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ABSTRACT

Many real-world applications of reinforcement learning (RL) require making de-
cisions in continuous action environments. In particular, determining the optimal
dose level plays a vital role in developing medical treatment regimes. One chal-
lenge in adapting existing RL algorithms to medical applications, however, is
that the popular infinite support stochastic policies, e.g., Gaussian policy, may
assign riskily high dosages and harm patients seriously. Hence, it is important
to induce a policy class whose support only contains near-optimal actions, and
shrink the action-searching area for effectiveness and reliability. To achieve this,
we develop a novel quasi-optimal learning algorithm, which can be easily opti-
mized in off-policy settings with guaranteed convergence under general function
approximations. Theoretically, we analyze the consistency, sample complexity,
adaptability, and convergence of the proposed algorithm. We evaluate our algorithm
with comprehensive simulated experiments and a dose suggestion real application
to Ohio Type 1 diabetes dataset.

1 INTRODUCTION

Learning good strategies in a continuous action space is important for many real-world problems
(Lillicrap et al., 2015), including precision medicine, autonomous driving, etc. In particular, when
developing a new dynamic regime to guide the use of medical treatments, it is often necessary to
decide the optimal dose level (Murphy, 2003; Laber et al., 2014; Chen et al., 2016; Zhou et al., 2021).
In infinite horizon sequential decision-making settings (Luckett et al., 2019; Shi et al., 2021), learning
such a dynamic treatment regime falls into a reinforcement learning (RL) framework. Many RL
algorithms (Mnih et al., 2013; Silver et al., 2017; Nachum et al., 2017; Chow et al., 2018b; Hessel
et al., 2018) have achieved considerable success when the action space is finite. A straightforward
approach to adapting these methods to continuous domains is to discretize the continuous action
space. However, this strategy either causes a large bias in coarse discretization (Lee et al., 2018a; Cai
et al., 2021a;b) or suffers from the the curse of dimensionality (Chou et al., 2017) for fine-grid.

There has been recent progress on model-free reinforcement learning in continuous action spaces
without utilizing discretization. In policy-based methods (Williams, 1992; Sutton et al., 1999; Silver
et al., 2014; Duan et al., 2016), a Gaussian distribution is used frequently for policy distribution
representation, while its mean and variance are parameterized using function approximation and
updated via policy gradient descent. In addition, many actor-critic based approaches, e.g., soft
actor-critic (Haarnoja et al., 2018b), ensemble critic (Fujimoto et al., 2018) and Smoothie (Nachum
et al., 2018a), have been developed to improve the performance in continuous action spaces. These
works target to model a Gaussian policy for action allocations as well.

However, there are two less-investigated issues in the aforementioned RL approaches, especially
for their applications in the healthcare (Fatemi et al., 2021; Yu et al., 2021). First, existing methods
that use an infinite support Gaussian policy as the treatment policy may assign arbitrarily high dose
levels, which may potentially harm the patient (Yanase et al., 2020). Hence, these approaches are
not reliable in practice due to safety and ethical concerns. It would be more desirable to develop a
policy class to identify the near-optimal (Tang et al., 2020), or at least safe, action regions, and reduce
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the optimal action search area for reliability and effectiveness. Those actions out of the identified
region are discriminated as non-optimal, and would be screened out with zero densities in the policy
distribution. Second, for many real-world applications, the action spaces are bounded due to practical
constraints. Examples include autonomous driving with a limited steering angle and dose assignment
with a budget or safety constraint. In these scenarios, modeling an optimal policy by an infinite
support probability distribution, e.g., Gaussian policy, would inevitably introduce a non-negligible
off-support bias as shown in Figure 2. In consequence, the off-support bias damages the performance
of policy learning and results in a biased decision-making procedure. Instead, constructing a policy
class with finite but adjustable support might be one of the demanding solutions.

In this work, we take a substantial step towards solving the aforementioned issues by developing a
novel quasi-optimal learning algorithm. Our development hinges upon a novel quasi-optimal Bellman
operator and stationarity equation, which is solved via minimizing an unbiased kernel embedding
loss. Quasi-optimal learning estimates an implicit stochastic policy distribution whose support region
only contains near-optimal actions. In addition, our algorithm overcomes the difficulties of the non-
smoothness learning issue and the double sampling issue (Baird, 1995), and can be easily optimized
using sampled transitions in off-policy scenarios without training instability and divergence. The
main contribution of this paper can be summarized as follows:

• We construct a novel Bellman operator and develop a reliable stochastic policy class, which
is able to identify quasi-optimal action regions in scenarios with a bounded or unbounded
action space. This address the shortcomings of existing approaches relying on modeling an
optimal policy with infinite support distributions.

• We formalize an unbiased learning framework for estimating the designed quasi-optimal
policy. Our framework avoids the double sampling issue and can be optimized using sampled
transitions, which is beneficial in offline policy optimization tasks.

• We thoroughly investigate the theoretical properties of the quasi-optimal learning algorithm,
including the adaptability of the quasi-optimal policy class, the loss consistency, the finite-
sample bound for performance error, and the convergence analysis of the algorithm.

• Empirical analyses are conducted with comprehensive numerical experiments and a real-
world case study, to evaluate the model performance in practice.

2 PRELIMINARIES

Notations We first give an introduction to our notations. For two strictly positive sequences
{Ψ(m)}m≥1 and {Υ(m)}m≥1, the notation {Ψ(m)}m≥1 ≲ {Υ(m)}m≥1 means that there exists a
sufficiently small constant c ≥ 0 such that Ψ(n) ≤ cΥ(n). ∥ · ∥Lp and ∥ · ∥∞ denote the Lp norm
and supremum-norm, respectively. We define the set indicator function 1set(x) = 1 if x ∈ set or 0
otherwise. The notation Pn denotes the empirical measure i.e., Pn = 1

n

∑n
i=1. For two sets ℵ0 and

ℵ1, the notation ℵ0 \ ℵ1 indicates that the set ℵ0 excluding the elements in the set ℵ1. We write |ℵ0|
as the cardinality of the set ℵ0. For any Borel set ℵ2, we denote σ(ℵ2) as the Borel measure of ℵ2.
We denote a probability simplex over a space F by ∆(F), and in particular, ∆convex(F) indicates the
convex probability simplex over F . We denote ⌊·⌋ as the floor function, and use O as the convention.

Background A Markov decision process (MDP) is defined as a tuple < S,A,P, R, γ >, where
S is the state space, A is the action space, P : S × A → ∆(S) is the unknown transitional kernel,
R : S × S × A → R is a bounded reward function, and γ ∈ [0, 1) is the discounted factor. In this
paper, we focus on the scenario of continuous action space. We assume the offline data consists
of n i.i.d. trajectories, i.e., D1:n = {S1

i , A
1
i , R

1
i , S

2
i , . . . , S

Ti
i , A

T
i , R

T
i , S

T+1
i }ni=1, where the length

of trajectory T is assumed to be non-random for simplicity. A policy π is a map from the state
space to the action space π : S → A. The learning goal is to search an optimal policy π∗ which
maximizes the expected discounted sum of rewards. V π

t (s) = Eπ

[∑∞
k=1 γ

k−1Rt+k|St = s
]

is
the value function under a policy π, where Eπ is taken by assuming that the system follows a
policy π, and the Q-function is defined as Qπ

t (s, a) = Eπ

[∑∞
k=1 γ

k−1Rt+k|St = s,At = a
]
. In

a time-homogenous Markov process (Puterman, 2014), V π
t (s) and Qπ

t (s, a) do not depend on t.
The optimal value function V ∗ is the unique fixed point of the Bellman operator B, BV (s) :=
maxa ESt+1∼P(s,a)

[
Rt + γV (St+1)|St = s,At = a

]
. Then BV ∗(s) = V ∗(s) for any s ∈ S.

An optimal policy π∗ can be obtained by taking the greedy action of Q∗(s, a), that is π∗(s) =
argmaxaQ

∗(s, a). For the rest of the paper, we use the short notation Es′|s,a for the conditional
expectation Es′∼P(s,a); and ESt,At,St+1 is short for ESt∼υ,At∼πb(·|St),St+1∼P(St,At), where υ is a
some fixed distribution and πb is some behavior policy.
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3 METHODOLOGY

To start with, we first revisit the Bellman optimality equation via a policy explicit view,

BV ∗(s) := max
π

Ea∼π(·|s), St+1|s,a
[
R(St+1, s, a) + γV ∗(St+1)

]
= V ∗(s). (1)

To obtain the optimal policy π∗ and value function V ∗, an optimization idea is to minimize the
discrepancy between the two sides of the equation under a L2 loss. Unfortunately, there are several
major challenges when it comes to optimization: (1) Non-smoothness: the Bellman operator involves
a non-smoothed hard-max operator, which leads to training instability; (2) Policy class: As discussed
in Section 1, it is necessary to induce an optimal policy class whose support consists of quasi-optimal
sub-regions for reliability, and avoids off-support bias in Figure 2; (3) Double sampling: the unknown
conditional expectation ESt+1|s,a is required to be double sampled for obtaining an unbiased sample
approximation for ESt+1|s,a. However, this is usually infeasible in real-world environments; (4)
Off-policy data: directly minimizing the Bellman error is not easy to incorporate off-policy data. To
address these issues, we propose a quasi-optimal counterpart of the Bellman equation (1).

3.1 QUASI-OPTIMAL BELLMAN OPERATOR

In this subsection, we aim to tackle the first two challenges. We propose a quasi-optimal counterpart
for the Bellman operator B that simultaneously circumvents the non-smoothness obstacles, and
induce a novel policy class which can identify quasi-optimal sub-regions in continuous action spaces.

We leverage the Legendre-Fenchel transform (Hiriart-Urruty & Lemaréchal, 2012) on the Bellman
operator B. For a convex probability simplex ∆convex(A) and a strongly convex and continuous
proximity function prox(π) : ∆convex(A)→ R, the Fenchel transform counterpart of B is defined as

BµV ∗
µ (s) = max

π∈∆convex(A)

∫
a∈A

[
Q∗

µ(s, a)π(a|s) + µprox(π(a|s))
]
da, (2)

where Q∗
µ(s, a) = ESt+1|s,a[R(S

t+1, s, a) + γV ∗
µ (S

t+1)] , and V ∗
µ (s) is the unique fixed point of

the quasi-optimal Bellman operator Bµ. Note that, besides the smoothing purpose, we are also
interested in constructing a stochastic optimal policy class that can screen out the non-optimal
and sub-optimal actions. Therefore, we further define a special prox function class motivated by
the rationale of q-logarithm as prox(x) = logq(x) := x(1−xq−1)

q−1 , where
∫
a∈A prox(π(a|s))da =

1
q−1 (1−

∫
a∈A π

q(a|s)da) essentially generalize the Shannon’s entropy (Martins et al., 2020). In this
paper, we focus on the setting that q = 2.
Assumption 3.1. For any policy distribution π ∈ ∆convex(A), its density is bounded above by a
constant, i.e., π(·|s) ≤ C for all s ∈ S.

This assumption avoids some extreme cases where a stochastic policy distribution degenerates to be
deterministic. In the following, we show several nice properties of the proposed Bellman operator.
Proximal Approximation The operator Bµ is a proximal approximation to B. This delivers two
messages: firstly, the approximation bias is upper bounded; secondly, the operator Bµ is a smoothed
substitute for B. In particular, Theorem 3.1 demonstrates that the approximation bias can vanish to
zero for small enough µ. In addition, the operator Bµ has a differentiable and analytical form (3),
which justifies that Bµ is a smoothed counterpart of B, see Corollary S.1 in Appendix for details.
Theorem 3.1 (Proximal bias). Under Assumption 3.1, for any s ∈ S and value function V , BµV (s)−
BV (s) ∈ [µ(1−C), µ].

BµV ∗
µ (s) = µ− 1

4µ

(
(
∫
a′∈Ws

Q∗
µ(s, a

′)da′ − 2µ)2

σ(Ws)
−
∫
a∈Ws

Q∗
µ
2(s, a)da

)
, (3)

whereWs denotes the the support of π∗
µ in (4) for a given state s.

Quasi-optimal Support Region In addition to the proximal approximation property, another unique
and important property of Bµ is inducing a policy π∗

µ whose support region contains all the actions
with action-value higher than a certain threshold. The induced policy π∗

µ is bridged from the oracle
Q-function:

π∗
µ(a|s) =

(
Q∗

µ(s, a)

2µ
−
∫
a∈Ws

Q∗
µ(s, a)da

2µσ(Ws)
+

1

σ(Ws)

)+

, (4)
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Figure 1: An illustrating example of the quasi-optimal sub-regions. In the left panel, the lowest
admissible action-value corresponds to the horizontal red dashed line, and the integral difference is
the shadowed pink area, which equals 2µ. As shown in the right panel, when µ decreases, the pink
area shrinks, and the quasi-optimal sub-regions become narrower.

where the support of π∗
µ, i.e.,Ws :=

⋃
a∈A a1screening set(a) with

screening set :=

{
a ∈ A :

∫
a′∈Ms(a)

Q∗
µ(s, a

′)da′ − σ(Ms(a))Q
∗
µ(s, a) > 2µ

}
, (5)

Ms(a) :=
⋃

a′∈A
a′1{Q∗

µ(s,a
′)>Q∗

µ(s,a)}(a
′). (6)

This mechanism allows us to identify multiple sub-regions in the entire action space which only
contains near-optimal actions, and weed out the sub-optimal and non-optimal support regions. Note
that, the identified sub-region might not be joint in general, which is beneficial to the situation that the
true Q-function has multiple modes. The screening set in (5) indicates that the threshold parameter µ
not only controls the degree of smoothness, but also determines how the quasi-optimal region behaves
and controls the screening intensity, as shown in Figure 1.

3.2 q-GAUSSIAN POLICY DISTRIBUTION

Figure 2: An illustrating example of bounded
action space and q-Gaussian policy distribu-
tion. The Gaussian policy assigns non-zero
probabilities density to all actions, even for
those actions outside of the true action space
support boundary. This causes the off-support
bias. In contrast, the q-Gaussian policy re-
lieves such off-support bias blessed by the
boundedness of the quasi-optimal region.

In this section, we bridge the induced policy distri-
bution π∗

µ to an explainable q-Gaussian distribution.
The q-Gaussian distribution is less favored for heavy
tails, which makes it widely used in practice to model
the effect of external stochasticity (d’Onofrio, 2013).
In continuous actions problems, e.g., medical dose
suggestion, the q-Gaussian distribution is a more suit-
able choice than the Gaussian distribution for policy
modeling, since it can filter out non-optimal and risky
dose levels, i.e., too high or too low dosage.

Motivated by the fact that the induced policy π∗
µ

is feasible to identify quasi-optimal support sub-
regions, and q-Gaussian policy distribution can re-
alize bounded support, we conjectured that the q-
Gaussian policy distribution might be recovered from
the induced policy π∗

µ. Fortunately, the q-Gaussian
policy distribution is indeed a special case of the
induced policy if Q∗

µ(s, a) is a concavely quadratic
function with respect to the action a. We illustrate
this phenomenon in Theorem 3.2.
Theorem 3.2. Suppose Q∗

µ(s, a) is a concavely
quadratic function over a ∈ A, i.e., Q∗

µ(s, a) = −α1(s)a
2 + α2(s)a + α3(s) := QN

µ (s, a) where
α1(s), α2(s), α3(s) are functions over s ∈ S and α1(s) > 0 for all s, then the induced policy
distribution π∗

µ(·|s) would follow a q-Gaussian distribution with a density function

π∗
µ(a|s) =

(
α1(s)

2µ

(
a+

α2(s)

2α1(s)

)2
− 3

2

(α1(s)

12µ

) 1
3

)+

:= πN
µ (a|s), (7)
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and a closed-form quasi-optimal support region

Ws =

[
α2(s)− (12α2

1(s)µ)
1
3

2α1(s)
,
α2(s) + (12α2

1(s)µ)
1
3

2α1(s)

]
:=WN

s . (8)

The policy distribution πN
µ (·|s) behaves as a affine transformation of the standard q-Gaussian

distribution with mean − α2(s)
2α1(s)

, where the maximum action-value attains, i.e., QN
µ (s,− α2(s)

2α1(s)
) =

argmaxa∈AQ
N
µ (s, a). Note that the width of the quasi-optimal region is (12α2

1(s)µ)
1
3

α1(s)
determined by

the threshold parameter µ. The actions within the region R\WN
s are discriminated as the non-optimal

and would be assigned with zero probability densities. For a small µ, i.e., strong screening intensity, a
narrow region would be identified as the quasi-optimal, which yields a relatively conservative action
recommendation. In contrast, with a large µ, more actions are included in the support. In an extreme
case,WN

s degenerates to R as µ→∞. In Theorem 4.1 of Section 4, we investigate how the intensity
of µ affects the induced policy distribution formally.

So far, we have obtained the closed-form representations for the general policy π∗
µ(·|s) and q-Gaussian

policy πN
µ . However, how to make a policy estimation remains unknown. Indicated by the challenges

in Section 3, we need to address the double sampling issue and utilize off-policy data in optimization.
Both challenges cannot be easily solved by minimizing the Bellman error. Fortunately, the kernel
embedding helps us to bypass the difficulties.

3.3 KERNEL EMBEDDING ON QUASI-OPTIMAL ERROR

In this subsection, we introduce the quasi-optimal learning framework for solving the induced policy
π∗
µ. First, we establish a stationary equation in Theorem 3.3. This helps to incorporate off-policy

data. Then we leverage the idea of the kernel embedding (Gretton et al., 2012) to obtain an unbiased
empirical loss without the double sampling issue.

Theorem 3.3 (Stationarity equation). Let V ∗
µ be a fixed point of the quasi-optimal Bellman operator

Bµ, and π∗
µ is the induced policy in (4). For any s ∈ S, a ∈ A, and µ ∈ (0,∞), the pair (V ∗

µ , π
∗
µ)

satisfies the following equation:

ESt+1|s,a
[
R(St+1, s, a) + γVµ(S

t+1)
]
− µprox◦(πµ(a|s))− η(s) +ϖ(s, a) = Vµ(s). (9)

Here prox◦(x) = 2x−1, η(s) : S → [−µC, 0] andϖ(s, a) : S×A → R+ are Lagrange multipliers
that ϖ(s, a) · πµ(a|s) = 0. The discrepancy between the two sides of (9) is “quasi-optimal error”.

The equation (9) connects quasi-optimal value function V ∗
µ and policy function π∗

µ along with
any arbitrary state-action pair. This provides an easy way to incorporate off-policy data, i.e., the
state-action pairs which are sampled from state-action visitation under the behavior policy, without
adjusting the distribution mismatch.

Min-max Optimization One way to solve the equation (9) is minimizing the quasi-optimal error
under a L2 loss function. Unfortunately, the double sampling issue would still appear if replacing
the unknown ESt+1|s,a[R(S

t+1, s, a) + γVµ(S
t+1)] in the quasi-optimal error by its one-sample

bootstrapping counterpart Rt + γVµ(S
t+1). Alternatively, inspired by the average Bellman error

(Jiang et al., 2017), we propose to minimize a weighted average quasi-optimal error, and the unwanted
conditional variance of the bootstrapping counterpart under L2 loss could vanish. We define the loss
L(Vµ, πµ, η,ϖ, u) as

ESt,At,St+1

[
u
(
St, At

)
·
(
GVµ,πµ

(
St, At, St+1

)
− η(St) +ϖ(St, At)− Vµ(St)

)]
,

where GVµ,πµ(s, a, s
′) := R(s′, s, a) + γVµ(s

′) − µprox◦(πµ(a|s)) and u(·) : S × A → R is a
bounded function in L2 space L2(C0) := {u ∈ L2 : ∥u∥L2 ≤ C0}. Essentially, the weight function
u is to fit the discrepancy of (9) and promotes the sample points with large quasi-optimal errors.

As L(V ∗
µ , π

∗
µ, η,ϖ, u) = 0 holds for any u function, this leads to a minimax optimization:

min
Vµ,πµ,η,ϖ

max
u∈L2(C0)

L2(Vµ, πµ, η,ϖ, u). (10)
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Algorithm 1 Quasi-optimal Learning in Continuous Action Spaces

1: Input observed transition pairs data {(St
i , A

t
i, R

t
i, S

t+1
i ) : t = 1, ..., T}ni=1.

2: Initialize the parameters of interests (θ, ξ) = (θ0, ξ0), the mini-batch size n0, the learning rate
α0, the prox parameter µ, the kernel bandwidth bw0, and the stopping criterion ε.

3: For iterations j = 1 to k
4: Randomly sample a mini-batch {(St

i , A
t
i, R

t
i, S

t+1
i ) : t = 1, ..., T}n0

i=1.
5: Decay the learning rate αj = O(j−1/2).
6: Compute stochastic gradients with respect to θ and ξ: ∇̄θ = Pn0

∇̂θL̂U and ∇̄ξ = Pn0
∇̂ξL̂U .

7: Update the parameters of interest as θj ← θj−1 − αj∇̄θL̂U , ξ
j ← ξj−1 − αj∇̄ξL̂U .

8: Stop if ∥(θj , ξj)− (θj−1, ξj−1)∥ ≤ ε.
9: Return θ̂ ← θj , ξ̂ ← ξj .

Kernel Representation Solving the minimax optimization problem (10) is unstable, and it is also
intractable due to the difficulty for the representation of u in L2 space. Fortunately, we identify
continuity invariance between the reward function and the optimal weight function u∗(·) (see Theorem
S.2 in Appendix). The optimal u∗(·) is continuous as long as the reward function is continuous,
which is widely satisfied in real-world applications. As for a positive definite kernel K, a bounded
reproducing kernel Hilbert space (RKHS) HRKHS(C0) := {u ∈ HRKHS : ∥u∥K ≤ C0} has a
diminishing approximation error to any continuous function class as C0 →∞ (Bach, 2017). This
together with continuity invariance provides us a basis for representing the weight function in a
bounded RKHS. This kernel representation further leads to a closed-form of the inner optimization
maximizer (Gretton et al., 2012). The detailed derivation is provided in Theorem S.3 in Appendix.
Upon this, the minimax optimization is reduced to only minimizing the loss

LU = ESt,S̃t,At,Ãt,St+1,S̃t+1 [ΛVµ,πµ
(St, At, St+1)K(St, At; S̃t, Ãt)ΛVµ,πµ

(S̃t, Ãt, S̃t+1)], (11)

where ΛVµ,πµ(s, a, s
′) := GVµ,πµ (s, a, s′) − η(s) + ϖ(s, a) − Vµ(s) and (S̃t, Ãt, S̃t+1) is an

independent copy of transition pair (St, At, St+1).

It observes that the loss LU is symmetric and kernel represented. This motivates us to use an unbiased
U-statistic estimator to obtain the sample loss. Given the observed data, D1:n, with n trajectories
of length T , we can use a trajectory-based U-statistic estimator to capture the within-trajectory loss,
thus the total loss LU can be aggregated as the empirical mean of n i.i.d. within trajectory loss:

min
Vµ,πµ,η,ϖ

L̂U = Pn

(
T

2

) ∑
1≤j ̸=k≤T

[ΛVµ,πµ
(Sj

i , A
j
i , S

j+1
i )K(Sj , Aj ;Sk, Ak)ΛVµ,πµ

(Sk
i , A

k
i , S

k+1
i )]

s.t. ϖ(a|s) ≥ 0, πµ(a|s) ·ϖ(a|s) = 0 and η(s) ∈ [−µC, 0] for all s ∈ S, a ∈ A. (12)

The sample loss L̂U is unbiased and consistent with the population loss LU . The consistency is
justified in Theorem 4.2 via examining the tail behavior of L̂U . In essence, solving the equation
(12) is a computationally intensive non-linear programming problem. Alternatively, we convert the
constrained problem to an unconstrained problem by restricting the Lagrange multipliers. Thus, it can
be solved by an unconstrained true gradient algorithm, i.e., Algorithm 1 under function approximation
(Vµ, πµ, η,ϖ) = (V θ

µ , π
θ
µ, η

ξ, ϖθ); see Appendix for details.

4 THEORY

In this section, we study the theoretical properties of the proposed method. First, we study some
general properties of the proposed quasi-optimal Bellman operator, given in Proposition S.1 and S.2
of Appendix. In Theorem 4.1, we disclose the effect of the intensity of prox parameter µ on the
induced optimal policy distribution. Moreover, a non-asymptotic concentration bound is established
in Theorem 4.2, showing the consistency and measuring the rate of convergence of L̂U to LU . Further,
the overall performance error of the algorithm is given in Theorem 4.3, where the performance error
is decomposed as the four sources. Finally, we show that the proposed quasi-optimal learning is a
convergent algorithm. Before we present the theoretical results, we introduce some assumptions on
the boundedness condition of the MDP and the sample trajectory properties, respectively.
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Assumption 4.1. The reward function R(s′, s, a) is uniformly bounded, i.e, ∥R(·)∥∞ ≤ Rmax.
Assumption 4.2. Suppose {St, At}t≥1 is a strictly stationary and exponentially β-mixing sequence
with a mixing coefficient β(m) ≲ exp(−δ1m) for m ≥ 1. We further assume that the behavior
policy πb, which is used to collect the offline data D1:n, satisfies that mina∈A,s∈S πb(a|s) > 0.
Theorem 4.1 (Policy Adaptability). Under Assumption 4.1, for all s ∈ S, the quasi-optimal policy
distribution π∗

µ(·|s) degenerates to a uniform distribution over ∆(A) as µ → ∞, and π∗
µ(·|s)

concentrates in a point mass as µ→ 0 and C→∞.
Theorem 4.1 formally investigates the effect of µ on π∗

µ(·|s). In an extreme case that µ→ 0,C→∞,
only the action maximizing Q∗

µ(s, a) would be included in the quasi-optimal region. In the following,
we establish a non-asymptotic concentration inequality for the empirical loss in the non-i.i.d. case.
Theorem 4.2. For any µ ∈ (0,∞) and ϵ > 0, under Assumptions 4.1-4.2, we have ϵ-divergence of
|L̂U − LU | bounded in probability, i.e.,

P(|L̂U − LU | > ϵ) ≤ C1 exp

(
− ϵ2T − C2ϵM

2
max

√
T

M2
max + ( ϵ2 −

C2M2
max√
T

) log T log log(T )

)
+ C3 exp

(
−nϵ2

M4
max

)
,

whereC1, C2 andC3 are some constants depending on δ1 respectively, andMmax = 4
1−γRmax+µC.

Theorem 4.2 implies that L̂U is a consistent estimator to LU , and thus avoiding the double sampling
issue. Note that the concentration bound is sharper than the bound established in Chakrabortty &
Kuchibhotla (2018) since we utilize a novel temporal correlatedness structure to decompose the
U-statistic. We now analyze the performance error between the finite sample learner and true solution,
which can be decomposed into four source errors.
Theorem 4.3. Under Assumption 4.1-4.2, let V θ1,k

µ be the optimizer from Algorithm 1 and V ∗ is the
optimal value function and κmin be the smallest eigenvalue corresponding to an orthonormal basis
of L2(S ×A) space. With probability 1− δ, the performance error is upper bounded by

∥V̂ θ1,k
µ − V ∗∥2L2 ≤

C4

κmin(1− γ)2

√C5DP-dim log
(
8C4

δ

)
n

+

√
2
(
∆̄
δ1
∨ 1
)
∆̄

C6⌊T/2⌋


︸ ︷︷ ︸

generalization error

+

C7
µ2(C+ |1−C| ∨ 1)2

(1− γ)2︸ ︷︷ ︸
proximal bias

+C8

∥∥∥V̂ θ1
µ − V̂ θ1,k

µ

∥∥∥2
L2︸ ︷︷ ︸

optimization error

+ϵapproximation error,

where ∆̄ = DP-dim log⌊T/2⌋
2 + log( eδ ) + log+

(C5C
DP-dim
6

2

)
, DP-dim = P-dim(Θ1) + P-dim(Θ2) +

P-dim(Ξ1) + P-dim(Ξ2), and C4, ..., C8 are some constants. Here P-dim(·) denotes the pseudo-
dimension operator (Györfi, 2010), and Θ1,Θ2,Ξ1 and Ξ2 are function spaces for Vµ, πµ, ϖ and η,
respectively. The ϵapproximation error is from parametrization (V θ1

µ , πθ2
µ , ϖ

ξ1 , ηξ2) on (Vµ, πµ, ϖ, η).
The above sample complexity bound gives an insight into the performance error of the proposed
algorithm. The generalization error εgerr = O(1/

√
T ) if n is as the same order of T , the proximal

bias εprox = O(µ2) and the optimization error εoptim = O(1/k) for k iterations. Although the prox
function introduces a proximal bias in the quasi-optimal Bellman operator Bµ, it leads to a smoothed
approximation for B. There exists a trade-off between the proximal bias and approximation error.
As the increase of µ, it enlarges the proximal bias but decreases the approximation error since true
function space becomes more smoothed and easy for function approximation. On the other hand, a
small µ leads to a small proximal bias but a relatively large approximation error.

Theorem 4.4. Suppose L̂U in Algorithm 1 is differentiable, but not necessarily convex, and its
gradient∇L̂U (θ, ξ) is ML-Lipschitz and Var(∇̄θ + ∇̄ξ) ≤ σ2

0 . And suppose that the learning rate

{αj} are set to αj = min
{

2
ML

, Λ
σ0

√
j

}
for some Λ ≥ 0 and ε is sufficient small. Let k = k̃ with

P(k̃ = j) =
αj(2−MLαj)∑k

j=1(αj(2−MLαj))
for j = 1, . . . , k⋄. Then, if (θ̂, ξ̂) is the optimization solution and

(θ1, ξ1) is the first step solution, we have∥∥∇L̂U (θ̂, ξ̂)
∥∥2
L2 ≤ 2ML

(
L̂U (θ

1, ξ1)−min
θ,ξ
L̂U (θ, ξ)

)(ML

k⋄
+

σ0

MLΛ
√
k⋄

)
+

Λσ0ML√
k⋄

,
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Theorem 4.4 implies that the quasi-optimal learning algorithm is converges to a stationary point with
a sub-linear rate O(1/

√
k⋄) even if the empirical loss is non-convex. The property serves as a basis

for applying non-linear function approximation with convergent guarantees. Theorem 4.4 is adapted
from Corollary 2.2 in Ghadimi & Lan (2013) under a decay learning rate and a Euclidean stopping
criterion. The convergence of Algorithm 1 is blessed by our unbiased stochastic gradient estimator.

5 RELATED WORKS

In this work, we propose a provably convergent and sample efficient off-policy optimization algorithm.
Our learning algorithm is trained in a fully offline fashion, without any future online interaction with
the environment. This connects our work to offline RL algorithms (Lange et al., 2012; Levine et al.,
2020). Due to space limitations, we defer the discussion on offline RL in Appendix.

Algorithmically, our work is related to the entropy-regularized reinforcement learning algorithms
(Rawlik et al., 2012; Haarnoja et al., 2017), but these works are fundamentally different from ours.
Our formulation is motivated by constructing a proximal counterpart of the Bellman operator, which
serves as a basis for the latter quasi-oracle learning algorithm. Besides, the major drawback of
the existing algorithms (Lee et al., 2018b; Chow et al., 2018b; Vieillard et al., 2020) is the lack
of theoretical guarantees when accompanied by function approximation. It is not clear whether
the algorithm is convergent, generalizable, and consistent. In contrast, our algorithm is thoroughly
examined on both theoretical and empirical fronts. Nachum et al. (2017); Chow et al. (2018b) exploit
an analogous stationarity condition as in Theorem 3.3 and minimize the upper bound of the error,
which is biased and encounters double sampling issue. In contrast, our work leverages the kernel
embedding to bypass the double sampling issue, and is provably consistent. Unlike our algorithm,
the algorithms in continuous control problems, e.g., (Haarnoja et al., 2018b; Nachum et al., 2018b;
Lee et al., 2019) do not check the policy optimality, but separately model a pre-specified policy class.
This may introduce an additional bias if the pre-specified policy class is misspecified.

Our approach exemplifies more recent efforts that aim to learn optimal policy with continuous actions
(Lillicrap et al., 2015). One of our key innovations is to develop a policy class that can identify
quasi-optimal sub-regions and the induced policy has a closed-form regarding value function. This
distinguishes us from the approaches, e.g., (Silver et al., 2014; Mnih et al., 2016; Kumar et al., 2019;
2020). These methods typically require prior knowledge to determine pre-specified policy class and
commonly use Gaussian family distribution, but unfortunately facing the risk from off-support bias.

Our work is also relevant to safe/risk-sensitive RL. When the risk measure is defined based on the
reward, e.g., the quantile of return, it draws connections to our algorithm. Given potential application
scenarios, quasi-optimal learning is also related to RL in healthcare domain and the trade-offs
between safety and optimality. Tang et al. (2020) constructs set-valued policies of near-optimal
actions allowing the interaction between the clinician and the decision support system. However,
their method is not applicable in a fully offline setting. Fatemi et al. (2021) assesses regions of risk
and identifies treatments to avoid in a safety-critical environment. Nevertheless, near-optimal regret
guarantee is vacuous in their framework. Due to page limits, we provide a detailed discussion on safe
and healthcare RL in Appendix.

6 EXPERIMENTS

In this section, we evaluate our proposed method on synthetic and real environments. We compare
our method to the state-of-the-art baselines including DDPG (Lillicrap et al., 2015), SAC (Haarnoja
et al., 2018a), BEAR (Kumar et al., 2019), Greedy-GQ (Ertefaie & Strawderman, 2018), V-Learning
(Luckett et al., 2019). We also compete with two safe RL algorithms CQL (Kumar et al., 2020) and
IQN (Dabney et al., 2018a) for a comprehensive comparison from the safety RL point of view.
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Figure 3: The boxplot of the discounted return over 50 repeated experiments.
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Synthetic Data The four environments are simulated to mimic the real environments for continuous
treatment applications. In Environment I and II, we consider a bounded action space to evaluate the
potential of quasi-optimal learning for addressing off-support bias. The design of Environment III is
to mimic safety-critical environment by incorporating the notion of safety into the reward function
(Jia et al., 2020), i.e., the optimal dosage is unique, and a high dosage leads to excessive toxicity while
a lower dosage is ineffective (Zang et al., 2014). This is helpful for examining safety performance. In
Environment IV, all the methods are implemented and compared in a more complex environment.
The detailed discussion on the experiment designs and settings is deferred to Section D in Appendix.

Figure 3 shows that our proposed method outperforms competing methods with a relatively small
variance. This mainly benefits from identifying the quasi-optimal region, which guarantees the
suggested action is near-optimal, hence improving the performance. In comparison, SAC and BEAR
use a Gaussian policy and assign non-negligible positive densities to all actions, even for the non-
optimal ones, which damages the model performance. Meanwhile, even though safe RL methods (i.e.,
CQL and IQN) show better performance and smaller variance compared with non-safe methods, their
performance is still negatively affected by assigning non-zero densities to non-optimal actions. In
addition, in Environment I and II with bounded action support, the competing methods are affected by
an off-support bias which lowers their discounted return. In Environment III and IV, the performance
gains of the proposed method are mainly from the well-recover of the quasi-optimal regions. Also,
note that our algorithm achieves stable performance in small sample size settings, which is blessed
by the smoothness and optimization-friendly of our algorithm. This is promising as limited data
is common in medical applications. Additional experiment results including safety criterion, i.e.,
distribution of the discounted sum of rewards, sensitivity analysis of µ are provided in Appendix.

Real Data: A Ohio Type 1 Diabetes Case Study Ohio type 1 diabetes (OhioT1DM) dataset
(Marling & Bunescu, 2020), which contains 2 cohorts of patients with Type-1 diabetes, each patient
with 8 weeks of life-event data including health status measurements and insulin injection dosage.
Clinicians are interested in adjusting insulin injection dose levels (Marling & Bunescu, 2020; Bao
et al., 2011) based on patient’s health status to maintain the glucose level in a certain range for safe
dose suggestions. As each individual has dramatically distinctive glucose dynamics, We follow Zhu
et al. (2020) to regard each patient data as an independent dataset, and the data from each day as
a trajectory. The state variables are health status measurements, and the action space is a bounded
insulin dose range. The glycemic index is regarded as a reward function to measure the goodness of
dose suggestion. See more details of the experiment setup in Appendix. As shown in Table 1, the
proposed method achieves the best performance among almost all patients. The proposed method
mitigates the off-support bias in this bounded dosage space and outperforms the competing methods.
This finding is consistent with the results in the synthetic data and demonstrates the potential of our
method in continuous action spaces. Besides model performance, we illustrate the safety guarantee
of the quasi-optimal learning with additional experiments results and analyses in Appendix.

Table 1: The discounted return for the policy improvement based on 50 repeated experiments.

Patient ID Proposed DDPG SAC BEAR Greedy-GQ VL CQL IQN
540 18.6± 0.6 14.1± 2.3 14.2± 1.2 13.7± 0.9 15.5± 2.4 14.1± 2.4 17.0± 0.9 18.2± 0.9
544 11.0± 0.7 7.5± 1.5 7.5± 2.5 5.9± 0.8 6.3± 2.9 8.1± 2.9 9.3± 1.0 9.8± 1.0
552 6.3± 0.4 4.8± 0.5 5.7± 1.0 3.6± 0.6 4.1± 1.8 5.2± 1.3 6.7± 0.7 6.1± 0.8
567 29.9± 1.5 30.0± 2.0 27.3± 2.2 29.6± 1.2 24.8± 3.8 20.2± 2.8 31.5± 1.1 29.8± 0.6
584 32.1± 0.8 27.0± 2.0 23.3± 3.2 26.9± 1.3 17.8± 3.2 18.7± 2.6 26.6± 1.3 27.7± 1.2
596 5.5± 1.1 4.1± 0.8 4.5± 0.9 2.7± 1.0 2.7± 1.8 3.7± 3.0 4.6± 0.6 4.7± 0.6
559 24.1± 1.4 20.1± 1.2 19.6± 1.2 19.6± 0.7 17.3± 1.6 20.6± 2.7 22.1± 1.3 22.6± 1.2
563 11.6± 0.6 8.4± 0.9 9.3± 0.7 8.4± 0.7 9.2± 1.5 8.8± 1.9 9.4± 0.7 9.9± 0.8
570 25.0± 0.8 24.5± 1.4 26.1± 0.8 25.8± 0.8 22.8± 1.6 22.6± 1.5 25.8± 0.9 25.9± 0.8
575 15.5± 1.0 10.4± 1.3 8.8± 1.4 10.2± 1.0 5.7± 2.8 8.5± 2.3 12.6± 0.9 12.7± 1.2
588 18.6± 0.7 14.2± 1.3 13.5± 1.5 12.0± 0.9 10.0± 3.1 8.6± 2.3 15.7± 0.8 15.9± 1.3
591 15.4± 1.0 12.3± 0.6 11.9± 0.6 12.8± 0.7 10.7± 1.7 10.5± 2.6 14.9± 0.6 15.2± 0.7

7 CONCLUSIONS

We introduce a novel quasi-oracle learning algorithm for continuous action allocations, which is
particularly useful in determining the dose level when developing medical treatment regimes. The
quasi-optimal learning algorithm is provably convergent in off-policy cases, and a PAC bound is
provided to analyze its sample complexity. The promising results arise some interesting directions
for future works, including extending the framework to online settings interacting with environments.
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Quasi-optimal-Learning. The experiment details are provided in Appendix for reproducible
purpose. All proofs of main theorems and addition theorems are included in Appendix.

10 ETHICS STATEMENT

The proposed method aims at finding optimal policy in continuous action space, with a special focus
on medical applications. We believe the proposed work has potential applications in sequential
treatment dose suggestion, e.g., managing diabetes through insulin injection. We admit that the
proposed method needs additional validation experiments in controlled settings for practical use
in medical applications to avoid abundant risks. The proposed algorithm should not be used as a
stand-alone tool nor as a replacement of human experts.
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A ADDITIONAL RELATED WORKS

We discuss additional related works in this section.

Safe RL Safe Reinforcement Learning (safe-RL) aims at finding an optimal policy while ensuring
safety (Garcıa & Fernández, 2015). In the safe-RL framework, the definition of safety and its
guarantee varies based on the specific purpose of learning tasks. In our view, there are three
mainstream works for safe RL.

• Safe Exploration: ensuring safe action allocations in the exploration process by incorporating
prior knowledge, which often exists in online RL settings (Pham et al., 2018).

• Safety Constraints: finding an optimal policy that satisfies external user-specified safe
constraints (Chow et al., 2018a; Gu et al., 2022).

• Risk-sensitivity and Conservatism: finding a policy maximizing the infinite-horizon cumula-
tive discounted reward while incorporating the notion of risk (Morimura et al., 2010; Mavrin
et al., 2019), e.g., value at risk (quantile), percentile performance, chance, the variance of
return.

In medical applications, specifying explicit constraints is typically hard to realize in practice (Vincent,
2014). Alternatively, the notion of safety is usually incorporated in the design of reward functions,
where high-risk actions lead to significantly low reward (Raghu et al., 2017; Jia et al., 2020).

Based on these, our quasi-optimal learning is closely related to the risk-sensitive RL framework,
which aims to control value at risk to ensure safety. For example, maintaining the discounted
return above a certain threshold (Tamar et al., 2015), reducing the variability of performance by
avoiding extremely low performance (Ma et al., 2020), or target to maximize the robust performance
criterion, e.g., quantile of the discounted return (Dabney et al., 2018b). Commonly used algorithms
in risk-sensitive RL include conservative Q-learning (CQL; Kumar et al. (2020)) and implicit quantile
network (IQN; (Dabney et al., 2018a)). CQL learns a conservative Q-function such that the expected
value of a policy under this Q-function lower-bounds its true value and thus avoids selecting high-risk
actions with over-estimation action value. IQN models the full quantile function for the state-action
return distribution and yields risk-sensitive policies. For a more comprehensive empirical study, we
compare the proposed algorithm with the aforementioned two safe RL baselines, conduct additional
numerical experiments and analyze the results from the safety point of view.

RL in healthcare Reinforcement learning has a wide variety of applications in healthcare (Yu et al.,
2021). Some of the recent works aim to solve safety issues when applying RL to healthcare domains.
Tang et al. (2020) considers identifying set-valued policies with near-optimal actions, which allows
incorporating expert knowledge from clinicians to assist in decision making. As the same rationale in
our proposed quasi-optimal region, Tang et al. (2020) also utilizes the value function to threshold
a near-optimal action set. However, this method is only developed on discrete action space, and
it is still not directly applicable in fully offline settings. Fatemi et al. (2021) considers identifying
high-risk states in data-constrained offline settings by training two separate Q functions that model
the probability of negative outcomes and positive outcomes respectively. They target to identify
treatments proportional to their chance of leading to dead-ends, and attain safety by excluding these
treatments from consideration. However, as they aim to identify possible “dead-ends” of a state space
and treatments, there exists a trade-off between safety and optimality. In particular, it still has a gap
for optimal treatment allocations.

Other interesting works in RL for healthcare including Henry et al. (2015); Komorowski et al.
(2018) adopt RL algorithms for sepsis treatment recommendations, Jia et al. (2020) redefine the
state variables and reward function to reflect practical safety concerns in sepsis treatments. We refer
readers to (Yu et al., 2021) for a more comprehensive review.

Offline RL The domain approaches of offline RL include fitted Q-iteration (FQI; Ernst et al. (2005);
Riedmiller (2005); Munos & Szepesvári (2008); Szepesvári (2010) ), fitted policy iteration (Antos
et al., 2007; Lagoudakis & Parr, 2003; Scherrer et al., 2012), Bellman Residual Minimization (BRM;
Antos et al. (2008); Hoffman et al. (2011); Farahmand et al. (2016); Dai et al. (2018); Chen & Jiang
(2019); Xie & Jiang (2020), gradient Q-learning (Maei et al., 2010; Ertefaie & Strawderman, 2018),
and Advantage learning (Murphy, 2003; Shi et al., 2018; 2022). We refer the reader to Levine et al.
(2020) for more comprehensive discussions on the topics of the offline RL.
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In the aforementioned mainstreams of works, ours is closely related to the Bellman Residual Mini-
mization. They learn the value function by solving a nested optimization problem, where the function
space used for the inner and outer optimization must be the same. From the perspective of the couple
optimization, their inner optimization plays a similar role as the inner maximization of the min-max
framework. In addition to the fundamental difference in derivation, our min-max optimization can be
reduced to a single minimization problem aided by the kernel representation, while they have to solve
an unstable minimax optimization problem. Most importantly, our quasi-optimal learning framework
provides a practical way to learn a reliable policy in continuous action space via quasi-optimal region
identifications. to the best of our knowledge, no existing RL algorithms can achieve this.

B TECHNICAL PROOFS

B.1 PROOFS ON CONSTRUCTING QUASI-OPTIMAL BELLMAN OPERATOR

B.1.1 PROOF OF THEOREM S.1

Theorem S.1. Assume the induced policy has density function π∗
µ(a|s) ≤ C for all a, s, where C is a

given constant. Then the proximal Bellman operator Bµ in equation (2) has a closed form equivalent:

BµV ∗
µ (s) = µ

1−
∫
a∈Ws,1

(∫a∈Ws,1
Q∗

µ(s, a)da

2µσ(Ws,1)
− 1

σ(Ws,1)

)2

−
(
Q∗

µ(s, a)

2µ

)2
 da


+

Cσ(Ws,1)
∫
a∈Ws,2

Q∗
µ(s, a)da−Cσ(Ws,2)

∫
a∈Ws,1

Q∗
µ(s, a)da

2σ(Ws,1)
− µC2σ(Ws,2)(σ(Ws,2) + σ(Ws,1))

σ(Ws,1)
,

(13)
whereWs,1 refers to the set {a ∈ A : C > π∗

µ(a|s) > 0},Ws,2 refers to the set {a ∈ A : π∗
µ(a|s) =

C}.

Proof: The proof is mainly to check the KKT conditions of the maximization. The Lagrangian
function of the RHS of (2) can be expressed as follows:

L(π, η̃,ϖ1, ϖ2) = Ea∼π(·|s) [Qµ(s, a) + µprox(π(a|s))]− η̃(s)
(∫

a∈A
π(a|s)da− 1

)
+ϖ1(s, a)π(a|s)−ϖ2(s, a)(π(a|s)−C).

The following KKT conditions are necessary for the maximizer π∗
µ in the equation:

• Primal:
∫
a∈A π

∗
µ(a|s)da− 1 = 0, −π∗

µ(a|s) ≤ 0, π∗
µ(a|s) ≤ C.

• Duality: ϖ1(s, a) ≥ 0, ϖ2(s, a) ≥ 0.
• Complementary slackness: ϖ1(s, a)π

∗
µ(a|s) = 0, ϖ2(s, a)(π

∗
µ(a|s)−C) = 0.

• Stationarity: Q∗
µ(s, a) + µ(1− 2π∗

µ(a|s))− η̃(s) +ϖ1(s, a)−ϖ2(s, a) = 0.

We can obtain the equation for πµ(a|s) from the stationary condition such that

π∗
µ(a|s) =

1

2
− 1

2µ
[η̃(s)−Q∗

µ(s, a)−ϖ1(s, a) +ϖ2(s, a)].

Combined with complementary slackness condition,

• If π∗
µ(a|s) = 0, then ϖ1(s, a) ≥ 0, ϖ2(s, a) = 0, thus Q∗

µ(s, a) ≤ η̃(s)− µ.

• If C >π∗
µ(a|s) > 0, then ϖ1(s, a) = ϖ2(s, a) = 0, thus

η̃(s)− µ+ 2µC > Q∗
µ(s, a) > η̃(s)− µ.

• If π∗
µ(a|s) = C, then ϖ1(s, a) = 0, ϖ2(s, a) ≤ 0, thus Q∗

µ(s, a) ≥ η̃(s)− µ+ 2µC.

Therefore, π∗
µ(s, a) can be expressed as:

π∗
µ(a|s) =


0 ifQ∗

µ(s, a) ≤ η̃(s)− µ
1
2 −

1
2µ

(
η̃(s)−Q∗

µ(s, a)
)

if η̃(s)− µ+ 2µC > Q∗
µ(s, a) > η̃(s)− µ

C ifQ∗
µ(s, a) ≥ η̃(s)− µ+ 2µC

(14)
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Meanwhile, notice that
∫
a∈A π

∗
µ(s, a) = 1, we can show that η̃(s) has a closed form:

η̃(s) = µ+

∫
a∈Ws,1

Q∗
µ(s, a)da− 2µ+ 2µCσ(Ws,2)

σ(Ws,1)
,

whereWs,1 refers to the set {a ∈ A : C > π∗
µ(a|s) > 0},Ws,2 refers to the set {a ∈ A : π∗

µ(a|s) =
C}, and σ(Ws,1), σ(Ws,1) refers to the interval length of the corresponding set. We take η̃(s) back
to (14), we then have

π∗
µ(a|s) =


0 ifQ∗

µ(s, a) ≤ η̃(s)− µ
Q∗

µ(s,a)

2µ −
∫
a∈Ws,1

Q∗
µ(s,a)da

2µσ(Ws,1)
+

1−Cσ(Ws,2)
σ(Ws,1)

if η̃(s)− µ+ 2µC > Q∗
µ(s, a) > η̃(s)− µ

C ifQ∗
µ(s, a) ≥ η̃(s)− µ+ 2µC

(15)

We finally plug in the closed form of π∗
µ(a|s) to (2), by some algebra, we have

BµV ∗
µ (s) = µ

1−
∫
a∈Ws,1

(∫a∈Ws,1
Q∗

µ(s, a)da

2µσ(Ws,1)
− 1

σ(Ws,1)

)2

−
(
Q∗

µ(s, a)

2µ

)2
 da


+

Cσ(Ws,1)
∫
a∈Ws,2

Q∗
µ(s, a)da−Cσ(Ws,2)

∫
a∈Ws,1

Q∗
µ(s, a)da

2σ(Ws,1)
− µC2σ(Ws,2)(σ(Ws,2) + σ(Ws,1))

σ(Ws,1)
.

B.1.2 PROOF OF COROLLARY S.1

Corollary S.1. When σ(Ws,2) = 0, we denoteW1 asW , the closed form in (13) can be simplified
as

BµV ∗
µ (s) = µ− 1

4µ

(
(
∫
a′∈Ws

Q∗
µ(s, a

′)da′ − 2µ)2

σ(Ws)
−
∫
a∈Ws

Q∗
µ
2(s, a)da

)
.

Proof: We plug in σ(Ws,2) = 0 to (13), then could obtain the result.

B.1.3 PROOF OF THEOREM 3.1

Proof of Theorem 3.1: For any generic value function V (s) and the corresponding generic Q-function
Q(s, a), we first build the lower bound:

BµV (s) = max
π∈∆convex(A)

Ea∼π(·|s)[Q(s, a) + µ(1− π(a|s))]

≥ max
π∈∆convex(A)

Ea∼π(·|s)[Q(s, a) + µ− µC]

= BV (s) + µ(1−C).

For the upper bound:

BµV (s) = max
π∈∆convex(A)(A)

Ea∼π(·|s)[Q(s, a) + µ(1− π(a|s))]

≤ max
π∈∆convex(A)(A)

Ea∼π(·|s)[Q(s, a) + µ]

= BV (s) + µ.

Therefore, we have BµV (s)− BV (s) ∈ [µ(1−C), µ].

B.1.4 PROOF OF THEOREM 3.2

Proof of Theorem 3.2: Suppose Q∗
µ(s, a) = −α1(s)a

2 + α2(s)a + α3(s) with α1(s) > 0. We
assume the density won’t reach its boundary value C for this theorem, and we proceed by simplifying
αi(s) as αi for i = 1, 2, 3. By Equation (4), we have

π∗
µ(a|s) =

{
Q∗

µ(s, a)

2µ
−
∫
a∈Ws

Q∗
µ(s, a)da

2µσ(Ws)
+

1

σ(Ws)

}+

.
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We first try to find the support set of π∗
µ(a|s). Since Q∗

µ takes the maximum value at y = α2

2α1
, by the

symmetric property of quadratic function, the support set should be of the formWs = [y−l, y+l](l >
0). Additionally, the boundary point of the support set should be the solution of

Q∗
µ(s, a)

2µ
−
∫
a∈Ws

Q∗
µ(s, a)da

2µσ(Ws)
+

1

σ(Ws)
= 0,

with respect to a. Thus, we can find the boundary point of the support set by solving the equation
with respect to l:

−α1(y ± l)2 + α2(y ± l) + α3 =
1

2l

∫ y+l

y−l

(−α1a
2 + α2a+ α3)da−

µ

l
.

It turns out that l = (12α2
1µ)

1
3

2α1
. Thus, the support set has the closed-form

Ws =

{
a : a ∈

[
α2 − (12α2

1µ)
1
3

2α1
,
α2 + (12α2

1µ)
1
3

2α1

]}
.

Therefore σ(Ws) =
(12α2

1µ)
1
3

α1
, and∫

a∈Ws
Q∗

µ(s, a)da

2µσ(Ws)
= − (12α2

1µ)
2
3 − 3α2

2

24µα1
+
α3

2µ
.

We plug in the result to the closed form of π∗
µ(a|s), and obtain the probability density function

π∗
µ(a|s) =

{
α1

2µ
(a+

α2

2α1
)2 − 3

2
(
α1

12µ
)

1
3

}+

.

It is clear that the resulting distribution of π∗
µ(a|s) is of the exact form of q-Gaussian distribution

with q = 0, β = α1

2µ and centered at α2

2α1
.

B.2 PROOFS ON QUASI-OPTIMAL STAIONARITY EQUATION

B.2.1 PROOF OF THEOREM 3.3

Proof of Theorem 3.3: By the stationary condition from Theorem S.1 we have

Q∗
µ(s, a) + µ(1− 2π∗

µ(a|s))− η̃(s) +ϖ1(s, a)−ϖ2(s, a) = 0,

therefore, by the definition of Q∗
µ(s, a), we have

ESt+1|s,a[R(S
t+1, s, a)]+γESt+1|s,a[V

∗
µ (S

t+1)]+µ(1−2π∗
µ(a|s))−η̃(s)+ϖ1(s, a)−ϖ2(s, a) = 0.

(16)

Notice that ESt+1|s,a[R(S
t+1, s, a)] = r(s, a), and we take expectation with respect to a following

the policy distribution π∗
µ(a|s) from both sides of (16),

0 = Ea∼π∗
µ(a|s)

[
r(s, a) + γESt+1|s,a[V

∗
µ (S

t+1)] + µ(1− 2π∗
µ(a|s))− η̃(s) +ϖ1(s, a)−ϖ2(s, a)

]
,

0 =

∫
a∈A

π∗
µ(a|s)

[
r(s, a) + γESt+1|s,a[V

∗
µ (S

t+1)] + µ(1− 2π∗
µ(a|s))− η̃(s) +ϖ1(s, a)−ϖ2(s, a)

]
da.

According to the proximal Bellman optimality equation BµV ∗
µ (s) = V ∗

µ (s), where V ∗
µ (s) is the fixed

point of Bµ. With the explicit definition of V ∗
µ , we observe that

0 =

∫
a∈A

π∗
µ(a|s)

[
r(s, a) + γESt+1|s,a[V

∗
µ (S

t+1)] + µ(1− π∗
µ(a|s))

]
da−

∫
a∈A

µπ∗2

µ (a|s)da

−
∫
a∈A

π∗
µ(a|s)η̃(s)da+

∫
a∈A

π∗
µ(a|s)ϖ1(s, a)da−

∫
a∈A

π∗
µ(a|s)ϖ2(s, a)da

=V ∗
µ (s)−

∫
a∈A

µπ∗2

µ (a|s)da−
∫
a∈A

π∗
µ(a|s)η̃(s)da+

∫
a∈A

π∗
µ(a|s)ϖ1(s, a)da

−
∫
a∈A

π∗
µ(a|s)ϖ2(s, a)da
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Meanwhile
∫
a∈A π

∗
µ(a|s)η̃(s)da = η̃(s)

∫
a∈A π

∗
µ(a|s)da = η̃(s) by the property of density,∫

a∈A π
∗
µ(a|s)ϖ1(s, a)da = 0, and

∫
a∈A π

∗
µ(a|s)ϖ2(s, a)da = C

∫
a∈Aϖ2(s, a)da by complete

slackness, we further have

V ∗
µ (s)− µ

∫
a∈A

π∗2

µ (a|s)da− η̃(s)−C

∫
a∈A

ϖ2(s, a)da = 0.

Since 0 ≤ π∗
µ(a|s) ≤ C, thus µ

∫
a∈A π

∗2

µ (a|s)da = µEπ∗
µ(a|s) ∈ [0,C]. Therefore,

η(s) := η̃(s)− V ∗
µ (s) ∈ [−µC−C

∫
a∈A

ϖ2(s, a)da,−C
∫
a∈A

ϖ2(s, a)da].

The stationary condition can be reformulated as

ESt+1|s,a
[
R(St+1, s, a)+γV ∗

µ (S
t+1)

]
−µprox◦(π∗

µ(a|s))−η(s)+ϖ1(s, a)−ϖ2(s, a)−V ∗
µ (s) = 0.

(17)
Obviously, (π∗

µ, V
∗
µ ) is a solution for the above equation for some η(s), ϖ1(s, a), and ϖ2(s, a), such

that

ϖ1(s, a) ≥ 0,ϖ2(s, a) ≥ 0, ϖ1(s, a) · πµ(a|s) = 0, ϖ2(s, a) · (C− πµ(a|s)) = 0

and η(s) ∈
[
− µC−C

∫
a∈A

ϖ2(s, a)da,−C
∫
a∈A

ϖ2(s, a)da
]
.

When σ(Ws,2) = 0, we have ϖ2(s, a) = 0.
Plugging in to equation (17), and denoteWs,1 asWs, we have the exact form of (9).

B.3 PROOFS ON KERNEL REPRESENTATION

B.3.1 PROOF OF THEOREM S.2

Theorem S.2. We define the optimal weight function as u∗ = argmaxu∈L2(C0) L
2(Vµ, πµ, η,ϖ, u).

Let C(S ×A) be all continuous functions on S ×A. For any (s, a) ∈ S ×A and s′ ∈ S , the optimal
weight function u∗(St, At) ∈ L2(C0) ∩ C(S × A) and is unique if the reward function R(s′, s, a)
and the transition kernel P(s′|s, a) are continuous over (s, a).

Proof: Denote ũ = GVµ,πµ(S
t, At, St+1) − η(St) + ϖ(St, At) − Vµ(St). It follows from the

definition of L2(Vµ, πµ, η,ϖ, u), we have that

min
Vµ,πµ,η,ϖ

max
u

L2(Vµ, πµ, η,ϖ, u)

= min
Vµ,πµ,η,ϖ

max
u

(
ESt,At,St+1

[(
GVµ,πµ(S

t, At, St+1)− η(St) +ϖ(St, At))− Vµ(St)
)
u(St, At)

])2
= min

Vµ,πµ,η,ϖ
max
u

〈(
GVµ,πµ

(St, At, St+1)− η(St) +ϖ(St, At))− Vµ(St)
)
, u(St, At)

〉2
= min

Vµ,πµ,η,ϖ

〈(
GVµ,πµ

(St, At, St+1)− η(St) +ϖ(St, At))− Vµ(St)
)
,

√
C0ũ

∥ũ∥L2

)
〉2

= min
Vµ,πµ,η,ϖ

〈(
GVµ,πµ(S

t, At, St+1)− η(St) +ϖ(St, At))− Vµ(St)
)
,
(
GVµ,πµ(S

t, At, St+1)− η(St)+

ϖ(St, At))− Vµ(St)
)〉
·
〈
C0ũ

∥ũ∥L2

,
ũ

∥ũ∥L2

〉
= min

Vµ,πµ,η,ϖ

〈(
GVµ,πµ

(St, At, St+1)− η(St) +ϖ(St, At))− Vµ(St)
)
,
(
GVµ,πµ

(St, At, St+1)− η(St)+

ϖ(St, At))− Vµ(St)
)〉

= min
Vµ,πµ,η,ϖ

ESt,At

[√
C0

(
GVµ,πµ

(St, At, St+1)− η(St) +ϖ(St, At))− Vµ(St)
)]2

,

where the third equality is obtained by maximization condition of the inner product between u and
GVµ,πµ

(St, At, St+1) − η(St) + ϖ(St, At) − Vµ(St) is that the two terms should have the same
direction; the fourth equality is obtained by the equality condition of the Cauchy-Schwartz inequality.
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Such finding indicates that there exists a closed form solution of the the optimal weight function u∗,
such that

u∗(s, a) = GV ∗
µ ,π∗

µ
(s, a, s′)− η(s) +ϖ(s, a)− V ∗

µ (s),

which is equal to ũ when (Vµ, πµ) = (V ∗
µ , π

∗
µ).

Notice that for a given µ,Ws is fully determined by Q∗
µ(s, a), thus by Equation (3),(4), we have that

π∗
µ(a|s), V ∗

µ (s) is continuous over Q∗
µ(s, a). Additionally, by the complete slackness and stationary

condition in Theorem S.1, we have

− η(s) +ϖ(s, a) = −Q∗
µ(s, a)− µ+ V ∗

µ (s), if ϖ(s, a) ̸= 0;

− η(s) = −Q∗
µ(s, a)− µ+ 2µπ∗

µ(a|s) + V ∗
µ (s), if ϖ(s, a) = 0.

Since V ∗
µ , π

∗
µ can be represented by functions of Q∗

µ(s, a), the Lagrange multipliers −η(s) +ϖ(s, a)
can also be represented by a function of Q∗

µ(s, a), and is also continuous over Q∗
µ(s, a).

As π∗
µ(a|s), V ∗

µ (s),−η(s) +ϖ(s, a) are all continuous over Q∗
µ(s, a), we only need to prove that

Q∗
µ(s, a) is continuous over (s, a). By the stationarity equation in Theorem 3.3, Es′|s,a[R(s

′, s, a)] =
g(Q∗

µ(s, a)). Since the reward function R(s′, s, a) and the transition kernel P(s′|s, a) are continuous
over (s, a) by assumption, Q∗

µ(s, a) is continuous for any (s, a) as Es′|s,a[R(s
′, s, a)] is continuous

for any (s, a). Therefore, the optimal weight function u∗(s, a) is continuous over any arbitrary
state-action pair (s, a).

B.3.2 PROOF OF THEOREM S.3

Theorem S.3. Suppose u∗ ∈ HC0

K is reproduced by a universal kernel K(·, ·), then the minimax
optimizer (10) can be decoupled to a single-stage minimization problem as

min
Vµ,πµ,η,ϖ

LU = ESt,S̃t,At,Ãt,St+1,S̃t+1

[(
GVµ,πµ

(
St, At, St+1

)
− η

(
St
)
+ϖ

(
At | St

)
− Vµ

(
St
))

·C0K
(
St, At; S̃t, Ãt

)(
GVµ,πµ

(S̃t, Ãt, S̃t+1)− η(S̃t) +ϖ(Ãt | S̃t)− Vµ(S̃t)
)]
,

where (S̃t, Ãt, S̃t+1) is an independent copy of the transition pair (St, At, St+1).

Proof: Let ũ = ESt,At

[(
GVµ,πmu(S

t, At, St+1)− η(St) +ϖ(At|St)− Vµ(St)
)
K(·, {St, At})

]
.,

and define the inner product ⟨·, ·⟩HRKHS inHC0

K . It follows from the definition of L(Vµ, πµ, η,ϖ, u)
and kernel reproducing property we have,

min
Vµ,πµ,η,ϖ

max
u
L2 (Vµ, πµ, η,ϖ, u)

= min
Vµ,πµ,η,ϖ

max
u

(
ESt,At

[(
GVµ,πµ

(
St, At, St+1

)
− η

(
St
)
+ϖ

(
At | St

)
− Vµ

(
St
))
u
(
St, At

)])2
= min

Vµ,πµ,η,ϖ
max
u

(
ESt,At

[〈(
GVµ,πµ

(
St, At, St+1

)
− η

(
St
)
+ϖ

(
At | St

)
− Vµ

(
St
))
·

K
(
· ;St, At

)
, u
(
St, At

)〉
HRKHS

])2

= min
Vµ,πµ,η,ϖ

max
u

〈
ESt,At

[(
GVµ,πµ

(
St, At, St+1)− η

(
St
)
+ϖ

(
At | St

)
− Vµ

(
St
))
·

K
(
· ;St, At

})]
, u
(
St, At

)〉2

HRKHS

= min
Vµ,πµ,η,ϖ

〈
ESt,At

[(
GVµ,πµ

(
St, At, St+1

)
− η

(
St
)
+ϖ

(
At | St

)
− Vµ

(
St
))
·

K
(
· ;St, At

)]
,

√
C0ũ

∥ũ∥HRKHS

〉2

HRKHS

,
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where the last equality holds because of the maximization of inner product between ũ
and ESt,At

[(
GVµ,πµ

(St, At, St+1)− η(St) +ϖ(At|St)− Vµ(St)
)
K(· ;St, At)] should have the

same direction. Then we have,

min
Vµ,πµ,η,ϖ

〈
ESt,At

[(
GVµ,πµ

(
St, At, St+1)− η

(
St
)
+ϖ

(
At | St

)
− Vµ

(
St
))
· K

(
· ;St, At

)]
,√

C0ũ/∥ũ∥HRKHS

〉2
HRKHS

= min
V ,
µπµ,η,ϖ

〈
ESt,At

[(
GVµ,πµ

(
St, At, St+1

)
− η

(
St
)
+ϖ

(
At | St

)
− Vµ

(
St
))
·K(· ;St, At)

]
,

ESt,At

[(
GVµ,πµ

(
St, At, St+1)− η

(
St
)
+ϖ

(
At | St

)
− Vµ

(
St
))
·K(· ;St, At)

] 〉
·
〈

ũ

∥ũ∥HRKHS

,
C0ũ

∥ũ∥HRKHS

〉
HRKHS

= min
Vµ,πµ,η,ϖ

〈
ESt,At

[(
GVµ,πµ

(
St, At, St+1

)
− η

(
St
)
+ϖ

(
At | St

)
− Vµ

(
St
))
·K

(
· ;St, At

)]
,

C0ES̃t,Ãt

[(
GVµ,πµ

(
S̃t, Ãt, S̃t+1

)
− η

(
S̃t
)
+ϖ(Ãt | S̃t)− Vµ(S̃t)

)
·K

(
· ; S̃t, Ãt

)]〉
HRKHS

,

where the first equality is by the equality condition of Cauchy-Schwarz inequality, i.e. ũ/∥ũ∥HRKHS is
linear dependent of ESt,At

[(
GVµ,πµ

(St, At, St+1)− η(St) +ϖ(At|St)− Vµ(St)
)
K(· ;St, At)] .

Then, by the reproducing property of K(St, At; S̃t, Ãt), we have

min
Vµ,πµ,η,ϖ

max
u∈HC0

K

L2(Vµ, πµ, η,ϖ, u)

= min
Vµ,πµ,η,ϖ

ESt,S̃t,At,Ãt

[(
GVµ,πµ

(St, At, St+1)− η(St) +ϖ(St, At))− Vµ(St)
)

C0

〈
K
(
St, At; ·

)
,K
(
S̃t, Ãt; ·

)〉
HRKHS

(
GVµ,πµ

(S̃t, Ãt, S̃t+1)− η(S̃t) +ϖ(Ãt|S̃t)− Vµ(S̃t)
)]

= min
Vµ,πµ,η,ϖ

ESt,S̃t,At,ÃtC0

[(
GVµ,πµ

(St, At, St+1)− η(St) +ϖ(St, At))− Vµ(St)
)

K
(
St, At; S̃t, Ãt

)(
GVµ,πµ

(S̃t, Ãt, S̃t+1)− η(S̃t) +ϖ(Ãt|S̃t)− Vµ(S̃t)
)]

= min
Vµ,πµ,η,ϖ

ESt,S̃t,At,Ãt,St+1,S̃t+1C0

[(
G̃Vµ,πµ

(St, At, St+1)− η(St) +ϖ(St, At))− Vµ(St)
)

K
(
St, At; S̃t, Ãt

)(
G̃Vµ,πµ

(S̃t, Ãt, S̃t+1)− η(S̃t) +ϖ(Ãt|S̃t)− Vµ(S̃t)
)]
.

Thus, we finish the proof.

B.4 PROOFS ON GENERIC PROPERTIES OF QUASI-OPTIMAL BELLMAN OPERATOR

B.4.1 PROOF OF PROPOSITION S.1

Proposition S.1. The quasi-optimal Bellman operator Bµ is γ-contractive with respect to the
supreme norm over S. That is ∥BµV − BµV ′∥∞ ≤ γ∥V − V ′∥∞, for any generic value functions
{V, V ′ : S → R}.

Proposition S.1 justifies that there exists a unique fixed point of Bµ, i.e., V ∗
µ , indicating that the

quasi-optimal value function V ∗
µ and the induced policy π∗

µ are well defined and unique.

Proof: By the definition of Bµ, the explicit form corresponding to V is as follows:

BµV (s) = max
π

Ea∼π(·|s)

[
ESt+1|s,a[R(S

t+1, s, a) + γV (St+1)] + µprox◦(π(a|s))
]
.
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For any two arbitrary value functions V and V ′, we have

∥BµV (s)− BµV ′(s)∥∞
=max

π1

Ea∼π(·|s)

[
ESt+1|s,a[R(S

t+1, s, a) + γV (St+1)] + µprox◦(π1(a|s))
]
−

max
π2

Ea∼π(·|s)

[
ESt+1|s,a[R(S

t+1, s, a) + γV ′(St+1)] + µprox◦(π2(a|s))
]

≤ max
π

{
Ea∼π(·|s)

[
ESt+1|s,a[R(S

t+1, s, a) + γV (St+1)] + µprox◦(π(a|s))
]
−

Ea∼π(·|s)

[
ESt+1|s,a[R(S

t+1, s, a) + γV ′(St+1)] + µprox◦(π(a|s))
]}

= max
π

γEa∼π(·|s),St+1|s,a

[ (
V (St+1)− V ′(St+1)

) ]
≤ γ∥V (s)− V ′(s)∥∞.

B.4.2 PROOF OF PROPOSITION S.2

Proposition S.2. For any s ∈ S, the performance error between V ∗
µ (s) and V ∗(s) satisfies

∥V ∗
µ − V ∗∥∞ ≤

µ ·max{|1−C|, 1}
1− γ

,

where C is the upper bound for induced policy πµ.

Proof of Proposition S.2:

∥V ∗
µ − V ∗∥∞ = ∥BµV ∗

µ − BV ∗∥∞
≤ ∥BµV ∗

µ − BµV ∗∥∞ + ∥BµV ∗ − BV ∗∥∞.

Notice that ∥BµV ∗
µ − BµV ∗∥∞ ≤ γ∥V ∗

µ − V ∗∥∞ by Theorem S.1, and ∥BµV ∗ − BV ∗∥∞ ≤
µ ·max{|1−C|, 1} by Proposition 3.1. Therefore,

(1− γ)∥V ∗
µ − V ∗∥∞ ≤ µ ·max{|1−C|, 1}.

We finish the proof.

B.5 PROOF OF THEOREM 4.1

Proof of Theorem 4.1: We first prove that when µ→∞, π∗
µ would degenerate to uniform distribution

over A. By (4), we only need to prove that for arbitrary small ϵ > 0∣∣∣Q∗
µ(s, a)

2µ
−
∫
a∈Ws

Q∗
µ(s, a)da

2µσ(Ws)
+

1

σ(Ws)
− 1

σ(A)

∣∣∣ < ϵ.

Lower bound:

Q∗
µ(s, a)

2µ
−
∫
a∈Ws

Q∗
µ(s, a)

2µσ(Ws)
+

1

σ(Ws)
≥
Q∗

µ(s, a)

2µ
−
σ(Ws)maxa′ Q∗

µ(s, a
′)

2µσ(Ws)
+

1

σ(Ws)
(18)

≥
Q∗

µ(s, a)

2µ
−

maxa′ Q∗
µ(s, a

′)

2µ
+

1

σ(A)
(19)

Thus, we aim to prove that ∣∣∣Q∗
µ(s, a)−maxa′ Q∗

µ(s, a
′)

2µ

∣∣∣→ 0.

Let V ∗ be the unique fixed point of (1), and Hmax = maxH(π), where

H(π) = Ea∼π(·|s)[1− π(a|s)].
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Let r(s, a) := ESt+1|s,a[R(S
t+1, s, a)], by the definition of Q∗

µ, we have

Q∗
µ(s, a)

2µ
−
γESt+1|s,a

[
V ∗
µ

(
St+1

)]
2µ

=
r(s, a)

2µ

Q∗
µ(s, a)

2µ
−
γESt+1|s,a

[
V ∗
µ

(
St+1

)
− V ∗ (St+1

)]
2µ

−
γESt+1|s,a

[
V ∗ (St+1

)]
2µ

=
r(s, a)

2µ
.

Therefore,
Q∗

µ(s, a)

2µ
− µγHmax

2(1− γ)
≤ r(s, a)

2µ
+
γEs′|s,a [V

∗ (s′)]

2µ
,

Q∗
µ(s, a)

2µ
− µγHmax

2(1− γ)
≤ Rmax

2(1− γ)µ
.

(20)

Meanwhile, from another perspective, the proximal Bellman operator (2) can be treated as a new
MDP with the immediate reward r(s, a) + µH(π(·|s)) for given s, a. Combine with the fact that

γµHmax

1− γ
= max

π
Eπ

[ ∞∑
t=2

γt−1(µ− µπ(At|St))|S1 = s,A1 = a
]
.

Let πH = argmaxπH(π(a|s)), then

Q∗
µ(s, a)

2µ
− µγHmax

2(1− γ)
=
Q∗

µ(s, a)

2µ
−max

π
Eπ

[ ∞∑
t=2

γt−1
(
µ− µπ

(
At | St

))
| S1 = s,A1 = a

]

≥
QπH

µ (s, a)

2µ
− EπH

[ ∞∑
t=2

γt−1
(
µ− µπH

(
At | St

))
| S1 = s,A1 = a

]

= EπH

[ ∞∑
t=1

γt−1 r (S
t, At)

2µ
| S1 = s,A1 = a

]

≥ − Rmax

2(1− γ)µ
.

(21)

Based on (20) and (21), we have

Q∗
µ(s, a)

2µ
−

maxa′ Q∗
µ(s, a

′)

2µ
=
Q∗

µ(s, a)

2µ
− γHmax

2(1− γ)
+

γHmax

2(1− γ)
−

maxa′ Q∗
µ(s, a

′)

2µ

≥ − Rmax

(1− γ)µ
.

(22)

Similarly, we also have

Q∗
µ(s, a)

2µ
−

maxa′ Q∗
µ(s, a

′)

2µ
≤ Rmax

(1− γ)µ
. (23)

Therefore, we have the lower bound approaching to 1
σ(A) .

For the upper bound, we have
∫
a∈A π

∗
µ(a|s)da = 1, thus∫

a∈A

{Q∗
µ(s, a)

2µ
−
∫
a′∈Ws

Q∗
µ(s, a

′)da′

2µσ(Ws)
+

1

σ(Ws)

}+

da

≥
∫
a∈A

{mina′′ Q∗
µ(s, a

′′)

2µ
−
∫
a′∈Ws

Q∗
µ(s, a

′)da′

2µσ(Ws)
+

1

σ(Ws)

}
da

1

σ(A)
≥

mina′′ Q∗
µ(s, a

′′)

2µ
−

∫
a′∈Ws)

Q∗
µ(s, a

′)da′

2µ
+

1

σ(Ws)
.
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By (23), we then have

Q∗
µ(s, a)

2µ
−
∫
a∈Ws

Q∗
µ(s, a)da

2µσ(Ws)
+

1

σ(Ws)
=
Q∗

µ(s, a)

2µ
−

maxa′′ Q∗
µ(s, a

′′)

2µ
(24)

+
maxa′′ Q∗

µ(s, a
′′)

2µ
−
∫
a′∈Ws

Q∗
µ(s, a

′)da′

2µ
+

1

σ(Ws)

≤ 1

σ(A)
+

Rmax

(1− γ)µ
(25)

Therefore, by the lower bound and upper bound, we conclude that πµ(a|s) will decay to the uniform
distribution on A as µ→∞.

For the case when µ → 0, we prove that πµ would converge to the uniform distribution with the
length of the support set equal to 1

C . Therefore, when C→∞, it will converge to the point mass.
According to (15), we only need to prove σ(Ws,1) → 0 as µ → 0. Meanwhile by Theorem (S.1),
a ∈ Ws,1, if

σ(Ws,1)Q
∗
µ(s, a)−

(∫
a′∈Ws,1

Q∗
µ(s, a

′)da′ − 2µ+ 2µCσ(Ws,2)
)
∈ (0, 2µCσ(Ws,1)).

As µ → 0, (0, 2µCσ(Ws,1)) → 0. Thus, by squeeze theorem, we have σ(Ws,1)Q
∗
µ(s, a) −( ∫

a′∈Ws,1
Q∗

µ(s, a
′)da′ − 2µ+ 2µCσ(Ws,2)

)
→ 0 as µ→ 0, which is equivalent to

σ(Ws,1)Q
∗
µ(s, a)−

∫
a′∈Ws,1

Q∗
µ(s, a

′)da′ → 0 for all a ∈ Ws,1.

Therefore, Ws,1 could only include a with the same value of Q∗
µ(s, a), which should only be a

series of points rather than an interval. Thus, σ(Ws,1) = 0, and π∗
µ(a|s) would converge to uniform

distribution with interval length 1
C .

B.6 PROOF OF LEMMA S.1

Before we prove the main result, we first provide a helper lemma for studying the boundedness of the
symmetric kernel in the U-statistic.
Lemma S.1. Under Assumption 1, for any s ∈ S, a ∈ A and µ ∈ (0,∞), we have that

sup
s∈S,a∈A

∣∣∣GVµ,πµ
(s, a, s′)− η(s) +ϖ(s, a)− Vµ(s)

∣∣∣ ≤Mmax,

where Mmax = 4
1−γRmax + µC.

Proof of Lemma S.1:
GVµ,πµ(s, a, s

′)− η(s) +ϖ(s, a)− Vµ(s)
=R(s′, s, a) + γVµ(s

′) + µ− 2µπµ(a|s)− η(s) +ϖ(s, a)− Vµ(s)
≤Rmax + µ+ µC+ γVµ(s

′)− Vµ(s)−2µπµ(a|s) +ϖ(s, a)︸ ︷︷ ︸
(a)

.

By checking the KKT conditions, we can further simplify the term (a). Specifically,

1. If πµ = 0, then ϖ ≥ 0. By the stationarity equation (9), we have
(a) = ϖ(s, a)

= η(s)−Qµ(s, a)− µ+ Vµ(s)

≤ Rmax + γ
Rmax − µH

1− γ
− µ+

Rmax + µH

1− γ

(
H := Ea∼πµ(·|s)(1− πµ(a|s))

)
≤ 2

1− γ
Rmax − µ+ µH

≤ 2

1− γ
Rmax.
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2. If πµ ∈ (0,C], then ϖ = 0
(a) = −2µπµ(a|s) < 0.

Therefore,
Gπµ

(s, a, s′)− η(s) +ϖ(s, a)− Vµ(s)

≤Rmax + µ+ µC+ γVµ(s
′)− Vµ(s) +

2

1− γ
Rmax

≤Rmax + µ+ µC+ γ
Rmax + µH

1− γ
− −Rmax + µH

1− γ
+

2

1− γ
Rmax

≤ 4

1− γ
Rmax + µC+ µ− µH

≤ 4

1− γ
Rmax + µC.

Thus, we gain the upper bound. For the lower bound, the same technique is applied, and we can also
gain that

GVµ,πµ
(s, a, s′)− η(s) +ϖ(s, a)− Vµ(s) ≥ −

4

1− γ
Rmax − µC.

Therefore, this completes the proof.

B.7 PROOF OF THEOREM 4.2

Proof of Theorem 4.2: We first define an operator P from GVµ,πµ(S
k, Ak, Sk+1) to

GVµ,πµ
(Sk, Ak, Sk+1)− η(Sk) +ϖ(Sk, Ak) to simplify the expression, such that

PGVµ,πµ(S
k, Ak, Sk+1) := GVµ,πµ(S

k, Ak, Sk+1)− η(Sk) +ϖ(Ak|Sk),

We further define several other notations

UT :=

(
T

2

)−1 ∑
1≤j ̸=k≤T

K(Sj , Aj ;Sk, Ak){PGVµ,πµ(S
j , Aj , Sj+1)− Vµ(Sj)}·

{PGVµ,πµ
(Sk, Ak, Ak+1)− Vµ(Sk)}

K̃
(
St, At, St+1; S̃t, Ãt, S̃t+1

)
:= K

(
St, At; S̃t, Ãt

){
PGVµ,πµ

(
St, At, St+1

)
− Vµ

(
St
)}{
PGVµ,πµ

(
S̃t, Ãt, S̃t+1

)
− Vµ

(
S̃t
)}

.

Let the expectation with respect to stationary trajectory and i.i.d training set as ET and E respectively.
For any finite threshold parameter µ <∞ and any ϵ > 0, we have

P
(∣∣∣L̂U − LU

∣∣∣ > ϵ
)
= P

(∣∣∣L̂U − E (UT ) + E (UT )− LU

∣∣∣ > ϵ
)

≤ P
(∣∣∣L̂U − E (UT )

∣∣∣ > ϵ

2

)
︸ ︷︷ ︸

(i)

+P
(
|E (UT )− LU | >

ϵ

2

)
︸ ︷︷ ︸

(ii)

.

For (i), since the Gaussian kernel satisfy that |K(·; ·)| ≤ 1, then by Lemma S.1, we have

K̃
(
s, a, s′; s̃, ã, s̃′

)
≤M2

max,

for any s, s̃, a, ã. By Hoeffding’s inequality, we have

(i) ≤ 2 exp
{
− nϵ2

2M4
max

}
. (26)

For the term (ii), the expectation of UT as ET (UT ) can be calculated as follows:

ET (UT ) =

(
T

2

)−1 ∑
1≤j ̸=k≤T

ET

[
K(Sj , Aj ;Sk, Ak){PGVµ,πµ

(Sj , Aj , Sj+1)− Vµ(Sj)}·

{PGVµ,πµ
(Sk, Ak, Sk+1)− Vµ(Sj)}

]
.
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If with-in trajectory samples are independent, then it is obvious that

ET (UT ) = ET

[
K̃
(
St, At, St+1; S̃t, Ãt, S̃t+1

) ]
:= U∗.

However, for weakly dependent data, dependency may introduce an additional bias term ET (UT )−U∗,
thus we further decompose the term (ii) as

(ii) = P(|E (UT )− E [ET (UT )]|︸ ︷︷ ︸
(iii)

+ | E [ET (UT )]− EU⋆) |︸ ︷︷ ︸
(iv)

>
ϵ

2
).

For the term (iii), we follow a similar idea to use a novel decomposition of the variance term of
U-statistic from Han (2018). The idea is to break down the summation of U-statistic into numerous
parts, where the current time is affected by randomness, and the historical time will be canceled out
after conditioning on the future.

As |K̃(· ; ·)| is bounded by M2
max, under the mixing condition of Assumption 4.2, the exponential

inequality from Merlevède et al. (2009) can be applied to to bound each decomposition part.

Then we follow the Theorem 3.1 from Han (2018) that for any ϵ0,

P(|E (UT )− E [ET (UT )]| > ϵ0) ≤ 2 exp
{
−
(
M4

max

Tϵ20C
′
1

+
M2

max log log(4T ) log T

Tϵ0C ′
1

)−1 }
, (27)

where C ′
1 is some constant.

Then, we proceed to bound the term (iv). By Hoeffding decomposition of kernel
function K̃

(
St, At, St+1; S̃t, Ãt, S̃t+1

)
, there exist kernel functions K̃1(S

t, At, St+1) and

K̃2

(
St, At, St+1; S̃t, Ãt, S̃t+1

)
such that

K̃1 (s, a, s
′) = ET K̃

(
s, a, s′; S̃t, Ãt, S̃t+1

)
− U∗,

K̃2

(
s, a, s′; s̃, ã, s̃′

)
= K̃ (s, a, s′; s̃, ã, s̃′)− K̃1 (s, a, s

′)− K̃1

(
s̃, ã, s̃′

)
− U∗,

and ET K̃1(S
t, At, St+1) = 0, ET K̃2

(
St, At, St+1; S̃t, Ãt, S̃t+1

)
= 0. Then by Hoeffding decom-

position of UT , we have

UT = U∗ +
2

n

T∑
t=1

K̃1(S
t, At, St+1) + UK̃2

.

Taking the expectation from both sides:

ET [UT ] = U∗ +
2

n

T∑
k=1

ET K̃1(S
t, At, St+1) + ET [UK̃2

]

= U∗ + ET [UK̃2
]

Therefore, by Lyapunov inequality, we can bound the bias term

|ET [UT ]− U⋆| =
∣∣ET

[
UK̃2

]∣∣ ≤ ET

[∣∣UK̃2

∣∣] ≤√ET

[
U2
K̃2

]
=

√ ∑
1≤h1≤l1≤T,1≤h2≤l2≤T

ET

[
K̃2 (Sh1 , Ah1 , Sh1+1;Sl1 , Al1 , Sl1+1)

·K̃2 (Sh2 , Ah2 , Sh2+1;Sl2 , Al2 , Sl2+1)
] 4

T 2(T − 1)2
.

(28)

We proceed by the discussing the relationship between h1, h2, l1, l2.
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Case 1.1: If 1 ≤ h1 ≤ h2 ≤ l1 ≤ l2 ≤ T and l2 − l1 ≤ h1 − h2.
Under the mixing condition assumption, and by Generalized Correlation inequality in Lemma 2 of,
we have∣∣∣ET

[
K̃2

(
Sh1 , Ah1 , Sh1+1;Sl1 , Al1 , Sl1+1

)
K̃2

(
Sh2 , Ah2 , Sh2+1;Sl2 , Al2 , Sl2+1

)]∣∣∣
≤4
(
M2r

max

)1/r
β1/s (h2 − h1) ,

where 1/r + 1/s = 1, s > −1.

Case 1.2: If 1 ≤ h1 ≤ h2 ≤ l1 ≤ l2 ≤ T and h1 − h2 ≤ l2 − l1.
Similar as Case 1.1, we have∣∣∣ET

[
K̃2

(
Sh1 , Ah1 , Sh1+1;Sl1 , Al1 , Sl1+1

)
K̃2

(
Sh2 , Ah2 , Sh2+1;Sl2 , Al2 , Sl2+1

)]∣∣∣
≤4
(
M2r

max

)1/r
β1/s (l2 − l1) .

Combine Case 1.1 and Case 1.2, we apply the bounded inequalities (2.17-2.21) from Yoshihara
(1976), and have the following result∣∣∣ ∑

1≤h1≤h2≤l1≤l2≤T

ET

[
K̃2

(
Sh1 , Ah1 , Sh1+1;Sl1 , Al1 , Sl1+1

)
K̃2

(
Sh2 , Ah2 , Sh2+1;Sl2 , Al2 , Sl2+1

)] ∣∣∣
≤

∑
l2−l1≤h2−h1

1≤h1≤h2≤l1≤l2≤T

∣∣∣ET

[
K̃2

(
Sh1 , Ah1 , Sh1+1;Sl1 , Al1 , Sl1+1

)
·K̃2

(
Sh2 , Ah2 , Sh2+1;Sl2 , Al2 , Sl2+1

)] ∣∣∣+∑
h2−h1≤l2−l2

1≤h1≤h2≤l1≤l2≤T

∣∣∣ET

[
K̃2

(
Sh1 , Ah1 , Sh1+1;Sl1 , Al1 , Sl1+1

)
K̃2

(
Sh2 , Ah2 , Sh2+1;Sl2 , Al2 , Sl2+1

)] ∣∣∣
≤M2

maxT
2

T∑
j=1

(j + 1)β1/s(j) = O
(
M2

maxT
3−τ
)

,

where

τ =

(
2

s+1 −
2

1−δ1

)
(

1
δ1−1

)(
1 + 1

s+1

) . (29)

Case 2: If 1 ≤ h1 ≤ l1 ≤ h2 ≤ l2 ≤ T .
Using similar technique as Case 1.1 and 1.2, we have∣∣∣ ∑

1≤h1≤l1≤h2≤l2≤T

ET

[
K̃2

(
Sh1 , Ah1 , Sh1+1;Sl1 , Al1 , Sl1+1

)
K̃2

(
Sh2 , Ah2 , Sh2+1;Sl2 , Al2 , Sl2+1

)] ∣∣∣
≤

∑
l2−h2≤l1−h1

1≤h1≤l1≤h2≤l2≤T

∣∣∣ET

[
K̃2

(
Sh1 , Ah1 , Sh1+1;Sl1 , Al1 , Sl1+1

)
·K̃2

(
Sh2 , Ah2 , Sh2+1;Sl2 , Al2 , Sl2+1

)] ∣∣∣+∑
l1−h1≤l2−h2

1≤h1≤l1≤h1≤l2≤T

∣∣∣ET

[
K̃2

(
Sh1 , Ah1 , Sh1+1;Sl1 , Al1 , Sl1+1

)
K̃2

(
Sh2 , Ah2 , Sh2+1;Sl2 , Al2 , Sl2+1

)] ∣∣∣
= O

(
M2

maxT
3−τ
)
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Case 3: If 1 ≤ h1 ≤ l1 ≤ T and 1 ≤ h2 = l2 ≤ T .
Following the same technique, we have∣∣∣ ∑

1≤h2=l2≤T

∑
1≤h1≤l1≤T

ET

[
K̃2

(
Sh1 , Ah1 , Sh1+1;Sl1 , Al1 , Sl1+1

)
·K̃2

(
Sh2 , Ah2 , Sh2+1;Sl2 , Al2 , Sl2+1

)] ∣∣∣
≤

∑
1≤h1=l1≤T

∑
1≤h2=l2≤T

∣∣∣ET

[
K̃2

(
Sh1 , Ah1 , Sh1+1;Sl1 , Al1 , Sl1+1

)
K̃2

(
Sh2 , Ah2 , Sh2+1;Sl2 , Al2 , Sl2+1

)] ∣∣∣+
2

∑
1≤h1<l1≤T

∑
1≤h2=l2≤T

∣∣∣ET

[
K̃2

(
Sh1 , Ah1 , Sh1+1; §l1 , Al1 , Sl1+1

)
·K̃2

(
Sh2 , Ah2 , Sh2+1;Sl2 , Al2 , Sl2+1

)] ∣∣∣
≤ U2

maxT
2 +M2

maxT
2

T∑
j=1

β1/s(j) = O
(
M2

maxT
2
)
.

Case 4: If 1 ≤ h1 = l1 ≤ T and 1 ≤ h2 ≤ l2 ≤ T .
Using the same technique, we can obtain the same rate as follows:∣∣∣ ∑

1≤h1=l1≤T

∑
1≤h2≤l2≤T

ET

[
K̃2

(
Sh1 , Ah1 , Sh1+1;Sl1 , Al1 , Sl1+1

)
·K̃2

(
Sh2 , Ah2 , Sh2+1;Sl2 , Al2 , Sl2+1

)] ∣∣∣
= O

(
M2

maxT
2
)
.

Combine Case 1-4 with the equation (28), we conclude that

|EUT − U∗| ≤ C ′
0M

2
maxT

− 1+τ
2 a.s.

We further use the continuous mapping theorem to conclude that∣∣∣E[ET (UT )]− EU∗
∣∣∣ ≤ C ′

0M
2
maxT

− 1+τ
2 a.s., (30)

where τ is defined in (29) and C ′
0 is a constant.

As τ > 0, we have T− 1+τ
2 < T− 1

2 . Combine (27) and (30), for sufficiently large T , we have

(ii) = P (|E (UT )− E [ET (UT )]|+ | E [ET (UT )]− EU⋆) |> ϵ

2

)
≤ 2 exp

(
−

TC ′
1

(
ϵ/2− C ′

0M
2
maxT

−(1+τ)/2
)2

M4
max +M2

max

(
ϵ/2− C ′

0M
2
maxT

−(1+τ)/2
)
log T log log 4T

)

= 2 exp

(
−TC

′
1ϵ

2/4− Tc1ϵC ′
0M

2
maxT

−(1+τ)/2 + TC ′
1C

′
0
2
M4

maxT
−(1+τ)

M4
max +M2

max

(
ϵ/2− C ′

0M
2
maxT

−(1+τ)/2
)
log T log log 4T

)

= 2 exp

(
− Tc1ϵ

2/4− TT−(1+τ)/2c1ϵC
′
0M

2
max + c1C

′
0
2
M4

maxT
−τ

M4
max +M2

max

(
ϵ/2− C ′

0M
2
maxT

−(1+τ)/2
)
log T log log 4T

)
(31)

Then by the monotonicity of exp(·),
TT−(1+τ)/2C ′

1ϵC
′
0M

2
max − T−τC ′

1C
′
0
2
M4

max − TC ′
1ϵ

2/4

M4
max + log T log log 4TM2

maxϵ/2− T − (1 + τ)/2 log T log log 4TC ′
0M

4
max

≤− TC ′
1ϵ

2/4− T 1/2C ′
1ϵC

′
0M

2
max + T−τC ′

1C
′
0
2
M4

max

M4
max + log T log log 4TM2

maxϵ/2− T−1/2 log T log log 4TC ′
0M

4
max

≤− cC ′
1ϵ

2T/4− C ′
0C

′
1ϵM

2
max

√
T

M2
max

(
ϵ/2− C ′

0M
2
max/

√
T
)
log T log log 4T +M4

max

(32)
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where C ′
1 is a constant. Combine (26) and (32), we simplify the terms and then

P(|L̂U − LU | > ϵ) ≤ C1 exp

(
− ϵ2T − C2ϵM

2
max

√
T

M2
max + ( ϵ2 −

C2M2
max√
T

) log T log log(T )

)
+ C3 exp

(
−nϵ2

M4
max

)
,

where C1, C2, C3 are some constants depending on δ1 respectively, and Mmax = 4
1−γRmax + µC.

B.8 PROOF OF THEOREM 4.3

Proof of Theorem 4.3. To bound the performance error, we first decompose it as
∥V̂ θ1,k

µ − V ∗∥2L2 ≤ ∥V̂ θ1
µ − V θ1,k

µ ∥2L2 + ∥V̂ θ1
µ − V ∗∥2L2 + ϵapproximation error

where the first term is the optimization error and the last term is the approximation error. Then we
proceed to bound

∥V̂ θ1
µ − V ∗∥2L2 ≤

∣∣∣∣∣∣∣∥ V̂ θ1
µ − V π̃µ

µ ∥L2︸ ︷︷ ︸
∆1

+ ∥V π̃µ
µ − V ∗∥L2︸ ︷︷ ︸

∆2

∣∣∣∣∣∣∣
2

.

where V π̃µ
µ satisfying the stationarity equation (9) and V ∗ is the unique fixed point of B. First, we

move to bound ∆1. Follow a similar kernel reproducing property and a eigen decomposition spirit in
Bertsekas (1997); Sutton & Barto (2018); Zhou et al. (2022), we have

2

κmin

(
LU (V̂

θ1
µ , π̂θ2

µ , η
ξ1 , ϖξ2)− LU (V

π̃µ
µ , π̃µ, η,ϖ)

)
+

2∥
(
µprox◦(π̂θ2

µ (At|St))− µprox◦(π̃µ(At|St))
)
−
(
η̂ξ1(St)− η(St)

)
+
(
ϖ̂ξ2(St, At)−ϖ(St, At)

)
∥2L2

≥∥γ
(
ESt+1|St,At [V̂ θ1

µ (St+1)]− ESt+1|St,At [V π̃µ
µ (St+1)]

)
−
(
V̂ θ1
µ (St)− V π̃µ

µ (St)
)
∥2L2 .

Then by
∥µprox◦(π̂θ2

µ (At|St))− µprox◦(π̃µ(A
t|St))∥2L2 ≤µ2∥π̂θ2

µ (At|St)− π̃µ(At|St)∥2L2 ≤ Cµ2.

and the auxiliary functions ηξ1(s) ∈ [−Cµ, 0] for any s ∈ S, then

∥η̂ξ1(St)− η(St)∥2L2 ≤ (Cµ+Cµ)
2
= (Cµ)2

∥η̂ξ11 (St)− η1(St)∥2L2 ≤
2

κmin

(
LU (V̂

θ1
µ , π̂θ2

µ , η̂
ξ1 , ϖ̂ξ2)− LU (V

π̃µ
µ , π̃µ, η,ϖ)

)
Then we conclude that

∥V̂ θ1
µ (St)− V π̃µ

µ (St)∥2L2 ≤
C5(LU (V̂

θ1
µ , π̂θ2

µ , η̂
ξ1 , ϖ̂ξ2)− LU (V

π̃µ
µ , π̃µ, η,ϖ))

κmin(1− γ)2
+

C6µ
2

(1− γ)2

≤
C5(LU (V̂

θ1
µ , π̂θ2

µ , η̂
ξ1 , ϖ̂ξ2)− L∗

U

κmin(1− γ)2
+

C6µ
2

(1− γ)2
where C5 and C6 are some constants, and

L∗
U := inf

{Vµ,πµ,η,ϖ}
LU (Vµ, πµ, η,ϖ)

Now, we have the remainder term ∆2 to bound.
∆2 ≤ ∥V π̃µ

µ − V ∗
µ ∥L2︸ ︷︷ ︸

∆1
2

+ ∥V ∗
µ − V ∗∥L2︸ ︷︷ ︸

∆2
2

We first bound ∆1
2. For any s ∈ S, then we have that

BµV π̃µ
µ (s) =max

π
Ea∼π(·|s), St+1|s,a

[
R(St+1, s, a) + γV π̃µ

µ (St+1) + µprox(π(a|s))
]

=Ea∼π̃µ(·|s), St+1|s,a

[
R(St+1, s, a) + γV π̃µ

µ (St+1) + µprox(π̃µ(a|s))
]

=Ea∼π̃µ(·|s), St+1|s,a

[
R(St+1, s, a) + γV π̃µ

µ (St+1) + µ(1− π̃µ(a|s))
]

=Ea∼π̃µ(·|s), St+1|s,a

[
R(St+1, s, a) + γV π̃µ

µ (St+1) + µ− µπ̃µ(a|s)
]
+

Ea∼π̃µ(·|s)

[
µπ̃µ(a|s)

]
.
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As (V π̃µ
µ , π̃µ) is the solution of the stationarity equation,

Ea∼π̃µ(·|s), St+1|s,a

[
R(St+1, s, a) + γV π̃µ

µ (St+1) + µ− µπ̃µ(a|s)
]
≤ V π̃µ

µ (s)

and since Ea∼π̃µ(·|s)

[
µπ̃µ(a|s)

]
≤ µ, then we have

BµV π̃µ
µ (s) ≤ V π̃µ

µ (s) + µC.

For the lower bound, as

Ea∼π̃µ(·|s), St+1|s,a

[
R(St+1, s, a) + γV π̃µ

µ (St+1) + µ− µπ̃µ(a|s)− V π̃µ
µ (s) | St = s

]
≥−Cµ

so similarly, we conclude that

Cµ+ BµV π̃µ
µ (s) ≥ V π̃µ

µ (s).

If follows the definition of the proximal Bellman operator Bµ and due to the monotonicity of
the Bellman operator that BµV1(s) ≥ BµV2(s) for generic value functions V1(s) ≥ V2(s), and the
BµV (s) ≥ Bπ̃µ

µ V (s) for any generic value function V , where Bπ̃µ
µ is the proximal Bellman evaluation

operator, i.e.,

Bπ̃µ
µ V (s) := Ea∼π̃µ(·|s), St+1|s,a

[
R(St+1, s, a) + γV (St+1) + µprox

(
π̃µ(a|s)

)]
.

Note that, V π̃µ
µ is unique fixed point of the Bellman operator Bπ̃µ

µ , thus limi→∞(Bπ̃µ
µ )iV

π̃µ
µ (s) =

V
π̃µ
µ (s), where i ∈ Z+. And for any initial value function. e.g., V π̃µ

µ , limi→∞(Bµ)iV
π̃µ
µ (s) = V ∗

µ (s)
holds. Therefore the following inequality holds that

V π̃µ
µ (s) = lim

i→∞
(Bπ̃µ

µ )iV π̃µ
µ (s) ≤ lim

i→∞
(Bπ̃µ

µ )i
(
V π̃µ
µ +Cµ

)
(s) ≤ lim

i→∞
(Bµ)i

(
V π̃µ
µ +Cµ

)
(s)

=⇒ V π̃µ
µ (s) ≤ lim

i→∞
(Bµ)iV π̃µ

µ (s) +

∞∑
i=1

Cµγi−1 ≤ V ∗
µ (s) +

Cµ

(1− γ)
. (33)

We repeatedly apply a similar procedure, without loss of generality. We first show one step that

Bµ(BµV π̃µ
µ (s)) ≤ Bµ(V π̃µ

µ (s) +Cµ) = Bµ(V π̃µ
µ (s)) +Cµγ ≤ V π̃µ

µ (s) +Cµ+Cµγ.

Then we apply infinite many time Bµ, then we can have that

V ∗
µ (s) = lim

i→∞
(Bµ)iV π̃µ

µ (s) ≤ V π̃µ
µ (s) +

∞∑
i=1

Cµγi−1 = V π̃µ
µ (s) +

Cµ

(1− γ)
. (34)

Combine with the inequalities (33)-(34), we immediately have that

∥V ∗
µ − V π̃µ

µ ∥L2 ≤ Cµ

(1− γ)
Next, by Proposition S.2, we have

∥V ∗
µ − V ∗∥∞ ≤

µ ·max{|1−C|, 1}
1− γ

,

Now, we need to bound the excess risk. The excess risk can be decomposed into approximation error
and estimation error, i.e.

LU (V̂
θ1
µ ,π̂θ2

µ , η̂
ξ1 , ϖ̂ξ2)− L∗

U =

(
inf

(V
θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )∈Θ1×Θ2×Ξ1×Ξ2

LU (V
θ1
µ , πθ2

µ , η
ξ1 , ϖξ2)− L∗

U

)
︸ ︷︷ ︸

∆approx

+

(
LU

(
V̂ θ1
µ , π̂θ2

µ , η̂
ξ1 , ϖ̂ξ2

)
− inf

(V
θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )∈Θ1×Θ2×Ξ1×Ξ2

LU (V
θ1
µ , πθ2

µ , η
ξ1 , ϖξ2)

)
︸ ︷︷ ︸

∆est

,
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where ∆approx is the approximation error and ∆est is the estimation error. The approximation error is
assumed to be zero in our proof for simplicity. At first, we consider to bound the estimation error.

LU

(
V̂ θ1
µ , π̂θ2

µ , η̂
ξ1 , ϖ̂ξ2

)
− inf

(V
θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )∈Θ1×Θ2×Ξ1×Ξ2

LU (V
θ1
µ , πθ2

µ , η
ξ1 , ϖξ2)

:= LU

(
V̂ θ1
µ , π̂θ2

µ , η̂
ξ1 , ϖ̂ξ2

)
− LU (V

π◦
µ

µ , π◦
µ, η

ξ1 , ϖξ2)

≤ LU

(
V̂ θ1
µ , π̂θ2

µ , η̂
ξ1 , ϖ̂ξ2

)
− LU (V

π◦
µ

µ , π◦
µ, η

ξ1 , ϖξ2) + L̂U (V
π◦
µ

µ , π◦
µ, η

ξ1 , ϖξ2)− L̂U

(
V̂ θ1
µ , π̂θ2

µ , η̂
ξ1 , ϖ̂ξ2

)
≤
(
LU

(
V̂ θ1
µ , π̂θ2

µ , η̂
ξ1 , ϖ̂ξ2

)
− L̂U

(
V̂ θ1
µ , π̂θ2

µ , η̂
ξ1 , ϖ̂ξ2

))
−
(
LU (V

π◦
µ

µ , π◦
µ, η

ξ1 , ϖξ2)− L̂U (V
π◦
µ

µ , π◦
µ, η

ξ1 , ϖξ2)
)

≤ 2 sup
(V

θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )∈Θ1×Θ2×Ξ1×Ξ2

∣∣∣LU (V
θ1
µ , πθ2

µ , η
ξ1 , ϖξ2)− L̂U (V

θ1
µ , πθ2

µ , η
ξ1 , ϖξ2)

∣∣∣ .
where ηξ1 , ϖξ2 are Lagrange multipliers satisfying minimal Bayes risk associ-

ated with V
π◦
µ

µ , π◦
µ for the rest of this proof. Observe that the randomness of

sup
(V

θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )∈Θ1×Θ2×Ξ1×Ξ2|LU (V

θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )−L̂U (V

θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )| can be decom-

posed into two parts, one is from the n number of i.i.d. trajectories and another one is from the
dependent transition within each trajectory. For each single trajectory, we define the quantity

U⋆(V θ1
µ , πθ2

µ , η
ξ1 , ϖξ2) =Λ

V
θ1
µ ,π

θ2
µ
(St

i , A
t
i, S

t+1
i )K(St

i , A
t
i; S̃

t
i , Ã

t
i)ΛV

θ1
µ ,π

θ2
µ
(S̃t

i , Ã
t
i, V

θ1
µ ),

where ET is defined as taking expectation to single stationary trajectory and E is defined as taking
expectation to i.i.d. trajectory random variable D1, respectively. Without loss of generality, we
assume C0 = 1. The U-statistic approximation for ET (U

⋆) is as follows:

UT (V
θ1
µ , πθ2

µ , η
ξ1 , ϖξ2)

:=
2

T (T − 1)

∑
1≤j ̸=k≤T

[(
Λ
V

θ1
µ ,π

θ2
µ
(Sj

i , A
j
i , S

j+1
i )K

(
Sj
i , A

j
i ;S

k
i , A

k
i

)(
Λ
V

θ1
µ ,π

θ2
µ
(Sk

i , A
k
i , V

θ1
µ )
]
.

Then the uniform process is bounded by

sup
(V

θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )∈Θ1×Θ2×Ξ1×Ξ2

∣∣∣LU (V
θ1
µ , πθ2

µ , η
ξ1 , ϖξ2)− L̂U (V

θ1
µ , πθ2

µ , η
ξ1 , ϖξ2)

∣∣∣
≤ sup

(V
θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )∈Θ1×Θ2×Ξ1×Ξ2

∣∣∣LU (V
θ1
µ , πθ2

µ , η
ξ1 , ϖξ2)− P(Di:n)

n ET [U
⋆(V θ1

µ , πθ2
µ , η

ξ1 , ϖξ2)]
∣∣∣

+ sup
(V

θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )∈Θ1×Θ2×Ξ1×Ξ2

∣∣∣P(Di:n)
n ET [U

⋆(V θ1
µ , πθ2

µ , η
ξ1 , ϖξ2)]− P(Di:n)

n UT (V
θ1
µ , πθ2

µ , η
ξ1 , ϖξ2)]

∣∣∣
≤ sup

(V
θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )∈Θ1×Θ2×Ξ1×Ξ2

∣∣∣LU (V
θ1
µ , πθ2

µ , η
ξ1 , ϖξ2)− P(Di:n)

n ET [U
⋆(V θ1

µ , πθ2
µ , η

ξ1 , ϖξ2)]
∣∣∣︸ ︷︷ ︸

∆1

+
1

n

n∑
i=1

sup
(V

θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )∈Θ1×Θ2×Ξ1×Ξ2

∣∣ET [U
⋆(V θ1

µ , πθ2
µ , η

ξ1 , ϖξ2)]− UT (V
θ1
µ , πθ2

µ , η
ξ1 , ϖξ2)]

∣∣ ,
where P(Di:n)

n is the empirical measure with respect to Di:n = {Di}ni=1 and we simply denotes it as
Pn in the following proof. The last term is the bound for uniform process w.r.t sum of trajectories. In
this sense, it is necessary to bound
∆2 = sup

(V
θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )∈Θ1×Θ2×Ξ1×Ξ2

∣∣ET [U
⋆(V θ1

µ , πθ2
µ , η

ξ1 , ϖξ2)]− UT (V
θ1
µ , πθ2

µ , η
ξ1 , ϖξ2)]

∣∣ ,
since the trajectories {Di}ni=1 are i.i.d. Now, we process to bound ∆1. ∆1 can be re-expressed as
the empirical process of {Di}ni=1 w.r.t. the probability space (ΩN ,FN ,P) equipped with empirical
measure Pn such that
∆1 = sup

(V
θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )∈Θ1×Θ2×Ξ1×Ξ2

∣∣E(ET [U
⋆(V θ1

µ , πθ2
µ , η

ξ1 , ϖξ2)])− PnET [U
⋆(V θ1

µ , πθ2
µ , η

ξ1 , ϖξ2)]
∣∣

= sup
(V

θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )∈Θ1×Θ2×Ξ1×Ξ2

∣∣EG(V θ1
µ , πθ2

µ , η
ξ1 , ϖξ2 ;Di)− PnG(V

θ1
µ , πθ2

µ , η
ξ1 , ϖξ2 ;Di)

∣∣ ,
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where G(V θ1
µ , πθ2

µ , η
ξ1 , ϖξ2 ;Di) is the random function associated with random variable Di. To

bound ∆1, it is needed to calculate the covering numberN (ϵ,Fθ,ξ, {Di}ni=1) by Pollard’s tail inequal-
ity (Pollard, 2012), where the function space is the composite space Fθ,ξ = G(Θ1 ×Θ2 × Ξ1 × Ξ2).
Specifically, G(V θ1

µ , πθ2
µ , η

ξ1 , ϖξ2 ;Di) = ET

[
M(V θ1

µ , πθ2
µ , η

ξ1 , ϖξ2 ;Di)K({St
i , A

t
i}, {S̃t

i , Ã
t
i})

M̃(V θ1
µ , πθ2

µ , η
ξ1 , ϖξ2 ;Di)

]
, where M(V θ1

µ , πθ2
µ , η

ξ1 , ϖξ2 ;Di) = µ
V

θ1
µ ,π

θ2
µ
(St

i , A
t
i, S

t+1
i )

and M̃(V θ1
µ , πθ2

µ , η
ξ1 , ϖξ2 ;Di) = Λ

V
θ1
µ ,π

θ2
µ
(S̃t

i , Ã
t
i, S̃

t+1
i ). Next, we proceed to

bound the distance in composite space Fθ,ξ. In particular, let (V θ1
µ , πθ2

µ , η
ξ1 , ϖξ2),

(V θ1
µ

′
, πθ2

µ
′
, ηξ1

′
, ϖξ2 ′) ∈ Θ1 × Θ2 × Ξ1 × Ξ2 are two arbitrary functions, then the empiri-

cal norm distance w.r.t. {Di}ni=1 for the two function can be upper bounded by

Pn

∣∣∣G(V θ1
µ , πθ2

µ , η
ξ1 , ϖξ2 ;Di)−G(V θ1

µ

′
, πθ2

µ

′
, ηξ1

′
, ϖξ2 ′;Di)

∣∣∣
=Pn

∣∣∣∣ET

[
M(V θ1

µ , πθ2
µ , η

ξ1 , ϖξ2 ;Di)K({St, At}, {S̃t, Ãt})M̃(V θ1
µ , πθ2

µ , η
ξ1 , ϖξ2 ;Di)

]
−

ET

[
M(V θ1

µ

′
, πθ2

µ

′
, ηξ1

′
, ϖξ2 ′;Di)K(St, At; S̃t, Ãt)M̃(V θ1

µ

′
, πθ2

µ

′
, ηξ1

′
, ϖξ2 ′;Di)

]∣∣∣∣
=Pn

∣∣∣∣ET

[
K(St, At; S̃t, Ãt)

(
M(V θ1

µ , πθ2
µ , η

ξ1 , ϖξ2 ;Di)M̃(V θ1
µ , πθ2

µ , η
ξ1 , ϖξ2 ;Di)−

M(V θ1
µ

′
, πθ2

µ

′
, ηξ1

′
, ϖξ2 ′;Di)M̃(V θ1

µ

′
, πθ2

µ

′
, ηξ1

′
, ϖξ2 ′;Di)

)]∣∣∣∣
=Pn

{
ET

∣∣∣K(St, At; S̃t, Ãt)
(
M(V θ1

µ , πθ2
µ , η

ξ1 , ϖξ2 ;Di)M̃(V θ1
µ , πθ2

µ , η
ξ1 , ϖξ2 ;Di)−

M(V θ1
µ

′
, πθ2

µ

′
, ηξ1

′
, ϖξ2 ′;Di)M̃(V θ1

µ

′
, πθ2

µ

′
, ηξ1

′
, ϖξ2 ′;Di)

)∣∣∣}
≤Pn

{
ET

∣∣∣K(St, At; S̃t, Ãt)
∣∣∣ · ET

∣∣∣(M(V θ1
µ , πθ2

µ , η
ξ1 , ϖξ2 ;Di) +M(V θ1

µ

′
, πθ2

µ

′
, ηξ1

′
, ϖξ2 ′;Di)

∣∣∣·
ET

∣∣∣(M̃(V θ1
µ , πθ2

µ , η
ξ1 , ϖξ2 ;Di)− M̃(V θ1

µ

′
, πθ2

µ

′
, ηξ1

′
, ϖξ2 ′;Di)

∣∣∣}
≤Mmax,1

(
PnET |ηξ1 − ηξ1

′|+ µPnET |prox◦(πθ2
µ )− prox◦(πθ2

µ

′
)|

+ PnET |(γV θ1
µ − V θ1

µ )− (γV θ1
µ

′ − V θ1
µ

′
)|+ PnET |ψθ −ϖξ2 ′|

)
=Mmax,1

(
PnET |ηξ1 − ηξ1

′|+ µPnET |πθ2
µ − πθ2

µ

′|+ (1 + γ)PnET |V θ1
µ − V θ1

µ

′|+ PnET |ψθ −ϖξ2 ′|
)

≤Mmax,1

(
Pn∥ηξ1 − ηξ1

′∥∞ + µPn∥πθ2
µ − πθ2

µ

′∥∞ + (1 + γ)Pn∥V θ1
µ − V θ1

µ

′∥∞ + Pn∥ϖξ2 −ϖξ2 ′∥∞
)
,

where Mmax,1 = 2Mmax. Therefore, as the proximal parameter 0 ≤ µ ≤ µmax < ∞, for any
ε > 0 the metric entropy logN ((µmax + 4)Mmax,1ε,Fθ,ξ, {Di}ni=1) can be bound with respect to
separate metric entropy of (Θ1,Θ2,Ξ1,Ξ2). Denote min(2(µmax + 4)Mmax, 1) as C̃, then

N
(
(µmax + 4)Mmax,1ε,Fθ,ξ, {Di}ni=1

)
≤ N

(
C̃ε,Θ1, {Di}ni=1

)
N
(
C̃ε,Θ2, {Di}ni=1

)
N
(
C̃ε,Ξ1, {Di}ni=1

)
N
(
C̃ϵ,Ξ2, {Di}ni=1

)
To bound these factors, we first introduce a idea of pseudo-dimension , that is, for any set X , any
points x1:N ∈ XN , any class F of functions on X taking values in [0, C] with pseudo-dimension
DF <∞ and any ϵ > 0, we have

N
(
ϵ,F , x1:N

)
⩽ e (DF + 1)

(
2eC

ϵ

)DF

Therefore, we have

N
(
2(µmax + 4)Mmaxϵ,Fθ,ξ, {Di}ni=1

)
≤e4 (DΘ1

+ 1) (DΘ2
+ 1) (DΞ1 + 1) (DΞ2

+ 1)

(
2eMmax

C̃ϵ

)DΘ1
+DΘ2

+DΞ1
+DΞ2
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which implies

N
( ϵ
2
,Fθ,ξ, {Di}ni=1

)
≤e4 (DΘ1

+ 1) (DΘ2
+ 1) (DΞ1

+ 1) (DΞ2
+ 1)

(
8(µmax + 4)M3

maxe

C̃ϵ

)DΘ1
+DΘ2

+DΞ1
+DΞ2

:=C1

(
1

ϵ

)DFθ,ξ

whereC1 = e4 (DΘ1
+ 1) (DΘ2

+ 1) (DΞ1
+ 1) (DΞ2

+ 1)
(

8(µmax+4)M3
maxe

C̃

)DΘ1+DΘ2+DΞ1+DΞ2

and DFθ,ξ
= DΘ1 +DΘ2 +DΞ1 +DΞ2 i.e., the “effective” psuedo dimension.

Then we apply Pollard tail inequality, for any n ≥ 32/ϵ2, we have

P( sup
(V

θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )∈Θ1×Θ2×Ξ1×Ξ2

∣∣EG(V θ1
µ , πθ2

µ , η
ξ1 , ϖξ2 ;Di)− PnG(V

θ1
µ , πθ2

µ , η
ξ1 , ϖξ2 ;Di)

∣∣ ≥ ϵ

2
)

≤8C1

(
1

ϵ

)DFθ,ξ

exp

(
− nϵ2

512M2
max

)
Then we can obtain

E

[
sup

(V
θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )∈Θ1×Θ2×Ξ1×Ξ2

∣∣EG(V θ1
µ , πθ2

µ , η
ξ1 , ϖξ2 ;Di)− PnG(V

θ1
µ , πθ2

µ , η
ξ1 , ϖξ2 ;Di)

∣∣2]

=

∫ ∞

0

P( sup
(V

θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )∈Θ1×Θ2×Ξ1×Ξ2

∣∣EG(V θ1
µ , πθ2

µ , η
ξ1 , ϖξ2 ;Di)− PnG(V

θ1
µ , πθ2

µ , η
ξ1 , ϖξ2 ;Di)

∣∣2 ≥ t)dt
=

∫
0

P( sup
(V

θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )∈Θ1×Θ2×Ξ1×Ξ2

∣∣EG(V θ1
µ , πθ2

µ , η
ξ1 , ϖξ2 ;Di)− PnG(V

θ1
µ , πθ2

µ , η
ξ1 , ϖξ2 ;Di)

∣∣2 ≥ t)dt
+

∫ ∞

u

P( sup
(V

θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )∈Θ1×Θ2×Ξ1×Ξ2

∣∣EG(V θ1
µ , πθ2

µ , η
ξ1 , ϖξ2 ;Di)− PnG(V

θ1
µ , πθ2

µ , η
ξ1 , ϖξ2 ;Di)

∣∣2 ≥ t)dt
≤u+

∫ ∞

u

8C1

(
1

t

)DFθ,ξ

exp

(
− nt2

512M2
max

)
dt

=u+
64C1

(
1
u

)DFθ,ξ

n
exp

(
− nu

512M2
max

)
With probability 1− δ, minimizing the RHS with respect to u, and plug the minimizer in, we have

E

[
sup

(V
θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )

∣∣EG(V θ1
µ , πθ2

µ , η
ξ1 , ϖξ2 ;Di)− PnG(V

θ1
µ , πθ2

µ , η
ξ1 , ϖξ2 ;Di)

∣∣2]

≤
64DFθ,ξ

log(8C1

(
1
δ

)
)

n
,

where C2 = 8C1. Therefore, we conclude that, with probability 1− δ, we have

∆1 ≤

√
64DFθ,ξ

log
(
8C1

δ

)
n

:=

√
C3DFθ,ξ

log
(
8C1

δ

)
n

Next, we proceed to bound ∆2. To simply the notation, we denote the U-statistic kernel as

K̄(St, At; S̃t, Ãt) := Λ
V

θ1
µ ,π

θ2
µ
(St

i , A
t
i, S

t+1
i )K

(
St
i , A

t
i; S̃

t
i , Ã

t
i

)
Λ
V

θ1
µ ,π

θ2
µ
(S̃t

i , Ã
t
i, S

t+1
i ).

By Hoeffding’s decomposition of kernel function K̄(St, At; S̃t, Ãt), there exists kernel functions
K̄1(S

t, At) and K̄2(S
t, At; S̃t, Ãt) that ET K̄1(S̃

t, Ãt) = 0 and ET K̄2(s, a; S̃
t, Ãt) = 0. The

U-statistic UT can be decomposed into

UT = ET [U
⋆] +

2

T

T∑
t=1

K̄1

(
St, At

)
+ UK̄2

and ET [UT ] = ET [U
⋆] + ET [UK̄2

],

36



Published as a conference paper at ICLR 2023

where UK̄2
:= UK̄2

(V θ1
µ , πθ2

µ , η
ξ1 , ϖξ2) is defined similarly as in the proof of Theorem 4.2. The

details of the decomposition can be seen in the proof of Theorem 4.2. The term ∆2 can be immediately
decomposed as follows

∆2 = sup
(V

θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )∈Θ1×Θ2×Ξ1×Ξ2

∣∣UT (V
θ1
µ , πθ2

µ , η
ξ1 , ϖξ2)]− ET [UT (V

θ1
µ , πθ2

µ , η
ξ1 , ϖξ2)]

∣∣+
sup

(V
θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )∈Θ1×Θ2×Ξ1×Ξ2

∣∣ET [U
⋆(V θ1

µ , πθ2
µ , η

ξ1 , ϖξ2)]− ET [UT (V
θ1
µ , πθ2

µ , η
ξ1 , ϖξ2)]

∣∣
= sup

(V
θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )∈Θ1×Θ2×Ξ1×Ξ2

∣∣UT (V
θ1
µ , πθ2

µ , η
ξ1 , ϖξ2)− ET [UT (V

θ1
µ , πθ2

µ , η
ξ1 , ϖξ2)]

∣∣
︸ ︷︷ ︸

∆1
2

+

sup
(V

θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )∈Θ1×Θ2×Ξ1×Ξ2

∣∣ET [UK̄2
(V θ1

µ , πθ2
µ , η

ξ1 , ϖξ2)]
∣∣

︸ ︷︷ ︸
∆2

2

.

Note that the second term is not exactly zero since the samples are weakly dependent. But next, we
will show that ∆2

2 converges to zero. First, we check the conditions of Lemma 3.1 in Arcones & Yu
(1994). Observe that K(·, ·) ≤ 1 and according to Lemma S.1, then

sup
(V

θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )∈Θ1×Θ2×Ξ1×Ξ2

∣∣∣K̄ (St, At; S̃t, Ãt
)∣∣∣ ≤M2

maxK
(
St, At; S̃t, Ãt

)
≤M2

max.

Therefore, the kernel K̄ is a uniformly bounded function. Under Assumption 4.2 that β(m) ≲ m−δ1

for δ1 > 1. Therefore, β(m)mδ1 → 0. By using a similar technique of calculating the metric entropy,
for any ϵ > 0, we have the covering number that

N (ε,Fθ,ξ, ∥ · ∥L2) ≤ N (ε,Fθ,ξ, {Di}ni=1) <∞

Then the conditions of Lemma 3.1 in Arcones & Yu (1994) are satisfied, we have

sup
(V

θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )∈Θ1×Θ2×Ξ1×Ξ2

|
√
TUK̄2

(V θ1
µ , πθ2

µ , η
ξ1 , ϖξ2)| = op(1)

=⇒ sup
(V

θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )∈Θ1×Θ2×Ξ1×Ξ2

|UK̄2
(V θ1

µ , πθ2
µ , η

ξ1 , ϖξ2)| = op(1). (35)

Since UK̄2
(V θ1

µ , πθ2
µ , η

ξ1 , ϖξ2) is uniformly bounded, then

sup
(V

θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )

|UK̄2
(V θ1

µ , πθ2
µ , η

ξ1 , ϖξ2)| <∞

As x, T →∞, then

E

[
sup

(V
θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )

|UK̄2
(V θ1

µ , πθ2
µ , η

ξ1 , ϖξ2)|I{ sup
(V

θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )

|UK̄2
(V θ1

µ , πθ2
µ , η

ξ1 , ϖξ2)| > x}

]
→ 0,

which means sup
(V

θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )

|UK̄2
(V θ1

µ , πθ2
µ , η

ξ1 , ϖξ2)| is uniformly integrable. Combine with
the weak convergence in (35), then as T →∞

∆2
2 = sup

(V
θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )

E|UK̄2
(V θ1

µ , πθ2
µ , η

ξ1 , ϖξ2)| ≤ E sup
(V

θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )

|UK̄2
(V θ1

µ , πθ2
µ , η

ξ1 , ϖξ2)| → 0.

Then we move to bound ∆1
2. The U-statistic UT is not degenerate, so we adopt Hoeffding’s represen-

tation (Hoeffding, 1994) such that it reduces the problem to a “first-order” analysis. Specifically, let
σ(T ) is the collection of all permutations of {1, 2, ..., T}, the U-statistic UT can be re-expressed as

UT

(
V θ1
µ , πθ2

µ , η
ξ1 , ϖξ2

)
=

1

T !

∑
σ(T )

1

T0

T0∑
t=1

K̄
(
Xσ(t), Xσ(T0+t)

)
,
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where T0 = ⌊T/2⌋. By the trick, we have the following inequality

∆1
2 = sup

(V
θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )

∣∣∣∣∣∣ 2

T (T − 1)

∑
1≤i ̸=j≤T

K̄
(
Xi, Xj

)
− ET [UT (V

θ1
µ , πθ2

µ , η
ξ1 , ϖξ2)]

∣∣∣∣∣∣
= sup

(V
θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )

∣∣∣∣∣∣ 1T !
∑
σ(T )

1

T0

T0∑
t=1

K̄
(
Xσ(t), Xσ(T0+t)

)
− ET [UT (V

θ1
µ , πθ2

µ , η
ξ1 , ϖξ2)]

∣∣∣∣∣∣
= sup

(V
θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )

∣∣∣∣∣∣ 1T !
∑
σ(T )

1

T0

T0∑
i=t

K̄
(
Xσ(t), Xσ(T0+t)

)
− 1

T !

∑
σ(T )

ET [UT (V
θ1
µ , πθ2

µ , η
ξ1 , ϖξ2)]

∣∣∣∣∣∣
≤ sup

(V
θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )

1

T !

∑
σ(T )

∣∣∣∣∣ 1T0
T0∑
t=1

K̄
(
Xσ(t), Xσ(T0+t)

)
− ET [UT (V

θ1
µ , πθ2

µ , η
ξ1 , ϖξ2)]

∣∣∣∣∣
≤ 1

T !

∑
σ(T )

ET sup
(V

θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )

∣∣∣∣∣ 1T0
T0∑
t=1

K̄
(
Xσ(t), Xσ(T0+t)

)
− ET [UT (V

θ1
µ , πθ2

µ , η
ξ1 , ϖξ2)]

∣∣∣∣∣
= sup

(V
θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )

∣∣∣∣∣ 1T0
T0∑
t=1

K̄
(
Xt, X(T0+t)

)
− ET [UT (V

θ1
µ , πθ2

µ , η
ξ1 , ϖξ2)]

∣∣∣∣∣
= sup

(V
θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )

∣∣∣∣∣ 1T0
T0∑
t=1

K̄
(
Xt, X(T0+t)

)
− ET

[
1

T0

T0∑
t=1

K̄
(
Xt, X(T0+t)

)]∣∣∣∣∣
= sup

(V
θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )

∣∣∣∣∣ 1T0
T0∑
t=1

Ḡ
(
X̃t
)
− ET

[
1

T0

T0∑
t=1

Ḡ
(
X̃t
)]∣∣∣∣∣ ,

where X̃t =
(
Xt, X(T0+t)

)
which itself is a two-dimensional stationary sequences under mix-

ing condition. Note that the last term is the expectation of the suprema of the empirical process
1/T0

∑T0

t=1 Ḡ(X̃
t)−ET [1/T0

∑T0

t=1 Ḡ(X̃
t)] on the space Ḡθ,ξ . The distance in Ḡθ,ξ can be bounded

by the following,

N
(
min{(2µmax + 4)Mmax, 1}ε, Ḡθ,ξ, {X̃t}T0

t=1

)
≤ N

(
C̃ε,Θ1, {Di}ni=1

)
N
(
C̃ε,Θ2, {Di}ni=1

)
N
(
C̃ε,Ξ1, {Di}ni=1

)
N
(
C̃ϵ,Ξ2, {Di}ni=1

)
=e4 (DΘ1

+ 1) (DΘ2
+ 1) (DΞ1

+ 1) (DΞ2
+ 1)

(
2eMmax

C̃ϵ

)DΘ1
+DΘ2

+DΞ1
+DΞ2

which implies

N
( ϵ

16
, Ḡθ,ξ, {X̃t}T0

t=1

)
≤e4 (DΘ1

+ 1) (DΘ2
+ 1) (DΞ1

+ 1) (DΞ2
+ 1)

(
64(max+32)U2

maxe

C̃ϵ

)DΘ1
+DΘ2

+DΞ1
+DΞ2

:=C3

(
1

ϵ

)DḠθ,ξ

where DḠθ,ξ
= DΘ1 +DΘ2 +DΞ1 +DΞ2 . First, without loss of generality, let T0 = 2mT0kT0 for

appropriate positive integers mT0kT0 as in (Yu, 1994). Follow Lemma 5 in Antos et al. (2008), we
obtain that

P( sup
(V

θ1
µ ,π

θ2
µ ,ηξ1 ,ϖξ2 )

∣∣∣∣∣ 1T0
T0∑
t=1

Ḡ
(
X̃t
)
− ET

[
1

T0

T0∑
t=1

Ḡ
(
X̃t
)]∣∣∣∣∣ ≥ ϵ

2
)

≤ C3

(
1

ϵ

)DḠθ,ξ

exp
(
−4C4mT0

ϵ2
)
+ 2mT0

β(kT0
)
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where C4 = 1
2

(
1

8M2
max

)2
. If DḠ ≥ 2, and let β(m) ≲ exp (−δ1m) , T ≥ 1,mT =⌈(

C4T0ϵ
2/δ1

) 1
2

⌉
,mT0

= T0/ (2kT0
), where DḠθ,ξ

≥ 2, C3, C4, δ1, we apply Lemma 14 in Antos
et al. (2008), then

2mT0βkT0
+ C1

(
1

ϵ

)DḠθ,ξ

exp
(
−4C2mT0ϵ

2
)
≤ δ

and we have, with probability 1− δ,

∆1
2 ≤

√
2∆(∆/δ1 ∨ 1)

C4T0

=⇒ ∆1
2 ≤

√
2∆(∆/δ1 ∨ 1)

C4⌊T/2⌋

where

∆ = (DḠθ,ξ
/2) log T0 + log(e/δ) + log+

(
C3C

DḠθ,ξ
/2

4

)
=⇒ ∆ = (DḠθ,ξ

/2) log(T/2) + log(e/δ) + log+
(
C3C

DḠθ,ξ
/2

4

)
Now, we conclude that

∥V̂ θ1,k
µ − V ∗∥2L2 ≤

C1

κmin(1− γ)2

√C3D log
(
8C1

δ

)
n

+

√
2∆(∆/δ1 ∨ 1)

C4⌊T/2⌋

+

C2
µ2(C+ |1−C| ∨ 1)2

(1− γ)2
+ C5

∥∥∥V̂ θ1
µ − V̂ θ1,k

µ

∥∥∥2
L2

+ ϵapproximation error

where ∆ = (DḠθ,ξ
/2) log(⌊T/2⌋) + log(e/δ) + log+

(
C3C

DḠθ,ξ

4 /2

)
, DḠθ,ξ

= P-dim(Θ1) +

P-dim(Θ2) + P-dim(Ξ1) + P-dim(Ξ2), and C1, ..., C5 are some constants. Adapt the notations for
the constants number from Theorem 4.2. By some algebra, we conclude that

∥V̂ θ1,k
µ − V π∗

∥2L2 ≤
C4

κmin(1− γ)2

√C5DP-dim log
(
8C4

δ

)
n

+

√
2
(
∆̄
δ1
∨ 1
)
∆̄

C6⌊T/2⌋


︸ ︷︷ ︸

generalization error

+

C7
µ2(C+ |1−C| ∨ 1)2

(1− γ)2︸ ︷︷ ︸
proximal bias

+C8

∥∥∥V̂ θ1
µ − V̂ θ1,k

µ

∥∥∥2
L2︸ ︷︷ ︸

optimization error

+ϵapproximation error

where ∆̄ = DP-dim log(⌊T/2⌋)
2 + log( eδ ) + log+

(C5C
DP-dim
6

2

)
, DP-dim = P-dim(Θ1) + P-dim(Θ2) +

P-dim(Ξ1) + P-dim(Ξ2), and C4, ..., C8 are some constants.

B.9 PROOF OF THEOREM 4.4

We note that SGD converges has a global convergence to a stationary point with a sublinear rate in the
case of convexity. However, the resulting dose not typically holds for the non-convex analysis. The
intuition behind the proof is that our quasi-optimal algorithm can be regarded as a special case of the
randomized stochastic descent (RSD) algorithm for solving the non-convex minimization problem.

The convergence analysis of for randomized stochastic descent algorithm has been established in
Corollary 2.2 of (Ghadimi & Lan, 2013). That is, RSD is provably convergent to a stationary point.
Follow Theorem 3 in (Drori & Shamir, 2020), an unbiased SGD algorithm, i.e., the quasi-optimal
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algorithm with diminishing learning rate and evaluated on Euclidean distance. Therefore, it suffices
to show that the gradient of the loss is unbiased.

Now we show that the gradient is unbiased, as follows

∇θ1LU = E
[
∇θ1(γV

θ1
µ (St+1)− V θ1

µ (St))K(St, At; S̃t, Ãt)ΛVµ,πµ
(S̃t, Ãt, S̃t+1)

+ ΛVµ,πµ
(St, At, St+1)K(St, At; S̃t, Ãt)∇θ1(γV

θ1
µ (S̃t+1)− V θ1

µ (S̃t))
]

∇θ2LU = E
[
− 2µ(∇θ2π

θ2
µ (At|St)K(St, At; S̃t, Ãt)ΛVµ,πµ

(S̃t, Ãt, S̃t+1)

− ΛVµ,πµ
(St, At, St+1)K(St, At; S̃t, Ãt)(2µ(∇θ2π

θ2
µ (Ãt|St))

]
∇ξ1LU = E

[
∇ξ1ϖ(St, At)K(St, At; S̃t, Ãt)ΛVµ,πµ

(S̃t, Ãt, S̃t+1)

+ ΛVµ,πµ
(St, At, St+1)K(St, At; S̃t, Ãt)∇ξ1ϖ(S̃t, Ãt)

]
∇ξ2LU = E

[
−∇ξ2η(S

t)K(St, At; S̃t, Ãt)ΛVµ,πµ
(S̃t, Ãt, S̃t+1)

− ΛVµ,πµ
(St, At, St+1)K(St, At; S̃t, Ãt)∇ξ2η(S̃

t)
]

We conclude that the gradient estimator is unbiased. Follow Theorem 3 in (Drori & Shamir, 2020),
under the conditions stated in Theorem 4.4, we adapt Corollary 2.2 to our quasi-optimal algorithm, it
completes the proof.

C PRACTICAL IMPLEMENTATION

In practice, {V ∗
µ , π

∗
µ, η,ϖ} needs to be parameterized for practical implementation. However,

noticing that V ∗
µ and π∗

µ are both associated with Q∗
µ with closed-form expressions (3)(4). Thus,

we propose to represent (V ∗
µ , π

∗
µ) by modeling Q∗

µ. Additionally, by modeling Q∗
µ as a quadratic

function, the induced policy would follow a q-Gaussian distribution. Therefore, we model the
coefficients associated with the quadratic form as a linear combination of basis function φ(s) such that
Q∗

µ(s, a; θ) = − exp{θT1 φ(s)}a2 + θT2 φ(s)a + θT3 φ(s), where φ(s) = [φ1(s), φ2(s), ..., φm(s)]T

is the m-dimensional basis function, and θ = [θ1, θ2, θ3]
T is the 3m-dimensional parameters we need

to estimate. The advantage of such parametrization lies in that the parameter space could be reduced.

To solve the constrained optimization problem, we propose a computationally efficient algorithm
by transforming the original constrained optimization problem into an unconstrained minimiza-
tion problem. Specifically, we impose restrictions on the representation of Lagrangian multipliers
(η(s), ϖ(s, a)) so that they satisfy their constraints automatically. Although such re-parametrization
may sacrifice model flexibility, it gains great computational advantage as the unconstrained optimiza-
tion problem would be much simpler. To be specific, we parametrize ϖ as

ϖ(s, a; θ) = max
(
0,−

Q∗
µ(s, a; θ)

2µ
+

∫
a∈W1(s)

Q∗
µ(s, a; θ)da

2µσ(Ws)
− 1

σ(Ws)

)
, (36)

Therefore, ϖ(St, At) ≥ 0 and π∗
µ(A

t|St) · ϖ(St, At) = 0 are automatically satisfied. Also, by
specifying the expression of Lagrangian multipliers, ϖ(s, a) share the same set of parameters θ as
(V ∗

µ , π
∗
µ). We also define

η(s; ξ) =
{ −µC
1 + exp(−k0(ξT s− b0))

}
, (37)

where b0 is the sigmoid’s midpoint and k0 is the logistic growth rate. By flipping the sigmoid function
to parametrize η(s; ξ), the constraint η(s) ∈ [−µC, 0] is also automatically satisfied.
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D EXPERIMENT DETAILS AND ADDITIONAL RESULTS

For the reproducing purpose, we include our code for all the experiments and the guideline for access
to the Ohio Type I Diabetes dataset in an anonymous GitHub link https://anonymous.4open.
science/r/Quasi-optimal-Learning-with-Continuous-Treatments-9B88.

D.1 DETAILS OF SIMULATION SETTINGS AND REAL DATA ANALYSIS

The details of the data generative model of each environment in Section 6 are stated below:

Environment I: We consider a bounded action space where A = [0, 1], and a 2-dimensional state
space. At

i
iid∼ Unif(0, 1), the state transition function is defined as

St+1
i,1 =

1−exp(−At
i)

1+exp(−At
i)
St
i,1 + 0.25St

i,1S
t
i,2 + ϵti,1, S

t+1
i,2 = − 1−exp(−At

i)
1+exp(−At

i)
St
i,2 + 0.25St

i,1S
t
i,2 + ϵti,2,

where ϵti,1, ϵ
t
i,2

iid∼ N(0, 0.52), and the reward function is defined as

Rt
i = 3

(
− exp(St+1

i,1 − S
t+1
i,2 )(At

i)
2 + (St+1

i,1 + St+1
i,2 + 0.5)At

i + St+1
i,1 + St+1

i,2

)
.

Environment II: We consider a bounded action space where A = [0, 1], and a 2-dimensional state
space. At

i
iid∼ Unif(0, 1), the state transition function is defined as

St+1
i,1 = 0.75(2At

i− 1) ·St
i,1+0.25St

i,1S
t
i,2+ ϵ

t
i,1, S

t+1
i,2 = 0.75(1− 2At

i)S
t
i,2+0.25St

i,1S
t
i,2+ ϵ

t
i,2.

where ϵti,1, ϵ
t
i,2

i.i.d∼ N(0, 0.52), andRt
i = 0.25(St+1

i,1 )3+2St+1
i,1 +0.5(St+1

i,2 )3+St+1
i,2 +0.25(2At

i−1).
Environment III: We consider an unbounded action space where A = (−∞,∞),
and a 8-dimensional state space. We sampled action uniformly from a bounded space,
At

i
iid∼ Unif(−100, 100), while it is allowed to select actions on R for the learned policy. The state

transition function is defined as, St+1
i ∼ N(µt+1

i ,Σ), where Σ is a pre-specified covariance matrix,
and µt

i = [µt
i,1, ..., µ

t
i,8],

µt+1
i,j =

exp(At
i/100 + µt

i,j)− exp(−(At
i/100 + µt

i,j))

exp(At
i/100 + µt

i,j) + exp(−(At
i/100 + µt

i,j))
for j = 1, 2, 3, 4,

µt+1
i,j =

exp(−At
i/100 + µt

i,j)− exp(−(−At
i/100 + µt

i,j))

exp(−At
i/100 + µt

i,j) + exp(−(−At
i/100 + µt

i,j))
for j = 5, 6, 7, 8.

Rt
i = − exp(St+1

i,1 /2+St+1
i,5 /2)(At

i/100)
2+2(St+1

i,2 +St+1
i,3 +St+1

i,6 +St+1
i,7 +0.5)At

i/100+S
t+1
i,4 +

St+1
i,8 .

Environment IV: This environment shares the same transition kernel as Environment III, the only
difference is the reward function here is

Rt
i = (St+1

i,1 /2)3 + (St+1
i,2 /2)3 + St+1

i,3 + St+1
i,4 + 2[(St+1

i,5 /2)3 + (St+1
i,6 /2)3] + 0.5(St+1

i,7 + St+1
i,8 ).

For all four environments, we consider different sample sizes where the number of trajectories
n = {25, 50}, and the length of each trajectory T = {24, 36}. The discount factor γ is set to 0.9.

Motivation of Synthetic experiment design: We aim to test the performance of our proposed method
on the settings of bounded and unbounded continuous action space with unimodal and multimodal
reward functions. The motivation for testing the proposed method in bounded action space is to test
if the proposed method could potentially handle the off-support bias, as illustrated in Figure 2. The
reason for considering a multimodal synthetic environment is to evaluate the quasi-optimal policy
class (q-Gaussian policy class) works in a relatively complex situation. Especially for the q-Gaussian
policy distribution which is unimodal, it is necessary to test if the q-Gaussian policy still works and is
robust to the scenario where the optimal policy might be multimodally behaving.

We make a summary of the synthetic experiments as follows:

Environment I:

• Setting: Bounded action space and unimodal reward function
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• Purpose: To evaluate if the quasi-optimal learning works in the scenario where it might
suffer the off-support bias issue as the continuous action space is bounded.

Environment II:

• Setting: Bounded action space and multimodal reward function
• Purpose: In addition to the purpose in Environment I, we aim to implement quasi-optimal

learning in a more challenging environment. Also, this is for evaluating the robustness of
the unimodal q-Gaussian policy under the scenario that the true optimal policy follows a
multimodal probability distribution.

Environment III:

• Setting: High-dimension state space and well-separated reward function. The design of
the well-separated reward function causes the effect that the selection of non-optimal or
sub-optimal actions greatly damages the rewards and increases the risk.

• Purpose: To evaluate the reliability/safety of quasi-optimal learning. We aim to examine
if quasi-optimal learning could perform well in this scenario. As we expect quasi-optimal
learning is able to identify the quasi-optimal sub-regions and avoids choosing those non-
optimal/sub-optimal actions which greatly damage the performance.

Environment IV:

• Setting: High-dimension state space and complex well-separated reward function.
• Purpose: In addition to the purpose in Environment III, we target to evaluate the quasi-

optimal learning in a more complex environment, imposing great challenges on recovering
the quasi-optimal regions for the proposed method. Indeed, imposing more complex struc-
tures on reward function indicates imposing difficulties on value function learning and thus
imposes great challenges on identifying quasi-optimal regions.

Ohio Type 1 Diabetes Dataset: For individuals in the first cohort, we treat glucose level , carbon-
hydrate intake, and acceleration level as state variables, i.e., St

i,1, S
t
i,2 and St

i,3 . For individuals in the
second cohort, heart rate is used instead of acceleration level as St

i,3. The reward function is defined
as

Rt
i = −

1(St
i,1 > 140)(St

i,1 − 140)1.1 + 1(St
i,1 < 80)(St

i,1 − 80)2

30
.

D.2 ADDITIONAL EXPERIMENT DETAILS

In our implementation, since the objective function, L̂U may not be convex with respect to (θ, ξ). We
determine the initial point by randomly generating 200 initial values for all parameters and selecting
the one with the smallest objective function value.

For the discretization-based methods, i.e., Greedy-GQ and V-learning, we discretize the original
action space into 20 bins for implementation in synthetic experiments and 14 bins for real data
analysis. The number of bins is chosen by analyzing the distribution of action and the scale of
rewards, where too few bins could not lead to an accurate approximation of the whole dynamic, and
too many bins may damage the performance of these methods. We use a radial basis to approximate
value functions for these two methods based on the recommendation of the original implementation
(Ertefaie & Strawderman, 2018; Luckett et al., 2019).

For the DeepRL-based continuous control methods, i.e., DDPG, SAC, BEAR, CQL and IQN, we
implement them mainly based on well-known offline deep reinforcement learning library (Seno &
Imai, 2021). For the general optimization and function approximation settings, we use a multi-layer
perceptron (MLP) with 2 hidden layers, each with 32 nodes for function approximation. We set the
batch size to be 64, and use ReLU function as the activation function. In addition to the summary
provided below, the initial learning rate is chosen from the set {3× 10−4, 1× 10−4, 3× 10−5}. We
use Adam (Kingma & Ba, 2014) as the optimizer for learning the neural network parameters. We set
the discounted factor to be γ = 0.9 for all experiments.
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To evaluate the policy obtained from the proposed method in synthetic experiments, we generate 100
independent trajectories, each with a length of 100 based on the learned policy. We use rejection
sampling (Robert et al., 1999) to randomly sample each action by the induced density πµ(a|s) and
calculate the discounted sum of reward for each trajectory. We compare the discounted return of each
method. The boxplot of synthetic experiments results based on 50 runs is presented in Figure 3.

For real data analysis, since the data-generating process is unknown, we follow Luckett et al. (2020) to
utilize the Monte Carlo approximation of the estimated V-function of the initial state of each trajectory
to evaluate the performance of each method. To better evaluate the stability and performance of each
method, we randomly select 10 or 20 trajectories from each individual based on available trajectories
50 times and apply all methods to the selected data. The baseline refers to the observed discounted
return. The mean and standard deviation of the improvements on the Monto Carlo discounted returns
are presented in Table 1.

We report all hyperparameters used in training and additional experiment results in this section. The
value of µ is selected from the set {0.01, 0.05, 0.1, 0.2, 0.3, 0.5}. We select µ by cross-validation for
each experiment, specifically we select µ with the largest fitted V-function value on the initial states of
each trajectory, i.e., PnV̂µ(S

1
i )− (1−γ)−1µ, where we mitigate the effect of the threshold parameter

µ. In our implementation, we set C = 5 for all synthetic experiments and real data analysis, and
check that the induced policy πµ never reaches the boundary value.

We set the learning rate αj for the jth iteration is be α0

1+d
√
j
, where α0 is the learning rate of the

initial iteration, and d is the decay rate of the learning rate. When n = 25, we set the batch size to be
5, and when n = 50, we set the batch size to be 7. We use the L2 distance of iterative parameters as
the stopping criterion for the SGD algorithm. The µ selected for each experiment, along with the
learning rates and their descent rates, are shown in Table 2 3 and 4.

Table 2: Hyperparameters for each synthetic environment

Hyperparameters Environment I Environment II Environment III Environment IV
µ 0.1 0.05 0.05 0.05

Learning Rate 0.002 0.0005 10−5 10−5

Descent Rate 10−4 10−4 10−4 10−4

Table 3: Hyperparameters for Ohio Type I Diabetes Analysis (Cohort I)

Patient ID 540 544 552 567 584 596
µ 0.1 0.1 0.1 0.05 0.05 0.1

Learning Rate 0.001 0.001 0.001 0.0005 0.001 0.02

Descent Rate 10−4 10−4 10−4 10−4 10−4 2× 10−4

Table 4: Hyperparameters for Ohio Type I Diabetes Analysis (Cohort II)

Patient ID 559 563 570 575 588 591
µ 0.2 0.1 0.2 0.05 0.05 0.05

Learning Rate 0.005 0.0001 0.005 0.0001 0.0001 0.0001

Descent Rate 10−4 10−4 10−4 10−4 10−4 10−4

Table 5: The mean running time in seconds of each method over 50 experiment runs in Environment I.
The synthetic experiments are conducted on a single 2.3 GHz Dual-Core Intel Core i5
CPU
.

n T Proposed SAC DDPG BEAR Greedy-GQ
25 24 23.11 22.17 14.31 35.42 11.39

36 28.91 28.12 18.35 42.16 14.47
50 24 28.88 29.91 19.42 46.73 15.62

36 45.23 44.46 36.82 63.54 24.81
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Table 6: The mean running time in seconds of each method over 50 experiment runs in Environment
II. The synthetic experiments are conducted on a single 2.3 GHz Dual-Core Intel Core
i5 CPU
.

n T Proposed SAC DDPG BEAR Greedy-GQ
25 24 30.93 27.29 20.12 44.01 14.56

36 39.34 36.91 26.43 52.86 19.43
50 24 41.12 42.25 28.42 55.17 21.56

36 60.16 56.47 45.71 72.12 32.14

D.3 ADDITIONAL EXPERIMENT RESULTS

D.3.1 SENSITIVITY ANALYSES

To validate the cross-validation procedure in practice and analyze the effect of µ on model perfor-
mance, we conduct sensitivity analyses for the change of µ. Results are summerized in Figure 4.
This confirms that the cross-validation procedure indeed selects a proper µ which maximizes the
discounted return.
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Figure 4: The sensitivity analyses of µ over 50 repeated experiments

D.3.2 DISTRIBUTION EVALUATION CRITERION

To measure the performance on safety, we aim to evaluate the distribution of Monte-Carlo discounted
sum of rewards for each roll-out trajectory Dabney et al. (2018a), instead of its empirical mean, i.e.,
discounted return.

In particular, we generate 100 trajectories under the learned policy and record the discounted sum of
rewards of each single trajectory. Then we draw the density plots in Figure 5 for all four environments.
As shown in Figure 5, the distribution of the quasi-optimal learning shows a thinner tail on the left.
This is aligned to two safe RL algorithms IQN and CQL. The phenomenon indicates that there is less
chance to enter a low reward trajectory which is damaged by allocating highly-risk actions. However,
the non-safe RL approach SAC is more evenly distributed on both extremes; Hence, SAC may enter
a low reward trajectory with higher probability (heavier left tail) compared to the quasi-optimal
learning and two safe RL baselines. This validates that quasi-optimal learning can avoid risky actions
as the other two safe RL baselines.
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Figure 5: The distribution of Monte-Carlo discounted sum of rewards over 50 repeated experiments.

44



Published as a conference paper at ICLR 2023

D.3.3 MODEL PERFORMANCE ON LARGE DATASET

We evaluate the model performance in large sample size scenarios (10,000 transition pairs (n =
100, T = 100) for all four environments. The results are presented in Figure 6. Deep RL baseline
methods have some improvement in the model performance and variance reduction with increased
training samples. Meanwhile, the quasi-optimal learning still outperforms all competing methods as
shown in Figure 6.
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Figure 6: The boxplot of discounted return over 30 repeated experiments with sample size N =
100, T = 100.

D.3.4 SAFE TRANSITIONS AND LEARNED POLICY DISTRIBUTION

Safe Transition: We illustrate the safety of the proposed method via evaluating the proportion of
safe transition, i.e., from a fixed current state to a safe transition state. The goal of the OhioT1M case
study is to maintain the glucose level in a safe range. The safe state in this study is defined as the
state where the glucose level is within the range of 80-140 mg/dL. The reward function, i.e., the index
of glycemic control (Rodbard, 2009),

Rt
i = −

1(St
i,1 > 140)(140− St

i,1)
1.1 + 1(St

i,1 < 80)(St
i,1 − 80)2

30

where St
i,1 is the glucose level of patient i at t decision stage. This reward setting tends to favor

the safe range and penalize the risky scenario where the glucose level is out of the range of 80-140
mg/dL.

The details of the evaluation procedure are summarized in the following. In offline OhioT1M dataset,
we pick up the observed states which transited to risky states, i.e., the states out of the safe range of
glucose level. On the picked-up states, we calculate the proportion of safe transition, in which the
corresponding transition states are sampled from the transition kernel under the learned policy. The
transition kernel is estimated by maximum likelihood estimation from the offline dataset.

We summarize the results of the safe proportions on 1000 transition samplings in Figure 7. As
shown, the quasi-optimal learning achieves 82.2% safe proportions, which outperforms 67.3% in
safe RL baseline IQN and 44.6% in non-safe RL baseline SAC. By the results, we may conclude that
quasi-optimal learning enjoys a better safety guarantee when applied to the medical domain.
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Figure 7: Proportions of Safe Transition from each Method

The Learned Policy Distribution: In this dimension, we illustrate the validity of the quasi-optimal
policy distribution on a fixed state. In OhioT1M dataset, we select a patient state with a glucose level
of 217 mg/dL, which is moderate hyperglycemia. On this state, we draw a density plot in Figure 8
for the policy distribution learned by the quasi-optimal learning, IQN, and SAC. Figure 8 shows that
the quasi-optimal learning identified support regions [3.15, 6.19]. As the patient is under moderate
hyperglycemia, so the moderate insulin dosage, i.e., [3.15, 6.19], works well to decrease the glucose
level into a safe range. Meanwhile, it avoids overly dropping the patient’s glucose level and causes
hypoglycemia. In comparison, SAC is risky as it has a non-negligible probability of assigning too low
and too high insulin dosage to the patient. The policy learned by the safe RL algorithm IQN tends
to avoid assigning extreme dosage, but it has wider support than the one learned by quasi-optimal
learning. Regarding efficiency or safety, the quasi-optimal has certain advantages compared with
IQN in this case.
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Figure 8: The Learned Policy Distribution of each Method for the Same Given State
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