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Abstract

Fairness and bias are critical considerations for the effective and ethical use of deep learning
models for medical image analysis. Despite this, there has been minimal research on how
explainable artificial intelligence (XAI) methods can be leveraged to better understand
underlying causes of bias in medical image data. To study this, we trained a convolutional
neural network on brain magnetic resonance imaging (MRI) data of 4547 adolescents to
predict biological sex. Performance disparities between White and Black racial subgroups
were analyzed, and average saliency maps were generated for each subgroup based on
sex and race. The model showed significantly higher performance in correctly classifying
White males compared to Black males, and slightly higher performance for Black females
compared to White females. Saliency maps indicated subgroup-specific differences in brain
regions associated with pubertal development, an established confounder in this task, which
is also associated with race. These findings suggest that models demonstrating performance
disparities can also lead to varying XAI outcomes across subgroups, offering insights into
potential sources of bias in medical image data.
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1. Introduction

Recently, there has been growing concern about bias and fairness issues in deep learning
models for medical image analysis. Prominent examples have included observed perfor-
mance disparities between different sociodemographic groups in chest X-ray classification
(Seyyed-Kalantari et al., 2021) and cardiac segmentation (Puyol-Antón et al., 2021). Al-
though many studies have shown that deep learning models can produce disparate outcomes,
little research has been done to understand the root cause of biases related to performance
and how they manifest in such models. While explainable AI (XAI) methods have been
commonly applied to understand black-box deep learning model decisions, they have not
been used extensively to better understand bias and fairness in medical imaging models.
This study aims to evaluate if XAI is a feasible technique for better understanding potential
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sources of bias that result in subgroup-specific performance disparities, using a well-defined
deep learning classification task. More precisely, a convolutional neural network (CNN) is
trained to classify biological sex of adolescents, in which a previous study identified the
stage of pubertal development as a significant confounding factor (Adeli et al., 2020). Due
to established differences in the onset of pubertal development between different races and
sexes (Herman-Giddens et al., 2012; Wu et al., 2002), we hypothesized that this model
could produce performance disparities between Black and White subgroups. We posit that
XAI could then provide clues to sources of bias in medical imaging data if brain regions
associated with the known confounder of pubertal development are identified as salient for
the model’s predictions. This short paper summarizes the study in (Stanley et al., 2022b).

2. Methods

This study used T1-weighted brain MRI from 4547 participants aged 9-10 from the 3.0
release of the ABCD study1. The biological sex (defined as sex assigned at birth) and
race information of the participants were collected from surveys completed by a parent or
guardian. Out of the total number of participants, 3,008 were identified as White and 390
were identified as Black. The remaining participants of other races were included in model
training, but not in subgroup analyses. A CNN based on the Simple Fully Convolutional
Network proposed by (Peng et al., 2021) was used for the sex classification task, with a five-
fold cross-validation scheme. Full model implementation details are available in (Stanley
et al., 2022b). Saliency maps were computed by averaging registered SmoothGrad (Smilkov
et al., 2017) results from 20 correctly classified subjects within each demographic subgroup.
Weighted saliency scores were computed by multiplying the percent of salient voxels within
each brain region defined by the CerebrA atlas (Manera et al., 2020) by a weighting factor
accounting for the mean saliency intensity value within each region. To evaluate differences
in model performance between White and Black subgroups, a two-tailed Student’s t-test
with a significance level of 0.05 was used.

3. Results and Discussion

The sex classification model achieved an overall accuracy of 87.8%, comparable to the
results reported by (Adeli et al., 2020). While classification accuracy within the White
female subgroup was lower but not statistically significantly different from the Black female
subgroup (86.5% vs. 89.3%, p=0.260), the White male subgroup accuracy was 9.2% higher
than Black male subgroup accuracy, which was significant (90.3% vs. 81.1%, p=0.03).
These results, similar to those reported by (Seyyed-Kalantari et al., 2021) and (Puyol-
Antón et al., 2021), highlight the importance of not relying solely on high overall accuracy
to evaluate model performance, as disparities may exist within sensitive subgroups and
should be reported. Although this study used race as a grouping factor, a major challenge
for evaluating model fairness is that other hidden disparities may be present within sensitive
attributes not explicitly analyzed, or within intersections of sensitive groups (Stanley et al.,
2022a).

1. https://abcdstudy.org/
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Figure 1: Weighted saliency scores in top brain regions (RH = right hemisphere, LH = left
hemisphere).

Brain regions highlighted in the saliency maps included the cerebellum, amygdala, lateral
ventricles, temporal lobes, and entorhinal cortex, with the cerebellum showing the highest
saliency activation. This region was also identified as the most significant confounder related
to pubertal development stage for sex classification in (Adeli et al., 2020). The weighted
saliency scores for each subgroup are presented in Fig 1, with some brain regions showing
differences between sexes and races. For example, the right hemisphere (RH) cerebellum
white matter and left hemisphere (LH) cerebellum gray matter show sex-specific trends,
and the RH vermal lobules VIII to X and LH entorhinal cortex show sex-specific trends by
race. The amygdala and medial temporal lobe, which have been linked to morphological
changes associated with pubertal development (Bramen et al., 2011), also demonstrate
subgroup differences in saliency scores. These varying saliency scores within brain regions
may be due to the model using morphological information related to pubertal development
stage differently for each subgroup, potentially contributing to performance disparities.
While subgroup saliency maps may help link model performance to bias and confounders in
datasets, it should also be noted that these results have implications on the use of XAI for
biomarker detection in clinical tasks. If saliency maps show appreciable differences between
demographic groups, conclusions based on aggregate saliency maps may not be generalizable
to distinct subpopulations.
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