this
is advantage is not a trivial consequence of the data en-
coding used, since it does not hold for certain problems
like linear classification (Appendix I).

• We study a class of models that can efficiently approx-
imate certain graph neural networks (Section 3), and
show that they both maintain the exponential communi-
cation advantage and achieve performance comparable
to standard classical models on common node and
graph classification benchmarks (Section 4).

• For certain distributed circuits, there is an exponential
advantage in communication for the entire training
process, and not just for a single round of gradient
estimation. This includes circuits for fine-tuning using
pre-trained features. The proof is based on convergence
rates for stochastic gradient descent under convexity
assumptions (Appendix H).

• The ability to interleave multiple unitaries encoding
nonlinear features of data enables expressivity to grow
exponentially with depth, and universal function ap-
proximation in some settings. This implies that these
models are highly expressive in contrast to popular
belief about linear restrictions in quantum neural net-
works (Appendix J).

2. Distributed learning with quantum
resources

For a preliminary dicussion on the types of distributed com-
putation we consider and related work, see Appendix B. We
focus on parameterized models that are representative of the
most common models used and studied today in quantum
machine learning, sometimes referred to as quantum neu-
ral networks (McClean et al., 2015; Farhi & Neven, 2018;
Cerezo et al., 2020; Schuld et al., 2020). We will use the
standard Dirac notation of quantum mechanics throughout.
A summary of relevant notation and the fundamentals of
quantum mechanics is provided in Appendix A. We define
a class models with parameters Θ, taking an input x which
is a tensor of size N . The models take the following general
form:

Definition 2.1. {Aℓ(θAℓ , x)}, {Bℓ(θBℓ , x)} for ℓ ∈
{1, . . . , L} are each a set of unitary matrices of sizeN ′×N ′

for some N ′ such that logN ′ = O(logN) 1. The θAℓ , θ
B
ℓ

are vectors of P parameters each. For every ℓ, i, we assume

1We will consider some cases where N ′ = N , but will find it
helpful at times to encode nonlinear features of x in these unitaries,
in which case we may have N ′ > N .
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that ∂Aℓ

∂θAℓi
is anti-hermitian and has two eigenvalues, and

similarly for Bℓ 2.

The model we consider is defined by

|φ(Θ, x)⟩ ≡

(
1∏

ℓ=L

Aℓ(θ
A
ℓ , x)Bℓ(θ

B
ℓ , x)

)
|ψ(x)⟩ , (2.1)

where ψ(x) is a fixed state of logN ′ qubits.

The loss function is given by
L(Θ, x) ≡ ⟨φ(Θ, x)| P0 |φ(Θ, x)⟩ where P0 is a Pauli ma-
trix that acts on the first qubit.

In standard linear algebra notation, the output of the model
is a unit norm N ′-dimensional complex vector φL, defined
recursively by

φ0 = ψ(x), φℓ = Aℓ(θ
A
ℓ , x)Bℓ(θ

B
ℓ , x)φℓ−1, (2.2)

where the entries of φL are represented by the amplitudes
of a quantum state. The loss takes the form L(Θ, x) =

(φ∗
L)
T P0φL where ∗ indicates the entrywise complex con-

jugate, and this definition includes the standard L2 loss as a
special case.

Subsequently we omit the dependence on x and Θ (or sub-
sets of it) to lighten notation, and consider special cases
where only subsets of the unitaries depend on x, or where
the unitaries take a particular form and may not be param-
eterized. Denote by ∇A(B)L the entries of the gradient
vector that correspond to the parameters of {Aℓ}({Bℓ}).

In the special case where x in a unit norm N -dimensional
vector, a simple choice of |ψ(x)⟩ is the amplitude encoding

of x, given by |ψ(x)⟩ = |x⟩ =
N−1∑
i=0

xi |i⟩.

However, despite its exponential compactness in represent-
ing the data, a naive implementation of the simplest choice
is restricted to representing quadratic features of the data
that can offer no substantial quantum advantage in a learn-
ing task (Huang et al., 2021), so the choice of data encoding
is critical to the power of a model. The interesting parameter
regime for classical data and models is one where N,P are
large, while L is relatively modest. For general unitaries
P = O(N2), which matches the scaling of the number of
parameters in fully-connected networks. When the input

2The condition on the derivatives is in fact satisfied by many of
the most common quantum neural network architectures (Cerezo
et al., 2020; Crooks, 2019; Schuld et al., 2020). It is satisfied for
example if Aℓ =

∏P
j=1 e

iαA
ℓjθ

A
ℓjP

A
ℓj and the PA

ℓj are Pauli matrices,
while αA

ℓj are scalars. Such models are naturally amenable to
implementation on quantum devices, and for P = Õ(N2) any
unitary over logN ′ qubits can be written in this form (Nielsen &
Chuang, 2010).

tensor x is a batch of datapoints, N is equivalent to the
product of batch size and input dimension.

The model in Definition 2.1 can be used to define distributed
inference and learning problems by dividing the input x and
the parameterized unitaries between two players, Alice and
Bob. We define their respective inputs as follows:

Alice : |ψ(x)⟩ , {Aℓ},
Bob : {Bℓ}.

(2.3)

The problems of interest require that Alice and Bob compute
certain joint functions of their inputs. As a trivial base case,
it is clear that in a communication cost model, all problems
can be solved with communication cost at most the size
of the inputs times the number of parties, by a protocol in
which each party sends its inputs to all others. We will be
interested in cases where one can do much better by taking
advantage of quantum communication.

Alice :
|ψ(x)⟩
.

Bob : B1(θ
B
1 )

A1(θ
A
1 )

B2(θ
B
2 )

A2(θ
A
2 )

Figure 1. Distributed quantum circuit implementing L for L =
2. Both L and its gradients with respect to the parameters of
the unitaries can be estimated with total communication that is
polylogarithmic in the size of the input data N and the number of
trainable parameters per unitary P .

Given the inputs Equation (2.3), we will be interested chiefly
in the two problems specified below.
Problem 2.2 (Distributed Inference). Alice and Bob each
compute an estimate of ⟨φ| P0 |φ⟩ up to additive error ε.

The straightforward algorithm for this problem, illustrated
in Figure 1, requires L rounds of communication. The other
problem we consider is the following:
Problem 2.3 (Distributed Gradient Estimation). Alice com-
putes an estimate of∇A ⟨φ| P0 |φ⟩, while Bob computes an
estimate of∇B ⟨φ|Z0 |φ⟩, up to additive error ε in L∞.

Our main result is that these problems can be solved with
exponentially less quantum communication than classical
communication:
Theorem 2.4. If L = O(polylog(N)), P = O(poly(N))
and sufficiently large N , solving Problem 2.2 or
Problem 2.3 with nontrivial success probability re-
quires Ω(

√
N) bits of classical communication, while

O(polylog(N, 1/δ)poly(1/ε)) qubits of communication
suffice to solve these problems with probability at least
1− δ.
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Proof: Appendix E.

3. Graph neural networks
The communication advantages in the previous section ap-
ply to relatively unstructured data and quantum circuits
(essentially the only structure in the problem is related to
the promise of the vector-in-subspace problem (Raz, 1999)),
and it is a priori unclear how relevant they are to circuits that
approximate useful neural networks, or act on structured
data. Here we consider a class of shallow graph neural net-
works that achieve good performance on node classification
tasks on large graphs (Frasca et al., 2020). We prove that an
exponential quantum communication advantage still holds
for this class of models.

Consider a graph with N nodes. Define a local message
passing operator on the graph A which may be the nor-
malized Laplacian or some other operator. Given some
N ×D0 matrix of graph features X , we consider models
of the following form Φ(X) = P (σ(AXW1))W2 where
W1 ∈ RD0×D1 ,W2 ∈ RD1×D2 are parameter matrices, σ
is a non-linearity and P is a sum pooling operator acting
on the first index of its input, which can be represented as
multiplication by an N ×N matrix P . Since we would like
a scalar output and a nonlinearity that can be implemented
on a quantum computer, we instead compute

φ(X) = tr [P (σ(AXW1))W2] , (3.1)

with
σ(x) = ax2 + bx+ c (3.2)

and W2 ∈ RD1×N/t where t is the size of the pooling
window.

In Appendix F we show an exponential quantum commu-
nication advantage holds for inference with models of this
form. While they may appear simple, in Section 4, we
show that models of this form achieve good performance
on standard benchmarks, commensurate with state of the
art models. Of particular relevance are the graph classifica-
tion problems considered in Section 4.2.1, where the output
takes the form Equation (3.1).

4. Experimental results
4.1. Model

We evaluate our model (as defined in Equation (3.1)) on sev-
eral graph tasks using common benchmarks and the DGL
library (Wang et al., 2019). We use the SIGN model pro-
posed by (Frasca et al., 2020) as a baseline. The SIGN
model can be seen as an instance of our model where the
message passing operator A represents a column stack of R
hops, the original features of X are duplicated R times and
W1 is a block diagonal matrix. In Section 4.2 we simply

Table 1. Test Accuracy for Node Classification and Decision Prob-
lem. Replacing PReLU with a polynomial of degree 2 causes a
slight reduction in accuracy (less than 1%) for both node classifi-
cation and decision problem across all datasets.

Node Classification Decision Problem

Model ogbn-products Reddit Cora ogbn-products Reddit Cora

SIGN (PReLU) 79.48 ± 0.07 96.55 ± 0.02 78.84 ± 0.37 84.39 ± 1.73 90.33 ± 0.33 88.10 ± 5.61
SIGN (Poly) 78.51 ± 0.05 96.31 ± 0.03 78.69 ± 0.26 83.70 ± 1.48 89.37 ± 0.60 87.14 ± 3.92

replace the PReLU activation with a second-degree polyno-
mial with trainable coefficients (Michaeli et al., 2023) and
compare the models on three node classification tasks. In
Appendix G, we implement a more general form of SIGN
by relaxing W1 to be a dense matrix and evaluate our model
over several graph-classification datasets.

4.2. Node classification

We evaluate our model on three public node classification
datasets: ogbn-producs(Hu et al., 2021), Reddit (Hamilton
et al., 2018), and Cora (McCallum et al., 2000). For both
the baseline and polynomial model, we use SIGN with
5 hops of the neighbor averaging operator. We train on
each dataset for 1000 epochs using Adam optimizer and
report the test accuracy averaged on 10 runs (full details in
Appendix N). Our results in Table 3 show that replacing the
PReLU activation with a second-degree polynomial causes
a reduction of less than 1% on all of the tested datasets.

4.2.1. DECISION PROBLEMS

We reduce the node classification task into a binary graph
classification task by proposing the following decision prob-
lem: for a pair of classes (c1, c2), return 1 if c1 has more
nodes; otherwise return 0. We solve this task for each pair
of classes by summing the node classification model out-
put across all nodes and choosing the class with the higher
score. We use the node classification training, choose the
model with the highest validation accuracy on the graph
classification task, and report its accuracy on the test sets.
The model output in this form is given by Equation (3.1).

5. Discussion
This work constitutes a preliminary investigation into a
generic class of quantum circuits that has the potential for
enabling an exponential communication advantage in prob-
lems of classical data processing including training and in-
ference with large parameterized models over large datasets,
with inherent privacy advantages. Our results naturally raise
further questions regarding the expressive power and train-
ability of these types of circuits, which may be of indepen-
dent interest. Additional discussion and open questions are
collected in Appendix M.
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A., and Wootters, W. K. Teleporting an unknown quan-
tum state via dual classical and einstein-podolsky-rosen
channels. Phys. Rev. Lett., 70(13):1895–1899, 1993.

Bennett, C. H., Brassard, G., Popescu, S., Schumacher,
B., Smolin, J. A., and Wootters, W. K. Purification of
noisy entanglement and faithful teleportation via noisy
channels. arXiv [quant-ph], 1995.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,
Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosse-
lut, A., Brunskill, E., Brynjolfsson, E., Buch, S., Card,
D., Castellon, R., Chatterji, N., Chen, A., Creel, K.,
Davis, J. Q., Demszky, D., Donahue, C., Doumbouya,
M., Durmus, E., Ermon, S., Etchemendy, J., Ethayarajh,

5

https://www.scottaaronson.com/qclec.pdf
https://www.scottaaronson.com/qclec.pdf


275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

K., Fei-Fei, L., Finn, C., Gale, T., Gillespie, L., Goel,
K., Goodman, N., Grossman, S., Guha, N., Hashimoto,
T., Henderson, P., Hewitt, J., Ho, D. E., Hong, J., Hsu,
K., Huang, J., Icard, T., Jain, S., Jurafsky, D., Kalluri, P.,
Karamcheti, S., Keeling, G., Khani, F., Khattab, O., Koh,
P. W., Krass, M., Krishna, R., Kuditipudi, R., Kumar, A.,
Ladhak, F., Lee, M., Lee, T., Leskovec, J., Levent, I., Li,
X. L., Li, X., Ma, T., Malik, A., Manning, C. D., Mirchan-
dani, S., Mitchell, E., Munyikwa, Z., Nair, S., Narayan,
A., Narayanan, D., Newman, B., Nie, A., Niebles, J. C.,
Nilforoshan, H., Nyarko, J., Ogut, G., Orr, L., Papadim-
itriou, I., Park, J. S., Piech, C., Portelance, E., Potts, C.,
Raghunathan, A., Reich, R., Ren, H., Rong, F., Roohani,
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A. Notation and a very brief review of quantum mechanics
We denote by {ai} a set of elements indexed by i, with 1-based indexing unless otherwise specified, with the maximal value
of i explicitly specified when it is not clear from context. [N ] denotes the set {0, . . . , N − 1}. The complex conjugate of a
number c is denoted by c∗, and the conjugate transpose of a complex-valued matrix A by A†.

We denote by |ψ⟩ a vector of complex numbers {ψi} representing the state of a quantum system when properly normalized,
and by ⟨ψ| its dual (assuming it exists). The inner product between two such vectors of length N is denoted by

⟨ψ|φ⟩ =
N−1∑
i=0

ψ∗
i φi. (A.1)

Denoting by |i⟩ for i ∈ [N ] a basis vector in an orthonormal basis with respect to the above inner product, we can also write

|ψ⟩ =
N−1∑
i=0

ψi |i⟩ . (A.2)

Matrices will be denoted by capital letters, and when acting on quantum states will always be unitary. These can be specified
in terms of their matrix elements using the Dirac notation defined above, as in

A =
∑
ij

Aij |i⟩ ⟨j| . (A.3)

Matrix-vector product are specified naturally in this notation by

Quantum mechanics is, in the simplest possible terms, a theory of probability based on conservation of the L2 norm rather
than the standard probability theory based on the L1 norm (Aaronson, 2017; Nielsen & Chuang, 2010). The state of a pure
quantum system is described fully by a complex vector of N numbers known as amplitudes which we denote by {ψi} where
i ∈ {0, . . . , N − 1}, and is written using Dirac notation as |ψ⟩. The state is normalized so that

⟨ψ|ψ⟩ =
N−1∑
i=0

ψ∗
i ψi =

N−1∑
i=0

|ψi|2 = 1, (A.4)

which is the L2 equivalent of the standard normalization condition of classical probability theory. It is a curious fact that the
choice of L2 requires the use of complex rather than real amplitudes, and that no consistent theory can be written in this way
for any other Lp norm (Aaronson, 2017). The most general state of a quantum system is a probabilistic mixture of pure
states, in the sense of the standard L1-based rules of probability. We will not be concerned with these types of states, and so
omit their description here, and subsequently whenever quantum states are discussed, the assumption is that they are pure.

Since any closed quantum system conserves probability, the L2 norm of a quantum state is conserved during the evolution of
a quantum state. Consequently, when representing and manipulating quantum states on a quantum computer, the fundamental
operation is the application of a unitary matrix to a quantum state.

Given a quantum system with some discrete degrees of freedom, the number of amplitudes corresponds to the number of
possible states of the system, and is thus exponential in the number of degrees of freedom. The simplest such degree of
freedom is a binary one, called a qubit, which is analogous to a bit. Thus a state of logN qubits is described by N complex
amplitudes.

A fundamental property of quantum mechanics is that the amplitudes of a quantum state are not directly measurable. Given
a Hermitian operator

O =

N−1∑
i=0

λi |vi⟩ ⟨vi| (A.5)

with real eigenvalues {λi}, a measurement of O with respect to a state |ψ⟩ gives the result λi with probability |⟨vi|ψ⟩|2.
The real-valued quantity

⟨ψ| O |ψ⟩ =
N−1∑
i=0

λi |⟨ψ|vi⟩|2 (A.6)
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is the expectation value ofO with respect to |ψ⟩, and its value can be estimated by measurements. After a measurement with
outcome λi, the original state is destroyed, collapsing to the state |vi⟩. A consequence of the fundamentally destructive nature
of quantum measurement is that simply encoding information in the amplitudes of a quantum state dues not necessarily
render it useful for downstream computation. It also implies that operations using amplitude-encoded data such as evaluating
a simple loss function incur measurement error, unlike their classical counterparts that are typically limited only by machine
precision. The design of quantum algorithms essentially amounts to a careful and intricate design of amplitude manipulations
and measurements in order to extract useful information from the amplitudes of a quantum state. For a more complete
treatment of these topics see (Nielsen & Chuang, 2010).

B. Preliminaries
B.1. Large-scale learning problems and distributed computation

Figure 2. Left: Distributed, compositional computation. Dashed lines separate devices with computational and storage resources. The
circular nodes represent parameterized functions that are allocated distinct hardware resources and are spatially separated, while the
square nodes represent data (yellow) and outputs corresponding to different tasks (green). The vertical axis represents time. This
framework of hardware allocation enables flexible modification of the model structure in a task-dependent fashion. Right: Computation of
gradient estimators gℓ at different layers of a model distributed across multiple devices by pipelining. Computing forward features µℓ and
backwards features νℓ (also known as computing a forward or backward pass) requires a large amount of classical communication (grey)
but an exponentially smaller amount of quantum communication (yellow). L is the classical loss function, and P0 an operator whose
expectation value with respect to a quantum model gives the analogous loss function in the quantum case.

Pipelining is a commonly used method of distributing a machine learning workload, in which different layers of a deep
model are allocated distinct hardware resources (Huang et al., 2018; Narayanan et al., 2019). Training and inference
then require communication of features between nodes. Pipelining enables flexible changes to the model architecture in a
task-dependent manner, since subsets of a large model can be combined in an adaptive fashion to solve many downstream
tasks. Additionally, pipelining allows sparse activation of a subset of a model required to solve a task, and facilitates better
use of heterogeneous compute resources since it does not require storing identical copies of a large model. The potential for
large models to be easily fine-tuned to solve multiple tasks is well-known (Brown et al., 2020; Bommasani et al., 2021), and
pipelined architectures which facilitate this are the norm in the latest generation of large language models (Rasley et al.,
2020; Barham et al., 2022). Data parallelism, in contrast, involves storing multiple copies of the model on different nodes,
training each on a subsets of the data and exchanging information to synchronize parameter updates. In practice, different
parallelization strategies are combined in order to exploit trade-offs between latency and throughput in a task-dependent
fashion (Xu et al., 2021; Jouppi et al., 2023; Pope et al., 2022). Distributed quantum models were considered recently in
(Pira & Ferrie, 2023), but the potential for quantum advantage in communication in these settings was not discussed.

B.2. Communication complexity

Communication complexity (Yao, 1979; Kushilevitz & Nisan, 2011; Rao & Yehudayoff, 2020) is the study of distributed
computational problems using a cost model that focuses on the communication required between players rather than the time
or computational complexity. The key object of study in this area is the tree induced by a communication protocol whose
nodes enumerate all possible communication histories and whose leaves correspond to the outputs of the protocol. The
product structure induced on the leaves of this tree as a function of the inputs allows one to bound the depth of the tree from
below, which gives an unconditional lower bound on the communication complexity. The power of replacing classical bits
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of communication with qubits has been the subject of extensive study (Chi-Chih Yao, 1993; Brassard, 2001; Buhrman et al.,
2009). For certain problems such as Hidden Matching (Bar-Yossef et al., 2008) and a variant of classification with deep
linear models (Raz, 1999) an exponential quantum communication advantage holds, while for other canonical problems
such as Disjointness only a polynomial advantage is possible (Razborov, 2002). Exponential advantage was also recently
shown for the problem of sampling from a distribution defined by the solution to a linear regression problem (Montanaro &
Shao, 2022). While there are many models of both quantum and classical communication, our results apply to randomized
classical communication complexity, wherein the players are allowed to exchange random bits independent of their problem
inputs, and are allowed to output an incorrect answer with some probability (bounded away from 1/2 for a problem with
binary output). It is also worth noting that communication advantages of the type we demonstrate can be naturally related to
space advantages in streaming algorithms that may be of interest even in settings that do not involve distributed training
(Roughgarden, 2015).

At a glance, the development of networked quantum computers may seem much more challenging than the already herculean
task of building a fault tolerant quantum computer. However, for some quantum network architectures, the existence of a
long-lasting fault tolerant quantum memory as a quantum repeater, may be the enabling component that lifts low rate shared
entanglement to a fully functional quantum network (Munro et al., 2015), and hence the timelines for small fault tolerant
quantum computers and quantum networks may be more coincident than it might seem at first. As such, it is well motivated
to consider potential communication advantages alongside computational advantages when talking about the applications of
fault tolerant quantum computers. In Appendix K we briefly survey approaches to implementing quantum communication in
practice, and the associated challenges.

In addition, while we largely restrict ourselves here to discussions of communication advantages, and most other studies
focus on purely computational advantages, there may be interesting advantages at their intersection. For example, it is known
that no quantum state built from a simple (or polynomial complexity) circuit can confer an exponential communication
advantage, however states made from simple circuits can be made computationally difficult to distinguish (Ji et al., 2018).
Hence the use of quantum pre-computation (Huggins & McClean, 2023) and communication may confer advantages even
when traditional computational and communication cost models do not admit such advantages due to their restriction in
scope.

C. Proofs
Proof of Lemma E.1. ⟨φ| P0 |φ⟩ can be estimated by preparing |φ⟩ and measuring it O(1/ε2) times. Preparing each copy
of |φ⟩ requires O(L) rounds of communication, with each round involving the communication of a logN ′-qubit quantum
state. Alice first prepares |ψ(x)⟩, and this state is passed back and forth with each player applying Aℓ or Bℓ respectively for
ℓ ∈ {1, . . . , L}.

Proof of Lemma E.2. We consider the parameters of the unitaries that Alice possesses first, and an identical argument
follows for the parameters of Bob’s unitaries.

We have
∂

∂θAℓi
⟨φ|P0|φ⟩ =2Re ⟨φ| P0

ℓ+1∏
k=L

AkBk
∂Aℓ
∂θAℓi

Bℓ

1∏
k=ℓ−1

AkBk |ψ(x)⟩

≡2Re
〈
νAℓi |µAℓ

〉 (C.1)

where

∣∣µAℓ 〉 =Bℓ

1∏
k=ℓ−1

AkBk |ψ(x)⟩ ,
∣∣νAℓi〉 =

(
∂Aℓ
∂θAℓi

)† ℓ+1∏
k=L

B†
kA

†
kP0 |φ⟩ , (C.2)

correspond to forward and backward features for the i-the parameter of Aℓ respectively. This is illustrated graphically in
Figure 2. We also write ∣∣νAℓ0〉 = ℓ+1∏

k=L

B†
kA

†
kP0 |φ⟩ . (C.3)
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Attaching an ancilla qubit denoted by a to the feature states defined above, we define∣∣ψAℓi〉 ≡ 1√
2

(
|0⟩
∣∣µAℓ 〉+ |1⟩ ∣∣νAℓi〉) , (C.4)

and a Hermitian measurement operator

EAℓi ≡
(
|0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗

(
∂Aℓ
∂θAℓi

))
Xa

(
|0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗

(
∂Aℓ
∂θAℓi

)†
)

= |1⟩ ⟨0| ⊗
(
∂Aℓ
∂θAℓi

)
+ |0⟩ ⟨1| ⊗

(
∂Aℓ
∂θAℓi

)†

,

(C.5)

we then have 〈
ψAℓ0
∣∣EAℓi ∣∣ψAℓ0〉 =

〈
ψAℓi
∣∣Xa

∣∣ψAℓi〉
=

∂

∂θAℓi
⟨φ| P0 |φ⟩ ,

(C.6)

where Xa acts on the ancilla.

Note that
∣∣ψAℓ0〉⊗k can be prepared by Alice first preparing (|+⟩ |ψ(x)⟩)⊗k and sending this state back and forth at most

2L times, with each player applying the appropriate unitaries conditioned on the value of the ancilla. Additionally, for
any choice of ℓ and any i, Alice has full knowledge of the EAℓi . They can thus be applied to quantum states and classical
hypothesis states without requiring any communication.

The gradient can then be estimated using shadow tomography (Theorem E.3). Specifically, for each ℓ, Alice
prepares Õ(log2 P logN log(L/δ)/ε4) copies of

∣∣∣ψAℓ
0

〉
, which requires O(L) rounds of communication, each of

Õ(log2 P log2N log(L/δ)/ε4) qubits. She then runs shadow tomography to estimate∇Aℓ
⟨φ|Z0|φ⟩ up to error ε with no

additional communication. Bob does the same to estimate ∇Bℓ
⟨φ|Z0|φ⟩. In total O(L2) rounds are needed to estimate the

full gradient. The success probability of all L applications of shadow tomography is at least 1− δ by a union bound.

Based on the results of (Brandão et al., 2017), the space and time complexity of each application of shadow tomography is√
Ppoly(N, logP, ε−1, log(1/δ)). This is the query complexity of the algorithm to oracles that implement the measurement

operators
{
EQℓi

}
. Instantiating these oracles will incur a cost of at most O(N2). In cases where these operators have low

rank the query complexity complexity will depend polynomially only on the rank instead of on N .

Proof of Lemma E.4. We first prove an Ω(
√
N) lower bound on the amount of classical communication. Consider the

following problem:

Problem C.1 ((Raz, 1999)). Alice is given a vector x ∈ SN−1 and two orthogonal linear subspaces of RN each of dimension
N/2, denoted M1,M2. Bob is given an orthogonal matrix O. Under the promise that either ∥M1Ox∥2 ≥

√
1− θ2 or

∥M2Ox∥2 ≥
√
1− θ2 for 0 < θ < 1/

√
2, Alice and Bob must determine which of the two cases holds.

Ref. (Raz, 1999) showed that the randomized3 classical communication complexity of the problem is Ω(
√
N).

The reduction from Problem C.1 to Problem 2.2 is obtained by choosing θ = 1/2 and simply setting L = 1, B1 =
O, |ψ(x)⟩ = |x⟩ ,P0 = Z0, and

A1 =

N/2−1∑
j=0

|0⟩ |j⟩
〈
v1j
∣∣+ N/2−1∑

j=0

|1⟩ |j⟩
〈
v2j
∣∣ , (C.7)

where the first register contains a single qubit and
{
vkj
}

form an orthonormal basis of Mk, and picking any ε < 1/2.
Note that this choice of |ψ(x)⟩ implies N ′ = N . Estimating L to this accuracy now solves the desired problem since

3In this setting Alice and Bob can share an arbitrary number of random bits that are independent of their inputs.
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L = ⟨x|OT (Π1 −Π2)O |x⟩ where Πk is a projector onto Mk, and hence estimating this quantity up to error 1/2 allows
Alice and Bob to determine which subspace has large overlap with Ox.

The reduction from Problem C.1 to Problem 2.3 is obtained by setting L = 2, picking |ψ(x)⟩ , A1, B1 as before, and
additionally B2 = I, A2 = e−iθ

A
2,1X0/2 initialized at θA2,1 = −π/2. By the parameter shift rule (Crooks, 2019), we have

that if U = e−iθP/2 for some Pauli matrix P , and U is part of the parameterized circuit that defines |φ⟩, then

∂L
∂θ

=
1

2
(L(θ + π

2
)− L(θ − π

2
)). (C.8)

It follows that
∂L
∂θA2,1

∣∣∣∣∣
θA2,1=−π/2

=
1

2
(L(0)− L(−π))

=
1

2

(
L(0)− ⟨x|B†

1A
†
1e

−iπ2X0Z0e
iπ2X0A1B1 |x⟩

)
=
1

2

(
L(0)− ⟨x|B†

1A
†
1X0Z0X0A1B1 |x⟩

)
=
1

2

(
L(0) + ⟨x|B†

1A
†
1Z0A1B1 |x⟩

)
=L(0).

(C.9)

Estimating ∇A ⟨φ|Z0 |φ⟩ to accuracy ε < 2 allows one to determine the sign of L(0), which as before gives the solution to
Problem C.1.

Next, we show that Ω(L) rounds are necessary in both the quantum and classical setting by a reduction from the bit version
of pointer-chasing, as studied in (Jain et al., 2002; Ponzio et al., 2001).

Problem C.2 (Pointer-chasing, bit version). Alice receives a function fA : [N ] → [N ] and Bob receives a function
fB : [N ]→ [N ]. Alice is also given a starting point x ∈ [N ], and both receive an integer L0. Their goal is to compute the
least significant bit of f (L0)(x), where f (1)(x) = fB(x), f

(2)(x) = fA(fB(x)), . . . .

Ref. (Jain et al., 2002) show that the quantum communication complexity of L0-round bit pointer-chasing when Bob speaks
first is Ω(N/L4

0) (which holds for classical communication as well). This also bounds the (L0 − 1)-round complexity when
Alice speaks first (since such a protocol is strictly less powerful given that there are fewer rounds of communication). On the
other hand, there is a trivial L0-round protocol when Alice speaks first that requires logN bits of communication per round,
in which Alice sends Bob x, he sends back f (1)(x), she replies with f (2)(f (1)(x)), and so forth. This, combined with the
lower bound, implies as exponential separation in communication complexity as a function of the number of rounds.

To reduce this problem to Problem 2.2, we assume fA, fB are invertible. This should not make the problem any easier
since it implies that fA, fB have the largest possible image. In this setting, fA, fB can be described by unitary permutation
matrices:

UA =
∑
i

|fA(i)⟩ ⟨i| , UB =
∑
i

|fB(i)⟩ ⟨i| . (C.10)

The corresponding circuit Equation (2.3) is then given by

|φ⟩ = SWAP0↔logN−1UB . . . UAUB |x⟩ (C.11)

in the case where Bob applies the function last, with an analogous circuit in the converse situation (if Bob performed the
swap, Alice applies an additional identity map). Estimating Z0 to accuracy ε < 1 using this state will then reveal the least
significant bit of f (L0)(x). This gives a circuit with L layers, where L0 ≤ 2L − 1. Thus any protocol with less than L0

rounds (meaning less than 2L− 1 rounds) would require communicating Ω(N/L4
0) = Ω(N/L4) qubits, since the converse

will contradict the results of (Jain et al., 2002). The reduction to Problem 2.3 is along similar lines to the one described by
Equation (C.9), with the state in that circuit replaced by Equation (C.11). This requires at most two additional rounds of
communication.

Since quantum communication is at least as powerful than classical communication, these bounds also hold for classical
communication. Since each round involves communicating at least a single bit, this gives an Ω(L) bound on the classical
communication complexity.
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Proof of Lemma F.2. The proof is based on a reduction from the f -Boolean Hidden Partition problem (f −BHPN,t) studied
in (Doriguello & Montanaro, 2020). This is defined as follows:

Problem C.3 (Boolean Hidden Partition (Doriguello & Montanaro, 2020) (f − BHPN,t)). Assume t divides N . Alice is
given x ∈ {−1, 1}N . Bob is given a permutation Π over [N ], a boolean function f : {−1, 1}t → {−1, 1}, and a vector
v ∈ {−1, 1}N/t. We are guaranteed that for any k ∈ {1, . . . , N/t},

f([Πx][(k−1)t+1:kt]) ∗ vk = s (C.12)

for some s ∈ {−1, 1}. Their goal is to determine the value of s.

A polynomial pf : {−1, 1}t → R is said to sign-represent a boolean function f if sign(pf (y)) = f(y) for all y ∈ {0, 1}t.
The sign-degree of f (sdeg(f)) is the minimal degree of a polynomial that sign-represents it. In the special case sdeg(f) = 2,
f − BHPN,t can be solved with exponential quantum communication advantage (Doriguello & Montanaro, 2020). For a
vector y ∈ {0, 1}t, define ỹ = (1, y1, . . . , yt). It is also known that if sdeg(f) = 2, then there exists a sign-representing
polynomial pf that can be written as

pf (y) = ỹTRỹ (C.13)

for some matrix real R (Aaronson et al., 2016). Moreover, for any f there exists such a pf with maxx∈{−1,1}t |pf (x)| ≤ 3.
We denote by β = minx∈{−1,1}t |pf (x)| the bias of pf .

We now describe a reduction from f − BHPN,t with sdeg(f) = 2 to QGNICN,t for some constant 1 ≤ C ≤ 3/2. As is
typical in communication complexity, the parties are allowed to exchange bits that are independent of the problem input,
and these are not counted when measuring the communication complexity of a protocol that depends on the inputs. Before
receiving their inputs, Alice thus sends two orthogonal vectors u0, u1 of length D0 to Bob, with each entry described by K
bits 4.

Assume Alice and Bob are given an instance of BHPN,t. They use it to construct an instance of QGNI(t+1)N/t,t with
D1 = 1. Alice constructs X ∈ R(t+1)N/t by picking the rows Xi according to

Xi =


1√

(t+1)N/t

(
1−xi

2 uT0 + 1+xi

2 uT1
)

i ≤ N
1√

(t+1)N/t
u1 i > N

. (C.14)

Note that with this definition ||X||F = 1. Bob defines a permutation π′ over [(t+ 1)N/t] by

π′(i) =

{
⌊i/t⌋ (t+ 1) + i%t+ 1 i ≤ N
(i−N − 1)(t+ 1) + 1 i > N

, (C.15)

denoting the corresponding permutation matrix Π′. Define by x the concatenation of Alice’s input x with 1(t+1)N/t. The
purpose of this permutation is that Π′Πx ≡ x̃ will be a concatenation of N/t vectors of length t+ 1, with the i-th vector
equal to (1, [Πx]t(i−1)+1, . . . , [Πx]ti) ≡ x̃(i).

Note that we can assume wlog that R in Equation (C.13) is symmetric since pf is independent of its anti-symmetric part. It
can thus be diagonalized by an orthogonal matrix U , and denoting the diagonal matrix of its real eigenvalues by D, we
define a (complex-valued) matrix S = U

√
D that satisfies R = SST . Bob therefore defines his model by

A = (IN/t ⊗ ST )Π′Π, W1 = u1 − u0, W2 = vT . (C.16)

Additionally, he picks the pooling operator P : R(t+1)N/t → RN/t to be sum pooling with window size t + 1 (i.e.
P(x)j =

∑j(t+1)
k=(j−1)(t+1)+1 xk). Bob also uses a simple quadratic nonlinearity by choosing a = 1, b = c = 0 in

Equation (3.2).

4Since D0 is arbitrary and in particular independent of N , even if we count this communication it will not affect the scaling with N
which the main property we are interested in. This independence is also natural since it implies that the number of local graph features is
independent of the size of the graph.
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To see that solving QGNI(t+1)N/t,t to error ε < 1/2 indeed provides a solution to BHPN,t, note that

P (σ(AXW1))i = P

(
σ(

1√
(t+ 1)N/t

Ax)

)
i

(C.17)

= P

(
σ(

1√
(t+ 1)N/t

(IN/t ⊗ ST )Π′Πx)

)
i

(C.18)

= P

(
σ(

1√
(t+ 1)N/t

(IN/t ⊗ ST )x̃)

)
i

(C.19)

=
1

(t+ 1)N/t

t+1∑
j=1

([ST x̃(i)]j)
2 (C.20)

=
1

(t+ 1)N/t
x̃T(i)SS

T x̃(i) (C.21)

=
1

(t+ 1)N/t
pf ([Πx][(i−1)t+1:it]). (C.22)

Given the choice of W2, one obtains

φ(X/||X||F ) =
1

(t+ 1)N/t

N/t∑
i=1

pf ([Πx][(i−1)t+1:it])vi. (C.23)

It follows that sign(φ(X)) = s and |φ(X)| ≥ β. It is thus possible to decide the value of s if φ(X/||X||F ) is estimated to
some error smaller than β.

From Theorem 4 of (Doriguello & Montanaro, 2020), we have R→(f − BHPN,t) = Ω(
√
N/t) for any f that has

sign-degree 2 and satisfies some additional conditions. The reduction then implies

R→
β (QGNIN,t) = Ω(

√
(t/(t+ 1))N/t). (C.24)

This can be simplified by noting that since t ≥ 2, t/(t+ 1) ≥ 2/3. The lower bound in (Doriguello & Montanaro, 2020)
is based on choosing f which belongs to a specific class of symmetric boolean functions (meaning f(y) = f̃(|y|) where
|y| = |{i : yi = −1}|). Specifically, f̃ is defined by the choice of t and two additional integer parameters θ1, θ2 such that
0 ≤ θ1 < θ2 < t and

f̃(|y|) =

{
1 0 ≤ |y| ≤ θ1 or θ2 < |y|,
−1 θ1 < |y| ≤ θ2,

(C.25)

(and an additional technical condition that will not be of relevance to our analysis).

We next construct a sign-representing polynomial pf for any f that takes the above form, and compute its bias β. Since f is
symmetric of sign degree 2, it suffices to construct a polynomial p̃f : R→ R such that pf (y) = p̃f (|y|) for this purpose. If
we can produce some β′ that bounds β from below for any choice of t, θ1, θ2, then the lower bound from Theorem 4 of
(Doriguello & Montanaro, 2020) holds for any error smaller than β′.

We choose p̃f (z) = ãz2 + b̃z + 1, with the constraints p̃f (θ1 + 1/2) = 0, p̃f (θ2 + 1/2) = 0. These lead to the solution

p̃f (z) =
1

θ+1 θ
+
2

z2 − 1

θ+1 θ
+
2

θ+2
2 − θ

+2
1

θ+2 − θ
+
1

z + 1. (C.26)

Since this is a quadratic function with known roots that is only evaluated at integer inputs, if we want to bound the bias of
pf it suffices to check the values of p̃f at the integers closest to the roots, namely {θ1, θ1 + 1, θ2, θ2 + 1}. Plugging in these
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values gives

p̃f (θ1) =1− θ2 − 1

(1 + 1
2θ1

)(θ2 +
1
2 )

≥1− 1

1 + 1
2θ1

≥ 1

4θ1

≥ 1

4t
,

(C.27)

where in the third line we used 1
1+x ≤ 1− x/2 which holds for 0 ≤ x ≤ 1. Using θ2 ≤ θ1 + 1, we also have

p̃f (θ1 + 1) =1− θ1 + 1(
θ1 +

1
2

) (
1 + 1

2θ2

)
≤1− θ1 + 1(

θ1 +
1
2

) (
1 + 1

2θ1+2

)
=− 1

4
(
θ1 +

1
2

) (
θ1 +

3
2

)
≤− 1

4
(
t+ 1

2

) (
t+ 3

2

) .

(C.28)

p̃f (θ2) takes the same value as p̃f (θ1 + 1). Similarly,

p̃f (θ2 + 1) =1− θ2 + 1

(θ2 +
1
2 )(1 +

1
2θ1

)

≥1− θ2 + 1

(θ2 +
1
2 )(1 +

1
2θ2−2 )

=
2θ22 − 5

4

θ22 − 1
4

.

(C.29)

For θ2 ≤ 1 this is a monotonically increasing function of θ2, and is thus lower bounded by picking θ2 = 1, giving p̃f (2) ≥ 1.
It follows that for any choice of t, θ1, θ2, the bias is bounded from below by

β′ =
1

4
(
t+ 1

2

) (
t+ 3

2

) . (C.30)

Note that our bound on the bias allows us to use the reduction from f − BHPN,t to QGNI(t+1)N/t,t for any valid choice of
f (satisfying Equation (C.24)).

Proof of Lemma F.3. Alice encodes her input in the quantum state

˜|X⟩0 ≡
1√

2 ∥X∥F
|0⟩

N−1∑
i=0

D0−1∑
j=0

Xij |i, j⟩+
1√
2
|1⟩
∣∣0⊗N , 0⊗D0

〉
(C.31)

over log(ND0) + 1 qubits. She sends this state to Bob. Define D = max{D0, D1}. Bob augments this state by attaching
zero qubits and, reordering the first two qubits, obtains the state

˜|X⟩ ≡ 1√
2 ∥X∥F

|0⟩ |0⟩
N−1∑
i=0

D0−1∑
j=0

Xij

∣∣∣i, j, 0⊗(D−D0)
〉
+

1√
2
|1⟩ |0⟩

∣∣0⊗N , 0⊗D〉
≡ 1√

2
|0⟩ |0⟩

∣∣X〉+ 1√
2
|1⟩ |0⟩

∣∣0⊗N , 0⊗D〉 (C.32)
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over log(ND) + 2 qubits.

Define by W 1 the D ×D matrix obtained by appending zero rows or columns to the rectangular matrix W1 to obtain a
square matrix, and denote α =

∥∥A⊗W 1

∥∥. Bob prepares an (α, 1, 0)-block-encoding of A⊗W 1, denoted UA⊗W 1
, which

acts on log(ND) + 1 qubits. Bob then applies this unitary conditioned on the value of the first qubit, giving

(
|0⟩ ⟨0|UA⊗W 1

+ |1⟩ ⟨1|
) ˜|X⟩ =

1√
2
|0⟩UA⊗W 1

|0⟩
∣∣X〉+ 1√

2
|1⟩ |0⟩

∣∣0⊗N , 0⊗D〉
=

1√
2
|0⟩
(
1

α
|0⟩A⊗W 1

∣∣X〉+ |1⟩ |g⟩)+
1√
2
|1⟩ |0⟩

∣∣0⊗N , 0⊗D〉
≡ 1√

2
|0⟩
(
1

α
|0⟩
∣∣AXW1

〉
+ |1⟩ |g⟩

)
+

1√
2
|1⟩ |0⟩

∣∣0⊗N , 0⊗D〉
≡ |ψ⟩

(C.33)

where |g⟩ is an unnormalized garbage state. Above, AXW1 is an N ×D matrix obtained by adding zero columns to W1 as
needed.

The sum pooling operator P can be implemented by multiplication by an N/t×N matrix which we denote by P . Define
by W2 the D ×N/t matrix obtained by appending zero rows to W2 if needed. Given a matrix M of size N1 ×N2, denote
by V [M ] the vectorization of M . Bob then constructs the Hermitian matrix

O =

(
2aα2 |0⟩ ⟨0| ⊗ diag(V [W2P ]) bα |0⟩ ⟨0| ⊗ V [W2P ]

〈
0⊗N , 0⊗D

∣∣
bα |0⟩ ⟨0| ⊗

∣∣0⊗N , 0⊗D〉V [W2P ]
† 0

)
. (C.34)

It follows that

⟨ψ|O|ψ⟩+ ctr
[
W2P1

N×D1
]

=
a

∥X∥2F
tr
[
W2P (AXW1)

2
]
+

b

∥X∥F
tr [W2PAXW1] + ctr

[
W2P1

N×D1
]

=tr

[
W2Pσ(A

X

∥X∥F
W1)

]
=φ(X/ ∥X∥F ),

(C.35)

where 1N×D1 is an all ones matrix. The last term on the RHS is independent of X and can be computed by Bob without
requiring Alice’s message. Estimating ⟨ψ|O|ψ⟩ to accuracy ε requires O(∥O∥ /ε) measurements. Since

∥O∥ ≤
∥∥2aα2 |0⟩ ⟨0| ⊗ diag(V [W2P ])

∥∥+ 2
∥∥bα |0⟩ ⟨0| ⊗ V [W2P ]

〈
0⊗N , 0⊗D

∣∣∥∥
≤2(|a|α2 + |b|α) ∥W2P∥∞ ,

(C.36)

Bob requires O((|a|α2 + |b|α) ∥W2P∥∞ /ε) copies of Alice’s state in order to do this.

Proof of Lemma F.4. For the parameter choices used to obtain the classical lower bound (Equation (C.14) and Equa-
tion (C.16)), we have ||W1|| = 1, ||W2P ||∞ ≤ t. Additionally, for the polynomials constructed in Equation (C.26), we have
|pf (y)| ≤ Ct2 from which it follows that the matrix R used in the matrix representation of pf has constant operator norm
C, and thus ∥A∥ = ∥S∥ =

√
C. We also have a = 1, b = c = 0 for the nonlinearity used (Equation (3.2)), and it thus

follows from Lemma F.3 that Q→
ε (QGNIN,t) = O(t3 log(ND0)) for ε ≤ 1

4(t+ 1
2 )(t+

3
2 )

. With this choice of ε, the classical

lower bound in Lemma F.2 holds, and thus an exponential advantage in communication is obtained by using quantum
communication.

Proof of Lemma J.2. Consider first a single variable z, with data-dependent unitaries given by Equation (J.4a). If {λℓi} are
chosen i.i.d. from a uniform distribution over say [0, 1], then with probability 1 they are all unique and so are all sums of the

form Λj =
L∑
ℓ=1

λℓjℓ as well as differences Λj − Λk for k < j where the inequality holds element-wise. Set Bℓ to be the
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Hadamard transform over logN ′ qubits for all ℓ, and pick the measurement operator P0 = X0. We then have

L1 = ⟨φ|X0 |φ⟩

=
∑

j,k∈[N ′]L

e2πi(Λj−Λk)z
(
B†

1

)
1j1

(
B†

2

)
j1j2

. . .
(
B†
L

)
jL−1jL

(X0)jLkL (BL)kLkL−1
. . . (B1)k11

=
∑

j,k∈[N ′]L,j ̸=k

e2πi(Λj−Λk)z
(
B†

1

)
1j1

(
B†

2

)
j1j2

. . .
(
B†
L

)
jL−1jL

(X0)jLkL (BL)kLkL−1
. . . (B1)k11

=
∑

j∈[N ′]L

∑
k<j

2 cos
(
2π(Λj − Λk)z

)(
B†

1

)
1j1

. . .
(
B†
L

)
jL−1jL

(X0)jLkL . . . (B1)k11

=
∑

j[:−1]∈[N ′]L−1

∑
k[:−1]<j[:−1]

N ′∑
jL=1

2 cos
(
2π(Λj[:−1] − Λk[:−1] + λLjL − λLj̃L)z

)
∗
(
B†

1

)
1j1

. . .
(
B†
L

)
jL−1jL

(BL)j̃L,kL−1
. . . (B1)k11

(C.37)

where j̃L = jL + (−1)⌊jL/(N
′/2+1)⌋N ′/2. In the third line, we dropped the diagonal terms in the double sum since they

vanish due to the X0 matrix having 0 on its diagonal. In the fourth line, we collected terms and used the symmetry of(
B†

1

)
1j1

. . .
(
B†
L

)
jL−1jL

(X0)jLkL . . . (B1)k11 to the permutation of j and k. In the last line we performed the sum over

kL using the structure of X0. By our assumption about the {λℓi}, each term in the final sum has a unique frequency so no
cancellations are possible. The coefficient of each cosine is nonzero (and is equal to 2N ′−L or −2N ′−L). There are a total

of
(
N ′(N ′−1)

2

)L−1

N ′ such summands. This completes the first part of the proof for this choice of {Bℓ}.

Considering instead the case of two variables, with unitaries given by Equation (J.4b), an equivalent calculation gives

L2 =
∑

j[:−1]∈[N ′]L−1

∑
k[:−1]<j[:−1]

N ′∑
jL=1

2 cos
(
ω1
jk
y + ω2

jk
z
)(

B†
1

)
1j1

. . .
(
B†
L

)
jL−1jL

(BL)j̃L,kL−1
. . . (B1)k11 , (C.38)

where

ω1
jk

= 2π
(
Λj[:N ′/2+1] − Λk[:N ′/2+1]

)
, ω2

jk
= 2π

(
Λj[N ′/2+1:−1] − Λk[N ′/2+1:−1] + λLjL − λLj̃L

)
. (C.39)

As before, there are
(
N ′(N ′−1)

2

)L−1

N ′ summands in total. Since

cos
(
ω1
jk
y + ω2

jk
z
)
= cos

(
ω1
jk
y
)
cos
(
ω2
jk
z
)
− sin

(
ω1
jk
y
)
sin
(
ω2
jk
z
)
, (C.40)

we can rewrite Equation (C.38) as a sum over 2
(
N ′(N ′−1)

2

)L−1

N ′ terms that are pairwise orthogonal w.r.t. the L2 inner

product over R2. It follows from the definition of the separation rank that

sep (L2; y, z) = 2

(
N ′(N ′ − 1)

2

)L−1

N ′. (C.41)

We next use the assumption that the real and imaginary parts of each element of Bℓ are real analytic function of parameters
Θ. This implies that the same property holds for product of entries of the form(

B†
1

)
1j1

. . .
(
B†
L

)
jL−1jL

(BL)j̃L,kL−1
. . . (B1)k11 (C.42)

for any choice of j, k. This coefficient is equal to 0 iff both the real and imaginary parts are equal to 0. Since the zero
set of a real analytic function has measure 0 (Mityagin, 2015), the set of values of Θ for which any of the coefficients in
Equation (C.38) vanishes also has measure 0, for all choices of j, k. The result follows.
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Proof of Lemma J.3. Consider a periodic function f with period 1. Denote by SM [f ] the truncated Fourier series of f
written in terms of trigonometric functions:

SM [f ](y) =

M−1∑
m=0

1/2∫
x=−1/2

f(x) cos (2πmx) dx cos (2πmy) +

M−1∑
m=0

1/2∫
x=−1/2

f(x) sin (2πmx) dx sin (2πmy)

≡
M−1∑
m=0

f̂+m cos (2πmy) +

M−1∑
m=0

f̂−m sin (2πmy) .

(C.43)

If f is p-times continuously differentiable, it is known that the Fourier series converges uniformly, with rate

∥SM [f ]− f∥∞ <
C

Mp−1/2
. (C.44)

for some absolute constant C (Osgood, 2019). For analytic functions the rate is exponential in M .

We now define the following circuit:

A1(x) = diag((1, . . . , 1︸ ︷︷ ︸
N ′/2

, 1, e2πix, e2πi2x . . . , e2πi(N
′/4−1)x︸ ︷︷ ︸

N ′/4

, 1, e2πix, e2πi2x . . . , e2πi(N
′/4−1)x︸ ︷︷ ︸

N ′/4

)), (C.45)

B1 =
∣∣f̂〉 ⟨0|+ |0⟩ 〈f̂ ∣∣, (C.46)

where ∣∣f̂〉 = 1√∑
m

∣∣∣f̂m∣∣∣
N ′/4−1∑
m=0

(√
f̂+m
|0⟩+ sign(f̂+m) |1⟩√

2
|0⟩+

√
f̂−m
|0⟩ − isign(f̂−m) |1⟩√

2
|1⟩

)
|m⟩ . (C.47)

Choosing |ψ(x)⟩ = |0⟩ as the initial state, this gives

|φ⟩ =A1B1 |0⟩

=A1

∣∣f̂〉
=

1√∑
m

∣∣∣f̂m∣∣∣
N ′/4−1∑
m=0

(√
f̂+m
|0⟩+ sign(f̂+m)e2πimx |1⟩√

2
|0⟩+

√
f̂−m
|0⟩ − isign(f̂−m)e2πimx |1⟩√

2
|1⟩

)
|m⟩

(C.48)

It follows that

⟨φ|X0 |φ⟩ =
1∑

m

∣∣∣f̂m∣∣∣
N ′/4−1∑
m=0

∣∣∣f̂+m∣∣∣ ⟨0|+ sign(f̂+m)e−2πimx ⟨1|√
2

X0
|0⟩+ sign(f̂+m)e2πimx |1⟩√

2

+
∣∣∣f̂−m∣∣∣ ⟨0|+ isign(f̂−m)e−2πimx ⟨1|√

2
X0
|0⟩ − isign(f̂−m)e2πimx |1⟩√

2

=
1∑

m

∣∣∣f̂m∣∣∣
N ′/4−1∑
m=0

f̂+m cos(2πmx) + f̂−m sin(2πmx)

=
1∑

m

∣∣∣f̂m∣∣∣SN ′/4[f ](x)

(C.49)

This approximation thus converges uniformly according to Equation (C.44), with error decaying exponentially with number
of qubits logN ′ as long as f is continuously differentiable at least once.
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Proof of Lemma J.1. The algorithm in Theorem 5 of (Rattew & Rebentrost, 2023) takes as input a state-preparation unitary
U acting on n = logN qubits such that U |0⟩⊗n = |z⟩. Using O(log 1/ε) queries to U and U† and n+4 ancillas, it creates
a state |φ⟩ such that measuring 0 on the first n+ 4 qubits of |φ⟩ results in a state |φ̂⟩ that obeys∥∥∥∥|φ̂⟩ − 1

∥σ(z)∥2
|σ(z)⟩

∥∥∥∥
2

< ε. (C.50)

Additionally, the probability of measuring 0 on the first n+ 4 qubits is O(1).

We will be interested in applying this algorithm to the state |U1x⟩. The state preparation unitary can be instantiated with a
single round of communication by Alice starting with the state |0⟩⊗2n+4, applying a unitary that encodes x in the last n
qubits of this state, and then sending it to Bob who applies U1 to the same n qubits. The conjugate of the state-preparation
unitary can be applied in a similar fashion by reversing this procedure. This can include any conditioning required on the
values of the other qubits.

Based on the query complexity of the algorithm in (Rattew & Rebentrost, 2023) to the state preparation unitary, O(log(1/ε))
rounds will suffice to obtain a state

|φ̃σ⟩ = α |0⟩⊗n+4 |ỹ⟩+ |ϕ⟩ , (C.51)

such that ∥∥∥∥|ỹ⟩ − ∣∣∣∣ 1

∥σ(U1x)∥2
σ(U1x)

〉∥∥∥∥
2

< ε. (C.52)

Bob then applies U2 to the state |φ̃σ⟩ conditioned on the first n + 4 qubits being in the state |0⟩⊗n+4. The state |ϕ⟩ is
unaffected. Unitary of U2 combined with the above bound guarantees∥∥∥∥|ŷ⟩ − ∣∣∣∣U2

1

∥σ(U1x)∥2
σ(U1x)

〉∥∥∥∥
2

< ε. (C.53)

Additionally, from Theorem 3 of (Rattew & Rebentrost, 2023) we are guaranteed that α = O(1).

D. Data parallelism
Data parallelism involves storing multiple copies of a model on different devices and training each copy on a subset of the
full data. We consider a model of the form

|φ(Θ, x)⟩ ≡

(
1∏

ℓ=L

Uℓ(θℓ, x)

)
|x⟩ , (D.1)

where x is an N1 ×N2 matrix which we write as x = [xA, xB ] for two N1/2 ×N2 matrices xA, xB . Assume also that
∥x∥F = 1. This model can be used to define a distributed problem with dara parallelism by considering the following inputs
to both players:

Alice : xA, {Uℓ},
Bob : xB , {Uℓ}.

(D.2)

The state |x⟩ can be prepared in a single round of communication involving log(N1N2) qubits. Alice simply prepares the
state

|xA⟩+
√
1− ∥xA∥2F |N1/2, 0⟩ =(xA)ij

N1/2−1∑
i=0

N2−1∑
j=0

|i, j⟩+
√
1− ∥xA∥2F |N1/2, 0⟩

=(xA)ij

N1/2−1∑
i=0

N2−1∑
j=0

|i, j⟩+ ∥xB∥F |N1/2, 0⟩ ,

(D.3)

using zero-based indexing of the elements of xA. After sending this to Bob, he applies the unitary

1

∥xB∥F
(xB)i,j

N1/2−1∑
i=0

N2−1∑
j=0

|ij⟩ ⟨N1/2, 0|+ h.c.. (D.4)
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The resulting state is |x⟩. As before, the gradients with respect to the parameters of the unitaries {Uℓ} can be estimated by
preparing copies of this state and using shadow tomography. The number of copies will again be logarithmic in N1, N2 and
the number of trainable parameters.

E. Communication complexity of inference and gradient estimation
We show that inference and gradient estimation are achievable with a logarithmic amount of quantum communication, which
will represent an exponential improvement over the classical cost for some cases:

Lemma E.1. Problem 2.2 can be solved by communicating O(logN) qubits over O(L/ε2) rounds.

Proof: Appendix C.

Lemma E.2. Problem 2.3 can be solved with probability greater than 1 − δ by communicating
Õ(logN(logP )2 log(L/δ)/ε4) qubits over O(L2) rounds. The time and space complexity of the algorithm is√
P L poly(N, logP, ε−1, log(1/δ)).

Proof: Appendix C.

This upper bound is obtained by simply noting that the problem of gradient estimation at every layer can be reduced to a
shadow tomography problem (Abbas et al., 2023):

Theorem E.3 (Shadow Tomography (Aaronson, 2018) solved with Threshold Search (Bădescu & O’Donnell, 2021)). For
an unknown state |ψ⟩ of logN qubits, given K known two-outcome measurements Ei, there is an explicit algorithm that
takes |ψ⟩⊗k as input, where k = Õ(log2K logN log(1/δ)/ε4), and produces estimates of ⟨ψ|Ei |ψ⟩ for all i up to additive
error ε with probability greater than 1− δ. Õ hides subdominant polylog factors.

Using reductions from known problems in communication complexity, we can show that the amount of classical commu-
nication required to solve this problem is polynomial in the size of the input, and additionally give a lower bound on the
number of rounds of communication required by any quantum or classical algorithm:

Lemma E.4. i) The classical randomized communication complexity of Problem 2.2 and Problem 2.3 with ε < 1/2 is
Ω(max(

√
N,L)). 5

ii) Any algorithm (quantum or classical) for Problem 2.2 or Problem 2.3 requires either Ω(L) rounds of communication or
Ω(N/L4) qubits (or bits) of communication.

Proof: Appendix C

The implication of the second result in Lemma E.4 is that Ω(L) rounds of communication are necessary in order to obtain
an exponential communication advantage for small L, since otherwise the number of qubits of communication required can
scale linearly with N .

The combination of Lemma E.1, Lemma E.2 and Lemma E.4 immediately implies exponential savings in communication
for gradient estimation and inference. Restating the theorem from the main text, we have

Theorem E.5. If L = O(polylog(N)), P = O(poly(N)) and sufficiently large N , solving Problem 2.2 or Problem 2.3
with nontrivial success probability requires Ω(

√
N) bits of classical communication, while O(polylog(N, 1/δ)poly(1/ε))

qubits of communication suffice to solve these problems with probability at least 1− δ.

The regime where L = O(polylog(N)) is relevant for many classes of machine learning models. The required overhead in
terms of time and space is only polynomial when compared to the straightforward classical algorithms for these problems.

The distribution of the model as in Equation (2.3) is an example of pipelining. Data parallelism is another common approach
to distributed machine learning in which subsets of the data are distributed to identical copies of the model. In Appendix D
we show that it can also be implemented using quantum circuits, which can then trained using gradient descent requiring
quantum communication that is logarithmic in the number of parameters and input size.

5The inputs to Problem 2.2 and Problem 2.3 are defined in terms of real numbers, which is seemingly incompatible with the setting
of communication complexity which typically deals with finite inputs. However, similar (but slightly worse) lower bounds hold for
discretized analogs of these problem that use O(logN) bits to represent the real numbers (Raz, 1999).
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Quantum advantage is possible in these problems because there is a bound on the complexity of the final output, whether it
be correlated elements of the gradient up to some finite error or the low-dimensional output of a model. This might lead one
to believe that whenever the output takes such a form, encoding the data in the amplitudes of a quantum state will trivially
give an exponential advantage in communication complexity. We show however that the situation is slightly more nuanced,
by considering the problem of inference with a linear model:

Lemma E.6. For the problem of distributed linear classification, there can be no exponential advantage in using quantum
communication in place of classical communication.

The precise statement and proof of this result are presented in Appendix I. This result also highlights that the worst case
lower bounds such as Lemma E.4 may not hold for circuits with certain low-dimensional or other simplifying structure.

F. Quantum communication advantage in graph network inference
This allows us to define the following problem:

Problem F.1 (Quadratic graph network inference (QGNIN,t)). Alice is given X , Bob is given A,W1,W2. Only Alice is
allowed to send messages. Their goal is to estimate φ(X/||X||F ) to additive error ε.

This models a scenario where only Bob has access to the connectivity of the graph, while Alice has access to the graph
features. The normalization ensures that the choice of X does not introduce a dependence of the final output on N .

In the following, we denote by R→
ε and Q→

ε the classical (public key randomized) communication complexity and quantum
communication complexity respectively. We show:

Lemma F.2. R→
ε (QGNIN,t) = Ω(

√
N/t) for any ε ≤ 1

4(t+ 1
2 )(t+

3
2 )

.

Proof: Appendix C.

Lemma F.3. Q→
ε (QGNIN,t) = O((|a|α2 + |b|α) ∥W2P∥∞ log(ND0)/ε) where α = ∥W1∥ ∥A∥.

Proof: Appendix C.

If this upper bound was a polynomial function of N , it would imply that an exponential communication advantage is
impossible. For the parameter choices that realize classical communication lower bound, this is not the case, implying the
following:

Lemma F.4. An exponential quantum advantage in communication holds for solving the inference problem QGNIN,t up to
error ε ≤ 1

4(t+ 1
2 )(t+

3
2 )

, for any t such that t = polylog(N).

Proof: Appendix C.

Note that this exponential advantage does not hold only for a single setting of the model weights, but rather for the entire
family of models that can be used to solve f − BHPN,t for functions f that satisfy Equation (C.24).

Note that generically, one would not expect the numerator in the upper bound of Lemma F.3 to scale polynomially with N .
If A is for example a normalized graph Laplacian then ||A|| ≤ 2. If we use a standard initialization scheme for the weights
(say Gaussians with variance 1/(nin + nout)), the upper bound scales like O((|a|+ |b|) log(ND0)poly(t,D0, D1)/ε) in
expectation. Note that if the model output decays polynomially with N , the upper bound will not be useful since one
would need to choose ε to be inverse polynomial in N . This could happen for example in a classification task considered in
Section 4.2.1 when the classes are exactly balanced, or when the network is untrained and not sensitive to the structure in the
data. While it is difficult to argue analytically about the scaling out the network output or the norms of the weight matrices
after training due to the nonlinearity of the dynamics, we empirically compute these and find that they remain controlled for
the datasets we study (see Appendix N.3).

G. Graph classification
We evaluate our model on several graph classification benchmarks: bioinformatics datasets (MUTAG, PTC, NCI1, PRO-
TEINS)(Shervashidze et al., 2011; Helma et al., 2001; Debnath et al., 1991; Borgwardt et al., 2005) and social networks
(COLLAB, IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY, REDDIT-MULTI) (Yanardag & Vishwanathan, 2015). For
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Table 2. Graph Classification Test Accuracy. Our model achieves comparable results to GIN and other known models on most datasets
(see full table in Table 5).

Dataset

Model MUTAG PTC NCI1 PROTEINS COLLAB IMDB-M REDDIT-M

GIN (Xu et al., 2019) 89.40±5.60 64.60±7.0 82.17±1.7 76.2 ±2.8 80.2 ±1.90 52.3 ±2.8 57.5±1.5
DropGIN(Papp et al., 2021) 90.4 ±7.0 66.3 ±8.6 - 76.3 ±6.1 - 51.4 ±2.8 -
DGCNN(Zhang et al., 2018) 85.8 ±1.7 58.6 ±2.5 - 75.5 ±0.9 - 47.8 ±0.9 -
U2GNN (Nguyen et al., 2022) 89.97±3.65 69.63±3.60 - 78.53±4.07 77.84±1.48 53.60±3.53 -
HGP-SL(Zhang et al., 2019) - - 78.45±0.77 84.91±1.62 - - -
WKPI(Zhao & Wang, 2019) 88.30±2.6 68.10±2.4 87.5 ±0.5 78.5±0.4 - 49.5 ± 0.4 59.5 ± 0.6

SIGN (ours) 92.02±6.45 68.0 ±8.17 77.25±1.42 76.55±5.10 81.82±1.42 53.13±3.01 54.09±1.76

the bioinformatics datasets, we use the standard categorical node features. As proposed in (Xu et al., 2019), we use one-hot
encodings of node degree as the node features for the COLLAB and IMDB datasets, and the for REDDIT datasets all nodes
have an identical scalar feature of 1. We convert the polynomial SIGN model in Section 4.2 into a graph classification model
by inserting a SumPool operator as described in Equation (3.1). We use the sign diffusion operator (Wang et al., 2019)
and stack Ri instances of each of its four message passing operators, where {Ri}4i=1 are selected during a hyperparameter
tuning, as well as the hidden dimension size and optimization setting (see Appendix N for more details). We follow the
validation regime proposed by (Xu et al., 2019); we perform 10-fold cross-validation, train each fold for 350 epochs using
Adam optimizer, and report in Table 2 the maximal value and standard-deviation of the averaged validation accuracy curve.
For all datasets, except for REDDIT, our model achieves comparable to or better than other commonly used models, despite
most of them using multiple layers. While the results show that on most datasets our shallow architecture suffices given
sufficient width in the message passing and hidden layer, we hypothesize that datasets without any node features (such as
REDDIT) require at least two layers of message passing.

H. Exponential advantages in end-to-end training
So far we have discussed the problems of inference and estimating a single gradient vector. It is natural to also consider
when these or other gradient estimators can be used to efficiently solve an optimization problem (i.e. when the entire
training processes is considered rather than a single iteration). Applying the gradient estimation algorithm detailed in
Lemma E.2 iteratively gives a distributed stochastic gradient descent algorithm which we detail in Algorithm 2, yet one
may be concerned that a choice of ε = O(logN) which is needed to obtain an advantage in communication complexity
will preclude efficient convergence. Here we present a simpler algorithm that requires a single quantum measurement per
iteration, and can provably solve certain convex problems efficiently, as well as an application of shadow tomography to
fine-tuning where convergence can be guaranteed, again with only logarithmic communication cost. In both cases, there is
an exponential advantage in communication even when considering the entire training process.

H.1. “Smooth” circuits

Consider the case where Aℓ are product of rotations for all ℓ, namely

Aℓ =

P∏
j=1

e−
1
2 iβ

A
ℓjθ

A
ℓjP

A
ℓj , (H.1)

where PAℓj are Pauli matrices acting on all qubits, and similarly for Bℓ. These can also be interspersed with other non-
trainable unitaries. This constitutes a slight generalization of the setting considered in (Harrow & Napp, 2021), and the
algorithm we present is essentially a distributed distributed version of theirs. Denote by β an 2PL-dimensional vector with
elements βQℓj where Q ∈ {A,B} 6. The quantity ∥β∥1 is the total evolution time if we interpret the state |φ⟩ as a sequence
of Hamiltonians applied to the initial state |x⟩.

In Appendix H.3 we describe an algorithm that converges to the neighborhood of a minimum, or achieves EL(Θ)−L(Θ⋆) ≤
6(Harrow & Napp, 2021) actually consider a related quantity for which has smaller norm in cases where multiple gradient measurements

commute, leading to even better rates.
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ε0, for a convex L after

2
∥∥∥Θ(0) −Θ⋆

∥∥∥2
2
∥β∥21 /ε

2
0 (H.2)

iterations, where Θ⋆ are the parameter values at the minimum of L. The expectation is with respect to the randomness
of quantum measurement and additional internal randomness of the algorithm. The algorithm is based on classically
sampling a single coordinate to update at every iteration, and computing an unbiased estimator of the gradient with a single
measurement. It can thus be seen as a form of probabilistic coordinate descent.

This implies an exponential advantage in communication for the entire training process as long as
∥∥Θ(0) −Θ⋆

∥∥2
2
∥β∥21 =

polylog(N). Such circuits either have a small number of trainable parameters (P = O(polylog(N))), depend weakly on
each parameter (e.g. βQℓj = O(1/P ) for arbitrary P ), or have structure that allows initial parameter guesses whose quality
diminishes quite slowly with system size. Nevertheless, over a convex region the loss can rapidly change by an O(1) amount.
One may also be concerned that in the setting

∥∥Θ(0) −Θ⋆
∥∥2
2
∥β∥21 = polylog(N) only a logarithmic number of parameters

is updated during the entire training process and so the total effect of the training process may be negligible. It is important
to note however that each such sparse update depends on the structure of the entire gradient vector as seen in the sampling
step. In this sense the algorithm is a form of probabilistic coordinate descent, since the probability of updating a coordinate
|βQℓj |/ ∥β∥1 is proportional to the the magnitude of the corresponding element in the gradient (actually serving as an upper
bound for it).

Remarkably, the time complexity of a single iteration of this algorithm is proportional to a forward pass, and so matches the
scaling of classical backpropagation. This is in contrast to the polynomial overhead of shadow tomography (Theorem E.3).
Additionally, it requires a single measurement per iteration, without any of the additional factors in the sample complexity
of shadow tomography.

H.2. Fine-tuning the last layer of a model

Consider a model given by Equation (2.1) where only the parameters of AL are trained, and the rest are frozen, and denote
this model by |φf ⟩. The circuit up to that unitary could include multiple data-dependent unitaries that represent complex
features in the data. Training only the final layer in this manner is a common method of fine-tuning a pre-trained model
(Howard & Ruder, 2018). If we now define

ẼALi = |1⟩ ⟨0| ⊗A
†
LP0

∂AL
∂θALi

+ |0⟩ ⟨1| ⊗
(
∂AL
∂θALi

)†

P0AL, (H.3)

the expectation value of ẼALi using the state |+⟩
∣∣µAL〉 gives ∂L

∂θAℓi
. Here

∣∣µAL〉 = BL(x)
1∏

k=L−1

Ak(x)Bk(x) |ψ(x)⟩ is the

forward feature computed by Alice at layer L with the parameters of all the other unitaries frozen (hence the dependence on
them is dropped). Since the observables in the shadow tomography problem can be chosen in an online fashion (Aaronson
et al., 2019; Aaronson & Rothblum, 2019; Bădescu & O’Donnell, 2021), and adaptively based on previous measurements,
we can simply define a stream of measurement operators by measuring P observables to estimate the gradients w.r.t. an
initial set of parameters, updating these parameters using gradient descent with step size η, and defining a new set of
observables using the updated parameters. Repeating this for T iterations gives a total of PT observables (a complete
description of the algorithm is given in Algorithm 3).

By the scaling in Lemma E.2, the total communication needed is Õ(logN(log TP )2 log(1/δ)/ε4) over O(L) rounds (since
only O(L) rounds are needed to create copies of

∣∣µAL
〉
. This implies an exponential advantage in communication for

the entire training process (under the reasonable assumption T = O(poly(N,P ))), despite the additional stochasticity
introduced by the need to perform quantum measurements. For example, assume one has a bound ∥∇L∥22 ≤ K. If the
circuit is comprised of unitaries with Hermitian derivatives, this holds with K = PL. In that case, denoting by g the gradient
estimator obtained by shadow tomography, we have

∥g∥22 ≤ ∥∇L∥
2
2 + ∥∇L − g∥

2
2 ≤ K + ε2PL. (H.4)

It then follows directly from Lemma H.1 that for an appropriately chosen step size, if L is convex one can find parameter
values Θ such that L(Θ)− L(Θ⋆) ≤ ε0 using

T = 2
∥∥∥Θ(0) −Θ⋆

∥∥∥2
2
(K + ε2PL)2/ε20 (H.5)
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iterations of gradient descent. Similarly if L is λ-strongly convex then T = 2(K + ε2PL)2/λε0 +1 iterations are sufficient.
In both cases therefore an exponential advantage is achieved for the optimization process as a whole, since in both cases one
can implement the circuit that is used to obtain the lower bounds in Lemma E.4.

In the following, we make use of well-known convergence rates for stochastic gradient descent:
Lemma H.1 ((Bubeck, 2014)). Given an objective function L(Θ) with a minimum at Θ⋆ and a stochastic gradient oracle
that returns a noisy estimate of the gradient g(Θ) such that Eg(Θ) = ∇L(Θ),E ∥g∥22 ≤ G2, and denoting by Θ(0) a point
in parameter space and R =

∥∥Θ(0) −Θ⋆
∥∥
2
, we have:

i) If L is convex in a Euclidean ball of radius R around Θ⋆, then gradient descent with step size η = R
G

√
2
T achieves

EL( 1
T

T∑
t=1

Θ(t))− L(Θ⋆) ≤ RG
√

2

T
. (H.6)

ii) If L is λ-strongly convex in a Euclidean ball of radius R around Θ⋆, then gradient descent with step size ηt = 2
λ(t+1)

achieves

EL( 1

T (T + 1)

T∑
t=1

2tΘ(t))− L(Θ⋆) ≤ 2G2

λ(T + 1)
. (H.7)

H.3. Distributed Probabilistic Coordinate Descent

Algorithm 1 Distributed Probabilistic Coordinate Descent

Input: Alice: x, {Aℓ},ΘA, {ηt}, T . Bob: {Bℓ},ΘB , {ηt}, T.
Output: Alice: Updated parameters Θ(T )

A . Bob: Updated parameters Θ(T )
B .

1: Alice and Bob each pre-process their coefficient vectors βA, βB to enable efficient sampling.
2: Alice sends ∥βA∥1 to Bob. {O(logP ) bits of classical communication.}
3: for t ∈ {1, . . . , T} do
4: Bob samples b ∼ Bernoulli(∥βA∥1 / ∥β∥1) and sends b to Alice {1 bit of classical communication.}
5: if b == 0 then
6: Bob samples (ℓ, i) from the discrete distribution defined by abs(βB)
7: Bob create the state

∣∣ψBℓ0〉 {O(L) rounds of quantum communication}
8: Bob measures ÊBℓi , as defined in Equation (H.8), obtaining a result m ∈ {−1, 1}
9: Bob sets θBℓi ← θBℓi − ηtsign(βBℓi )||β||1m

10: else
11: Alice runs steps 6-9, (replacing B with A)
12: end if
13: end for

Given distributed states of the form Equation (H.1), optimization over Θ can be performed using Algorithm 1. We verify
the correctness of this algorithm and provide convergence rates following (Harrow & Napp, 2021). Define the Hermitian
measurement operator

ÊQℓi =
(
|0⟩ ⟨0| ⊗ I − i |1⟩ ⟨1| ⊗ PQℓi

)†
Xa

(
|0⟩ ⟨0| ⊗ I − i |1⟩ ⟨1| ⊗ PQℓi

)
, (H.8)

with eigenvalues in {−1, 1}. Note that βQℓi
〈
ψQℓ0

∣∣∣ ÊQℓi ∣∣∣ψQℓ0〉 = ∂L
∂θQℓi

, and this is essentially a compact way of representing

a Hadamard test for the relevant expectation value. Now consider a gradient estimator that first samples (Q, ℓ, i) with
probability |βQℓi |/||β||1, then returns a one-sparse vector with gQℓi = sign(βQℓi) ∥β∥1m, where m is the result of a single

measurement of ÊQℓi using the state
∣∣∣ψQℓ0〉. For this estimator we have

EgQℓi = sign(βQℓi) ∥β∥1

∣∣∣βQℓi ∣∣∣
∥β∥1

〈
ψAℓ0
∣∣ ÊQℓi ∣∣ψAℓ0〉 = ∂L

∂θQℓi
, (H.9)
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where the expectation is taken over both the index sampling process and the quantum measurement. The procedure generates
a valid gradient estimator.

In order to show convergence, one simply notes that by construction, ∥g∥2 = ∥β∥1. It then follows immediately from
Lemma H.1 that, with an appropriately chosen step size, Algorithm 1 achieves EL(Θ)− L(Θ⋆) ≤ ε0 for a convex L using

2
∥∥Θ(0) −Θ⋆

∥∥2
2
∥β∥21

ε20
(H.10)

queries. For a λ-strongly convex L, only
2 ∥β∥21
λε0

+ 1 (H.11)

queries are required. The pre-processing in step 1 of Algorithm 1 requires time O(P logP ) and subsequently enables
sampling in time O(1) using e.g. (Walker, 1974) 7.

H.4. Algorithms based on Shadow Tomography

Algorithm 2 Shadow Tomographic Distributed Gradient Descent

Input: Alice: x, {Aℓ},Θ(1)
A , η, T . Bob: {Bℓ},Θ(1)

B , η, T.

Output: Alice: Updated parameters Θ(T )
A . Bob: Updated parameters Θ(T )

B .

1: for t ∈ {1, . . . , T} do
2: for ℓ ∈ {1, . . . , L} do
3: Alice prepares Õ(log2 P logN ′ log(L/δ)/ε4) copies of

∣∣ψAℓ0(Θ(t))
〉
{O(L) rounds of communication}

4: Alice runs Shadow Tomography to estimate {EEAℓi(Θ(t))}Pi=1 up to error ε, denoting these {gAℓi(Θ(t))}Pi=1.
5: Bob prepares Õ(log2 P logN ′ log(L/δ)/ε4) copies of

∣∣ψBℓ0(Θ(t))
〉
{O(L) rounds of communication}

6: Bob runs Shadow Tomography to estimate {EEBℓi (Θ(t))}Pi=1 up to error ε, denoting these {gBℓi(Θ(t))}Pi=1.
7: Alice sets θA(t+1)

ℓ ← θ
A(t)
ℓ − ηgAℓ (Θ(t)).

8: Bob sets θB(t+1)
ℓ ← θ

B(t)
ℓ − ηgBℓ (Θ(t)).

9: end for
10: end for

Algorithm 3 Shadow Tomographic Distributed Fine-Tuning

Input: Alice: x, {Aℓ}, θA(1)
L , η, T . Bob: {Bℓ}

Output: Alice: Updated parameters Θ(T )
A .

1: Alice prepares Õ(log2(PT ) logN ′ log(1/δ)/ε4) copies of
∣∣µAL〉 {O(L) rounds of communication}

2: for t ∈ {1, . . . , T} do
3: Alice runs online Shadow Tomography to estimate {EẼALi(θ

A(t)
L )} up to error ε, denoting these {gALi(θ

A(t)
L )}.

4: Alice sets θA(t+1)
L ← θ

A(t)
L − ηgAL (θ

A(t)
L ).

5: end for

I. Communication Complexity of Linear Classification
While the separation in communication complexity for expressive networks can be quite large, interestingly we will show
that for some of the simplest models this advantage can vanish due to the presence of structure. In particular, when a linear
classifier is well-suited to a task such that the margin is large, the communication advantage will start to wane, while a lack
of structure in linear classification will make the problem difficult for quantum algorithms as well. More specifically, we
consider the following classification problem:

7An even simpler algorithm that sorts the lists as a pre-processing step and uses inverse CDF sampling will enable sampling with cost
O(logP )
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Problem I.1 (Distributed Linear Classification). Alice and Bob are given x, y ∈ SN , with the promise that |x · y| ≥ γ for
some 0 ≤ γ ≤ 1. Their goal is to determine the sign of x · y.

This is one of the simplest distributed inference problem in high dimensions that one can formulate. x can be thought of as
the input to the model, while y defines a separating hyperplane with some margin. Since with finite margin we are only
required to resolve the inner product between the vectors to some finite precision, it might seem that an exponential quantum
advantage should be possible for this problem by encoding the inputs in the amplitudes of a quantum state. However,
we show that classical algorithms can leverage this structure as well, and consequently that the quantum advantage in
communication that can be achieved for this problem is at most polynomial in N . We prove this with respect to the the
randomized classical communication model, in which Alice and Bob are allowed to share random bits that are independent
of their inputs 8.

Lemma I.2. The quantum communication complexity of Problem I.1 is Ω
(√

N/max(1, ⌈γN⌉)
)

. The randomized classical

communication complexity of Problem I.1 is O(min(N, 1/γ2)).

Proof. We first describe a protocol that allows Alice and Bob to solve the linear classification problem with margin γ using
O(1/γ2) bits of classical communication and shared randomness, assuming γ > 0. Note that this bound accords with the
notion that the margin rather than the ambient dimension sets the complexity of these types of problems, which is also
manifest in the sample complexity of learning with linearly separable data.

Alice and Bob share kN bits sampled i.i.d. from a uniform distribution over {0, 1}, and that these bits are arranged in a
k ×N matrix R. Alice and Bob then receive x and y respectively, which are valid inputs to the linear classification problem
with margin γ. For any N -dimensional vector z, define the random projection

f : Rn → Rk, f(z) =
1

k
(2R− 1)z, (I.1)

where addition is element-wise. Applying the Johnson-Lindenstrauss lemma for projections with binary variables (Achlioptas,
2003), we obtain that if k = C/ε2, for some absolute constant C, then with probability larger than 2/3 we have for any
z, z′ ∈ {x, y, 0} (all of these being vectors in RN ), f is an approximate isometry in the sense

(1− ε) ∥z − z′∥22 ≤ ∥f(z)− f(z
′)∥22 ≤ (1 + ε) ∥z − z′∥22 . (I.2)

The key feature of this result is that k is completely independent of N . Applying it repeatedly gives

∥f(x)− f(y)∥22 − ∥f(x)∥
2
2 − ∥f(y)∥

2
2 ≤(1 + ε) ∥x− y∥22 − 2(1− ε)

f(x) · f(y) ≥(1 + ε)x · y − 2ε.
(I.3)

Obtaining an upper bound in a similar fashion using the converse inequalities, we have

(1 + ε)x · y − 2ε ≤ f(x) · f(y) ≤ (1− ε)x · y + 2ε. (I.4)

Assume now that x, y are valid inputs to the linear classification problem with margin γ, and specifically that x · y ≥ γ. The
lower bound above gives

(1 + ε)γ − 2ε ≤ f(x) · f(y), (I.5)

and if we choose ε = γ/8 we obtain
γ

2
≤ (1 +

γ

8
)γ − γ

4
≤ f(x) · f(y), (I.6)

where we used γ ≤ 1. Similarly, if instead x · y ≤ −γ we obtain

f(x) · f(y) ≤ −(1− γ

8
)γ +

γ

4
≤ −γ

2
. (I.7)

It follows that if Alice computes f(x) and sends the resulting O(k) = O(1/γ2) bits that describe this vector to Bob
(assuming some finite precision that is large enough so as not to affect the margin, which will contribute ), Bob can simply

8This resource can have a dramatic effect on the communication complexity of a problem. The canonical example is equality of N bit
strings, which can be solved with constant success probability using 1 bit of communication and shared randomness, while requiring N
bits of communication otherwise.
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compute f(x) · f(y) which will reveal the result of the classification problem, which he can then communicate to Alice
using a single bit.

If γ = 0 there is a trivial O(N) classical algorithm where Alice sends Bob x.

We next describe the quantum lower bound for Problem I.1. Denote by dH the Hamming distance between binary vectors.
We will use lower bounds for the following problem:

Problem I.3 (Gap Hamming with general gap). Alice and Bob are given x̂, ŷ ∈ {0, 1}N respectively. Given a promise that
either dH(x̂, ŷ) ≥ N/2 + g/2 or dH(x̂, ŷ) ≤ N/2− g/2, Alice and Bob must determine which one is the case.

There is a simple reduction from Problem I.3 to Problem I.1 for certain values of γ, which we will then use to obtain a result
for all γ. Assuming Alice is given x̂ and Bob is given ŷ, they construct unit norm real vectors by x = (2x̂− 1)/

√
N, y =

(2ŷ − 1)/
√
N with addition performed element-wise.

If dH(x, y) ≥ N/2 + g/2 then

x · y =
∑

i,xi=yi

1

N
+

∑
i,xi ̸=yi

(− 1

N
)

≥N + g

2

1

N
+
N − g

2
(− 1

N
)

=
g

N
.

(I.8)

Similarly, dH(x̂, ŷ) ≤ N/2− g/2⇒ x · y ≤ −g/N . It follows that x, y are valid inputs for a linear classification problem
over the unit sphere with margin 2g/N . From the results of (Nayak & Wu, 1998), any quantum algorithm for the Gap
Hamming problem with gap g ∈ {1, . . . , N} requires Ω(

√
N/g) qubits of communication. It follows that the linear

classification problem requires Ω(
√
1/γ) qubits of communication. This bound holds for integer γN . To get a result for

general 0 < γ ≤ 1 we simply note that the communication complexity must be a non-decreasing function of 1/γ, since
any inputs which constitute a valid instance with some γ are also a valid instance for any γ′ < γ. Given some real γ, the
resulting communication problem is at least as hard as the one with margin ⌈γN⌉ /N ≥ γ. It follows that a Ω(

√
N/ ⌈γN⌉)

bound holds for all 0 < γ ≤ 1.

If γ = 0, by a similar argument we can apply the lower bound for γ = 1/N , implying that Ω(
√
N) qubits of communication

are necessary. Once again there is only a polynomial advantage at best.

J. Expressivity of quantum circuits
J.1. Expressivity of compositional models

It is natural to ask how expressive models of the form of Equation (2.1) can be, given the unitarity constraint of quantum
mechanics on the matrices {Aℓ, Bℓ}. This is a nuanced question that can depend on the encoding of the data that is
chosen and the method of readout. On the one hand, if we pick |ψ(x)⟩ = |x⟩ and use {Aℓ, Bℓ} that are independent of
x, the resulting state |φ⟩ will be a linear function of x and the observables measured will be at most quadratic functions
of those entries. On the other hand, one could map bits to qubits 1-to-1 and encode any reversible classical function of
data within the unitary matrices {Aℓ(x)} with the use of extra space qubits. However, this negates the possibility of any
space or communication advantages (and does not provide any real computational advantage without additional processing).
As above, one prefers to work on more generic functions in the amplitude and phase space, allowing for an exponential
compression of the data into a quantum state, but one that must be carefully worked with.

We investigate the consequences of picking {Aℓ(x)} that are nonlinear functions of x, and {Bℓ} that are data-independent.
This is inspired by a common use case in which Alice holds some data or features of the data, while Bob holds a model that
can process these features. Given a scalar variable x, defineAℓ(x) = diag((e−2πiλℓ1x, . . . , e−2πiλℓN′x)) for ℓ ∈ {1, . . . , L}.
We also consider parameterized unitaries {Bℓ} that are independent of the {λℓi} and inputs x, y, and the state obtained by
interleaving the two in the manner of Equation (2.1) by |φ(x)⟩.
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We next set λℓ1 = 0 for all ℓ ∈ {1, . . . , L} and λL2 = 0. If we are interested in expressing the frequency

Λj =

L−1∑
ℓ=1

λℓjℓ , (J.1)

where jℓ ∈ {2, . . . , N ′}, we simply initialize with |ψ(x)⟩ = |+⟩0 |0⟩ and use

Bℓ = |jℓ − 1⟩ ⟨jℓ−1 − 1|+ |jℓ−1 − 1⟩ ⟨jℓ − 1| , (J.2)

with j1 = jL = 2. It is easy to check that the resulting state is |φ(x)⟩ =
(
|0⟩+ e−2πiΛjx |1⟩

)
/
√
2. Since the basis state |0⟩

does not accumulate any phase, while the Bℓs swap the |1⟩ state with the appropriate basis state at every layer in order to
accumulate a phase corresponding to a single summand in Equation (J.1). Choosing to measure the operator P0 = X0, it
follows that ⟨φ(x)|X0 |φ(x)⟩ = cos(2πΛjx).

It is possible to express O((N ′)L−1) different frequencies in this way, assuming the Λj are distinct, which will be the case
for example with probability 1 if the {λℓi} are drawn i.i.d. from some distribution with continuous support. This further
motivates the small L regime where exponential advantage in communication is possible. These types of circuits with
interleaved data-dependent unitaries and parameterized unitaries was considered for example in (Schuld et al., 2020), and is
also related to the setting of quantum signal processing and related algorithms (Low & Chuang, 2017; Martyn et al., 2021).
We also show that such circuits can express dense function in Fourier space, and for small N we additionally find that these
circuits are universal function approximators (Appendix J.2), though in this setting the possible communication advantage is
less clear.

The problem of applying nonlinearities to data encoded efficiently in quantum states is non-trivial and is of interest due to
the importance of nonlinearities in enabling efficient function approximation (Maiorov & Pinkus, 1999). One approach
to resolving the constraints of unitarity with the potential irreversibility of nonlinear functions is the introduction of slack
variables via additional ancilla qubits, as typified by the techniques of block-encoding (Chakraborty et al., 2018; Gilyén
et al., 2018). Indeed, these techniques can be used to apply nonlinearities to amplitude encoded data efficiently, as was
recently shown in (Rattew & Rebentrost, 2023). This approach can be applied to the distributed setting as well. Consider the
communication problem where Alice is given x as input and Bob is given unitaries {U1, U2} over logN qubits. Denote by
σ : R → R a nonlinear function such as the sigmoid, exponential or standard trigonometric functions, and n = 2N . We
show the following:

Lemma J.1. There exists a model |φσ⟩ of the form Definition 2.1 with L = O(log 1/ε), N ′ = 2n
′

where n′ = 2n+ 4 such
that |φσ⟩ = α |0⟩⊗n+4 |ŷ⟩+ |ϕ⟩ for some α = O(1), where |ŷ⟩ is a state that obeys∥∥∥∥|ŷ⟩ − ∣∣∣∣U2

1

∥σ(U1x)∥2
σ(U1x)

〉∥∥∥∥
2

< ε. (J.3)

|ϕ⟩ is a state whose first n+ 4 registers are orthogonal to |0⟩⊗n+4.

Proof: Appendix C.

This result implies that with constant probability, after measurement of the first n+ 4 qubits of |φσ⟩, one obtains a state
whose amplitudes encode the output of a single hidden layer neural network. It may also be possible to generalize this
algorithm and apply it recursively to obtain a state representing a deep feed-forward network with unitary weight matrices.

It is also worth noting that the general form of the circuits we consider resembles self-attention based models with their
nonlinearities removed (motivated for example by (Sun et al., 2023)), as we explain in Appendix J.3. Finally, in Appendix J.4
we discuss other strategies for increasing the expressivity of these quantum circuits by combining them with classical
networks.

J.2. Additional results on oscillatory features

Extending the unitaries considered in Appendix J.1 to more than one variable, for two scalar variables x, y define

Aℓ(x) =diag((e−2πiλℓ1x, . . . , e−2πiλℓN′x)), (J.4a)

Aℓ(x, y) =diag((e−2πiλℓ1x, . . . , e−2πiλℓN′/2x, e−2πiλℓ,N′/2+1y, . . . , e−2πiλℓN′y)) (J.4b)
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for ℓ ∈ {1, . . . , L}. Once again {Bℓ} are data-independent unitaries, and we denote by |φ(x)⟩ , |φ(x, y)⟩ the states defined
by interleaving these unitaries in the manner of Equation (2.1), and by L1,L2 the corresponding loss functions when
measuring X0.

While the circuits in Appendix J.1 enable one to represent a small number of frequencies from a set that is exponential
in L, one can easily construct circuits that are supported on an exponentially large number of frequencies, as detailed in
Lemma J.2. We also use measures of expressivity of classical neural networks known as separation rank to show that
circuits within the class Equation (2.1) can represent complex correlations between their inputs. For a function f of two
variables y, z, its separation rank is defined by

sep(f) ≡ min

{
R : f(x) =

R∑
i=1

gi(y)hi(z)

}
. (J.5)

If for example f cannot represent any correlations between y and z, then sep(f) = 1. When computed for certain classes of
neural networks, y, z are taken to be subsets of a high-dimensional input. The separation rank can be used for example to
quantify the inductive bias of convolutional networks towards learning local correlations (Cohen & Shashua, 2016), the
effect of depth in recurrent networks (Levine et al., 2017), and the ability of transformers to capture correlations across
sequences as a function of their depth and width (Levine et al., 2020).

We find that the output of estimating an observable using circuits of the form Equation (J.4) can be supported on an
exponential number of frequencies, and consequently has a large separation rank:

Lemma J.2. For {λℓi} drawn i.i.d. from any continuous distribution and parameterized unitaries {Bℓ} such that the real
and imaginary parts of each entry in these matrices is a real analytic function of parameters Θ drawn from a subset of RPL,
aside from a set of measure 0 over the choice of {λℓi}, {Bℓ},

i) The number of nonzero Fourier components in L1 is
(
N ′(N ′−1)

2

)L−1

N ′.

ii)

sep(L2) = 2

(
N ′(N ′ − 1)

2

)L−1

N ′. (J.6)

Proof: Appendix C

This almost saturates the upper bound on the number of frequencies that can be expressed by a circuit of this form that is
given in (Schuld et al., 2020). The separation rank implies that complex correlations between different parts of the sequence
can in principle be represented by such circuits. The constraint on {Bℓ} is quite mild, and applies to standard choices of
parameterize unitaries.

The main shortcoming of a result such as Lemma J.2 is that it is not robust to measurement error as it is based on constructing
states that are equal weight superpositions of an exponential number of terms. It is straightforward to show that circuits of
this form can serve as universal function approximators, at least for a small number of variables. For high-dimensional
functions it is unclear when a communication advantage is possible, as we describe below.

Lemma J.3. Let f be a p-times continuously differentiable function with period 1, and denote by f̂:M the vector of the first
M Fourier components of f . If

∥∥∥f̂:M∥∥∥
1
= 1 then there exists a circuit of the form Equation (2.1) over O(logM) qubits

such that
∥L − f∥∞ ≤

C

Mp−1/2
(J.7)

for some absolute constant C.

Proof: Appendix C

This result improves upon the result in (Pérez-Salinas et al., 2019; Schuld et al., 2020) about universal approximation
with similarly structured circuits both because it is non-asymptotic and because it shows uniform convergence rather
than convergence in L2. Non-asymptotic results universal approximation results were also obtained recently by (Gonon
& Jacquier, 2023), however their approximation error scales polynomially with the number of qubits, as opposed to
exponentially as in Lemma J.3.
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The result of Lemma J.3 applies to an L = 1 circuit. The special hierarchical structure of the Fourier transform implies that
the same result can be obtained using even simpler circuits with larger L. Consider instead single-qubit data-dependent
unitaries over L+ 1 qubits that take the form

Aℓ = |0⟩0 ⟨0|0 + |1⟩0 ⟨1|0
(
|0⟩ℓ+1 ⟨0|ℓ+1 + e2πi2

ℓ−1x |1⟩ℓ+1 ⟨1|ℓ+1

)
, (J.8)

for ℓ ∈ {1, . . . , L}. This is simply a single term in a hierarchical decomposition of the same feature matrix we had in the
shallow case, since

L∏
ℓ=1

Aℓ = |0⟩0 ⟨0|0 ⊗ I1:L + |1⟩0 ⟨1|0 ⊗ I1 ⊗

2L−1∑
m=0

e2πimx |m⟩ ⟨m|

 , (J.9)

which is identical to Equation (C.45). As before, set

B1 =
∣∣f̂〉 ⟨0|+ |0⟩ 〈f̂ ∣∣, (J.10)

with N ′/4 = 2L and Bℓ = I for ℓ > 1. This again gives an approximation of f up to normalization. The data-dependent
unitaries are particularly simple when decomposed in this way. The fact that they act on a single qubit and thus have ”small
width” is reminiscent of classical depth-separation result such as (Cohen et al., 2015), where it is shown that (roughly
speaking) within certain classes of neural network, in order to represent the function implemented by a network of depth
L, a shallow network must have width exponential in L. In this setting as well the expressive power as measured by the
convergence rate of the approximation error grows exponentially with L by Equation (C.44).

The circuits above can be generalized in a straightforward way to multivariate functions of the form f : [−1/2, 1/2]D → R
and combined with multivariate generalization of Equation (C.44). In this case the scalar m is replaced by a D-dimensional
vector taking MD possible values, and we can define

A1(x) = |0⟩0 ⟨0|0 ⊗ I1:D logM−1 + |1⟩0 ⟨1|0 ⊗ I1 ⊗

 ∑
m∈[M ]D

e2πim·x |m⟩ ⟨m|

 . (J.11)

Note that using this feature map, the number of neurons is linear in the spatial dimension D. Because of this, such circuits
are not strictly of the form Equation (2.1) for general N since it is not the case that logN ′ = O(logN) where N ′ is the
Hilbert space on which the unitaries in the circuit act and N is the size of x. An alternative setting where the features
themselves are also learned from data could enable much more efficient approximation of functions that are sparse in Fourier
space.

J.3. Unitary Transformers

Transformers based on self-attention (Vaswani et al., 2017) form the backbone of large language models (Brown et al., 2020;
Barham et al., 2022) and foundation models more generally (Bommasani et al., 2021). A self-attention layer, which is the
central component of transformers, is a map between sequences in RS×N ′

(where S is the sequence length) defined in terms
of weight matrices WQ,WK ,WV ∈ RN ′×N ′

, given by

X ′(X) = softmax

(
XWQW

T
KX

T

√
N

)
XWV ≡ A(X)XWV , (J.12)

where softmax(x)i = exi/
∑
i

exi for a vector x, and acts row-wise on matrices. There is an extensive literature on replacing

the softmax-based attention matrix A(X) with matrices that can be computed more efficiently, which can markedly improve
the time complexity of inference and training without a significant effect on performance (Katharopoulos et al., 2020; Levine
et al., 2020). In some cases A(X) is replaced by a unitary matrix (Lee-Thorp et al., 2021). Remarkably, recent work shows
that models without softmax layers can in fact outperform standard transformers on benchmark tasks while enabling faster
inference and a reduced memory footprint (Sun et al., 2023).

Considering a simplified model that does not contain the softmax operation as in (Levine et al., 2020) and dropping
normalization factors, the linear attention map is given by

X ′
lin(X) = XWQW

T
KX

TXWV . (J.13)
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Iterating this map twice gives

X ′
lin(X

′
lin(X)) =

XW
(1)
Q W

(1)T
K XTXW

(1)
V W

(2)
Q W

(2)T
K W

(1)T
V XTX∗

W
(1)
K W

(1)T
Q XTXW

(1)
Q W

(1)T
K XTXW

(1)
V W

(2)
V .

(J.14)

Iterating this map K times (with different weight matrices at each layer) gives a function of the form:

X
(K)
lin (X) = XR0

(3K−1)/2∏
ℓ=1

(
XTXRℓ

)
, (J.15)

where the {Rℓ} matrices depend only on the trainable parameters. If we now constrain these to be parameterized unitary
matrices, and additionally replace XTX with a unitary matrix UX encoding features of the input sequence itself, then
the i-th row of the output of this model is encoded in the amplitudes of a state of the form Equation (2.3) with L =
(3K − 1)/2 + 1, |ψ(x)⟩ = |Xi⟩ , Aℓ(x) = UX , Bℓ = Rℓ.

J.4. Ensembling and point-wise nonlinearities

An additional method for increasing expressivity while maintaining an advantage in communication is through ensembling.
Given K models of the form Definition 2.1 with P parameters each, one can combine their loss functions L1, . . . ,LK into
any differentiable nonlinear function

L̃(L1(Θ1, x), . . . ,LK(ΘK , x), Θ̃, x) (J.16)

that depends on additional parameters Θ̃. As long as K and |Θ̃| scale subpolynomially with N and P , the gradients for this
more expressive model can be computed while maintaining the exponential communication advantage in terms of N,P .

K. Realizing quantum communication
Given the formidable engineering challenges in building a large, fault tolerant quantum processor (Arute et al., 2019; Google
Quantum AI, 2023), the problem of exchanging coherent quantum states between such processors might seem even more
ambitious. We briefly outline the main problems that need to be solved in order to realize quantum communication and the
state of progress in this area, suggesting that this may not be the case.

We first note that sending a quantum state between two processors can be achieved by the well-known protocol of quantum
state teleportation (Bennett et al., 1993; Gordon & Rigolin, 2005). Given an n qubit state |ψ⟩, Alice can send |ψ⟩ to Bob by
first sharing n Bell pairs of the form

|b⟩ = 1√
2
(|0⟩ |0⟩+ |1⟩ |1⟩) , (K.1)

(sharing such a state involves sending a one of the two qubits to Bob) and subsequently performing local processing
on the Bell pairs and exchanging n bits of classical communication. Thus quantum communication can be reduced to
communicating Bell pairs up to a logarithmic overhead, and does not require say transmitting an arbitrary quantum state in a
fault tolerant manner, which appears to be a daunting challenge given the difficulty of realizing quantum memory on a single
processor. Bell pairs can be distributed by a third party using one-way communication.

In order to perform quantum teleportation, the Bell pairs must have high fidelity. As long as the fidelity of the communicated
Bell pairs is above .5, purification can be used produce high fidelity Bell pairs (Bennett et al., 1995), with the fidelity of the
purified Bell pair increasing exponentially with the number of pairs used. Thus communicating arbitrary quantum states can
be reduced to communicating noisy Bell pairs.

Bell pair distribution has been demonstrated across multiple hardware platforms including superconducting waveguides
(Magnard et al., 2020), optical fibers (Krutyanskiy et al., 2022), free space optics at distances of over 1, 200 kilometers (Li
et al., 2022). At least in theory, even greater distances can be covered by using quantum repeaters, which span the distance
between two network nodes. Distributing a Bell pair between the nodes can then be reduced to sharing Bell pairs only
between adjacent repeaters and local processing (Azuma et al., 2022).

A major challenge in implementing a quantum network is converting entangled states realized in terms of photons used for
communication to states used for computation and vice versa, known as transduction (Lauk et al., 2020). Transduction is a
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difficult problem due to the several orders of magnitude in energy that can separate optical photons from the energy scale
of the platform used for computation. Proof of principle experiments have been performed across a number of platforms
including trapped ions (Krutyanskiy et al., 2022), solid-state systems (Pompili et al., 2021), and superconducting qubits
operating at microwave frequencies (Balram & Srinivasan, 2021; Wang et al., 2022).

L. Privacy of Quantum Communication
In addition to an advantage in communication complexity, the quantum algorithms outlined above have an inherent advantage
in terms of privacy. It is well known that the number of bits of information that can be extracted from an unknown quantum
state is proportional to the number of qubits. It follows immediately that since the above algorithm requires exchanging
a logarithmic number of copies of states over O(logN) qubits, even if all the communication between the two players is
intercepted, an attacker cannot extract more than a logarithmic number of bits of classical information about the input data
or model parameters. Specifically, we have:

Corollary L.1. If Alice and Bob are implementing the quantum algorithm for gradient estimation described in Lemma E.2,
and all the communication between Alice and Bob is intercepted by an attacker, the attacker cannot extract more than
Õ(L2(logN)2(logP )2 log(L/δ)/ε4) bits of classical information about the inputs to the players.

This follows directly from Holevo’s theorem (Holevo, 1973), since the multiple copies exchanged in each round of the
protocol can be thought of as a quantum state over Õ((logN)2(logP )2 log(L/δ)/ε4) qubits. As noted in (Aaronson, 2018),
this does not contradict the fact that the protocol allows one to estimate all P elements of the gradient, since if one were to
place some distribution over the inputs, the induced distribution over the gradient elements will generally exhibit strong
correlations. An analogous result holds for the inference problem described in Lemma E.1.

It is also interesting to ask how much information either Bob or Alice can extract about the inputs of the other player by
running the protocol. If this amount is logarithmic as well, it provides additional privacy to both the model owner and the
data owner. It allows two actors who do not necessarily trust each other, or the channel through which they communicate, to
cooperate in jointly training a distributed model or using one for inference while only exposing a vanishing fraction of the
information they hold.

It is also worth mentioning that data privacy is also guaranteed in a scenario where the user holding the data also specifies
the processing done on the data. In this setting, Alice holds both data x and a full description of the unitaries she wishes
to apply to her state. She can send Bob a classical description of these unitaries, and as long as the data and features are
communicated in the form of quantum states, only a logarithmic amount of information can be extracted about them. In this
setting there is of course no advantage in communication complexity, since the classical description of the unitary will scale
like poly(N,P ).

M. Some Open Questions
Communication constraints may become even more relevant if such models are trained on data that is obtained by inherently
distributed interaction with the physical world (Driess et al., 2023). The ability to compute using data with privacy guarantees
can be potentially applied to proprietary data. This could become highly desirable even in the near future as the rate of
publicly-available data production appears to be outstripped by the growth rate of training sets of large language models
(Villalobos et al., 2022).

A limitation of the current results is that it’s unclear to what extent powerful neural networks can be approximated using
quantum circuits, even though we provide positive evidence in the form of the results on graph networks in Section 3.
Additionally, the advantages we study require deep (poly(N)), fault-tolerant quantum circuits. While this is a common
feature of problems for which quantum communication advantages hold, the overhead of quantum error-correction in such
circuits may be considerable. Detailed resource estimates would be necessary to understand better the practicality of this
approach for achieving useful quantum advantage.

M.1. Expressivity

Circuits that interleave parameterized unitaries with unitaries that encode features of input data are also used in Quantum
Signal Processing (Low & Chuang, 2017; Martyn et al., 2021), where the data-dependent unitaries are time evolution
operators with respect to some Hamiltonian of interest. The original QSP algorithm involved a single parameterized rotation
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at each layer, and it is also known that extending the parameter space from U(1) to SU(2) by including an additional rotation
improves the complexity of the algorithm and improves its expressivity (Motlagh & Wiebe, 2023). In both cases however the
expressive power (in terms of the degree of the polynomial of the singular values that can be expressed) grows only linearly
with the number of interleaved unitaries. Given the natural connection to the distributed learning problems considered here,
it is interesting to understand the expressive power of such circuits with more powerful multi-qubit parameterized unitaries.

We present a method of applying a single nonlinearity to a distributed circuit using the results of (Rattew & Rebentrost,
2023). Since this algorithm requires a state-preparation unitary as input and produces a state with a nonlinearity applied to
the amplitudes, it is natural to ask whether it can be applied recursively to produce a state with the output of a deep network
with nonlinearties encoded in its amplitudes. This will require extending the results of (Rattew & Rebentrost, 2023) to
handle noisy state-preparation unitaries, yet the effect of errors on compositions of block encodings (Chakraborty et al.,
2018; Gilyén et al., 2018), upon which these results are based, is relatively well understood. It is also worth noting that these
approaches rely on the approximation of nonlinear functions by polynomials, and so it may also be useful to take inspiration
directly from classical neural network polynomial activations, which in some settings are known to outperform other types
of nonlinearities (Michaeli et al., 2023).

M.2. Optimization

The results of Appendix H rely on sublinear convergence rates for general stochastic optimization of convex functions
(Lemma H.1). It is known however that using additional structure, stochastic gradients can be used to obtain linear
convergence (meaning that the error decays exponentially with the number of iterations). This is achievable when
subsampling is the source of stochasticity (Le Roux et al., 2012), or with occasional access to noiseless gradients in order
to implement a variance reduction scheme (Johnson & Zhang, 2013; Moritz et al., 2016; Gower et al., 2016), neither of
which seem applicable to the setting at hand. It is an interesting open question to ascertain whether there is a way to exploit
the structure of quantum circuits to obtain linear convergence rates using novel algorithms. Aside from advantages in time
complexity, this could imply an exponential advantage in communication for a more general class of circuits.

Conversely, it is also known that given only black-box access to a noisy gradient oracle, an information-theoretic lower
bound of Ω(1/T ) on the error holds given T oracle queries, precluding linear convergence without additional structure,
even for strongly convex objectives (Agarwal et al., 2010). (Harrow & Napp, 2021) provide a similar lower bound for their
algorithm, at least for a restricted class of circuits. Perhaps these results be used to show optimality of algorithms that rely
on the standard variational circuit optimization paradigm that involves making quantum measurements at every iteration and
using these to update the parameters. This might imply that linear convergence is only possible if the entire optimization
process is performed coherently.

In this context, we note that the treatment of gradient estimation at every layer and every iteration as an independent shadow
tomography problem is likely highly suboptimal, since no use is made of the correlations across iterations between the states
and the observables of interest. While in Appendix H.2 this is not the case, that algorithm applies only to fine-tuning of a
single layer. Is there a way to re-use information between iterations to reduce the resource requirements of gradient descent
using shadow tomography? One approach could be warm-starting the classical resource states by reusing them between
iterations. Improvements along these lines might find applications for other problems as well.

M.3. Exponential advantage under weaker assumptions

The lower bound in Lemma E.4 applies to circuits that contain general unitaries, and thus have depth poly(N) when
compiled using a reasonable gate set. One can ask whether the lower bound can be strengthened to apply to more restricted
classes of unitaries as well, and in particular log-depth unitaries. While it is known that exponential communication
advantages require the circuits to have poly(N) gate complexity overall (Abbas et al., 2023), this does not rule out the
possibility of computational separations resulting from the clever encoding and transmission of states nor does it rule
out communication advantages resulting from very short time preparations from log-depth protocols. The rapid growth
of complexity of random circuits composed from local gates with depth suggests that this might be possible (Brown &
Susskind, 2017). This is particularly interesting since Algorithm 1 requires only a single measurement per iteration and may
thus be suitable for implementation on near-term devices whose coherence times restrict them to implementing shallow
circuits. It has also been recently shown that an exponential quantum advantage in communication holds for a problem
which is essentially equivalent to estimating the loss of a circuit of the form Definition 2.1 with L = 2, under a weaker
model of quantum communication than the standard one we consider (Arunachalam et al., 2023). This is the one-clean-qubit
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Table 3. Hyper parameters of node classification training

Hyperparameter Value

Hidden dimension 512
SIGN hops 5
Learning rate 0.001
Input dropout 0.3
Hidden dropout 0.4
Weight decay 0.0

Table 4. Hyper parameters of node classification training

Hyperparameter Values

Hidden dimension 8,12,16,32,64,96,128,148,256
SIGN hops (per operation) [0-10]
Learning rate 0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.1
Input dropout 0.0
Hidden dropout 0.0, 0.1, 0.2, 0.3, 0.4, 0.5
Weight decay 0.0, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4
Batch size 32, 64, 128, 256, 512, 1024
Normalization layer BatchNorm, LayerNorm, none

model, in which the initial state |ψ(x)⟩ consists of a single qubit in a pure state, while all other qubits are in a maximally
mixed state.

N. Experiments additional details
N.1. Node classification training

We use the same training regime for all datasets using the recommended hyperparameters in DGL (Wang et al., 2019)
examples, reported in Table 3.

We trained each model 10 times for all three datasets using a single NVIDIA RTX A6000, taking approximately 15 minutes
per execution.

N.2. Graph classification training

As, to the best of our knowledge, we are the first to use a SIGN variant on graph classification tasks, we conducted a
comprehensive hyperparameter tuning for the model structure (including the number of message passing operators, the
hidden dimension, and normalization after the hidden layer) and optimization settings. The tuning was performed using
Bayesian hyperparameter optimization to identify the optimal values for each dataset. This process involved varying the
hidden dimension, the number of SIGN hops per operation, the learning rate, and dropout rates. The values considered for
each hyperparameter are detailed in Table 4. The full results of these experiments are in Table 5.

We scan each task for approximately 150 runs, using a single NVIDIA RTX A6000.

N.3. Empirical bounds

We measure ∥W1∥ and ∥W2∥∞ of the trained graph classification models in Section 4.2.1, corresponding to Equation (3.1)
and report the average results over 10 runs in Table 6 (note that we use P = I so that no pooling matrix is present, and in
any case the pooling window will typically be a small constant). W1 is constructed as a block diagonal matrix of the weights
of the SIGN hidden layer. ∥W2∥∞ is the infinity norm of the weight matrix of the output layer of SIGN, multiplied by 2
(since we compute differnces between numbers of nodes in two classes).

We measure the score difference of the graph classification task in Section 4.2.1 and compare them to the differences of the
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Table 5. Graph Classification Test Accuracy. Our model achieves comparable results to GIN and other known models on most datasets.
Dataset

Model MUTAG PTC NCI1 PROTEINS COLLAB IMDB-B IMDB-M REDDIT-B REDDIT-M

GIN (Xu et al., 2019) 89.40±5.60 64.60±7.0 82.17±1.7 76.2 ±2.8 80.2 ±1.90 75.1 ±5.1 52.3 ±2.8 92.4 ±2.5 57.5±1.5
DropGIN(Papp et al., 2021) 90.4 ±7.0 66.3 ±8.6 - 76.3 ±6.1 - 75.7 ±4.2 51.4 ±2.8 - -
DGCNN(Zhang et al., 2018) 85.8 ±1.7 58.6 ±2.5 - 75.5 ±0.9 - 70.0 ±0.9 47.8 ±0.9 - -
U2GNN (Nguyen et al., 2022) 89.97±3.65 69.63±3.60 - 78.53±4.07 77.84±1.48 77.04±3.45 53.60±3.53 - -
HGP-SL(Zhang et al., 2019) - - 78.45±0.77 84.91±1.62 - - - - -
WKPI(Zhao & Wang, 2019) 88.30±2.6 68.10±2.4 87.5 ±0.5 78.5±0.4 - 75.1 ±1.1 49.5 ± 0.4 - 59.5 ± 0.6

SIGN (ours) 92.02±6.45 68.0 ±8.17 77.25±1.42 76.55±5.10 81.82±1.42 76 ±2.49 53.13±3.01 78.95±2.72 54.09±1.76

Table 6. Weight norms of the graph classification models. We measure the norms of the final decision problem models, averaging the
values over 8 runs.

Dataset

Value ogbn-products Reddit Cora

∥W1∥ 3.46 ± 0.27 1.32 ± 0.12 8.5 ± 8.0
∥W2∥∞ 0.13 ± 0.02 0.04 ± 0.00 0.1 ± 0.07

#nodes 2,449,029 232,965 2708

class sizes in Figure 3. Most of the differences are significant (larger than 1/poly(N) where N is the number of nodes; see
Figure 3(c)). Some class pairs have low differences making them indistinguishable, however, Figure 3(a),(b) indicate those
are typically classes with similar number of nodes. This provides evidence that when there is a considerable class imbalance
(i.e. one that scales with system size), the magnitude of the model output when computing this difference will not decay
with the size of the graph.

While evidence of asymptotic scaling will require experiments on graphs of different sizes, our results suggest that the upper
bound in Lemma F.3 is not large for models trained on standard benchmarks, implying that they can be efficiently simulated
on a quantum computer.
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Figure 3. (a): Difference between class sizes in ogbn-products test set. (b) Difference between the graph classification model class scores.
The score differences are correlated to the class size differences. (c) Histogram of the class pairs differences. Most of the differences are
significantly larger than 1/N .
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